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ABSTRACT

We consider the problem of identifying viral reads in human host
genome data. We pose the problem as open-set classification as
reads can originate from unknown sources such as bacterial and
fungal genomes. Sequence-matching methods have low sensitivity
in recognizing viral reads when the viral family is highly diverged.
Hidden Markov models have higher sensitivity but require domain-
specific training and are difficult to repurpose for identifying dif-
ferent viral families. Supervised learning methods can be trained
with little domain-specific knowledge but have reduced sensitivity
in open-set scenarios. We present DeepViFi, a transformer-based
pipeline, to detect viral reads in short-read whole genome sequence
data. At 90% precision, DeepViFi achieves 90% recall compared to
15% for other deep learning methods. DeepViFi provides a semi-
supervised framework to learn representations of viral families
without domain-specific knowledge, and rapidly and accurately
identify target sequences in open-set settings.
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INTRODUCTION

Viral infections in (human) hosts are pervasive and occur through
a variety of mechanisms. Viral genomes may be encoded using
RNA (e.g., Hepatitis C Virus, influenza viruses, Coronavirus) or
DNA (e.g. Hepatitis B, Papilloma virus) [23]. Retroviruses like HIV
convert their RNA genomes into DNA and then back into RNA for
transcription [9]. In all cases, the virus utilizes the host machinery to
express viral genes and allow the virus to replicate in the host. Viral
infections are directly responsible for many human diseases, and
new strains may lead to epidemics or pandemics when introduced
into an immunologically naive population. Thus, rapid detection of
a viral infection is important.

When the viral family is known, specific sequences can be probed
directly by searching databases of known viral sequences. If the viral
family shows high divergence between members, detection based
on direct sequence match can fail. Here, we address the following
question: given training sequences from a diverged oncoviral family,
can we learn latent representations that allow us to determine if
a query sequence belongs to that viral family without a database
search.

Specifically, we take the Papilloma virus (PVs) as an exemplar
of a diverged oncoviral family. Human Papillomaviruses (HPV),
especially HPV16 and HPV18 are important mediators of cervical
and orapharyngeal cancers [4, 6, 16]. HPV mediated oropharyngeal
cancers are reaching epidemic proportions, accounting for nearly
5% of all cancers [1]. In 2017, cervical cancer was the second most
common cause of cancer related death for women across the world.
Other Papilloma viruses (PVs), albeit less well understood, have also
been implicated in human diseases including skin warts and rare
diseases such as epidermodysplasia verruciformis. Furthermore,
there is huge diversity of PVs with hundreds of strains identified
[15].

Given its clinical importance, many tools have been developed
to identify viral sequences in human cancer sequencing data [8,
14, 17, 28, 29], as well as tools to detect integration into the host
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genome which is known to increase pathogenicity [2]. Even these
specialized methods have suboptimal sensitivity for highly diverged
sequences [7, 17]. To address this, ViFi [17], utilized an ensemble
of hidden Markov models to identify viral sequences with high
sensitivity. However, ViFi is slow and the high runtime is especially
burdensome for analyzing large datasets. More importantly, ViFi
requires specialized training, including phylogenetic reconstruction
followed by construction of an ensemble of hidden Markov models
for each sub-family.

While other classification-based approaches might be utilized,
we also consider that human (host) genome samples often contain
significant numbers (up to 5%) of uncharacterized microbial se-
quences [5]. Therefore, a strict classification-based learning using
a ‘closed set’ approach might not work. In this work, we present
DeepViFi, a transformer-based pipeline, to identify oncoviral reads
in an open-set learning framework. We show that at 90% preci-
sion, DeepViFi achieves 90% recall and outperforms other neural
network-based tools that use a ‘closed-set’ approach. Addition-
ally, we demonstrate DeepViFi’s efficacy in identifying HPV reads
and the viral sub-family of the infecting strain in nine oropharyn-
geal tumour NGS datasets. Finally, DeepViFi can be retrained for
other viral families without the need for the host, or contaminant
genomes.

1 RELATEDWORKS

Recently, deep learning tools have made tremendous progress in
various biological applications such as protein folding [11], variant
detection [20], and cell segmentation in images [22]. DeepVirFinder
[21] and ViraMiner [25] leverage supervised learning with convolu-
tional neural networks (CNNs) to address the kingdom-membership
problem, with the goal of identifying viral sequences in metage-
nomic samples. They make the ‘closed-set’ assumption that the
training and test sequences have the same label space.

In a different setting, DNABERT [10] uses the transformer ar-
chitecture [27] to analyze human DNA contigs and produce latent
representations of features on the human genome. These represen-
tations can be used for various downstream tasks such as predicting
promoter regions and identifying transcription factor binding sites.
However, DNABERT cannot be readily applied to short reads as
it was trained on large contigs and tokenized at 3,4,5,6-mer level.
Finally, it was trained only on human DNA. In this paper, we apply
a similar framework to address the family-membership question
for viruses using short read sequences.

2 METHOD

2.1 Overview

DeepViFi consists of three components: a transformer to produce
latent representations of NGS short-reads, a random-forest (RF)
model to classify the viral status of the latent representations, and
a LightGBM model to identify the sub-family of the viral latent
representations (Figure 1).

2.2 Method Details

Input Pre-processing. Given a read 𝑟 of 𝑛 base pairs, we tokenize
each base-pair as a token, which empirically works better compared
to tokens of larger substrings. We encode each token using the

following mapping function 𝑡 : (𝐴,𝐶,𝐺,𝑇 , 𝑁 ) → (0, 1, 2, 3, 4) to
obtain an encoded read vector tr ∈ R𝑛×1 for each read 𝑟 , where row
𝑖 represents an encoding of the 𝑖-th token. We additionally define a
vector, p = (1, 2, ..., 𝑛 − 1, 𝑛) ∈ R𝑛×1, to encode the position of each
base pair in 𝑟 .

Transformer with Self-attention Heads. DeepViFi utilizes a trans-
former to learn embedding matrices M𝑡 ,M𝑝 ∈ R1×𝑑 , where the
embedding dimension 𝑑 is a user-defined parameter, to obtain a
dense representation combining tr and p. The initial encoding, de-
noted by X(0) ∈ R𝑛×𝑑 , is obtained using

X(0) = trM𝑡 + pM𝑝 ,

The transformer has ℓ = 8 encoders and ℎ = 16 attention heads
per encoder, where ℓ and ℎ are hyperparameters. Each encoder 𝑖
(1 ≤ 𝑖 ≤ ℓ) transforms the input X(𝑖−1) (where X(0) is the initial
input encoding) from the previous layer to𝑋 (𝑖) using self-attention
heads as follows.

We denote X(dropping the super-script) as the input to the en-
coders.We denote the weights of an attention head asWQ,WV,WK,
without additional subscripts, for ease of exposition.

Let V = XWV denote a learned representation of the input where

WV ∈ R𝑑×
𝑑
ℎ . The transformer outputs Z = SV. Each resulting token

vk is mapped to zk =
∑

𝑗 𝑆𝑘 𝑗vj, where
∑

𝑗 𝑆𝑘 𝑗 = 1. Intuitively, 𝑆𝑘 𝑗
corresponds to the importance or attention of 𝑗-th token for the
𝑘-th token. To compute S, we use the following:

(1) Q = XWQ, where Q ∈ R𝑛×
𝑑
ℎ ,WQ ∈ R𝑑×

𝑑
ℎ

(2) K = XWK where K ∈ R𝑛×
𝑑
ℎ ,WK ∈ R𝑑×

𝑑
ℎ

(3) D = QKT√
𝑑
ℎ

; D ∈ R𝑛×𝑛

(4) S = Softmax(D)

where the Softmax operator is applied along the row dimension

with 𝑆𝑖 𝑗 = 𝑒𝐷𝑖 𝑗∑
𝑙 𝑒

𝐷𝑖𝑙
, so that 0 ≤ 𝑆𝑖 𝑗 ≤ 1 for all 𝑖, 𝑗, and,

∑
𝑗 𝑆𝑖 𝑗 = 1

for all 𝑖 .
The ℎ outputs are concatenated and transformed using a dense-

layer, and supplied to a final feed-forward network to produce
the input for the next encoder. The output of the final encoder
(X(ℓ) ∈ R𝑛×𝑑 ) represents a transformation of the original input
read 𝑟 . The complete architecture is shown in (Figure 4).

Random Forest Classification of Viral Reads. We use a random
forest model to determine if the read was PV positive or negative by
classifying its latent representation from the transformer (Figure 1).
Specifically, we use an ensemble of 500 individual decision trees.
Each individual tree outputs a class (HPV+ or HPV-) prediction of
the input. The class with the most votes is the final prediction.

LightGBM for Viral Sub-family Classification. We use a Light-
GBM model [12] to further segregate the detected viral-reads into
sub-families after experimenting with other classification methods,
including a RFmodel (Figure 1). We fine-tuned the hyperparameters
and found that a tree depth limit of 5 and the maximum number of
leaves of 31 worked best. The model classified the latent represen-
tation of reads into one of Alpha, Beta, Gamma, or ‘Other.’
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Figure 1: DeepViFi pipeline. The input to DeepViFi is DNA sequencing short reads. The transformer produces latent representa-

tions of the reads. These latent representations are fed to a random forest to determine if the read is HPV positive. The latent

representations of the HPV positive reads are fed to a LightGBM model to determine their HPV subfamily.

2.3 Training and Inference

We trained the transformer using the masked language modeling
paradigm. Random tokens are masked or replaced in the input and
the transformer computes the likelihood for each token (A,T,C,G,N)
in each position. We appended a fully connected layer with Softmax
activation to the final encoder to produce

O = Softmax(X(ℓ)WO),

where 𝑂 ∈ R𝑛×5 represents the likelihoods of each basepair at
each position. The ground truth to the model is the unmasked read.
We computed the loss by comparing the predicted tokens and the
ground truth.

Masking. For masking a viral read of 150bp, we randomly chose
20% (30 positions) of the tokens for a masking procedure. Of these
30 chosen positions, we replaced 80% (24) of the tokens with a
[MASK] token, 10% (3) with a random token, and 10% (3) with the
original token (i.e. no change). Had we replaced all 20% of the to-
be-masked tokens with a [MASK] token, the encoder would have
learned to only observe the [MASK] tokens, and assumed that all
non-masked tokens were correct. Hence, we replaced some of the
to-be-masked tokens with a random or original token, forcing the
encoder to keep a distributional contextual representation of every
input token.

Hyper-parameter optimization. We optimized for the sparse cate-
gorical Cross-Entropy loss function using the Adam optimizer with
a dynamic learning rate [27]. We trained on 8 GPUs for 150 epochs
with early stopping with a patience of 10 epochs. We experimented
with various other masking ratios. We masked 30% of the input
sequence. However, this did not significantly change our loss con-
vergence. We also tried masking contiguous regions in the input
sequence instead of selecting random positions. In this case how-
ever, the loss did not converge despite experimenting with very low
learning rates. When 30 base pairs (20%) of the sequence were con-
tiguously masked, the network did not have enough context with
the remaining 120 base pairs (80%) to accurately predict the con-
tinuous missing sequence. We also experimented with tokenizing
2-mers and 3-mers instead of single base pairs. In both experiments,
the loss never converged despite various network configurations
and learning rates.

We experimented with different values of the hyper-parameters
ℓ ∈ {6, 8, 10}, 𝑑 ∈ {128, 256, 384}, and ℎ ∈ {8, 16}, and empirically
settled on ℓ = 8, 𝑑 = 256, ℎ = 16.

Inference. For inference, we removed the final fully connected
layer from the transformer and used the output of the final encoder
(X(ℓ) ) as the latent representation of the input sequence. Recall that
X(ℓ) ∈ R𝑛×𝑑 , where we chose 𝑛 = 150 and 𝑑 = 256. For inference,
we averaged the latent representation along the column dimension
to produce a single vector of dimensionality 256. We treated this
vector as the final latent representation of the input read.

3 DATASET GENERATION.

In a typical NGS experiment, bacteria and fungi can contaminate
the target sequenced human and viral reads[19]. It is not possible
currently to model all the contaminants, and instead we used an
‘open-set’ approach. Specifically, we trained DeepViFi exclusively
on viral reads but tested on unseen classes such as contaminant
and human reads.

3.1 Training Set.

We completely separated training and testing data by restricting
training to reads generated from 337 PV reference genomes iden-
tified prior to 2018 from PaVE [26]. The training reference PV
genomes ranged in length from 6953-8607 bp. We simulated reads
of length 150 bp at 0.5×coverage, resulting in 1,145,800 reads.

While only the viral reads were used in the transformer to gen-
erate latent representations, we also used a negative data-set for
training the random-forest classifier. In keeping with the open-set
paradigm, we used 5, 000 randomly generated reads for the negative
set, but tested using real contaminant reads that were not part of
training. These reads were combined with 5, 000 HPV reads and
used for classification using random forests.

We further classified the 337 pre-2018 references into alpha, beta,
gamma, and “other” categories and randomly generated 6808, 4324,
5980, and 10856 reads, respectively. The imbalance in reads reflects
the uneven number of references in each category.

3.2 Test Set

We exclusively used PV genomes from PaVE deposited on or after
2018 for testing. We simulated reads from each test genomes and
generated 4 test sets. Each test set contained reads from 10 viral
strains with similar genomic distances from the training genomes.
We labeled the test sets as easy, intermediate, hard, and non-human,
based on their increasing genomic distance from the training genomes.
To maintain an open set paradigm, we added contaminant and hu-
man reads to each test set. We randomly chose the contaminant
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and human reads from known contaminant and human genomes.
The contaminant and human reads are considered non-viral.

We evaluated the LightGBM model on the 318 post-2018 refer-
ences.We generated 0 Alpha, 150 Beta, 1200 Gamma, and 570 “other”
reads. There were an uneven number of references for each cate-
gory in the post-2018 strains. Notably, there were no alpha strains
in this (realistic) test set which also represents a harder scenario
as alpha strains are the easiest to identify. To rectify the balance,
we also evaluated subfamily classification on HPV-mediated tumor
patient data, where the alpha subfamily was over-represented.

3.3 HPV Mediated Primary Oropharyngeal
Cancer Samples

We also evaluated on 9 oropharyngeal tumour samples from a recent
study by Pang et al.[18], where the HPV status for each sample
was previously determined. Each sample was HPV-16 positive and
contained on average 800 million reads. After alignment filtering,
each sample contained approximately 11.5 million reads on average.
The ratio of viral to non-viral reads in each sample was .7% on
average.

4 RESULTS

4.1 Method Comparisons

We compared DeepViFi against ViraMiner, DeepVirFinder, ViFi,
and an off-the-shelf seq2seq model (Figure 2a). DeepViFi achieved a
precision-recall AUC of 0.94, 0.94, 0.91, and 0.16 for detecting HPV
reads on the easy, intermediate, hard, and non-human test sets,
respectively.We retrained DeepVirFinder and ViraMiner model on a
custom training set before evaluation (Methods). Despite retraining,
ViraMiner and DeepVirFinder both achieved an AUC value of less
than 0.5 on all 4 test sets (Methods).

We also trained and tested an off-the-shelf seq2seq model using
eight bidirectional long short term memory (LSTM) encoders [24].
Similar to the transformer, the seq2seq model also generates latent
representations which we used to detect viral sequences. We found
that although the seq2seq model outperforms DeepVirFinder and
ViraMiner on the easy and intermediate test set it still performs
worse than DeepViFi. It also underperforms DeepViFi on the hard
and non-human test sets (Figure 2a).

On the other hand, ViFi had high precision and recall values,
achieving (0.996, 1.0), (0.996, 0.983), (0.996, 0.992), and (0.991, 0.481)
on the intermediate, validation, difficult, and non-human test sets.
ViFi utilizes HMM ensembles to learn representations that lead to
highly accurate classification. While ViFi consistently achieved the
highest accuracy, it also required prior construction of a phylogeny
of the PV family, followed by a selection of clades to make an ensem-
ble of HMMs. Therefore, DeepViFi reduces some major bottlenecks
of ViFi—computational resources, expertise in setup/execution, and
difficulty in repurposing to other applications—while maintaining
comparable accuracy.

Sub-family Classification Accuracy. We trained sub-family iden-
tification by using a LightGBM classifier on the learned represen-
tations. The training data had 6,808, 4,324, 5,980 and 10,856 reads,
respectively, in the four classes. We used a 70/30 split into training
and validation, and the F1-score (harmonic mean of precision and

recall) to measure accuracy of sub-family classification. The accu-
racy on the validation data was high at 0.88, 0.82, 0.83, and 0.9 for
the four sub-families.

In contrast, the test data-set (drawn from strains discovered after
2018) had 0, 150, 1200, and 570 reads in the four classes, which did
not match the training distribution. Nevertheless, the LightGBM
achieved an overall F1-score of 87%, with accuracies of 0.63, 0.87,
and 0.93 on Beta, Gamma, and Other classes.

4.2 Qualitative Analysis

At large genomic distances, viral reads are far enough apart that
they cannot be distinguished from random reads, based solely on
percent identity. HMMs address this by assigning different weights
to different genomic locations. To understand what DeepViFi is
learning, we plotted the distribution of the starting positions of all
HPV reads in the easy testset (Figure 2c; top-panel) and compared
them to the distribution of start positions of the viral reads that
were separated from non-viral reads—specifically, reads that had
first PC value greater than 1, second PC value > 0, and third PC
value > 2 (Figure 2c; bottom-panel). The sharp distinction between
the two plots suggests that the discriminating reads are drawn from
specific locations of the HPV genome.

We then tested if the representations learned by DeepViFi could
distinguish between PV sub-families Alpha, Beta, Gamma, and
‘Other’. A PCA plot of the latent representations labeled by viral sub-
family showed 4 visually distinct (although not linearly separable)
clusters for each sub-family (Figure 2d).

4.3 Detecting HPV in Oropharyngeal tumor
samples

The tumorWGS (whole genome sequencing) experiments contained
∼ 800M paired-ends per sample on the average and were available
in the form of mappings to the human genome using the Burrows-
Wheeler Aligner (BWA) [13]. All tumor samples were positive for
HPV-16, which belongs to the Alpha subfamily of HPV. We filtered
reads where both ends mapped to human sequence, and ran Deep-
ViFi on the remaining reads using ViFi results as the ground truth.
Each read from the paired-end was analyzed separately. For the 9
samples, we achieved an average precision-recall AUC of 0.90723.

DeepViFi also classified over 90% of the reads as belonging to the
Alpha subfamily in each of the samples. The results are consistent
with HPV-16 infection as HPV-16 belongs to the Alpha family. As
low levels of other strainsmight be present, it was not possible to tell
if the small number of misclassifications were due to classification
error or the presence of other strains.

We performed PCA on the non-human reads in sample T49 to
visualize if the representations of the HPV reads mapped to the
same latent space as the representations of viral reads from the
simulated test sets (Figure 3b). We demonstrate that representations
were well separated from other reads and had a third PC value > 2,
consistent with PC representations of the test sets.

DeepViFi took 12 hours to process 2 million reads on a CPU with
16 GB of memory. The time reduced to 50 minutes on a single Titan
X GPU with 12 GB of memory. This was a significant speedup over
the 48 hours taken by ViFi.
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Figure 2: Test Set Performance and Analysis. (a) Precision-recall curves comparing different methods on the four test datasets.

(b) PCA plot of latent representations of easy test set. (c) Read start locations of viral reads in easy test set. The top panel shows

the start locations of all viral reads in the easy set. The bottom panel shows the start locations of the subset of viral reads that

were highly separable in the PCA plot; i.e. the transformer was most confident of these reads as HPV fragments.

4.4 Detecting HBV in tumor samples

As an additional exemplar, we also trained and evaluated DeepV-
iFi to detect HBV reads. We trained the DeepViFi pipeline on 73
known HBV genomes. We then evaluated the pipeline on three
HBV-negative and three HBV-positive tumour samples. DeepViFi
detected less than 30 reads as viral per million on the HBV negative
samples.However, it detected more than a 100 reads as viral per
million on the HBV positive samples.

5 DISCUSSION AND CONCLUSION

The identification of genomic sequences from a taxonomic group
is an important problem that is not completely addressed. With
highly diverged sequences, database search methods may not work.
Hidden Markov models improve sensitivity by focusing the scoring
on specific, conserved positions. However, they are a challenge to
build, as they require extensive feature engineering that have to be
tuned for each taxonomic group. Therefore, HMMs are not widely
utilized, and sequence based searches continue to be widely used.

Recently, deep learning methods have provided many break-
throughs, especially in vision and natural language processing.
Once an architecture is specified, the training does not require do-
main specific expertise, making them very attractive for multiple
tasks. Here, we show that the taxonomic family identification is
not successful using a closed-set modeling with neural architec-
tures, because most real life examples provide instances of open-set
learning.

In the context of viral family identification, we achieved very sig-
nificant improvements by employing a transformer to learn latent
representations of PV sequences. While our results easily outper-
formed closed-set learning using CNNs, they were still lower in
sensitivity to a carefully trained ensemble of HMMs. This suggests
that additional training using better sampling of the PV sequences
is needed to improve representations.

Along the same vein, we can also group the methods surveyed
in this paper as supervised and semi-supervised methods. The CNN
based methods used here represent end-to-end supervised methods
while seq2seq and DeepViFi represent semi-supervised methods.
The supervised methods prioritize learning a classifier based pri-
marily on the annotations to differentiate inputs. Meanwhile, the
semi-supervised methods learn features to characterize the input.
We show that simply learning a classifier is insufficient for prob-
lems such as identifying viral sequences in NGS data. Our results
also match earlier observations on supervised and semi-supervised
methods [3].

The representations of the viral sequences were so well separated
from the other sequences that a simple, random-forest classifier was
sufficient to identify viral reads. However, sub-family classification
is a harder problem, and we had to use more sophisticated gradient
boosting methods to achieve good results.

In summary, DeepViFi provides a framework for rapidly learn-
ing of representations from families, and a fast test for quickly
and accurately identifying the target sequences in a larger data-set.
The methods presented here are easily adaptable to a multitude of
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Figure 3: Tumour Sample Analysis. (a) Precision-recall curves for detecting HPV reads in tumour samples. (b) PCA of latent

representations of T49 reads. (c)Number of predicted as HBV-positive per million reads in tumour samples.

viral families and likely to help with many tasks, including identi-
fication of novel, pathogenic viruses and removal of contaminant
reads from whole genome sequencing runs. DeepViFi is available
at https://github.com/UCRajkumar/DeepViFi.

DECLARATION OF INTERESTS

V.B. is a co-founder, consultant, SAB member and has equity in-
terest in Boundless Bio, inc. and Abterra, Inc. The terms of this
arrangement have been reviewed and approved by the University
of California, San Diego in accordance with its conflict of interest
policies.

REFERENCES
[1] Tara A Berman and John T Schiller. 2017. Human papillomavirus in cervical

cancer and oropharyngeal cancer: one cause, two diseases. Cancer 123, 12 (2017),
2219–2229.

[2] D. L. Cameron, N. Jacobs, P. Roepman, P. Priestley, E. Cuppen, and A. T. Papenfuss.
2021. VIRUSBreakend: Viral Integration Recognition Using Single Breakends.
Bioinformatics (May 2021).

[3] Ayan Chatterjee, Omair Shafi Ahmed, Robin Walters, Zohair Shafi, Deisy Gysi,
Rose Yu, Tina Eliassi-Rad, Albert-László Barabási, and Giulia Menichetti. 2021.
AI-Bind: Improving Binding Predictions for Novel Protein Targets and Ligands.
arXiv:2112.13168

[4] A. K. Chaturvedi, E. A. Engels, R. M. Pfeiffer, B. Y. Hernandez, W. Xiao, E. Kim,
B. Jiang, M. T. Goodman, M. Sibug-Saber, W. Cozen, L. Liu, C. F. Lynch, N.
Wentzensen, R. C. Jordan, S. Altekruse, W. F. Anderson, P. S. Rosenberg, and
M. L. Gillison. 2011. Human papillomavirus and rising oropharyngeal cancer
incidence in the United States. J Clin Oncol 29, 32 (Nov 2011), 4294–4301.

[5] A. Gihawi, G. Rallapalli, R. Hurst, C. S. Cooper, R. M. Leggett, and D. S. Brewer.
2019. SEPATH: benchmarking the search for pathogens in human tissue whole
genome sequence data leads to template pipelines. Genome Biol 20, 1 (10 2019),
208.

[6] I. J. Groves and N. Coleman. 2018. J PatholHuman papillomavirus genome
integration in squamous carcinogenesis: what have next-generation sequencing
studies taught us? J Pathol 245, 1 (05 2018), 9–18.

[7] Yusuke Hirose, Mayuko Yamaguchi-Naka, Mamiko Onuki, Yuri Tenjimbayashi,
Nobutaka Tasaka, Toyomi Satoh, Kohsei Tanaka, Takashi Iwata, Akihiko Sek-
izawa, Koji Matsumoto, et al. 2020. High Levels of Within-Host Variations of
Human Papillomavirus 16 E1/E2 Genes in Invasive Cervical Cancer. Frontiers in
microbiology 11 (2020).

[8] D. W. Ho, K. M. Sze, and I. O. Ng. 2015. Virus-Clip: a fast and memory-efficient
viral integration site detection tool at single-base resolution with annotation
capability. Oncotarget 6 (2015), 20959–20963.

[9] Wei-Shau Hu and Stephen H Hughes. 2012. HIV-1 reverse transcription. Cold
Spring Harbor perspectives in medicine 2, 10 (2012), a006882.

[10] Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri. 2021. DNABERT: pre-trained Bidirec-
tional Encoder Representations from Transformers model for DNA-language in
genome. Bioinformatics (Feb 2021).

[11] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasu-
vunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl,
A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back,
S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T.
Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,
P. Kohli, and D. Hassabis. 2021. Highly accurate protein structure prediction
with AlphaFold. Nature 596, 7873 (Aug 2021), 583–589.

[12] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc.

[13] H. Li and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 14 (Jul 2009), 1754–1760.

[14] J. W. Li, R. Wan, C. S. Yu, N. N. Co, N. Wong, and T. F. Chan. 2013. ViralFusionSeq:
accurately discover viral integration events and reconstruct fusion transcripts at
single-base resolution. Bioinformatics 29 (Mar 2013), 649–651.

[15] A. A. McBride. 2021. Human papillomaviruses: diversity, infection and host
interactions. Nat Rev Microbiol (Sep 2021).

[16] I. M. Morgan, L. J. DiNardo, and B. Windle. 2017. Integration of Human Papillo-
mavirus Genomes in Head and Neck Cancer: Is It Time to Consider a Paradigm
Shift? Viruses 9, 8 (08 2017).

[17] N. D. Nguyen, V. Deshpande, J. Luebeck, P. S. Mischel, and V. Bafna. 2018. ViFi:
accurate detection of viral integration and mRNA fusion reveals indiscriminate
and unregulated transcription in proximal genomic regions in cervical cancer.
Nucleic Acids Res. 46, 7 (Apr 2018), 3309–3325.

[18] J. Pang, N. Nguyen, J. Luebeck, L. Ball, A. Finegersh, S. Ren, T. Nakagawa, M. Flagg,
S. Sadat, P. S. Mischel, G. Xu, K. Fisch, T. Guo, G. Cahill, B. Panuganti, V. Bafna,
and J. Califano. 2021. Extrachromosomal DNA in HPV-Mediated Oropharyngeal
Cancer Drives Diverse Oncogene Transcription. Clin Cancer Res 27, 24 (Dec
2021), 6772–6786.

[19] Sung-Joon Park, Satoru Onizuka, Masahide Seki, Yutaka Suzuki, Takanori Iwata,
and Kenta Nakai. 2019. A systematic sequencing-based approach for microbial
contaminant detection and functional inference. BMC biology 17, 1 (2019), 1–15.

[20] R. Poplin, P. C. Chang, D. Alexander, S. Schwartz, T. Colthurst, A. Ku, D. New-
burger, J. Dijamco, N. Nguyen, P. T. Afshar, S. S. Gross, L. Dorfman, C. Y. McLean,
and M. A. DePristo. 2018. A universal SNP and small-indel variant caller using
deep neural networks. Nat Biotechnol 36, 10 (11 2018), 983–987.

[21] J. Ren, K. Song, C. Deng, N. A. Ahlgren, J. A. Fuhrman, Y. Li, X. Xie, R. Poplin,
and F. Sun. 2020. Identifying viruses from metagenomic data using deep learning.
Quant Biol 8, 1 (Mar 2020), 64–77.

[22] O. Ronneberger, P.Fischer, and T. Brox. 2015. U-Net: Convolutional Networks
for Biomedical Image Segmentation. In Medical Image Computing and Computer-
Assisted Intervention. 234–241.

[23] John T Schiller and Douglas R Lowy. 2014. Virus infection and human cancer:
an overview. Viruses and human cancer (2014), 1–10.

[24] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems, Z. Ghahramani, M.Welling, C. Cortes, N. Lawrence, and K. Q.Weinberger
(Eds.), Vol. 27. Curran Associates, Inc.

[25] A. Tampuu, Z. Bzhalava, J. Dillner, and R. Vicente. 2019. ViraMiner: Deep learning
on raw DNA sequences for identifying viral genomes in human samples. PLoS
One 14, 9 (2019), e0222271.



DeepViFi: Detecting Oncoviral Infections in Cancer Genomes using Transformers BCB ’22, August 7–10, 2022, Northbrook, IL, USA

[26] Koenraad Van Doorslaer, Qina Tan, Sandhya Xirasagar, Sandya Bandaru, Vivek
Gopalan, Yasmin Mohamoud, Yentram Huyen, and Alison A McBride. 2012. The
Papillomavirus Episteme: a central resource for papillomavirus sequence data
and analysis. Nucleic acids research 41, D1 (2012), D571–D578.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems (NIPS’17). 6000–6010.

[28] Q.Wang, P. Jia, and Z. Zhao. 2013. VirusFinder: software for efficient and accurate
detection of viruses and their integration sites in host genomes through next
generation sequencing data. PLoS One 8 (2013), e64465.

[29] Q. Wang, P. Jia, and Z. Zhao. 2015. VERSE: a novel approach to detect virus
integration in host genomes through reference genome customization. Genome
Med 7 (2015), 2.



BCB ’22, August 7–10, 2022, Northbrook, IL, USA Rajkumar, et al.

Figure 4: Detailed architecture of DeepViFi transformer. Left panel presents the training pipeline for DeepViFi’s tranformer.

Right panel presents the inference pipeline of the transformer. Related to figure 1.


