. biology

Article

Learning Hyperbolic Embedding for Phylogenetic Tree
Placement and Updates

Yueyu Jiang 1@, Puoya Tabaghi >

check for
updates

Citation: Jiang, Y.; Tabaghi, P;
Mirarab, S. Learning Hyperbolic
Embedding for Phylogenetic Tree
Placement and Updates. Biology 2022,
11, 1256. https://doi.org/10.3390/
biology11091256

Academic Editor: John J. Wiens

Received: 12 July 2022
Accepted: 19 August 2022
Published: 24 August 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Siavash Mirarab 1 *

Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
2 Halicioglu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
* Correspondence: smirarab@ucsd.edu; Tel.: +1-858-822-6245

Simple Summary: We show how the conventional (Euclidean) deep learning methods developed
for phylogenetics can benefit from using hyperbolic geometry. The results point to lowered distance
distortion and better accuracy in updating trees but not necessarily for phylogenetic placement.

Abstract: Phylogenetic placement, used widely in ecological analyses, seeks to add a new species to
an existing tree. A deep learning approach was previously proposed to estimate the distance between
query and backbone species by building a map from gene sequences to a high-dimensional space
that preserves species tree distances. They then use a distance-based placement method to place
the queries on that species tree. In this paper, we examine the appropriate geometry for faithfully
representing tree distances while embedding gene sequences. Theory predicts that hyperbolic
spaces should provide a drastic reduction in distance distortion compared to the conventional
Euclidean space. Nevertheless, hyperbolic embedding imposes its own unique challenges related to
arithmetic operations, exponentially-growing functions, and limited bit precision, and we address
these challenges. Our results confirm that hyperbolic embeddings have substantially lower distance
errors than Euclidean space. However, these better-estimated distances do not always lead to better
phylogenetic placement. We then show that the deep learning framework can be used not just to place
on a backbone tree but to update it to obtain a fully resolved tree. With our hyperbolic embedding
framework, species trees can be updated remarkably accurately with only a handful of genes.

Keywords: distance-based phylogenetics; phylogenetic placement; gene sequence embedding; deep
learning; metric tree embedding; hyperbolic spaces

1. Introduction

Phylogenetic trees capture the evolutionary history of species and, more importantly,
define a space in which we can compute distances between biological entities. Considered
in this light, a phylogeny T is a discrete metric space in which path lengths provide a
proper distance between species. The distance between every two species, vertex pairs in T,
depends on the topology of T and its edge lengths. We may embed a phylogeny, or a metric
tree in general, by representing it in a low-dimensional continuous space while preserving
certain properties of the tree [1]. Embedding provides a vector representation for the tree
vertices, enabling continuous optimization algorithms for downstream learning tasks.

As de Vienne et al. [2] point out and Layer and Rhodes [3] further elaborate, for a tree
T with N vertices, there exists an embedding of its vertices in RN~! such that Euclidean
distances of the embeddings match with the square root of the corresponding tree distances.
Embedding phylogenetic trees in Euclidean spaces opens the possibility of adopting rich
toolkits developed for studying objects in Euclidean spaces. For example, Phylo-MCOA [2]
is based on principal component analysis applied to embedded trees, and it finds outlier
species in specific genes in a phylogenomic dataset.

Biology 2022, 11, 1256. https:/ /doi.org/10.3390/biology11091256

https:/ /www.mdpi.com/journal/biology

Biology 2022, 11, 1256

20f24

Jiang et al. [4] use the insight from Layer and Rhodes [3] to adopt deep learning
methods for phylogenetic placement: the problem of adding a set of novel query sequences
onto an existing backbone tree. Euclidean embedding of the backbone species enables them
to pose phylogenetic placement as a supervised learning problem. They show that one can
learn a map between the sequence and Euclidean spaces while best preserving the metric
information of the backbone tree. Their proposed method, DEPP, uses neural networks
to map DNA sequences to a high-dimensional Euclidean space while matching squared
distances of the embedded points with the tree distances. The neural network embeds
new query sequences (aligned to the backbone) in the same space, which then enables us
to compute their distances to the backbone species. Finally, we can use distance-based
phylogenetic placement methods such as APPLES [5,6] to place the queries onto the tree.

Why would we use machine learning to compute distances when we could instead
directly compute distances from sequences? In the application explored by Jiang et al. [4],
the measurements are single-gene sequences that evolve on the gene tree, but the backbone
is the species tree. Therefore, the main challenge is the discordance between the gene
sequences and the backbone species trees. The goal of DEPP is to allow one to extend a
species tree given limited data coming from a single or a handful of genes. Note that when
researchers use marker genes such as 16S, they are interested in species relationships, not
gene relationships, and for them, gene tree discordance is a nuisance. While updating a
species tree using a single gene may seem an ill-posed objective, the biological application
is real. In particular, species trees with tens of thousands of microbial species [7,8] have
been put together with much computational effort and using hundreds of marker genes.
Such trees can be used as the backbone for the placement of microbial samples.

Low-distortion tree embedding is the key concept in the phylogenetic placement
approach proposed by Jiang et al. [4]. By embedding the tree in a Euclidean space,
they relax the combinatorial nature of working with trees and sidestep the difficulties of
training a model parameterized in a discrete space. After this relaxation, in the continuous
space, they define a simple differentiable cost function and minimize it using standard
back-propagation and stochastic gradient descent techniques. While the use of Euclidean
geometry has some justifications, it is not clear that a fixed-dimensional Euclidean space is
the best choice for embedding trees. In fact, Euclidean geometry (with its zero curvature)
has severe limitations in terms of the number of dimensions needed to obtain low-distortion
embeddings, as we elaborate in Section 2.2.

A natural alternative to Euclidean space is a non-Euclidean space with constant
nonzero curvature. In recent years, there has been a growing appreciation that hyper-
bolic spaces are more suitable than Euclidean spaces for representing tree-like data; refer
to Section 2.3. These realizations have motivated machine learning researchers to pro-
pose methods to represent pairwise measurement extracted from a tree in hyperbolic
spaces [9-11]. For example, hyperbolic neural networks seek to combine the power of
hyperbolic geometry with the feature learning capabilities of neural networks [12,13]. A
major goal of the present work is to take advantage of these recent developments for phylo-
genetic placement. That being said, utilizing hyperbolic geometry comes with its own set of
practical challenges. One issue is the negative impact of limited bit precision in representing
embeddings [14]. Another major challenge in using hyperbolic geometry is performing
arithmetic operations using hyperbolic addition and multiplication. Various authors have
approached these issues in different ways [12,13,15]. The present work wrestles with many
of the same difficulties; for a detailed discussion, refer to Section 2.4.3.

In this paper, we introduce the Hyperbolic Deep learning Enabled Phylogenetic
Placement (H-DEPP) framework to find low-dimensional hyperbolic embeddings for gene
sequences while preserving their distances in the backbone tree (Figure 1). Compared to
the Euclidean approach [4], the low-dimensional hyperbolic embeddings lead to a neural
network with fewer parameters, improved performance in estimating the phylogenetic
distances for both reference and query organisms, and improved computational complexity
of the training. We conclude by evaluating the performance of H-DEPP for placing new

Biology 2022, 11, 1256

3o0f24

sequences on phylogenetic trees and updating the existing trees to include new species,
testing both on simulated and real biological data.

—— Hyperbolic distance
8]—— Euclidean distance

Distance
o N & o

s1: ATCCAGGATCCCCTA
s2: ATTCAGCATCCGCTA

s3: ATTCGGCATACGCTA ..

811 ATCCGGCCTAAGCTA Z | d(zi,z5) 172 .
i it dr(vivy)
5.1 ACCGGGCACAAGOTC - HIEIN] \
: O 3 ¢ 7 1y
Sx1: ACCGOGAACAACCAC .. 4 .8 b b o on
sx : ACCGGGACCAGCCAC - _
gene sequences T = B(Sn) embedding cost backbone tree

Figure 1. (a) Lines (or geodesics) in hyperbolic space. Bold lines are parallel to each other. (b) From
left to right, the hyperbolic distance between the same-colored points remains constant as they get
closer to the boundary of the space. (c) Hyperbolic distances grow unboundedly as points move
towards the boundary. (d) The framework of H-DEPP: the goal is to learn an embedding mapping
from sequences to the hyperbolic space while preserving backbone tree distances.

2. Materials and Methods

We start with a formal presentation of our problem. We then briefly discuss limitations
of Euclidean embeddings and move on to specific mathematical properties of hyperbolic
spaces that are relevant to our work. Next, we introduce the design of the H-DEPP
framework that incorporates hyperbolic embeddings in DEPP. We end by describing the
design of our experiments evaluating H-DEPP.

2.1. Problem Statement

Let T be a weighted tree with leaves V = {vy,...,vx} and let [N] %t {1,...,N}.
We define dr : V x V — R to be the tree distance function; i.e., it gives the path length
distance between vertex pairsin T. Let sy, ..., sy € S = {A,C, T,G, — }E be a set of aligned
gene sequences (of length L) such that the sequence s, corresponds to v, € V on the
backbone tree, for all n € [N]. An ideal embedding function ¢* maps the gene sequences
to a metric space (M, d) while preserving the metric information of T; i.e.,

for all l,] S [N] : d(¢*(sl),¢*(5])) = dT(Ul',Z)]'). (1)

When the equality does not hold, we say that the embedding has distortion. For
the novel sequence s from species v ¢ V, already aligned to the reference sequences, the
distance between ¢*(s) and ¢*(s;) € M matches with the distance between v and v; if
v is placed correctly on the backbone tree. When the given backbone tree T is a species
tree and sequences are a set of single-gene sequence data, we call the problem discordant
phylogenetic placement; and the goal is to the best approximate ¢* in (1).

2.2. Euclidean Embedding and Its Limitation
A perfect Euclidean embedding is a set of points xq,...,xN € RN-1 guch that

for all i,j S [N] ZdT(Zii,U]') = ||Xl' — x]||%,

where || - ||> denotes the ¢, norm.

Low-distortion embedding of trees requires a high-dimensional Euclidean space. Let
T be a perfectly height-balanced binary tree with unit edge weights. In this tree with
diameter 2r, the distance between the two closest leaves is 2, and for 2" leaves, the distance
of each leaf to the root is 7. The low-distortion embedding of this tree in a d-dimensional
Euclidean space maps each leaf inside the ball of diameter 2r, whose volume is O(r%). As

Biology 2022, 11, 1256

40f24

we increase the height (r) of the tree, the embedded leaves must collapse onto each other
since the average volume associated with each one vanishes to zero, i.e, lim, . r2=" 0.
In addition, in a Euclidean ball of radius , there has to be O(2'r~¢) embedded leaves
with underestimated distance (<2). Moreover, Linial et al. [16] consider the problem of
embedding a tree T with N vertices such that

1 19 (vi) — ¢(v))

2
for all distincti,j € [N]: ¢ <1
J [] dT(vi/ U])

= 4

where ¢ maps each vertex to a point in R and c is the distortion rate. They prove that the
isometric embedding (c = 1) of an arbitrary tree requires a Euclidean space with dimension
d = O(log(N)), which grows with the size of the tree.

2.3. Embedding in Hyperbolic Spaces

Spherical and hyperbolic spaces are constant curvature spaces with positive and
negative curvatures, respectively. We are interested in hyperbolic spaces because they are
suitable for embedding vertices of metric trees [14]. A strong result by Sarkar [17] shows
that trees can be embedded with arbitrarily low distortion into a hyperbolic space with only
two dimensions. In hyperbolic spaces, the Riemannian metric defines lines (geodesics),
distances, and volumes (Figure 1a) in ways that are different from Euclidean spaces and
permit better embeddings of trees. For example, the volume of a d-dimensional hyperbolic
ball of radius r grows exponentially with its radius, i.e., O(e®17#?), in contrast to the
polynomial growth of the Euclidean ball. As Ganea et al. [11] point out, this exponential
growth enables hyperbolic spaces to embed any weighted tree while preserving its metric
with high fidelity.

2.3.1. Hyperbolic Spaces in Machine Learning

The machine learning community has recently focused on hyperbolic spaces due
to their improved embedding capabilities over Euclidean spaces to represent pairwise
measurements such as distances, similarities, and hierarchies [9-11]. Several authors
have recently adopted neural networks to learn representations in hyperbolic spaces in
a wide variety of problems, e.g., classification, regression, detection, manifold learning,
and high-dimensional distribution approximation. Hyperbolic neural networks have
been developed to combine the representational power of hyperbolic geometry with the
feature extraction capabilities of neural networks [12,13]. The main challenge in designing
hyperbolic neural networks is performing hyperbolic arithmetic operations and deriving
stable back-propagation formulas [12,13,15]. Learning in non-Euclidean spaces is quickly
advancing with works such as constant curvature graph convolutional networks [18,19],
hyperbolic graph neural networks [20,21], mixed-curvature variational autoencoders [22],
and hyperbolic attention networks [23] to name a few.

Related to tree embedding, Matsumoto et al. [24] propose a modified version of
the hyperbolic distance function to gain distance additivity for incident branches. They
evaluate the performance of their method on embedding phylogenetic trees and integrat-
ing embeddings of different trees. They report numerical results on small trees (with
only ~100 leaves), and it is not clear how this modified distance function performs in
representing additive distances of large trees. Corso et al. [25] propose a framework to
embed sequences in geometric spaces, namely hyperbolic spaces, to tackle edit distance
approximation, hierarchical clustering, and multiple sequence alignment problems, which
are all important in bioinformatics. Their extensive numerical experiments show that
(data-dependant) embedding methods outperform related (data-independent) classical
approaches in terms of accuracy and inference speed. This work shows how using ap-
propriate embedding space for biological measurements can improve the accuracy of
relevant algorithms.

Biology 2022, 11, 1256

50f24

2.3.2. Models of Hyperbolic Spaces

There are several isometric models of hyperbolic space, i.e., they are equivalent to each
other in their embedding capabilities. Here we review Poincaré ball and "Loid model.

We denote the d-dimensional Poincaré ball of curvature C < 0 as I[‘é ={xecR:
V/—C||x||2 < 1}. The distance between two points is given by:

| Cllx— I3
forall x,y € I% : d(x,y) = ———acosh(1 — 2 2 .)
y eIt dluy) = J=zacosh(l =2 Em v ey

We denote the d-dimensional ‘Loid model with curvature C < 0 as]L’(ij = {x €
R xTHx = C71,x; > 0}, where H = diag(—1,1,1,...,1) € RE+D)x(+1) and ¥, is
the first element of vector x. We may represent the points in]L‘é with d-dimensional free

parameters as:
_C-1 /112
forall ' € R : x = [\/ C /+ 1[I e LE.
X

The distance between x,y € L% is d(x,y) = ﬁacosh(CxTHy).

The unique properties of the two models can make each attractive in various applica-
tions. The Poincaré model facilitates a conformal (angle-preserving) visualization of the
embedded points in a compact subset of R?, whereas the domain of the ‘Loid model is
an unbounded subset of R**1. The ‘Loid model provides a more stable distance function
as Poincaré distance function becomes singular at its domain’s boundary, i.e., ||x[2 — 1.

Therefore, the "Loid model is more suitable for performing optimization tasks reliably [14].

2.3.3. Hyperbolic Embedding Functions

In the Poincaré model, the one-to-one exponential map exp, : RY — H’é is defined as:

_ tanh(v—Cljoll2) ~_ 4

forallo € R? : exp,(v) = ——~——— 12y ¢ [4, 3)
’ V—=Cl2 ¢
Similarly, let e; be the first standard basis for R*1 and Po def. \/%31- Then, in the
"Loid model, the exponential map at p, is defined as follows:

sinh(v'—C||v]2) [2]

[o]l2

forallv € R?: exp,, (Lﬂ) = cosh(vV—Cl|v[]2)po + 4)

The exponential map provides a way to map between Euclidean and hyperbolic spaces.
Therefore, we may use the exponential map to convert a Euclidean embedding function
to a hyperbolic one. In other words, if ¢ maps sequences to a Euclidean space, then

P = exp o ¢ maps the sequences into the related hyperbolic space.

2.4. H-Depp Design

The most obvious change needed to DEPP to adopt it to hyperbolic spaces is the
loss function, which we discuss first. Then, we explore alternative ways to design neural
networks that operate in the hyperbolic space. We end by pointing out a host of more
subtle issues that arise when dealing with hyperbolic geometry.

2.4.1. Loss Function

We want to find an embedding function that ensures the metric information in the
backbone tree is best preserved in a hyperbolic space (H?) — for the reasons outlined earlier.
The empirically optimal embedding function is the minimizer of the cost function; i.e.,

5 — aromin d(p(si), ¢(sj))
= %e@ Enl(dr(v;, vj)

-1)%, 5)

Biology 2022, 11, 1256

60f 24

where Ey|[] computes the empirical mean (average) over distinct indices, {sn}ne[N] are
training sequences in S, @ is the set of functions from S to H? represented by neural
networks. The cost function (5) is comparable to the weighted least squares of Fitch and
Margoliash [26], with the only difference being that, here, the weights are squared tree
distances as opposed to sequence distances. The cost function (5) aims to minimize a
multiplicative notion of embedding error as it operates on distance ratios.

The learned function ¢ maps query sequences to a low-dimensional space where we
can compute their evolutionary distances to the backbone species; i.e., d(n (s), n (s1)) for
n € [N], where s is a query gene sequence. If the model generalizes to unseen data, these
estimated distances match with the tree distances for the true placement of the query. Then,
we can use a distance-based placement method, such as APPLES-2 [6], to place the query
on the backbone tree. The accuracy of new placements depends on the quality of estimated
distances, i.e., the generalization error of the neural network.

2.4.2. Neural Network Models

We use the same CNN model in DEPP [4], which uses one-hot encoding to represent
sequences (% for gaps) and three linear convolutional layers, with kernel sizes 1, 5, and 5,
and a feed-forward from second to the third layer to make the latter a residual block, and a
fully-connected layer with d-dimensional outputs. We study two alternative approaches to
make a hyperbolic network:

1. Exponential Maps: We use a Euclidean neural network followed by the exponential
map of the Poincaré ball or the "Loid model shown in (3) and (4) and detailed in
Section 2.3. We use the following cost function:

d(Pu(si), Pu(s;))
dr(v;, vj)

cost(¢p, s) = En|(s -1)?],

where ¢y = exp o ¢, ¢r is the Euclidean neural network, exp(+) is the exponential
map for the appropriate model of hyperbolic space with curvature —1 (i.e., (3) or (4)),
and s is a scale factor further discussed in Section 2.4.3.

2. HNN++: We add one hyperbolic layer designed by [13] to the model used in DEPP.
This all-by-all layer performs hyperbolic matrix multiplication; its inputs are the
output of the previous Euclidean layer transformed by the exponential map, which
outputs hyperbolic points used in the cost function (5). Finally, we perform parameter
optimization using hyperbolic back-propagation [13].

2.4.3. Training: Challenges and Solutions

We next discuss the practical issues in training and optimization in hyperbolic spaces,
most of which are due to specific properties of hyperbolic spaces. The first issue is that the
curvature parameter appears inside and outside the acosh(+) function and affects the do-
main of the Poincaré model; see (2). For simplicity, here, let us adopt the following notation:

forall x € T : %/ def S “Cx e . (6)

One can show that d(x1, x) = ﬁd(xg, x}), where we abuse the same notation d(-, -)
to denote the appropriate distance function in each space; i.e.,

forall xq,x; €]I’é 2d(xq,x) =s. acosh(l +2 ||/xi; %l e), (7)
(= 1x1112) (A = [lx[I2)
1

where x/, x5, € {x : RY : |jx] < 1} and s = ——=- In the new distance function (7),
the scale parameter s uniformly scales all pairwise distances. With the normalization
transformation in (6), we make the domain of the new distance function invariant of the

curvature parameter; see (7).

Biology 2022, 11, 1256 7 of 24

We may parameterize the cost function (5) as follows:

d(P(si), P(sj))

dT(vil Z)])

cost(¢,s) = En|[(s —-1)],

where ¢ maps sequences to a hyperbolic space with curvature —1. For a fixed ¢ (neural
network), cost(¢, s) is a convex function of s and has the following global minima:
d(¢(si), ¢(s; d?(p(s;), p(s; -1
dr(v;, v;) d7(v;,v;)

The goal is to optimize the neural network and the scale parameter jointly. Updates
according to (8) scale all pairwise distances and challenge the training of the neural network.
We alternatively optimize the parameters of the neural network and the scale parameter
using syy1 = sk + D(k(SZ;,k — sg), where ¢, s, and «; are the neural network, scale, and the
learning rate parameters at iteration k.

A second issue is that bit precision can impact the embedding accuracy. In a d-
dimensional Poincaré ball, the distance between two points is given by,

[le1 — x2]13)
(1= xal2) @ = lIx213)

where x1,x; € {x € R? : ||x||» < 1}. Poincaré ball has a compact domain in ¢, sense. Points
that are close to the boundary can have large distances. Suppose ||x; — x2||2 = ¢ where e > 0.
For a diminishing value of ¢, we can choose a large enough ¢, norm for each point to make

d(xq,x2) = acosh(l +2

1
. . . -1 . o - 2, 5
d(x1,x) arbitrarily grow with e 1. For example, if ||x1][> = [lx2]]» = (1 — ﬁ) 2,

then we have d(x;,x;) = ¢~ 1. Therefore, distant points in a hyperbolic space can have
similar vector representations in the ¢, sense.
Let ||x,[|3 <1 — 1077 for all points n € [N] and a value of p € N. Then,

Amax déf' max d(xi, X]) <2. acosh(l +2
i,je[N]

121077 4log(2) + 210g(10)p .
10-7

Thus, the maximum hyperbolic distance between these points, dmax, grows almost
linearly with p; see Table 1. If the measured data have a large enough diameter (dmax > 100),
then the embedded tree vertices will be very close to the boundary, i.e., ||x,||2 — 1, for any
reasonable bit precision. Hence, an e-inaccurate embedding will result in large embedding
errors and computational complexities related to the singularity of the distance function on
the boundary points, i.e., || x| = 1. To remedy this issue, we normalize the tree distances
to be at most 1, and the normalizing factor is absorbed in the scale factor in (7).

Table 1. The maximum distance (dmax) as a function of the bit precision (p).

p 2 4 6 8 10 12 14 16 18 20 22 24
dmax 1197 21.19 3040 39.61 4882 58.03 6724 7645 85.66 94.87 104.08 113.29

A final issue is heterogeneous distances in reference trees. For example, on our biolog-
ical dataset (discussed below), normalized tree distances vary by six orders of magnitude
from 1 to 10~%! (Figure 2). Any gradient-based training method has to adaptively change
the learning rate to estimate a point set whose wide range of distances are all accurate.
Therefore, we propose to decrease the learning rate exponentially to cover a large range of
erroneous distances. We let the learning rate at iteration k be ay = agp™ 1%] where g is the
initial learning rate, K = 10 is the number of epochs with fixed learning rate, and p = 0.95
is a decay factor.

Biology 2022, 11, 1256 8 of 24
log(p)
©
—0.86 o,
&
o
°
°
4 N\ o
a Y i
f —694{ @ @
e o
- o Jog (@)
0.06 A 4

Figure 2. Left: The 7797-taxon reference tree adopted from Zhu et al. [7] restricted to sequences with
16S available with normalized lengths and query taxa noted. Right: The log-log scatter plot (base 10)
for the histogram of pairwise tree distances d versus relative frequencies p.

2.5. Experimental Evaluation Setup

We start by describing a simulated and a biological dataset used in our analyses. We
then detail our experimental procedure, evaluation criteria and the methods compared.

2.5.1. Datasets

Simulated dataset: We use a published simulated dataset [27] where gene trees and
species trees are discordant due to incomplete lineage sorting (ILS). We study the lowest
and highest discordance models (both with a speciation rate of 107°) from this dataset.
Each model condition consists of 50 replicates, each with its own 201-taxon species tree.
We select the first simulated gene (among 1000) without any identical sequences. We skip a
replicate if none of its genes has all-unique alignments, a situation that happened for seven
and three replicates in high- and low-discordance conditions. On average, the Robinson
and Foulds [28] (RF) distance between the gene trees and species trees in the high- and
low-discordance datasets are 0.69 and 0.21, respectively. Since sequences in this simulated
dataset are gap-free, there is no need for alignment. As the backbone tree, we use the true
species tree whose branch lengths are re-estimated using a concatenation of 32 genes, each
with 500 randomly selected sites.

WoL real data: In 2019, Zhu et al. [7] published a dataset named Web-of-life (WoL). The
dataset consists of 10,575 species and 281 marker genes. We use the available ASTRAL [27]
tree that they provided with branch lengths recalculated using maximum likelihood (ML)
from concatenated genes. We evaluate our method on the 16S gene in addition to another
10 marker genes selected among the 30 marker genes studied by Jiang et al. [4]. We select
10 out of 30 total marker genes to save computational resources. We first proceed by sorting
genes according to their quartet distance to the species tree; we then select the first gene
from every three genes in the sorted list, i.e., 1st, 4th, 7th, ..., and 28th genes.

2.5.2. Evaluation Procedure

We compare methods based on the accuracy of distances and trees. We measure the
distortion of distances by calculating the squared error (SE) of embedding distances to the
tree distances. We report both standard SE and SE weighted by the inverse of squared tree
distances, which can be interpreted as the percentage by which the estimated distances
deviate from true distances. Moreover, we note that while most distances are close to
the true values, for a small number of outlier pairs, the weighted distortion is very high.
Thus, we also examine the number of outliers in each distance matrix. Outliers are defined
as distances whose weighted SE is larger than 100. Moreover, to avoid skewing the cost
function due to outliers, we report the median of weighted SE.

To measure placement error, we randomly choose 5% species as queries and use
the rest as the backbone. During testing, each query is placed onto the backbone tree

Biology 2022, 11, 1256

9of24

independently. We measure the accuracy by counting the number of branches between the
query position on the placement tree and the reference tree. We evaluate four methods.

* Euclidean vs. Hyperbolic DEPP (E-DEPP vs. H-DEPP). We use H-DEPP and E-DEPP
models, trained on backbone data, to compute the distances between queries and
backbone species. We then use the distance matrix as the input of APPLES-2 to find
the placement of queries with parameter -b 5, which limits the placement to the five
smallest distances. We use 128 dimensions by default.

e APPLES2+]Jukes-Cantor (JC). APPLES-2 uses the Jukes and Cantor [29] (JC) model to
compute sequence distances by default because Balaban et al. [6] found no evidence
of improvement in placement accuracy by using more complex models. We use
RAXML-ng to re-estimate the branch lengths of the backbone trees (JC model).

e EPA-ng. EPA-ng is a maximum likelihood placement method [30]. In our experiments,
the backbone tree is inferred using RAXML-ng under the GTR+I" model [31].

We also measure the error in updating trees. For simulated data, we use the same sets
of genomes as query as those used in the placement task. For WoL data, we instead select
queries in a clade-based approach in two replicates. We choose 100 clades with five to ten
species from the reference tree and remove all these clades from the tree and add them to a
query set. We then infer a fully resolved tree using four methods.

e E-DEPP+FastME and H-DEPP+FastME. We use FastME [32] for tree inference with
the distance matrix computed partially using H/E-DEPP. We build a distance matrix
that includes the tree distance for each pair of backbone species and the embedding
distance computed using the H/E-DEPP model trained on the backbone data for other
pairs. We use this approach to nudge FastME to retain backbone relationships because
it does not have a constrained search option.

* Jukes-Cantor (JC)+FastME. The pipeline for tree update using JC is similar to H/E-DEPP.
We first compute distances between all pairs of species using the JC model and build a
distance matrix similarly to the H/D-DEPP model. We then use the distance matrix as
the input of FastME.

* RAxML. We run RAXML [33] setting the backbone tree as a constraint (-g) under the
GTR+CAT model.

To measure the accuracy of the tree update, we calculate the normalized quartet
distance and RF distance between the estimated tree and the reference ASTRAL tree with
species restricted to the queries. For 16S data, each species may contain multiple copies.
We sample one copy for each species and prune the other copies from the estimated tree.
We repeat this process 100 times and report the distribution of quartet/RF distances. For
the marker genes data, we also test using multiple genes as input. For k € {1...10} genes,
we randomly select ten sets of genes, with each set consisting k genes. To use k > 1 genes,
we concatenate their sequences and use them as the input to RAXML and JC. For H-DEPP
and E-DEPP, we follow the approach of Jiang et al. [4]: we build a model for each gene
separately and use the median of distances across genes for each pair.

3. Results

We first compare different models of H-DEPP on the WoL 16S dataset, then compare
H-DEPP with E-DEPP on both simulated and real datasets as the number of dimensions,
and hyper-parameters change, next we compare H-DEPP with ML placement methods, and
end by examining H-DEPP as a method of updating a tree to obtain a fully resolved tree.

3.1. Comparison between H-DEPP Alternatives

Compared to the two exponential map implementations, HNN++ has the worst
distance distortion in both training and testing phases (Figure 3a,b). The HNN++ model,
with one hyperbolic layer, has around two to threefold higher errors in testing and training
sets, respectively. Moreover, HNN++ converges remarkably slower during training than
the two alternatives (Figure 3c). For example, after 9000 training epochs, HNN++ still has a

Biology 2022, 11, 1256

10 of 24

higher weighted median SE than the exponential map models trained for only 1000 epochs.
This result indicates that the hyperbolic layer poses training challenges in accuracy and
convergence rate. In comparison, in the exponential map approach, all operations in the
training of the neural network are performed in the Euclidean space. The faster convergence
rate may be due to avoiding complex arithmetic operations in the hyperbolic space, which
are used in the hyperbolic layer to compute and back-propagate gradients of the cost
function. Between the two models implemented with exponential maps, the ‘Loid model
exhibits a smaller testing error and a faster training convergence compared to the Poincaré
model (Figure 3c). While both models of hyperbolic space are mathematically equivalent
(isometric), the divergent optimization efficiencies may stem from the limited operational
precision and intricacies of the optimization algorithm.

() %1073 Backbone (training) (b) x10-3 Query (testing)
1.0 2.0
L w
w0 w0
c 0.8 c
Kl S 1.5
4 °
£0.6 2
° - 1.0
£04 2
o o
K] @
=02 2 0.5
0.0 0.0 L]]
HNN++ Poincaré (Exp. map) 'Loid (Exp. map) HNN++ Poincaré (Exp. map) 'Loid (Exp. map)
-3
(c) o (d) 10
.».\
A
w 1.00 \A\ 0.8
% A\A
o \A\ 0.6
OEJ A\A\A E
o
8 o4
< =
3 —— HNN++
= 0.2 —— Poincaré (Exp. map)
A A A A . = A —— 'Loid (Exp. map)
0.10 0.0
1000 2000 3000 4000 5000 6000 7000 8000 9000 o 10 20 30 40 50 60
Epoch Placement error (edges)

Figure 3. Comparison of different implementations of hyperbolic embeddings on WoL 16S data.
(a) Mean square error (MSE) of embedding distances between backbone species. (b) MSE of em-
bedding distances between query species and backbone species (¢) Convergence of the models.
(d) Empirical distribution function (ECDF) of the placement errors.

Despite differences in the weighted median SE, the placement accuracy is similar
across the three versions of H-DEPP (Figure 3d), a pattern that will be further discussed as
we progress. Note also that the average placement error for all implementations is below
two edges, which is already low for a backbone tree with more than 7000 species. since the
‘Loid model implemented with exponential map has the best performance overall, we use
it as the default method in H-DEPP, including in the rest of the results.

3.2. H-Depp versus E-DEPP with Varying Number of Dimensions

We start by evaluating distance distortion before examining the impact on placement
accuracy, which leads us to study the behavior of small distances.

3.2.1. Distortion

In simulated and biological data, hyperbolic embeddings have significantly lower
distance distortion compared to the Euclidean embeddings as expected based on their
theoretical advantages. On the simulated data, hyperbolic distances have one order of
magnitude lower training error in both low- and high-discordance conditions, as well as
one-half to one order lower testing error (Figure 4a). For example, on high-ILS simulated
data, four hyperbolic dimensions are sufficient to get a query distance distortion comparable

Biology 2022, 11, 1256

11 of 24

to that of 128-dimensional Euclidean embeddings in testing distances. In biological data,
hyperbolic embeddings outperform the Euclidean counterparts with one-half to one order
of magnitude in weighted MSE (Figures 5a,b and Ala). For example, the training distortions
in H* and R are similar, as are the query distortions between H32 and R512, Finally, note
that after a certain number of dimensions (e.g., 32 for WoL 16S data), the decrease in distance
distortion of test samples slows down while training distortion continues to drop fast.

(@) High ILS Low ILS
A~
\\‘u
107 A\A\\\\~A—
é‘---.‘hé _________
% 107 A\ o
= 2
o 1073
2
<
o .
g 10-4| —— Hyperbolic
—— Euclidean
10-5| —— Backbone (training)
----- Query (testing) .
10°°
4 8 16 64 128 4 8 16 64 128
(b) Dimension Dimension
9
~8 .
m —— Hyperbolic
9] .
o7 —— Euclidean
8
—6
S
£5
o]
€4
9]
€3
g - —
o2
o
1 —
4 8 16 64 128 4 8 16 64 128
Dimension Dimension
(C) 4 dimensions 8 dimensions 16 dimensions 64 dimensions 128 dimensions
1.0 g ° 7 10 y, 10 7
= / / ¢ /e f
() o/
E 0.8 j o8 ,/ o ,/ o § o Query
o & ° (testing)
w 06 06 06 06
'-3 0.6
a v ’ 4 ,/ ,/
& s ’/ 04 ,', 04 ,/ 04 ,l 04 7
i 0.2 ¥/ ¥/
¢ & & & #
1 Ead oo |4 ° oo |4 0o |4 oo | £
000 025 050 075 100 000 025 050 075 100 000 025 050 075 100 000 025 050 075 100 000 025 050 075 100
L 10 :
w 12 ¥ & Backbone ,/
) 10 . ’ (training) £
g . i g | oy A
= ‘g 08 g e (testing)
= 08 & ‘e Y 06
kel ‘w 06
06 7 g
E . ;’ 0.4 /I o4 ’/ a8 /’
0.4 / ’ / /
Q 56 4 Y 4 b5 4
w 02 3*." 02 (" 2 rr 7 4
TAL o8 4 ’¥
2 i 78 i /”
00 |4 oo |4 oo |4 oo |4
000 025 050 075 100 000 025 050 075 100 000 025 050 075 100 000 025 050 075 100 000 025 050 075 100
ML distance ML distance ML distance ML distance ML distance

Figure 4. Hyperbolic and Euclidean embedding of simulated data. (a) Mean squared error (MSE) of
embedding distances. (b) Placement error (c) True vs. estimated tree distance.

Examining the distances visually also shows that for low dimensions, hyperbolic
embeddings lead to a significantly better distance estimation. For simulated data, only a
four-dimensional hyperbolic space yields relatively low distortion distances (Figure 4c).

Biology 2022, 11, 1256

12 of 24

However, in the larger WoL 16S dataset, despite the theoretical guarantees given infinite pre-
cision, the distortions are still at a considerable level, even with 16 dimensions (Figure 5d).
Moreover, bias exists in both simulated and WoL 16S data with few dimensions and is more
severe for queries than the backbone. For example, in simulated data, estimated query
distances exhibit a noticeable bias compared to the true distances. The pattern is more
obvious in Euclidean spaces as query distances of 16 (or more)-dimensional embeddings
are significantly underestimated. Biases shrink or disappear with more dimensions.

(@) (b) ()
aN —— Hyperbolic ‘\ — Hyperbolic
“_ — Euclidean N N g 12 —— Euclidean
A,
102 \\ % — Backbone 4 ‘\ % o
A \A ---- Query kel % \\A 8 10
w @ 102 \ N e
w o \‘ \g\ = . \ 5 .
G N N 3 N N 5
o] a) 2 2 <, v
K R ~ Z 107 - \:\‘n 2 6
a -, s .
=10 N N
%, \‘“‘Ax (O %, \h"l‘x v 4
4 s 10 “ I~
\ \ ©
10-° . %, o
— N 2
A A
1 =5
2 4 8 16 32 64 128256512 2 4 8 16 32 64 128256512 2 4 8 16 32 64 128256512
Dimension Dimension Dimension
(d) 4 dimensions 16 dimensions 64 dimensions 256 dimensions
10 10 10
10 p
8 08 //’
C os
’
& /
w0 0.6
% 0.6
o 4
o o4 04 2
g 0 Backbone
7 a3 P s (training)
i 7
¥ Query
y . :
00 00| # (testing)
10 0.0 02 04 0.6 [oX:} 10
175 10
8 150]
= 125
©
k] 06
% 100
& 075 0.4
g 050 P Backbone
7 02 & (training)
w ’
025 Y Query
4 :
_— o6 |l (testing)
0.0 0.2 04 06 [0X:3 10 0.0 02 04 06 [oX:3 10 0.0 02 04 06 os 10 0.0 02 04 0.6 [oX:} 10
ML distance ML distance ML distance ML distance

Figure 5. Hyperbolic and Euclidean embedding of WoL 16S data. (a) Median squared error of
embedding distances. (b) Median squared error of embedding distances weighted by tree distances.
(c) Placement errors (d) True vs. estimated tree distance.

3.2.2. Placement Accuracy

A lowered distortion does not monotonically translate to a better placement perfor-
mance. For the simulated data, the average placement error of H-DEPP is lower than
Euclidean DEPP (E-DEPP) with low-dimensional embeddings (Figure 4b). With 128 dimen-
sions, hyperbolic embedding outperforms the Euclidean counterpart on the high-ILS case,
whereas they converge to similarly low levels of error (below one edge on average) in the
low-ILS case. In the WoL 165 dataset, while hyperbolic embedding still greatly outperforms
Euclidean embedding in low dimensions, it loses its advantages in higher dimensions
(Figure 5c). When d > 128, both methods have reasonably low errors, and the performance
of Euclidean embedding even slightly exceeds the hyperbolic one. In both datasets, as
the dimensions increase, the rate of improvements in placement error diminishes. Note
that with more dimensions, the reductions in testing distortion slow down. For example,
on WoL 16S data, the unweighted mean squared error decreases from order of 1072 to
1073 as we go from d = 2 to d = 8; this reduction dramatically decreases the error from

Biology 2022, 11, 1256

13 of 24

12 edges to three. However, as we further reduce distortion (in orders 10~% and 107°) by
adding more dimensions, the placement error stabilizes around its minimum. When we test
other multiple marker genes of WoL data where we fix the number of dimensions to 128,
Euclidean embedding shows a better placement than hyperbolic performance (Figure Al).

3.2.3. Small Distances and Outliers

The lack of improvements in placement errors when distortion improves may seem
counterintuitive across previous analyses (H-DEPP versions, more dimensions, and com-
parison to E-DEPP). However, APPLES-2 only uses a few small distances (the smallest
five in our analyses) for finding the optimal placement. Thus, it can tolerate distortion
among long distances beyond the natural tolerance for error [34,35] inherent in phyloge-
netic distance-based methods. As a result, APPLES-2 may be impacted more by distortion
in small distances rather than large distances. Therefore, we further examine the accuracy
of small distances (i.e., the smallest five distances for each species) versus the others.

Small and large distances have somewhat different patterns of distortion between
Euclidean and hyperbolic embeddings (Figure 6a,b). Among larger distances, hyperbolic
distortions are significantly smaller than the Euclidean ones, and the distortions of both hy-
perbolic and Euclidean distances reduce as the number of dimensions increases (Figure 6b).
Although hyperbolic distortions decrease slower than the Euclidean ones for d > 64, they
keep their advantage across all dimensions.

(a) 1.4 Lo (b) - @ Hyperbolic
Euclidean

—— Backbone (training)

'®, ---- Query (testing)

._.
o

\

\

Q
\
S
L

/.

I -)
1.0 :
2 o = \
° e o ° e
208 @~ Py 2102 RN
g — " £ e
~
‘0 06 @ = ~,
]) 8, O~
2 ~~e—%—e o ﬁ/ = \ 0 e —-0-—-9
0.4
®,
103
02 \o\
| S
0.0
2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512
Dimension Dimension
x107%
© .. e @,
—"*
o 08 o
9] -2.6
§ 0.6 s
© oa o 28
02 % —eo—8
——&—_¢| £°
0.150 o-—-9g-—0——@ 3
K 4
£ 0.125 et WV -32 ..

/

|
L3
o

S 0.100

/

0.075 —s

-3.6 ®

2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512

Dimension Dimension
Figure 6. Examination of distortion on the 16S WoL dataset. (a,b) Weighted MSE for five smallest
distances from each query (a) and all other distances (b). (c) Proportion of outliers among distances
between pair of backbone species (top) and query and backbone species (bottom). Outliers: distances
with weighted square error larger than 100; We remove outliers in either Euclidean distances or
Hyperbolic distances for MSE calculation. (d) Curvature of Hyperbolic space.

The distortions of small distances, however, exhibit a different pattern (Figure 6a).
With very few dimensions, hyperbolic distances have a small advantage (only in train-
ing), but that advantage disappears quickly as the number of dimensions grows. In fact,
for query distances, Euclidean embeddings can have one fourth of the distortion with
enough dimensions. Moreover, testing distortion actually increases with high numbers of
dimensions, pointing to potential overfitting.

Biology 2022, 11, 1256

14 of 24

There are outliers distances that have very high weighted distortions, and these tend
to be among small distances (as expected since we weight the distances by the inverse of
squared tree distances). While outliers are rare everywhere, Euclidean distances have far
fewer outliers than hyperbolic in both training and testing data (Figure 6¢). In the training
data, the number of outliers tends to increase for hyperbolic but not Euclidean embeddings
with the number of dimensions. The extra challenge in obtaining accurate small distances
with hyperbolic methods might be due to the impact of curvature, a point we will revisit
in discussions. On these data, the learned curvature parameter tends to decrease with the
number of dimensions (Figure 6d).

3.3. Impact of Hyper-Parameters

DEPP’s stochastic optimization algorithm operates on randomly selected small batches
of species (default size: 32). Some pairs may rarely be together in the same batch. To
investigate whether this low probability can cause distortion in small distances and create
outliers, we investigate the impact of batch size.

As we increase the batch size, small-distance distortions significantly decrease at the
testing time and reduce for batch size up to 128 at the time of training (Figure 7a). In the
training data, the batch size 64 has a more than 70% reduction compared to the default
32. Inspecting the number of outliers shows a similar pattern (Figure 7c). For instance,
if we use a batch size of 512, we can remove almost all outliers in the training phase and
reduce them by one to twofold in the testing phase. However, the improvement in small
distances and outliers comes at a high cost for distortions in large distances both in the
training and testing phases for d > 64 (Figure 7b). Both training and testing scores across all
distances are minimized with batch sizes of 64 (not our default, 32), where small distances
are improved, and large distances have not yet deteriorated. Incidentally, the optimal
placement accuracy is also obtained with the batch size set to 64 (Figure 7d).

(a) (b) x1073
16 —— Backbone (training) a0 |- ®

---- Query (testing) ®: []
35

=
S

w o ® w3
w w0 3>
=
1.0 ©
3 it o225
E -~
508 520
9 o .
206 N Large distances
e All distances p-
0.4 1.0 @ &
0.2 ®. @ 0.5 - @
32 64 128 256 512 32 64 128 256 512
Batch size Batch size
(C) %105 (d)
1.00 @,
@
n 075 195
3
= 0.50
b=
) ®. ‘g’ 1.90
025 L
® s
0.00 ® & £ 185
~ Y
0.14 g o
. 1.80
4] £ 3
g I
5oL © 175
=3 S o L J
IS o
0.10
. 1.70 ®
32 64 128 256 512 32 64 128 256 512
Batch size Batch size

Figure 7. Impact of batch size on 16S data. (a) Weighted MSE for small distances. (b) Weighted MSE
for large distances and all distances. (c) Proportion of outliers among distances between pair of back-
bone species (top) and distances between query and backbone species (bottom). (d) Placement errors.

Since the models seem to struggle with learning and representing small distances
(e.g., distances below 10-°), we examine a setting where we artificially remove the small
distances from the tree by adding pseudo counts to the terminal branches. We test dif-
ferent values of pseudo counts (Table A1). With large enough pseudo counts (e.g., 1073
or 10’4), distortions of small distances decrease, and the distortions of large distances

Biology 2022, 11, 1256

15 of 24

slightly increase or remain comparable. In addition, there are far fewer outliers. However,
comparison of distortion is not straightforward because errors are normalized by the square
of the inverse of tree distances. When we examine the placement errors, which do provide
a fair comparison (unlike the normalized MSE), none of the pseudo-count values result in
better placement accuracy.

3.4. Placement Accuracy: Comparison to Alternatives

Having established that H-DEPP does not consistently improve over E-DEPP in
placement accuracy, we now compare it to other methods. In the high ILS simulated dataset
(Figure 8a), H-DEPP has a lower average placement error and a shorter tail of error than
JC+APPLES and is comparable to EPA-ng (both with 2.3 edges of error on average). In
the low ILS case, where the placement tasks are less challenging, all four methods are
low in placement errors with an average of ~0.6 edges. On the WoL 165 data (Figure 8b),
EPA-ng finds the correct placement 50% of times, compared to 40% for E-DEPP and 33% for
H-DEPP. In terms of error, the performance of H-DEPP and E-DEPP is comparable with the
same median error, and H-DEPP has a slightly higher average error (1.78 vs. 1.67 edges).
The mean error of JC is significantly higher than the other alternatives (2.4 edges).

(@) (b)

2000 B H-DEPP+APPLES 7

gs ¢, [E-DEPP+APPLES

& ‘ . ‘. [EPA-ng

o150 .o B JC+APPLES 5]

bt ¢ ¢ ‘ +

5 125 ¢ . . . D al

t + . + +

o 10.0 ¢ .

- ‘. ‘. ‘ N

S 75 M M '

S . ‘ 2]

O 5.0 e e O

O) . .)

g 251 14

(C) HigH ILS Low ILS Hype‘rbolic Euclidean EPA-ng Jt

m
)
_816- —— H-DEPP+APPLES
L —— E-DEPP+APPLES
—_
244 —— EPA-ng
o —— JC+APPLES
o
9]
9]
O
©
o

p0151 p0310 p0258 p0032 p0005 p0132 p0000 p0018 p0023 p0O067
Gene

Figure 8. Phylogenetic placement for (a) simulated data (b) WoL 16S data (c) WoL marker genes data.
The white squares in the boxplots represent the average placement errors.

On the other WoL marker genes, EPA-ng continues to have the best performance (Fig-
ure 8c). Neither H-DEPP nor E-DEPP matches the accuracy of EPA-ng using 128 dimensions.
Across all genes, the average error is 2.3, 2.1, 1.8, and 2.8 edges for H-DEPP, E-DEPP, EPA-
ng, and JC, respectively. Interestingly, compared with EPA-ng, both H-DEPP and E-DEPP
have fewer highly-erroneous outlier placements. For example, only 1.6% of all placements
are at least 15 edges away from the optimal placements for H-DEPP compared to 2.6% for
EPA-ng.

3.5. Tree Extension: Comparisons to Alternatives

When updating trees to get fully resolved trees, on the simulated data, H-DEPP
has slightly lower average errors compared to E-DEPP but higher errors than RAXML

Biology 2022, 11, 1256

16 of 24

(Figure 9a). In particular, in the low ILS condition, 83% of H-DEPP updated trees have zero
error, compared to only 70% for E-DEPP. Trees updated using FastME with JC distances are
far more erroneous compared to the other methods. Thus, the relatively high accuracy of
DEPP+FastME is due to its improved distances, not the advantages of FastME. On the WoL
data, we see similar patterns with the 16S gene (Figure 9b). H-DEPP has clear advantages
over E-DEPP, and H-DEPP and RAXML are comparable when judged using quartet score
(0.011 versus 0.012 on average). With the RF measure of error, although H-DEPP still
outperforms E-DEPP, both methods are worse than RAXML and JC, and all methods have
high error. RF is sensitive to rogue taxa, and the presence of paralogous 16S copies and HGT
can create unstable leaves. So there may be several outlier leaves in H/E-DEPP trees that
are very far away from their correct positions and skew the error measured by RF distances.

¢ 1.0 BN H-DEPP+FastME
[E-DEPP+FastME
0.8 [RAXML
o B |C+FastME
C
Sos6
. 2 ’
© 0.4 N
" ' v
’ N o ¢ R
¢ $ 0.2
H 4 . .
()
& 00 | o
High ILS Low ILS High ILS Low ILS
b) == T
0.48
g 10-11
i 8046
3 IS
° 044
8 ©
[T
=)
)] T -
0.38 4
H-DEPP E-DEPP RAXML JC H-DEPP E-DEPP RAXML IC
(c)
035 ¢
0]
0 0.30
C
© 0.25
_"Z, [.
50207 .
D 0.15
£

= -

4 [4
08{

3
+

s

.
.

[
+
| ¢
5)
oo BBL 4I. Zoi
1 2 4

-:-l;é -n-b& o
6 8 10

[H-DEPP+FastME
[0 E-DEPP+FastME
[0 RAXML

I JC+FastME

RF distance
2 &

o
]

o
N

. 1o
ﬁ@ s -}%,iﬁ SEIE ofa? oo

1 2 4 6 8 10
Number of genes

Figure 9. Tree update for (a) simulated data (b) WoL 16S data (c) WoL marker genes data. The white
squares in the boxplots represent the average over all replicates.

Biology 2022, 11, 1256

17 of 24

When we use one or two WoL marker genes, RAXML continues to exhibit advantages
over the other alternatives (Figure 9c¢). For one or two genes, H-DEPP and E-DEPP share a
similar median and average quartet distance, while the RF distances for H-DEPP is slightly
lower than E-DEPP. Note that we cannot compute JC distances when the alignment contains
pairs of species with non-overlapping non-gap sequences. Such situations occasionally
happen when we have one or two genes. Since FastME fails when the input distance matrix
contains missing data, we omit comparisons to JC for one or two genes.

As the number of genes increases, patterns change (Figure 9c). The performance of
H-DEPP and E-DEPP improves with increasing numbers of genes according to quartet and
RF measures (Figures 9c and A2). For RAXML, however, quartet and RF errors stabilize
or even slightly increase beyond two or six genes, respectively. The error of H/E-DEPP is
lower than RAXML when a handful of genes are available (four for quartet distances and 10
for RF distances). The improvements in quartet error become dramatic when the number of
genes increases to 10: the mean error of H-DEPP is 0.0013 compared to 0.018 for RAXML.

4. Discussion

H-DEPP improved distances compared to E-DEPP on all the datasets. While our
attempts at improving single-gene placement using hyperbolic embedding were not uni-
versally fruitful, we did improve the accuracy of updates (i.e., producing a fully resolved
tree with new queries) going from E-DEPP to H-DEPP. Thus, the improvement in distance
fidelity is not in vain. We next describe what can cause these diverging patterns.

4.1. Tree Updates and the Impact of Discordance

We observed that H-DEPP was better than RAXML in updating the reference ASTRAL
tree using several genes. While updating a species tree using a concatenation of a few genes
is a difficult task, H-DEPP, unlike RAXML, had remarkably low quartet errors (Figure 9).
This was in contrast to the case with one gene where RAXML was comparable or better than
H-DEPP. One explanation for the change in performance with more genes is that genes that
are highly discordant with the species tree affect the performance of RAXML. H/E-DEPP is
able to reduce the impact of outlier genes by using the median of the distances. To further
examine this pattern, we examine the correlation between the quartet distance of the species
tree to gene trees and the species tree error (Table 2). For H-DEPP and E-DEPP, species tree
quartet error correlates significantly and strongly with the smallest two gene tree quartet
distance values, whereas it has no correlation with the max gene tree quartet distance and a
much weaker (albeit potentially significant) correlation with the mean. In contrast, RAXML
correlates most strongly with the maximum quartet score, meaning that genes with high
discordance with the species tree impact the performance of RAXML. Therefore, the better
performance of H-DEPP can be attributed to better handling of discordance.

Practically, the strong performance of H-DEPP opens up the path for using deep
learning to update species trees using a handful of genes. This problem, which is more
ambitious than gene tree updating, can be very impactful if achieved with high accuracy and
using few marker genes. In principle, existing species trees with many tens of thousands
of species, e.g., [7,8] can be updated to include new species using just a few marker genes.
Given the remarkably accurate trees obtained using as few as six genes using H-DEPP
(Figure 9), we can perhaps update these large species trees using only a handful of genes.

4.2. Placement Accuracy and the Impact of Small Distances

Unlike updates, placement accuracy did not improve, leading us to a question: Why
does placement accuracy fail to change with improved distance calculations? The reason
is likely the reliance of APPLES-2 on the smallest distances for placement. Consistent
with this explanation, we saw that while hyperbolic embeddings provided much lower
distortion overall, they had higher distortion for small distances. They also had more cases
of outlier pairs that have extremely high distortion. When we improved the accuracy of
small distances and reduced outliers by increasing the batch size to 64 (without sacrificing

Biology 2022, 11, 1256

18 of 24

long distances), we did see improvements in placement accuracy. Thus, small distances
seem to matter more for placement. Accepting this explanation leads to the next question.

Table 2. Drives of errors in updating trees. We show the correlation between the errors of the
estimated tree measured by quartet distance and gd: mean of QD, gd,,;,;: mean of the minimum two
values in QD, and gd;ax: maximum value in QD, where QD is the set of quartet distances between
the gene trees corresponding to each input gene and the species tree. We use Wald test on the linear
least-square regression with the null hypothesis of zero slope. r: the Pearson correlation coefficient.

qd qdmin qdmax
p-Value r p-Value r p-Value r
H-DEPP 0.012 0.29 2.61 x 1078 0.59 0.57 —0.06
E-DEPP 0.061 0.21 1.14 x 1074 0.43 0.48 —0.08
RAXML 0.474 0.08 0.86 —0.02 0.08 0.20

Why is hyperbolic embedding worse than Euclidean in estimating small distances,
and why do small distances not improve with more dimensions? Computing accurate
distances and distance gradients for two close points both near the boundary of the curved
hyperbolic space require the calculation of fast-growing functions (Figure 1). Such opera-
tions can become inaccurate with limited precision floating point operations. The uncurved
Euclidean spaces do not suffer a similar problem. To make things more complex, we also
trained curvature, which tended to reduce with more dimensions (Figure 6d). Had the
curvature not decreased, the embedded points would have had to collapse closer to the
origin with more dimensions because the diameter is fixed. Instead, the algorithm learned
to decrease the curvature so that values of each point along individual dimensions stayed
larger, perhaps to improve the precision across all distances. However, the decreased
curvature pushed the points close to the boundaries where small distances, specifically, are
harder to fine-tune.

Another potential explanation is that perhaps our training is stuck in local optima
and the local optima are particularly problematic for small distances. In particular, as we
increase the number of dimensions, the optimization space changes, and it may include
more local optima, leading to the lack of improvement in small distances with more
dimensions (Figure 6a); also note that we kept the number of epochs of training fixed as
we changed dimensions. Another factor contributing to convergence is that our stochastic
gradient descent optimizer randomly groups species into batches in each epoch. Given a
large number of species, there is a non-negligible probability of never sampling two pairs
of close species in the same batch. For example, with the default batch size (32) on the WoL
16S dataset with 7800 taxa, two sister species have a (1 — %)1000 = 1.6% chance of never
appearing in the same batch in 1000 consecutive epochs. The accuracy of small distances
can be expected to be more prone to a lack of joint sampling than large distances because
distances of leaves far on the tree correlate with many other distances, whereas distances of
species close on the tree (e.g., sisters) correlate with far fewer distances. Therefore, training
for accurate small distances may be more dependent on having them in the same batch
compared to the larger ones. Consistent with this idea, we saw that with increased batch
size, the small distances improved while larger ones did not (Figure 7).

While there is evidence that smaller distances matter more, we also observed that larger
distances cannot be fully sacrificed. Increasing batch size beyond 128 reduced placement
accuracy compared to default 32 despite having better small distances at the expense
of large distances (Figure 7). The decreased accuracy of large distances with increased
batch size was surprising, and we do not have a strong explanation for it. Perhaps, by
further emphasizing small distances (which contribute more to the loss function due to
the weighting), gradients were less impacted by large distances, and hence, those were
de-emphasized. Or perhaps, the models tried to fit the small distances for even challenging

Biology 2022, 11, 1256

19 of 24

species (e.g., species with horizontal gene transfer) by sacrificing generalization over all the
data. Regardless of the cause, small distances matter more, but larger ones also do matter.

4.3. Future Research

We saw that the choice of some hyper-parameters, such as batch sizes and learning
rates, is consequential. In practice, the best choice of hyper-parameters is expected to be
dataset-dependent. While it was not practical on our large number of datasets used for
benchmarking, when used on real data, it would be best to choose the hyper-parameters in
a two-step approach by using a validation set. Bilevel optimization techniques abound in
the machine learning literature, e.g., [36-38] and can be adapted to facilitate this goal in
future work.

Future work can test H-DEPP under more varied conditions. Most importantly,
microbiome analyses often are based on fragmentary data, which were not tested here
systematically. Moreover, in our tests, we used an alignment that was built based on queries
and reference sequences, pruned down to include the backbone in training. While UPP
aligns the vast majority of sequences independently and one by one, there is still room for
some leakage of information (at least for the alignment) from testing to training because of
the shared alignment. More broadly, we did not explore the impacts of alignment errors on
the results, which may affect methods differently. Finally, we did not directly study the
impact of the number of species. It is reasonable to expect that smaller trees can be trained
better than larger trees, and therefore, a divide-and-conquer approach using an ensemble
of models may further improve accuracy.

5. Conclusions

In this paper, we showed that hyperbolic geometry can improve the fidelity of dis-
tances computed using the deep learning framework DEPP from a reference dataset. Much
fewer hyperbolic dimensions are enough to obtain the same level of distortions as the
Euclidean space. This improvement in distances comes at no significant computational
cost because the training and testing times of H-DEPP and E-DEPP are similar. In fact, by
reducing the required number of dimensions, H-DEPP can reduce the computational cost.
Despite the promising improvements in distances, the impact on placement accuracy was
mixed. We observed improved accuracy in the high ILS simulated dataset, unchanged
accuracy in many of the other datasets, and even reduced accuracy in some cases. We did,
however, obtain improved accuracy for the more ambitious task of tree updates where a
fully resolved tree is inferred using the existing tree for training the model. We further
explored the reasons behind these patterns. Our proposed explanations collectively point
to a complex set of factors contributing to the distortion, update, and placement accuracy.

We identified many challenges in using hyperbolic embeddings. Our solutions in-
cluded training the curvature jointly with data, scaling distances to avoid low precision
calculations, a dynamically adjusted learning rate, and using exponential maps instead of
HNNSs. All these techniques and observations may prove useful beyond phylogenetics,
where hyperbolic neural networks are used increasingly. Similarly, further improvements
in methods for training hyperbolic neural networks in the machine learning community
can be adopted in H-DEPP for improved accuracy.

Author Contributions: Conceptualization, P.T., S.M. and Y.J.; methodology, Y.J., P.T. and S.M.; soft-
ware, Y.J.; validation, Y.J. and P.T.; formal analysis, Y.J. and P.T.; investigation, Y.J. and P.T.; resources,
S.M.; data curation, Y.J.; writing—original draft preparation, S.M., P.T. and Y.J.; writing—review
and editing, S.M., P.T. and YJ.; visualization, Y.J. and P.T.; supervision, S.M.; project administra-
tion, S.M.; funding acquisition, S.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Institute of Health (NIH) grant R35GM142725.
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Biology 2022, 11, 1256

20 of 24

Data Availability Statement: Data for this paper are available from GitHub at https://github.
com/yueyujiang /hyperbolic_results, accessed on 20 August 2022. The code is available at https:
//github.com/yueyujiang/hdepp, accessed on 20 August 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Extra Tables

Table A1. Impact of adding pseudo counts to terminal branch. MSE: MSE of full distance matrix; MSE
(small): MSE for the smallest five distances for each species; MSE (large): MSE for all the distances
except the small distances; upper: results for backbone species; bottom: results for query species.

Pseudo Count MSE MSE (Small) MSE (Large) #Outliers

0 0.00093 0.74 0.00036 416

0.001 0.00066 0.33 0.00041 170

0.0001 0.00072 0.52 0.00033 320

0.00001 0.00145 1.35 0.00042 450

Pseudo Count MSE MSE (Small) MSE (Large) #Outliers Placement Error
0 0.0041 1.68 0.00293 250 1.78

0.001 0.0037 0.99 0.00296 146 1.80

0.0001 0.0039 1.39 0.00292 237 1.78

0.00001 0.0042 1.77 0.00296 250 1.75

Appendix B. Extra Figures

a 1024
() A\\ —— Backbone (training)
A AN ---- Query (testing)
A U) A A e e)
© ~ A ——p— —— kL
9] ~~
=
_ A
__51 10734 :\""ﬁ :~)
g Ay —— A ———
= A" A" \\NA———VA‘__-A\s
e ~a
©
©
% 1074 A—,

~__ N\

A

p0151 p0310 p0258 p0032 p0005 p0132 p0000 pO018 p0023 p0067
Gene

g

61 —— Hyperbolic

—— Euclidean

w

w

Placement error (edges)
N I

p0151 p0310 p0258 p0032 p0005 p0132 p0000 p0018 p0023 p0067
Gene

Figure A1l. Comparison of Hyperbolic and Euclidean embeddings in WoL marker genes data.
(a) Median square error of embedding distances. (b) Placement errors.

Biology 2022, 11, 1256

21 of 24

o o
o o
i >

Quartet distance

o
o
S

1 2 4 6 8 10

—— H-DEPP+FastME
E-DEPP+FastME
RAXML

1 2 4 6 8 10
Number of genes

Figure A2. Errors of updated trees measured by (top) quartet distances; (bottom) RF distances;
Results are from WoL marker genes data.

Appendix C. Commands and Versions
Appendix C.1. Software Version

e APPLES2.0.0

e DEPP0.22

e EPA-ng0.3.8

¢ RAxML-ng1.0.1
¢ RAxML8.2.12

e UPP4.3.10

e FastME2.1.6.1

Appendix C.2. Branch Length Reestimation

® raxml-ng -evaluate -msa $sequence_file
-tree $tree -model JC -threads 2
-blopt nr_safe

Appendix C.3. Gene Alignment

Genes were aligned using UPP using the following commands for aligning the back-
bone sequences(first command), and aligning the novel queries to the existing backbone
alignments (second command).

° run_upp.py -s $input_seq -B 2000 -M -1 -T 0.33 -A 200

® run_upp.py
-s $query_seq
-a $backbone_seq
-t $backbone_tree
-A 100 -d $outdir

Appendix C.4. Placement
* APPLES+E-DEPP

— Training

Biology 2022, 11, 1256

22 of 24

* Simulated dataset
train_depp.py
backbone_tree_file=$backbone_tree
backbone_seq_file=$backbone_seq
patience=5 lr=le-4 embedding_size=128
* WoL dataset
train_depp.py
backbone_tree_file=$backbone_tree
backbone_seq_file=$backbone_seq
patience=5 lr=le-4 embedding_size=128

- Query time
+ Calculating distance matrix

depp_distance.py
query_seq_file=$query_seq
backbone_seq_file=$backbone_seq
model_path=$model_path
outdir=$out_dir

+ Placement using APPLES

run_apples.py
-d $distance_file
-t $backbone_tree
-o -f 0 -b 5
e APPLES+H-DEPP
— Training
+ Simulated dataset
train_depp.py
backbone_tree_file=$backbone_tree
backbone_seq_file=$backbone_seq
weighted_method=’fm’
patience=5 lr=le-4 embedding_size=128
c_epoch=6000 clr=0.005 distance_mode=’hyperbolic’
* WoL dataset
train_depp.py
backbone_tree_file=$backbone_tree
backbone_seq_file=$backbone_seq
weighted_method=’fm’
patience=5 lr=le-4 embedding_size=128
c_epoch=6000 clr=0.005 distance_mode=’hyperbolic’
- Query time
+ Calculating distance matrix
depp_distance.py
query_seq_file=$query_seq
backbone_seq_file=$backbone_seq
model_path=$model_path
outdir=$out_dir

+ Placement using APPLES

run_apples.py

-d $distance_file
-t $backbone_tree
-o -f 0 -b 5

Biology 2022, 11, 1256 23 of 24

e APPLES+]C
run_apples.py
-s $backbone_tree
-q $query_seq
-t $backbone_tree
-f 0 -b 5 -D
e FEPA-ng
- raxml-ng
-evaluate
-msa $backbone_seq
-tree $backbone_tree
-prefix info
-model GTR+G+F
-threads 2 -blopt nr_safe
- epa-ng
-ref-msa $backbone_seq
-tree $backbone_tree
-query $query_seq
-model $GTR_info

Appendix C.5. Tree Update
e FastME
- Tree building
* fastme -i $input_dist -o $output_tree -nni -s -m B
— JC distances
+ fastme -i $input_seq -0 $output_dist -dna=JC69 -c
e RAxXxML

- raxmlHPC-PTHREADS
-s $input_seq
-w $output_dir
-n run -p 12345
-T 32 -m GTRCAT
-g $backbone_tree

References

1. Goyal, P; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl.-Based Syst. 2018, 151, 78-94.
[CrossRef]

2. de Vienne, D.M,; Ollier, S.; Aguileta, G. Phylo-MCOA: A Fast and Efficient Method to Detect Outlier Genes and Species in
Phylogenomics Using Multiple Co-inertia Analysis. Mol. Biol. Evol. 2012, 29, 1587-1598. [CrossRef] [PubMed]

3. Layer, M.; Rhodes, J.A. Phylogenetic trees and Euclidean embeddings. J. Math. Biol. 2017, 74, 99-111. [CrossRef] [PubMed]

4. Jiang, Y.; Balaban, M.; Zhu, Q.; Mirarab, S. DEPP: Deep Learning Enables Extending Species Trees using Single Genes. Syst. Biol.
2022. [CrossRef]

5. Balaban, M.; Sarmashghi, S.; Mirarab, S. APPLES: Scalable Distance-Based Phylogenetic Placement with or without Alignments.
Syst. Biol. 2020, 69, 566-578. [CrossRef]

6. Balaban, M,; Jiang, Y.; Roush, D.; Zhu, Q.; Mirarab, S. Fast and accurate distance-based phylogenetic placement using divide and
conquer. Mol. Ecol. Resour. 2022, 22, 1213-1227. [CrossRef]

7. Zhu, Q.; Mai, U,; Pfeiffer, W.; Janssen, S.; Asnicar, F.; Sanders,].G.; Belda-Ferre, P.; Al-Ghalith, G.A.; Kopylova, E.; McDonald, D.;
et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat. Commun.
2019, 10, 5477. [CrossRef]

8. Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.A.; Hugenholtz, P. A standardized bacterial
taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996-1004. [CrossRef]

9. Tabaghi, P; Dokmani¢, I. Hyperbolic distance matrices. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 6-10 July 2020; pp. 1728-1738.

10. Tabaghi, P; Peng, J.; Milenkovic, O.; Dokmani¢, I. Geometry of Similarity Comparisons. arXiv 2020, arXiv:2006.09858.

Biology 2022, 11, 1256 24 of 24

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Ganea, O.; Bécigneul, G.; Hofmann, T. Hyperbolic entailment cones for learning hierarchical embeddings. In Proceedings of the
International Conference on Machine Learning. PMLR, Stockholm, Sweden, 10-15 July 2018; pp. 1646-1655.

Ganea, O.; Bécigneul, G.; Hofmann, T. Hyperbolic neural networks. Adv. Neural Inf. Process. Syst. 2018, 31, 5350-5360.
Shimizu, R.; Mukuta, Y.; Harada, T. Hyperbolic neural networks++. arXiv 2020, arXiv:2006.08210.

Sala, F; De Sa, C.; Gu, A.; Ré, C. Representation tradeoffs for hyperbolic embeddings. In Proceedings of the International
Conference on Machine Learning. PMLR, Stockholm, Sweden, 10-15 July 2018; pp. 4460-4469.

Chen, W.; Han, X,; Lin, Y.; Zhao, H.; Liu, Z,; Li, P; Sun, M.; Zhou,]J. Fully hyperbolic neural networks. arXiv 2021,
arXiv:2105.14686.

Linial, N.; London, E.; Rabinovich, Y. The geometry of graphs and some of its algorithmic applications. Combinatorica 1995,
15,215-245. [CrossRef]

Sarkar, R. Low distortion delaunay embedding of trees in hyperbolic plane. In Proceedings of the International Symposium on
Graph Drawing, Konstanz, Germany, 21-24 September 2011; pp. 355-366.

Bachmann, G.; Bécigneul, G.; Ganea, O. Constant curvature graph convolutional networks. In Proceedings of the International
Conference on Machine Learning. PMLR, Virtual, 13-18 July 2020; pp. 486—-496.

Dai, J.; Wu, Y,; Gao, Z,; Jia, Y. A hyperbolic-to-hyperbolic graph convolutional network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Virtual Event, 20-25 June 2021; pp. 154-163.

Liu, Q.; Nickel, M.; Kiela, D. Hyperbolic graph neural networks. Adv. Neural Inf. Process. Syst. 2019, 32, 8230-8241.

Chami, I; Ying, Z.; Ré, C.; Leskovec,]. Hyperbolic graph convolutional neural networks. Adv. Neural Inf. Process. Syst. 2019, 32,
4868-4879.

Skopek, O.; Ganea, O.E.; Bécigneul, G. Mixed-curvature variational autoencoders. arXiv 2020, arXiv:1911.08411.

Gulcehre, C.; Denil, M.; Malinowski, M.; Razavi, A.; Pascanu, R.; Hermann, K.M.; Battaglia, P; Bapst, V.; Raposo, D.; Santoro, A.;
et al. Hyperbolic attention networks. arXiv 2018, arXiv:1805.09786.

Matsumoto, H.; Mimori, T.; Fukunaga, T. Novel metric for hyperbolic phylogenetic tree embeddings. Biol. Methods Protoc. 2021,
6, bpab006. [CrossRef]

Corso, G.; Ying, Z.; Pandy, M.; Velickovi¢, P.; Leskovec, J.; Lio, P. Neural Distance Embeddings for Biological Sequences.
Adv. Neural Inf. Process. Syst. 2021, 34, 18539-18551.

Fitch, W.M.; Margoliash, E. Construction of Phylogenetic Trees. Science 1967, 155, 279-284. [CrossRef]

Mirarab, S.; Warnow, T. ASTRAL-II: Coalescent-based species tree estimation with many hundreds of taxa and thousands of
genes. Bioinformatics 2015, 31, i44-i52. [CrossRef] [PubMed]

Robinson, D.; Foulds, L. Comparison of phylogenetic trees. Math. Biosci. 1981, 53, 131-147. [CrossRef]

Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. Mamm. Protein Metab. 1969, 3, 21-132. [CrossRef]

Barbera, P.; Kozlov, A.M.; Czech, L.; Morel, B.; Darriba, D.; Flouri, T.; Stamatakis, A. EPA-ng: Massively Parallel Evolutionary
Placement of Genetic Sequences. Syst. Biol. 2019, 68, 365-369. [CrossRef]

Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAXML-NG: A fast, scalable and user-friendly tool for maximum
likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453-4455. [CrossRef]

Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program.
Mol. Biol. Evol. 2015, 32, 2798-2800. [CrossRef]

Stamatakis, A. RAXML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014,
30, 1312-1313. [CrossRef]

Atteson, K. The Performance of Neighbor-Joining Methods of Phylogenetic Reconstruction. Algorithmica 1999, 25, 251-278.
[CrossRef]

Gascuel, O,; Steel, M. A ‘Stochastic Safety Radius’ for Distance-Based Tree Reconstruction. Algorithmica 2016, 74, 1386-1403.
[CrossRef]

Feurer, M.; Springenberg, J.; Hutter, F. Initializing bayesian hyperparameter optimization via meta-learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25-30 January 2015; Volume 29.

Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the
International Conference on Machine Learning. PMLR, Sydney, Australia, 6-11 August 2017; pp. 1126-1135.

Ji, K;; Yang, J.; Liang, Y. Bilevel optimization: Convergence analysis and enhanced design. In Proceedings of the International
Conference on Machine Learning. PMLR, Virtual, 18-24 July 2021; pp. 4882-4892.

