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Abstract

First-principle simulations are at the heart of the high-energy physics research pro-
gram. They link the vast data output of multi-purpose detectors with fundamental the-
ory predictions and interpretation. This review illustrates a wide range of applications
of modern machine learning to event generation and simulation-based inference, includ-
ing conceptional developments driven by the specific requirements of particle physics.
New ideas and tools developed at the interface of particle physics and machine learning
will improve the speed and precision of forward simulations, handle the complexity of
collision data, and enhance inference as an inverse simulation problem.
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1 Introduction

The defining goal of particle physics is to understand the fundamental nature of elementary
particles and their interactions. The outcome of a particle physics measurement is expressed
in terms of a quantum field theory Lagrangian and its parameters. The great experimental
strength of collider-based particle physics is the availability of a huge amount of data and
measurements in combination with a well-controlled environment. The theoretical and ex-
perimental poles are linked through precision simulations, starting from the Standard Model
or a hypothetical Lagrangian, generating particle-level events, and eventually simulating the
detector. The simulation chain realized by the standard LHC event generators [1–5] and illus-
trated in Fig. 1, should be based on first-principles physics rather than empiric modeling. For
these simulations precision and speed are essentially two sides of the same medal. A detailed
discussion of these traditional methods can be found in a parallel review, Ref. [6]. Adding
modern machine learning to the numerics toolbox has the potential to provide the simulations
needed for the LHC Run 3 and HL-LHC [7], as well as future energy frontier machines.

From a fundamental physics perspective there exist three distinctly different kinds of mea-
surements at the LHC. First, basic and purely experimental measurements should be as inde-
pendent of theory considerations and first-principle simulations as possible, to avoid expiration
dates. Their problem is that they provide no information about fundamental physics. These
basic measurements benefit from modern machine learning for instance in understanding the
data and calibrating the detectors. A second class of measurements is supplemented with a
fundamental theory interpretation framework. Examples are well-defined inclusive production
rates, like fiducial or total cross sections. They can be compared to predictions from pertur-
bative quantum field theory. When we expect to find agreement with the Standard Model,
modern machine learning can help us in using these measurements to extract parton densities
or improve our Monte Carlo simulations. A third kind of measurement reflects our goal to
further our understanding of fundamental physics by comparing data to predictions from per-
turbative or non-perturbative quantum field theory. We assume that interesting physics signals
hide in specific kinematic regions. Here, we can search for deviations between the Standard
Model predictions and experimental results, measure Standard Model parameters or higher-
dimensional Wilson coefficients, and aim for anomalies and eventually a proper discovery.
Such measurements of all possible features in the vast phase space of LHC collisions require
precision simulations, specifically theory-based event generators. We will show how all of
these aspects benefit significantly from the application of modern machine learning methods.

The challenges for event generators are, first of all, defined by the increase of the LHC
luminosity and the expected advances in experimental precision and reach. Going from the
Run 2 dataset of 139 fb−1 to the projected HL-LHC dataset of 4 ab−1 suggests that experimen-
tal uncertainties at and below the percent level will become standard and need to be matched
by theory predictions, to allow for any kind of precision measurement. The same increase in
rate will allow us to probe more and more exotic kinematic regions, with the hope of finding

detectors EventsQCDscattering decay fragmentationshowerTheory

forward

inverse

Figure 1: Illustration of the LHC simulation chain. The forward direction is discussed
in Secs. 2 and 3, while the inverse simulation is the topic of Sec. 4.
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hints for new particles and interactions. The higher rates and an improved experimental un-
derstanding will also allow us to study more and more complex signatures with an increasing
multiplicity of backgrounds and potential signals. Each of these aspects poses a challenge to
the established event generators, and we will discuss ways modern machine learning can help
us meet them in Sec. 2. Next, we will introduce end-to-end (soup-to-nuts) ML-generators,
similar in structure to ML-detector simulations in Sec. 3. Finally, we discuss conceptual bene-
fits from modern machine learning, for instance related to an invertible simulation chain and
simulation based inference, in Sec. 4. Because the main purpose of this report is to show new,
ML-driven developments in event generation, we refer to the main event generator Snowmass
white paper for a list of references and a detailed discussion of the physics background and
the classical approaches.

2 Machine Learning in event generators

Current multi-purpose event generators feature a modular structure, that reflects the factor-
ization property of physics aspects at very different relevant energy scales [1–5]. While the
highest energy transfers, i.e. the hard process and QCD parton showers, can be treated by
perturbative methods, phenomenological models are used to account for the hadronization
transition, as well as non-trivial secondary interactions. The increase in perturbative precision
needed to address the physics challenges posed by current and future collider experiments,
adds a sizeable number of more specialized numerical codes to the simulation toolbox. This
includes, for example, dedicated codes to construct and evaluate higher-order tree-level or
loop amplitudes. Modern machine learning techniques can improve all aspects of event gen-
eration, ultimately making it more resource efficient and opening paths to yet more versatile
and accurate predictions. This includes important ingredients to precision predictions such
as parton densities and fragmentation functions, where neural network (NN) techniques are
routinely used already. First steps towards modeling the hadronization process with ML tech-
niques have been presented in [8]. For the tuning of non-perturbative simulation parameters,
including an underlying event model, NN-based approaches have recently shown promise [9].

2.1 Phase space sampling

The core of any scattering event simulation is the assumed hard process configuration or par-
tonic scattering event. These are described by QFT transition amplitudes, where the physics
demands of the LHC experiments require us to consider high-multiplicity final states and one-
or even two-loop QCD and/or EW corrections. The complexity of the resulting matrix elements
and the dimensionality of their phase space severely challenge the integration of cross sections

Table 1: Results for sampling the top decay width, the total cross section of top-pair
production and decay in e+e− collisions, and g g → 3g and 4g production. Shown
are the integral estimate, EN , and the unweighting efficiency, εuw, for a standard
importance sampler (Uniform), VEGAS, and NN-based optimization [10].

top decays top-pair production g g → 3g g g → 4g

Sample εuw EN [GeV] εuw EN [fb] εuw EN [fb] εuw EN [fb]

Uniform 59 % 0.1679(2) 35 % 1.5254(8) 3.0 % 24806(55) 2.7 % 9869(20)
VEGAS 50 % 0.16782(4) 40 % 1.5251(1) 27.7 % 24813(23) 31.8 % 9868(10)
NN 84 % 0.167865(5) 78 % 1.52531(2) 64.3 % 24847(21) 48.9 % 9859(10)
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and the generation of partonic momentum configurations. Modern NN-techniques are ideally
suited to assist in these tasks. The standard technique used so far is based on importance
sampling, employing mappings y⃗ : V → U ⊆ Rd for phase space integrals

I =

Z

V
dd x f (x) =

Z

U
dd y

f (x)
g(x)

�

�

�

�

x≡x(y)
, with

�

�

�

�

∂ y(x)
∂ x

�

�

�

�

= g(x) . (1)

It can be chosen such that f /g ≈ const, to reduce the variance of the Monte Carlo integral
estimate. However, for complex matrix elements and high-dimensional phase spaces it is often
not possible to find a single function g that approximates the target function f sufficiently well.
Therefore, event generators use a multi-channel approach with independent mappings y⃗i for
each channel i. Defining a total density g(x) =

P

i βi gi(x), with
P

i βi = 1 and 0 ≤ βi ≤ 1,
where βi are the channel weights, the phase space integral can be parametrized as

I =

Z

V
dd x f (x) =

X

i

Z

V
dd x βi gi(x)

f (x)
g(x)

=
X

i

Z

Ui

dd yi βi
f (x)
g(x)

�

�

�

�

x≡x(yi)
. (2)

Two ML-based approaches to phase space integration and event generation can be distin-
guished. The first directly hooks into existing phase space integrators and uses trainable maps
given for example by bijective normalizing flows to redistribute input random variables to the
mapping functions y⃗i and better adapt to the integrand [10–16]. After an initial adaptation
phase these integrators can efficiently be used for generating weighted or unweighted events.
However, the very expressive NN-transformations can also deal with non-factorizable phase
space structures and correlations. Promising results in terms of efficiency improvements and
speed gains have been reported, see for example Tabs. 1 and 2. However, in particular for
high-multiplicity processes with non-trivial topologies the effective gains when comparing to
the established methods can fall below unity, cf. Tab 2. Therefore, next steps will be to better
combine NN-based approaches with multi-channel integrators [10,14]. For example, one can
allow the channel weights to be phase space dependent, βi → αi(x), and solely start from the
condition

P

i αi(x) = 1 and 0≤ αi(x)≤ 1,

I =

Z

V
dd x f (x) =

X

i

Z

V
dd x αi(x) f (x) =

X

i

Z

Ui

dd yi αi(x)
f (x)
gi(x)

�

�

�

�

x≡x(yi)
. (3)

In fact, Eqs. (2) and (3) are mathematically equivalent, connected by αi(x) = βi gi(x)/g(x).
In NN-optimized event generation, Eq.(3) splits the optimization task into learning appropriate
phase space mappings for each channel and training another network to find optimal weights
αi(x) to connect all channels. This separation has two advantages: (i) possible missing correla-
tions between the different channels can be described and recovered by the phase-space depen-
dent channel weights, and (ii) the second network allows for a more flexible parametrization
as it does not need to be bijective.

A second approach to ML-assisted phase space sampling is based on directly learning the
phase space distribution of events from input training samples, either weighted or unweighted.
Solutions employ autoregressive flows [17], generative adversarial networks (GANs) [18–21],
or variational autoencoders (VAEs) [20]. This motivates R&D to improve training through
differentiable programming; by merging matrix element codes with automatic differentia-
tion [22], i.e. the automatic generation of derivatives of programs that is the backbone of
neural networks software frameworks. The gradients of matrix elements can be evaluated
and used as additional information for training generative models. Initial studies using dif-
ferentiable matrix elements from MADJAX have explored extending normalizing flow training
with schemes uniquely enabled by the ability to automatically compute matrix element gradi-
ents [23], and show promise in terms of improving modeling and reducing the needed scale
of simulated datasets for training.
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Figure 2: Left: comparison of the evaluation times for loop-induced amplitudes
for g g → γγ+ jets. NN-interpolation times include the averaging over en-
sembles for the uncertainty estimate. Figure from Ref. [29]. Right: precision
∆train = |M|2NN/|M|2train − 1 for the process g g → γγ j using a Bayesian network
with boosted training, ordered by the size of the amplitude. Figure from Ref. [31].

Closely related activities attempt to facilitate faster event unweighting and reweighting
methods using NN generative models [24, 25] or fast to evaluate NN surrogates for the tran-
sition amplitudes [26].

2.2 Scattering Amplitudes

Perturbative precision calculations use interpolation methods to reduce the evaluation time for
expensive loop amplitudes, defining a task where appropriately designed neural networks can
be expected to outperform standard methods [26–30]. The challenge in NN-based surrogate
models for integrands and amplitudes is to ensure that all relevant features are indeed encoded
in the network at sufficient precision and to establish a reliable uncertainty treatment of the
network training.

A relevant test case are loop-induced amplitudes such as those for

g g → Z Z and g g → γγ+ jets . (4)

The application of simple, gradient boosted machines to g g → Z Z highlights that fast interpo-
lation times can lead to significant improvements in overall simulation times, if reliable models

Table 2: Unweighting efficiencies for V+jets production at the LHC. ‘SHERPA’ relies
on multi-channel importance sampling using VEGAS; ‘NN’ uses a normalizing flow;
‘Gain’ shows the improvement of NN over SHERPA. Results from Ref. [14].

unweighting eff. εuw LO QCD NLO QCD (RS)

process/sampling n=0 n=1 n=2 n=3 n=4 n=0 n=1

W+ + n jets SHERPA 2.8 · 10−1 3.8 · 10−2 7.5 · 10−3 1.5 · 10−3 8.3 · 10−4 9.5 · 10−2 4.5 · 10−3

NN 6.1 · 10−1 1.2 · 10−1 1.0 · 10−3 1.8 · 10−3 8.9 · 10−4 1.6 · 10−1 4.1 · 10−3

Gain 2.2 3.3 1.4 1.2 1.1 1.6 0.91

Z/γ∗ + n jets SHERPA 3.1 · 10−1 3.6 · 10−2 1.5 · 10−2 4.7 · 10−3 1.2 · 10−1 5.3 · 10−3

NN 3.8 · 10−1 1.0 · 10−1 1.4 · 10−2 2.4 · 10−3 1.8 · 10−3 5.7 · 10−3

Gain 1.2 2.9 0.91 0.51 1.5 1.1
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can be trained on fewer points than the original Monte Carlos. To control the features of the
amplitude relevant for differential cross sections, separating soft and collinear regions enables
an ensemble of networks to reliably model full one-loop amplitudes for e+e−→≤ 4 jets [28].
In Fig. 2 this scaling is shown for high-multiplicity scattering described by the NJET generator
for g g → γγ+ jets. Simulations for hadron colliders show overall improvements of around a
factor Ninference/Ntraining [29] can be achieved. The right panel of Fig. 2 shows the achievable
precision on the γγ j loop amplitude from a single Bayesian network with boosted training to
improve the precision [32–35].

The reliability of the trained network is particularly at risk in divergent regions. How-
ever, these are precisely the phase space regions where the soft and collinear behavior of the
amplitudes is universal and well known. Building the infrared factorization properties into
the NN-based model can lead to substantial improvements for the tree-level e+e− → jets am-
plitude. Figure 3 shows that adopting a factorization-aware parametrization the achievable
precision is brought down to the per-mille level for 5-jet production [30]. While the shown
precision for this process does not translate into a clear improvement of higher-order LHC pre-
dictions, it illustrates how physics-informed network architectures can significantly improve
the network precision as the key criterion for an application in the LHC simulation chain. Per-
haps of even greater interest would be the use of a single trained model to integrate over a
wide range of kinematic cuts, jet algorithms, PDF sets, scale choices, which could enable a
further order of magnitude in overall performance.

2.3 Loop integrals

Amplitudes beyond the leading order contain loop integrals, and machine learning can im-
prove the calculation of (multi-)loop integrals by optimizing the integrands in Feynman pa-
rameter space [36]. When an analytic solution to these integrals is not feasible, they must be
evaluated numerically. Before attempting a numerical evaluation, the poles of the integrand
need to be controlled. In dimensional regularization, ultraviolet and infrared poles can be
factorized efficiently with sector decomposition. After factorizing these poles, integrable sin-
gularities related, for example, to thresholds, remain. Such poles, located on the real axis in
Feynman parameter space, can be avoided by a deformation of the integration contour into the
complex plane. An automated procedure to do this has already been implemented in standard
tools like SECDEC, FIESTA, and pySECDEC. The deformation of the integration contour is not
unique and can be performed in many ways. In fact, the numerical precision of the integration
can vary by orders of magnitude depending on the chosen contour.

Figure 3: Accuracy for the full model from Ref. [30] for tree-level e+e− → 5 jets
amplitudes. Figure adapted from Ref. [30].
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Figure 4: Relative integration error for sector one of a 2-loop triangle integral (left)
and a 2-loop box integral known to contain elliptic functions (right) using the stan-
dard pySECDEC algorithm (green), the ML-assisted Λ-glob algorithm (blue) and in-
cluding an additional normalizing flow (red). The lower panel shows the ratios to
the standard method. The figures are taken from Ref. [36].

For standard integrals, the contour deformation procedure implemented in pySECDEC

works fast and usually produces satisfactory contours in practice. However, for more compli-
cated integrals and in specific phase-space regions, the chosen contour is sub-optimal and can
be optimized significantly, see Fig. 4. In this case, ML-assisted, or more specifically, NN-assisted
algorithms, offer great potential to amplify the precision. Like in the neural importance sam-
pling methods [10, 13, 14, 17] for phase-space integrals, normalizing flows can be used to
find a better parametrization of the integration domain. As these contour integrals need to
satisfy certain boundary conditions, originating, for instance, from the Landau equations and
Cauchy’s theorem, the NN setup needs to be extended to obey these constraints. Furthermore,
the usage of complex-valued floats can entail the necessity to construct own implementations
for objects like gradients of complex determinants occurring during training and optimization.

2.4 Parton shower

The parton shower is an essential element of particle physics simulations. It describes the
evolution of particles between the hard scale of the collision ∼ 100 GeV to the hadronization
scaleΛQCD. This evolution is typically modeled as a Markov process where partons evolve semi-
classically, radiating gluons as they move with probabilities determined only by properties of
the parton splitting and perhaps one or two spectator partons in the event. Although the
semi-classical approximation can be justified in the limit where the daughter particles are
emitted at small angles with respect to the mother, parton showers are used well outside of this
regime. The use of parton showers is thus justified not by physics but by necessity: computing
the full distribution from first principles is computationally intractable. This limitation is an
opportunity for machine learning; perhaps an improved parton shower could be learned rather
than built.

The simulation of parton showers offers an interesting structure compared to other gen-
erative tasks. When simulating entire collision events, as discussed in Sec. 3, commonly a
representation encoding a small and often fixed number of 4-vectors is chosen. Simulating
showers all the way down to calorimeter sensors, or with calorimeter sensors themselves,
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Figure 5: A promising approach to learning parton showers is to use a structure
inspired by the semi-classical approximation as a backbone for a general probability
estimator. In the JUNIPR approach, a recurrent neural network is used to emulated
the Markov-process aspect of a parton shower. Figure taken from Ref. [37].

yields a much larger number of particles in the final state. However, the output nodes of a
generative model can still be identified with different cells of the physical detector and there-
fore allow architectures that for example use convolutional layers.

Within the semi-classical approximation and even though the probability function at each
branching in the shower is relatively simple, the overall distribution of particles produced is
quite complex. It would be seriously challenging to learn this final distribution without some
domain knowledge of its structure [38]. One approach is to scaffold a learnable model over
a semi-classical framework [37,39], as sketched in Fig. 5. Additionally, network architectures
based on sets or graphs explicitly encoding permutation symmetry of the final state particles
have been investigated [40–45].

An alternative way of improving parton shower with ML-methods might be to stick to the
fundamental splitting structure and measure the QCD splitting kernels in low-level observ-
ables. As before, the challenge of generating many particles covering several orders of mag-
nitude in energy is taken care of by the usual Monte Carlo method. A modified and shower-
specific form of the splitting kernels can be extracted from a combination of QCD predictions
and data using ML-based inference [46]. While this approach has practical advantages, it is
limited by the applicability of the simple splittings picture.

2.5 Parton distribution functions

Parton distribution functions (PDFs), encoding the structure of colliding protons, are vital
for the calculation of hard scattering cross sections at the LHC and appear in several stages
of the event simulation chain, in particular they guide the initial state parton showers and
affect the underlying event activity. The determination of PDFs is a classic pattern recognition
problem: it is known that an underlying law exists (the true analytic form of the PDFs, as
determined by QCD in the non-perturbative regime) but its explicit form is not known, and
it must be inferred from discrete data (the cross-sections of PDF-dependent hard processes),
that moreover are correlated to it indirectly and in a convoluted way. In comparison to more
standard pattern recognition problems, it has two peculiarities. First, the pattern – the set
of PDFs — is a probability, rather than a deterministic outcome. Second, due to the noisy
nature of the input, which is affected by both experimental and theoretical uncertainties, with
a complex correlation pattern, the final deliverable is a probability distribution of possible
results. Hence, one is delivering a probability distribution of probability distributions.
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Figure 6: Comparison between two results for the strange-quark PDF: one where
overfitting is clearly present, and one where this is not the case. Figure taken from
Ref. [47].

The way to approach this problem as a machine learning challenge was first suggested
long ago [48]: the basic idea is to deliver a Monte Carlo ensemble of machine learning mod-
els, such as neural networks, that provide the desired representation of a probability of prob-
abilities. The successful implementation of this idea has led to the NNPDF family of proton
PDF determinations [47, 49–51] as well as to variants in the context of polarised PDF [52]
and nuclear PDF [53,54] global analyses. The current implementation frontier, which has led
to the recent NNPDF4.0 determination, involves a suite of contemporary machine learning
methods and tools, specifically cross-validation to avoid overtraining, hyperoptimization [55]
combined with K-folding for the automatic selection of the methodology, feature scaling of the
input for the optimization of the neural networks used as basic underlying model [56], and
GAN-enhanced compression for final efficient delivery [57,58].

The current main challenge remains the maximal optimization of the extraction of available
information while avoiding overfitting, and the generalization to cases in which information
is scarce or altogether absent, such as extrapolation to kinematic regions where there are
no data. This is the physically most interesting case, as these are the regions where new
physics is being searched for, and also a challenge at the frontier of machine learning. While
several machine learning tools have been implemented with the aim of preventing overfitting,
confirming whether the PDF resulting of a fit is indeed free of overfitting still relies – at least
in part – on the fitter’s accumulated knowledge of PDFs. To illustrate this point, Fig. 6 shows
a comparison of the strange-quark PDF xs(x , Q) at Q = 1.65 GeV, both for a good fit and a
clearly overfitted alternative. The development of reliable quantitative measures of the degree
of overfitting is a challenge, both within the context of PDF determination and more in general
in machine learning, and it is a topic of ongoing research.

2.6 Fragmentation functions

Fragmentation functions (FFs) are the time-like equivalent of PDFs and encode the probabili-
ties associated to the transition between partons produced in the hard-scattering and specific
types of hadrons. Being based on the perturbative QCD factorization framework, FFs represent
an alternative strategy to model partonic hadronization as compared to the phenomenological
models available in most MC event generators. FFs can be determined from a global analysis of
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Figure 7: Fragmentation functions of up (left) and charm quarks (right) into charged
pions as a function of the time-like momentum fraction z, comparing the results of
two approaches (MAP and NNFF) based on machine learning techniques. Figure
taken from Ref. [59].

hard-scattering data from electron-positron collisions, semi-inclusive deep inelastic scattering,
and proton-proton collisions (RHIC and LHC) with identified final-state hadrons.

A phenomenological analysis of FFs requires introducing a parametrization for their initial-
scale (Q0) dependence with the momentum fraction z, zD(h)i (z,Q0), where i is a partonic index
and (h) a hadronic label. To remove theory bias and model-dependence in the determination
of FFs, machine learning techniques can be adopted [59–62]. Feed-forward neural networks
are deployed as universal unbiased interpolants for zD(h)i (z,Q0), whose weight and threshold
parameters are obtained from a log-likelihood maximization by comparison with experimen-
tal data. This approach can be combined with the Monte Carlo replica method, originally
deployed for PDFs [63], to estimate and propagate the uncertainties from the input data to
the output FFs. The basic strategy is to generate Nrep replicas which sample the probabil-
ity density associated to the data, and then train a separate neural network to each of these
replicas. The spread of the resulting networks (i.e. 68% CL intervals) provides then a robust
estimate of the uncertainties associated to the FFs.

Fig. 7 displays a comparison between FFs determined in two approaches (MAP and NNFF)
based on machine learning techniques. We show the FFs associated with the transition of up
and charm quarks into charged pions (π+ + π−) as a function of the time-like momentum
fraction z. The bands represent the corresponding 68% CL ranges. It is worth emphasizing
that the resulting shapes, given the outcome of the NNs, are completely driven by the data,
with no specific models (more or less inspired by QCD) assumed. The combination of the FFs
zD(h)i (z,Q0) obtained in this manner with higher-order perturbative QCD calculations provides
precise and accurate predictions for hard-scattering processes including identified hadrons in
the final state, which are important for many key phenomenological applications.

3 End-to-end ML-generators

In addition to applying a wide range of machine learning tools to improve the modules of clas-
sic event generators, we can train generative neural networks to directly generate events, at
parton level and with or without detector effects [7]. End-to-end or, better, soup-to-nuts ML-
generators have to be developed together with the established generators and serve as studies
for phase space generators, enable inverted simulations, provide datasets for phenomenologi-
cal analyses, and allow us to efficiently ship event samples. Their advantages include training
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on data combined with simulations, manipulation of event samples [64], or post-processing of
MC data for example to unweight events [17, 24, 26]. Finally, they define useful benchmarks
for conceptual work on uncertainty estimates for generative neural networks.

The work horses behind ML-generators are GANs, VAEs, optimal-transport-based proba-
bilistic autoencoders, normalizing flows, and their invertible network (INN) variant. Given
the interpolation properties of neural networks and the benefits of their implicit bias in the
applications described in Sec. 2, we can quantify the amplification of statistics-limited training
data through generative networks [65,66].

3.1 Fast generative networks

Theory-driven ML-generators at the parton level [18, 69] can be combined with experiment-
driven fast detector simulations [70–81] into single generative networks [68,82–86], provided
we have sufficient control over the network and its uncertainties. Single, soup-to-nuts sim-
ulation networks are inspired by the fundamental goal of the detection process, namely to
reconstruct parton-level information as accurately as possible.

Comparing different generative network architectures, we start with highly expressive
VAEs. They can be trained to generate events at the parton level, without or with fast de-
tector simulation, by maximizing a lower bound of the data likelihood through variational
inference (ELBO). The model consists of a decoder p(x |z) which maps from a latent space
Z to the phase space X , and an encoder q(z|x) which is a variational approximation to the
inverse of p(x |z). In practice, it is difficult to simultaneously optimize the separate compo-
nents of the ELBO and the VAE performance can be improved by weighting the KL-divergence
in the loss function term by a factor β . The B-VAE [20] is characterized by the limit β ≪ 1
and a strong preference for the reconstruction loss. After optimization, the Gaussian latent
distribution is replaced by a buffer which consists of the latent distribution derived from train-
ing events. This model simultaneously achieves a highly-optimized reconstruction loss, but
with a closely-matched and non-Gaussian latent distribution. While VAEs are very expressive
probabilistic models, the approximate nature of the ELBO and the need to balance the two
components of the loss function can become limiting factors.

Similarly, GANs can extract and reproduce the phase space density of LHC events. While
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Figure 9: Visualization of the transformation from parton-level theory-space to re-
constructed data-space, Z → X . Left: learned transformation of OTUS’s decoder,
pD(x | z). Right: true transformation from simulated samples, for comparison. Col-
ors in the X projection indicate the source bin in Z for a given sample. Figure from
Ref. [68].

technically the difference between training on events without or with detector effects is negli-
gible, parton-level events are more challenging when it comes to sharp kinematic features like
Breit-Wigner mass peaks. GANs generically do not achieve the necessary precision for such
features, so they have to be enhanced, for example with a targeted MMD loss [18]. The main
challenge of GANs is the precision they can achieve in the underlying phase space density
while finding a Nash equilibrium.

Finally, normalizing flows avoid some of the limitations of the above architectures for LHC
event generation [67, 69, 87]. At the cost of some flexibility, they offer a direct evaluation of
the likelihood without having to resort to variational inference. They start from a latent space
Z and apply a series of bijective transforms, with tractable Jacobian, to the phase space X .
While the expressivity of the model may in some cases be limited, the advantage of a tractable
likelihood is significant. Flows can be trained on weighted events, including negative weights,
through a simple modification of the loss [67]. Figure 8 illustrates their performance applied to
pp → t t̄ events at the parton level, including shower evolution, generated with MC@NLO. In
addition, normalizing flows come with significant advantages in controlling their performance
and quantifying uncertainties, as discussed in the next section. Their invertible structure is
useful for many LHC-applications, including anomaly detection or related density estimation
tasks [88–91].

An attractive application of soup-to-nuts networks can be targeted using Optimal Trans-
port-based probabilistic autoencoders [68]. Their structural advantage is that they learn the
mapping from parton-level information in theory space, Z, to detected and reconstructed
objects in data space, X , without requiring paired event samples, {z, x}. The probabilistic
autoencoder’s latent space is identified with a physically meaningful representation of parton-
level theory-space information, so the encoder and decoder networks define a simulator map-
ping, Z → X , and an unfolding mapping, X → Z. Properties of the OT-based method en-
courage the encoder and decoder to be conditional mappings, effectively sampling from the
probability distributions pE(z|x) and pD(x |z), respectively. Over many samples, these distri-
butions will marginalize to the appropriate theory-space and data-space priors, p(z) and p(x),
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Figure 10: Illustration of a complete control and uncertainty treatment for generative
networks applied to LHC event generation and simulation. Figure from Ref. [69].

respectively. Alternative methods to encode an unfolding mapping in neural networks are
discussed in Sec. 4.

Despite having no training pair information, OTUS’s learned mappings exhibit physical-
behavior, even picking up on invariant masses which were withheld during training. This sug-
gests that further development in this direction should produce physically meaningful map-
pings, even if relations are missed or unknown, and therefore not included in the training
process. On the other hand, providing known relations as inductive biases on the data inputs,
network architectures, or loss functions will likely improve performance. Figure 9 depicts the
joint distribution and marginals of OTUS’ trained simulator as well as the true simulator for
one test-case. Despite OTUS only having information about marginal-matching during train-
ing, the decoder network learns a mapping which is qualitatively similar to the true simulator.

3.2 Control and precision

If we use neural networks to encode theory predictions for the LHC, we need to ensure that
all relevant phase space features are described with the required precision [92]. For neural
networks, this problem can be split into two distinct tasks: first, we need control over the
relevant phase space features, so the network does not interpolate over relevant, but narrow
phase space regions. Second, we have to estimate the precision with which the network has
learned the underlying phase space density.

Neural networks work much like a fit and not like an interpolation in the sense that they
do not reproduce the training data faithfully and instead learn a smooth approximation [65,
66]. This is where we can gain some intuition for a NN-uncertainty treatment. For a fit,
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uncertainties on the training data are crucial information in the loss function. We then monitor
the fit quality and ensure that the fit is reliable over the entire phase space.

To guarantee that all relevant features are encoded in a generative network, we can follow
the GAN inspiration and train a simple discriminator network to identify and quantify devia-
tions between training and generated data. As a post-processing step such a discriminator can
be used to reweight the events from the generative network [25,69,93]. In the GAN spirit we
can incorporate the discriminator into the generator training, either through adversarial train-
ing searching for a Nash equilibrium, or through alternative approaches for a normalizing flow
generator. Such a joint training will improve the generator, provide an uncertainty estimate,
and prepare any remaining information in the discriminator for reweighting, as illustrated for
Z+jets production at the parton level in Fig. 10.

Once we know that the neural network describes all features, we determine how well
it does. This can be done with Bayesian networks, where the learned network weights are
replaced by learned network weight distributions [32,33]. Bayesian network approaches have
been shown to describe uncertainties in regression [35] and classification [34] tasks, and the
concept can be expanded to generative networks [87]. For generative networks we can assign
a training-related uncertainty in the underlying phase space density to the (unit) weight of
each event. In Fig. 10 we see, for instance, the increasing uncertainty in the kinematic tail,
driven by a lack of training data.

We often know systematic or theoretical limitations of describing certain kinematic
regimes. In that case we augment the training data, representing this uncertainty through
an additional parameter in event weights. We train the generative network conditionally on
this parameter, either in a deterministic or a Bayesian setup, and generate events either for a
given parameter or sampling over it. Again, this approach is illustrated in Fig. 10, where a di-
rectly affects the pT -distribution of the leading jet and enters many other observables through
kinematic correlations. We see that its effect is larger than the uncertainty from the Bayesian
network for the individual a-values. This first attempt of a comprehensive uncertainty treat-
ment for generative networks will allow us to build confidence in the applications of generative
networks to LHC simulation and inference.

4 Inverse simulations and inference

Monte Carlo simulations based on first principles have allowed us to properly understand
essentially all aspects of LHC data. The price to pay for an extremely fast and reliable forward
Monte Carlo simulation chain is that the corresponding inverse simulation is not feasible in
practice. ML-based simulations can be built symmetrically, for instance INNs encode a bijective
mapping between two physics spaces linking different levels of the simulation chain illustrated
in Fig. 1 [94, 95]. Similarly, we can relate different levels of the simulation chain through
a reweighting procedure working on the full respective phase spaces and accounting for all
correlations [96]. Moreover, as ML-based simulations are often differentiable, we can use
their gradients to probe and learn about distributions on phase space [97]. Finally, we can
construct generative inverse simulations with conditional versions of the respective forward
generative networks [95, 98, 99]. This last approach is based on progress with soup-to-nuts
ML-generators and their essentially identical network architectures.

4.1 Particle reconstruction

The first stage of the inverse problem uses the set of energy deposits in the detector to recon-
struct the set of particles present at the first interaction with the detector, that is, following
hadronization. In its fullest sense, reconstruction also involves the prediction of the particles’
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properties, in particular, their class and momenta. The difficulty of this task stems from the
busy LHC environment caused by pileup interactions and the inherently collimated signatures
associated with jets. Traditional particle flow (PF) algorithms rely on parameterized schemes
for merging and splitting to disentangle overlapping calorimeter cell clusters as well as track-
based subtraction to infer the contribution from neutral particles.

A series of publications [100–102] have established the potential for ML-based reconstruc-
tion to go beyond traditional PF algorithms. In Ref. [100], particle reconstruction was recast
as a computer vision problem using state-of-the-art ML architectures including U-net, graph
neural network (GNN) and DeepSets. A simplified dataset was used comprising overlapping
pairs of charged and neutral pions in a 6-layer calorimeter block. In comparison to a tra-
ditional PF algorithm, the ML models regress the component of neutral energy better by a
factor of two to four in terms of resolution. The study also finds significant improvements via
a super-resolution approach (see also Ref. [103]), where the network is trained to predict a
corresponding calorimeter signature with higher granularity.

This proof of concept has been extended to particle reconstruction in more realistic environ-
ments resembling multiple pileup interactions in a full-coverage simulated detector [101,102].
In both cases, GNN architectures are employed for their ability to handle the complexity of
detector data: variable numbers of input and target entities, lack of ordering, irregularity of
detector components, and sparsity of “pixels”. Moreover, GNNs are able to leverage the spatial
relationships between calorimeter cells alongside their input features to optimize the predic-
tion tasks.

Based on these developments, it can already be anticipated that ML methods will take a key
role in particle reconstruction at future runs of the LHC, especially to handle HL-LHC condi-
tions. GNN-based models in particular show potential to outperform current PF algorithms for
particle identification and regression while opening new possibilities such as super-resolution
and resolving neutral particles inside of jets. Finally, the learned deep latent representation of
detector information, which underlies the prediction tasks, should serve as a more expressive
input format for both event classification and downstream tasks in the inverse problem.

4.2 Detector unfolding

While the physical processes behind an LHC collision are described by fundamental physics
and are therefore universal, the observed data depend in an intimate way on the technical de-
tails of the detector. Detector effects like phase space coverage, detection thresholds, particle
reconstruction, efficiencies, or calibration induce not only resolution smearing in the measure-
ments, but can lead to systematic deviations between the properties of particles reaching the
detector and the objects reconstructed from actually measured data. For individual experi-
ments, these detector effects differ greatly and can only be estimated by the collaboration. It
is therefore essential for future interpretations of a measurement to unfold detector effects
so that we can compare measurements by different experiments to each other and to theory
predictions.

Traditional approaches to unfolding are based on matrices connecting binned particle-level
distributions at truth level with histograms of corresponding detector-level observables. While
the folding or convolution of detector effects with kinematic distributions at particle level is
possible with Monte Carlo simulations, the inverse direction often suffers from instabilities and
scales poorly for high-dimensional phase spaces. The limitation to low-dimensional represen-
tations requires an unwanted pre-selection of interesting observables. Finally, the matrix-based
approach requires fixed bin sizes, which limits the re-optimization options for future analyses.

ML-approaches establish high-dimensional and binning-independent unfolding. We can
distinguish two fundamentally different concepts [104]: a classification-based approach to
reweight a Monte Carlo simulation with the learned likelihood ratio of data and simula-
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Figure 11: An illustration of classifier-based (OmniFold) and density-based (cINN)
unfolding for the two-dimensional space of N -subjettiness variables τ1 and τ2. The
right plot shows that since the unfolding is done simultaneously and unbinned, we
can produce a measurement of the widely-used N -subjettiness ratio for free. Figure
from Ref. [104].

tion [96]; and a complementary approach that learns directly the probability density at
particle-level [95]. Figure 11 illustrates that both approaches can perform unbinned unfolding
in multiple dimensions.

Classification-based approaches start by learning the likelihood ratio between data and
simulation at reconstruction level [96, 105, 106]. Using matched event pairs at the truth and
reconstruction levels, the resulting weights are pulled to the particle level. Next, a classifier
learns the likelihood ratio of the weighted and unweighted distributions at particle level to
replace an event-based weight with a generalized weighting function. After several iterations
of weight updates, the algorithm converges to an unfolded distribution which is compatible
with the observed measurement.

Density-based approaches build on generative networks that predict probability configu-
rations of truth-level events given a detector-level measurement. They are trained on pairs
of reconstruction- and particle-level events from Monte Carlo simulations, to learn a direct
mapping between both levels. Unfolding built on generative adversarial networks has been
shown to work on kinematic distributions [94,99]. Event-wise unfolding requires a meaning-
ful probabilistic treatment, which can be achieved with conditional normalizing flows [95,97],
the kind of generative networks which also allows for the uncertainty treatment discussed in
Sec. 3.2. This unfolding method yields calibrated probability distributions for each measured
event. It admits multiple approaches; one approach frames unfolding in terms of learning a
conditional density of particle-level quantities conditioned on reconstructed inputs [95], while
another approach frames unfolding as an empirical Bayes / maximum marginal likelihood /
data-informed prior learning problem [97].

Because classification-based and density-based unfolding techniques have distinct
strengths and weaknesses, the natural next step will be to combine the two methods to benefit
from both. While there is an extensive R&D program required to integrate both methodolo-
gies and to achieve precision, these tools are starting to be applied to data analysis in collider
physics [107]. Looking ahead, it is clear that future versions of these tools will play an im-
portant role in the data analysis of future colliders. Unfolded differential cross sections are
one of the main data products from collider experiments. By performing the unfolding with as
much information as possible, we ensure that the measurements achieve the maximal preci-
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sion, making the best use of the data. Furthermore, high-dimensional and unbinned unfolding
ensures that these data products are ‘future proof’ in the sense that binning and even observ-
ables can be chosen post-hoc [104]. This enables downstream data analysis long after the data
were published, including when new theoretical insights are available.

4.3 Unfolding to parton level

Once we control ML-unfolding of detector effects, we can target other parts of the simulation
chain shown in Fig. 1 and invert them for a given LHC analysis. To probe the kinematics of
a hard scattering process we can use neural networks to unfold QCD jet radiation and heavy
particle decays to study the production kinematics of top quarks, electroweak gauge bosons, or
the Higgs without binning and with full correlations. Such measurements are standard in top
physics and provide the ideal input to global SMEFT analyses. Once we know the parton-level
configurations for a given observed event, we can use NN-techniques to evaluate observables
like CP-sensitive angular correlations in their original reference frames.

The inversion of QCD radiation or decays relies on the same classification or generative
networks as detector unfolding. For instance, we can train a normalizing flow to map random
numbers to the parton-level phase space, under the condition of a given detector-level event.
The underlying model is encoded in the forward simulation chain used to train the network.
Part of it is the assumed hard process, including the number of jets which are part of the hard
scattering and do not get unfolded. When analyzing an event and sampling into parton-level
phase space, we extract a probability distribution of parton-level configurations [95], which
we can use to define observables suitable for standard analyses.

One challenge for such analyses are combinatorics. For the hard scattering qq̄ → ZℓℓWj j
and up to two additional QCD jets we ask how well cINN-unfolding extracts the W -kinematics.
In the left panel of Fig. 12 we illustrate how the network reproduces the momentum of the
decaying W -boson. The relation between the up to four jets and the two partonic quarks from
the W -decay is learned by the network. In the right panel of Fig. 12 we show the recon-
structed W -mass stacked for different numbers of jets. The network resolves the underlying
combinatorics such that the W -widths for the different jet multiplicities are identical, all by by
accessing correlations combined with the truth information from the forward simulation. This
corresponds to results from a systematic study which shows that deep networks outperform
classical approaches to solving the combinatorics in the reconstruction of top-quark final states
significantly [108].
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High-level observables encoded into neural networks will find their way into standard
experimental analyses. They are motivated by existing top-sector measurements, and using
NN-techniques will simplify their use considerably. Moreover, the comprehensive uncertainty
treatment discussed Sec. 3.2 and the merged classification-based [96] and density-based tech-
niques from Sec. 4.2 can be applied to any part of an inverted or unfolded simulation chain.

4.4 MadMiner

The relation between data x and physics parameters θ is, fundamentally, described by the
likelihood function or normalized fully differential cross section, which we can predict in a
factorized form,

p(x |θ ) =
1

σ(θ )
dσ(x |θ )

dx
. (5)

While we can predict this likelihood at the detector level using the standard, forward simula-
tion tools, we can only compute it in a closed form at the parton level. This challenge in the
relation of simulations and inference is where neural networks might lead to transformative
progress.

Inspired by the standard simulation chain we can assume that the likelihood of Eq.(5)
approximately factorizes into the form [109,110]

p(x |θ ) =
Z

dzd

Z

dzs

Z

dzp p(x |zd) p(zd |zs) p(zs|zp) p(zp|θ )
| {z }

p(x , z|θ )

. (6)

Here we integrate over latent variables z, where zd characterize the detector effects, zs the par-
ton shower and hadronization, and zp the partonic phase space including helicities, charges,
and flavors, etc. Given the typically large number of latent variables, it is unrealistic to inte-
grate over them or evaluate the joint-likelihood p(x , z|θ ). However, it is possible to calculate
the joint likelihood ratio relative to a reference point in terms of the ratio of squared matrix
elements from parton-level generators [109–113],

r(x , z|θ ) =
p(x , z|θ )

p(x , z|θref)
=

p(zp|θ )
p(zp|θref)

∼
|M|2(zp|θ )
|M|2(zp|θref)

σ(θref)
σ(θ )

. (7)

The starting point to new ML-methods is to construct functionals in terms of the joint likelihood
ratio r(x , z|θ ), which are minimized by the true likelihood or likelihood ratio function [114,
115]. The result of this training are neural networks that approximate the true likelihood
ratio r(x |θ ). Given such a neural network, established statistical techniques can be used to
construct confidence limits in parameter space.

Note that here simulation-based inference provides the primary statistical model, i.e. the
probability model p(x |θ , ν) that describes the dependence on the data x , the parameters of
interest θ , and the nuisance parameters ν, even when the data is high-dimensional and tra-
ditional modeling approaches are inadequate. The publication of the trained network in a
re-usable form, as discussed below, can thus be of great benefit for an optimal use of experi-
mental results [117]. This approach is separate from tools like DNNLikelikood [118], which
aims at approximating likelihoods derived from traditional approaches to model building, us-
ing libraries like RooFit.

Instead of the full likelihood function, one can also use the score t(x |θ ) = ∇θ log p(x |θ )
to define statistically optimal observables at the detector level. This approach is motivated by
an expansion of the log likelihood ratio around θref,

log r(x |θ ) = log r(x |θref) + t(x |θref) (θ − θref) + · · · . (8)
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Figure 13: Expected sensitivity of a MadMiner based analysis for t t̄H production,
probing SMEFT coefficients (left) and the CP-structure of the top Yukawa coupling
(right). Figures taken from Ref. [113] and Ref. [116], respectively.

For parameter points close enough to θref the score components are the sufficient statistics,
so for measuring θ knowing t(x |θref) is as powerful as the full likelihood. Since the score
is defined through the likelihood function, it is also intractable. However, similarly to the
approach discussed above, we can train a neural network on a suitable loss function such that
it will converge to the score. The trained network will now represent the optimal observable. In
a next step, the likelihood can be determined for instance with simple histograms of the score
components [113, 119]. This approach requires only minor changes to established analysis
pipelines. Alternatively, the scores can be used to evaluate the Fisher Information and set
limits based on the Cramer-Rao bound [113]. One challenge with training using the score is
that the relevant gradient information of the matrix elements must be accessible for training
the neural network, but this information is typically only accessible for a subset of parameters
with analytic dependence that facilitates easy gradient estimation. One approach to enable
score based training for any parameter is through differentiable programming; when matrix
elements are merged with automatic differentiation frameworks, the required gradients can
be computed automatically with relatively small additional computational overhead. Case
studies using differentiable matrix elements from MADJAX for score based training successfully
trained networks for inference on parameters that were inaccessible without differentiable
matrix elements [23].

The previously outlined inference strategy has been fully automated in the MadMiner
tool [113, 120]. The increase in physics sensitivity relative to a total rate or single kinematic
distribution is illustrated in Fig. 13. In the left panel we consider t t̄H production to constrain
the two SMEFT Wilson coefficients cu and cG . In the right panel we consider the same process
to constrain CP-violation in the top-Higgs coupling, as parameterized by the magnitude κt and
CP-phase α of the top Yukawa coupling [116,121].

4.5 Matrix element method

Inverting the entire simulation chain in Fig. 1 allows us to extract the transition amplitude for
an observed event and relate it to the theory prediction. This so-called matrix element method
(MEM) can be used to estimate fundamental physics parameters from individual events and
has, for instance, been applied for measure the top mass. Being defined on the single-event
level, it is in particular suitable for low-statistics signals, where an optimal exploitation of all
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kinematic features is critical.
The MEM relies on our ability to extract the likelihood for detector-level events as a func-

tion of a model parameter θ , as an ML-application through density-based unfolding or an
inverted simulation. Extending the discussion in Sec. 4.4, the transition amplitude as a func-
tion of detector-level phase space is unknown, but it can be calculated at the parton level. The
two phase spaces can be related by transfer functions T ( x⃗ , z⃗), probabilities to observe parton-
level configurations z⃗ as detector-level signatures x⃗ , as part of the forward simulation. In the
N -event likelihood they appear as

L(θ ) =
N
Y

i=1

p( x⃗ (i)|θ ) =
N
Y

i=1

1
σfid(θ )

dlσ(θ )
dx1... dx l

�

�

�

�

x⃗ (i)
=

N
Y

i=1

1
σfid(θ )

Z

dmz
dmσ(θ )

dz1... dzm
T ( x⃗ (i), z⃗) . (9)

The dimensionality of the parton-level and detector-level phase spaces is different. For in-
stance, longitudinal neutrino momenta are unobservable, while additional jets have to be in-
cluded with higher-order QCD corrections. Existing approaches model the transfer functions
heuristically, and for non-trivial cases the numerical convolution is impossible. The form of
Eq.(9) indicates ways of enhancing the accuracy of the matrix element method: first, higher-
order corrections can be included at parton level, for instance using the MEM@NLO program.
Second, general and highly non-Gaussian transfer functions can account for parton shower,
hadronization, detector resolution, acceptance, and efficiency, as well as a possible mismatch
between theoretically described and actually measured quantities, event by event.

The transfer function is defined as a probability density T ( x⃗ , z⃗) = p( x⃗ |z⃗, θ ). This allows us
to learn it directly from simulated data using a conditional normalizing flow or INN as a den-
sity estimator. Because the matrix element spans several orders of magnitude and the transfer
function usually is a narrow peak in phase space, the integral in Eq.(9) is numerically chal-
lenging for a regular Monte-Carlo integration. However, we know from Bayes’ theorem that
the integrand becomes trivial when the parton level samples are drawn from the distribution
p(z⃗| x⃗ , θ ). In analogy to Secs. 4.2 and 4.3, the partonic configurations z⃗ for a given detector
event x⃗ (i) can be sampled by another conditional INN. Then the likelihood can be expressed
as

L(θ ) =
N
Y

i=1

1
σfid(θ )

­

∂ z⃗(r⃗; x⃗ (i), θ )
∂ r⃗

�

dmσ(θ )
dz1... dzm

T ( x⃗ (i), z⃗)
�

z⃗(r⃗; x⃗ (i),θ )

·

r⃗∼p(r⃗)
. (10)

This way, density estimation of the transfer function in combination with density-based un-
folding will allow us to make optimal use of the statistical power of the MEM, exploiting the
full and correlated event kinematics event by event for critical LHC observables like the top
mass, the Higgs self-coupling, or CP-violating phases.

5 Synergies, transparency and reproducibility

A key paradigm in the development of simulation tools for high-energy collider experiments is
publicly accessible open source software. The versioning of code releases and the reproducibil-
ity of predictions is vital for a reliable analysis and interpretation of collider data. As we have
seen in the previous sections, ML-methods are entering all aspects of the simulations chain at
high pace. They range from initial proof-of-concept applications to well established use cases
with largely consolidated techniques, for example in the determination of parton densities.

Machine learning models efficiently encode arbitrary decision functions of a given set of
inputs, and thus offer a chance to easily exchange complex relations. This might correspond
to the value of a scattering matrix element given a set of momenta, or probability models
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from simulation-based inference, like MEM or MadMiner. The sharing of neural networks
used for various generative or discriminative tasks will be of central importance and should
be further extended. This will allow researchers to critically examine and build upon previous
results more easily, enable synergies between different use cases, and facilitate reproducibility
of results.

Successfully sharing a machine learning model entails two challenges: (i) sharing the
model itself, including architectures, software versions, and weights; and (ii) sharing data
it can be used on. Exchanging models is technically relatively straightforward and several
corresponding tools exist, for example Open Neural Network Exchange (ONNX). It allows the
exchange of neural networks and BDTs between training frameworks.

Suitable input data poses the more difficult problem. On the side of results by large col-
laborations, this adds additional weight to the ongoing move towards publishing open data
along with measurements. Containerization, as enabled by software tools like Docker can be
useful in bundling the correct versions of different software packages used for data processing
and machine learning in a coherent fashion.

An opportunity exists in the realm of phenomenological studies based on the DELPHES

detector simulation [122]. Here a common specification on how quantities are translated into
the inputs to machine learning algorithms might — together with publishing the ML models —
boost sharing and meaningful exchange. Another interesting angle are generative models. As
these do not need data to evaluate, sharing the architecture and weights is already sufficient.
Generative networks themselves can even be used as an efficient alternative way of sharing
simulated data.

Publication of ML models for their reuse is not yet standard in the particle physics com-
munity. Examples where trained networks have been published in ONNX format for future
reuse are the DNNLikelihood [123], a package for cross-disciplinary training of discriminator
networks [124], and the ATLAS search for R-parity-violating supersymmetry [125, 126], the
latter also being available in the ATLAS SimpleAnalysis framework. However, detailed doc-
umentation for instance of the input variables is missing. Further development is strongly
encouraged for, e.g., the purpose of analysis preservation [127, 128], and in general for the
implementation of the Findable, Accessible, Interoperable, and Reusable (FAIR) principles for
scientific data management [129] of ML models. An example for a dataset with special em-
phasis on these aspects can be found in Ref. [130]. Making the newly developed simulation
and analysis tools, along with the required data, accessible to other scientists and future users
forms an essential element of open and thriving science.

6 Outlook

As a field combining vast datasets with excellent, first-principle simulations, particle physics
is benefiting tremendously from developments in data science and machine learning. While
new AI-inspired methods will not magically solve all challenges in LHC simulations and anal-
ysis, they are providing a crucial and transformative contribution to our numerical toolbox.
Moreover, given the quality of the LHC datasets, simulations, and simulation-based analysis
methods, we expect particle physics to eventually contribute to broader machine learning re-
search.

Event generation, or the simulation of signals for the LHC detectors from QFT Lagrangians,
is the main link between experimental and theoretical particle physics. It has stringent require-
ments when it comes to first principles vs modeling, control, precision, speed, and flexibility. In
this review we have shown that even within the physics-motivated modular structure of stan-
dard event generators, there is no aspect that cannot be improved through modern machine

22

https://scipost.org
https://scipost.org/SciPostPhys.14.4.079
https://github.com/onnx
https://www.docker.com/
https://gitlab.cern.ch/atlas-sa/simple-analysis


SciPost Phys. 14, 079 (2023)

learning. This includes phase space sampling, scattering amplitudes, loop integrals, parton
showers, parton densities, and fragmentation. Some of these ML-applications have a long
history and are accepted as standard approaches, other ML-based improvements of physics
modules are currently under rapid development and are finding their way into standard gen-
erators. All of them will be key to address the needs for example of the HL-LHC.

In addition to ML-enhanced event generators, an interesting application of generative neu-
ral networks are ML-generators at parton level and fast ML-detector simulations. They provide
an excellent testing ground for phase space generators, precision networks, and inverted sim-
ulations. This includes conceptual developments in the field of generative networks, driven by
LHC-specific requirements of controlling precision-generative networks as numerical tools and
providing a full range of uncertainties. They allow us to define, produce, and encode datasets
for phenomenological studies and serve as a compression for data entering experimental anal-
yses.

The main conceptual advantage of ML-event generation is that simulations with generative
networks are symmetric: given a fundamental physics model we can predict the probability
distributions of LHC events over phase space, or we can predict the probability distributions of
model parameters given observed LHC events. Different ML-approaches to simulation-based
inference include classification-based methods, conditional generative networks as a direct
inversion, or indirect ways of learning likelihood ratios. In combination, they will allow us to
systematically use unfolding or inverted simulations at the HL-LHC, from particle identification
and detector unfolding all the way to an event-wise matrix element method analysis.

Finally, there are many simulation-related questions in fundamental physics, where AI-
methods allow us to make significant progress. Examples going beyond immediate appli-
cations to event generation include symbolic regression [131], sample and data compres-
sion [58, 132], detection of symmetries [133–136], and many other fascinating new ideas
and concepts.
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