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Abstract. We present a method to edit complex indoor lighting from
a single image with its predicted depth and light source segmentation
masks. This is an extremely challenging problem that requires modeling
complex light transport, and disentangling HDR lighting from material
and geometry with only a partial LDR observation of the scene. We tackle
this problem using two novel components: 1) a holistic scene reconstruc-
tion method that estimates reflectance and parametric 3D lighting, and
2) a neural rendering framework that re-renders the scene from our pre-
dictions. We use physically-based light representations that allow for intu-
itive editing, and infer both visible and invisible light sources. Our neural
rendering framework combines physically-based direct illumination and
shadow rendering with deep networks to approximate global illumination.
It can capture challenging lighting effects, such as soft shadows, direc-
tional lighting, specular materials, and interreflections. Previous single
image inverse rendering methods usually entangle lighting and geometry
and only support applications like object insertion. Instead, by combin-
ing parametric 3D lighting estimation with neural scene rendering, we
demonstrate the first automatic method for full scene relighting from a
single image, including light source insertion, removal, and replacement.

1 Introduction

Light sources of various shapes, colors and types, such as lamps and windows,
play an important role in determining indoor scene appearances. Their influence
leads to several interesting phenomena such as light shafts through an open
window on a sunlit day, highlights on specular surfaces due to incandescent
lamps, interreflections from colored walls, or shadows cast by furniture in the
room. Correctly attributing those effects to individual visible or invisible light
sources in a single image enables abilities for photorealistic augmented reality
that have previously been intractable—virtual furniture insertion under varying
illuminations with consistent highlights and shadows, virtual try-on of wall paints
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Fig. 1. We present the first method for globally consistent editing of indoor lighting
from a single LDR image. Given the input (a), our framework first estimates physically-
based light source parameters, for both visible and invisible lights, and then renders
their direct contributions and interreflections through a neural rendering framework (b).
Our framework can turn off visible and invisible light sources (c and d) with results
closely matching the ground truths (c.1 and d.1). It can insert virtual objects (e) with
consistent changes of highlight and shadow and edit materials with color bleeding being
correctly rendered image (f) and shading (f.1). It can also insert virtual lamps (g and
h) and open a virtual window (i and j) to let sunlight (i.1 and j.1) shine into the room.

with accurate global interreflections, or morphing a room under fluorescent lights
into one reflecting the sunrise through a window (Fig. 1).

Several recent works estimate lighting in indoor scenes [12,25,41,44], but
achieving the above outcomes requires estimating and editing light sources.
While both are highly ill-posed for single-image inputs, we posit that the lat-
ter presents fundamentally different and harder challenges for computer vision.
First, it requires disentangling the individual contributions of both visible and
invisible light sources, independent of the effects of geometry and material. Sec-
ond, it requires reasoning about long-range effects such as interreflections, shad-
ows and highlights, while also being precise about highly localized 3D shapes,
spectra, directions and bandwidths of light sources, where minor errors can lead
to global artifacts due to the above distant interactions. Third, it requires photo-
realistic re-rendering of the scene despite only partial observations of geometry
and material, while handling complex light transport. Figure 2 illustrates a few
such challenges.

We solve the above challenges by bringing together a rich set of insights
across physically-based vision and neural rendering. Given a single LDR image
of an indoor scene, with predicted depth map and masks for visible lights, we
propose to estimate parametric models of both visible and invisible light sources,
in addition to per-pixel reflectance. Beyond a 3D location, our modeling accu-
rately supports physical properties such as geometry, color, directionality and
fall-off. Next, we design a neural differentiable renderer that judiciously uses
classical methods and learned priors to synthesize high-quality images from pre-
dicted reflectance and light sources. We accurately model long-range light trans-
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Fig. 2. Image editing must explicitly predict light sources to account for global effects
such as distant shadows due to inserted objects, interreflections on far surfaces due to
edited materials and light shafts by opening a window.

Table 1. Compared to prior works on inverse rendering, ours enables full scene relight-
ing with global effects for inserted objects, edited materials or light sources. Also see
Figs. 1 and 2.

port through a physically-based Monte Carlo ray tracer with a learned shadow
denoiser to render direct illumination, and an indirect illumination network to
infer non-local interreflection. Our neural renderer injects the inductive bias of
physical image formation in training, while allowing rendering and editing of
global light transport from partial observations, as well as optimization to refine
predictions.

Our parametric light source estimation and physically-based neural renderer
allow intuitive editing of lamps and windows, with their global effects handled
explicitly. In Fig. 1(c, d), we turn off each visible and invisible lamps. Beyond
standard object insertion of prior works (e), we visualize inserted objects by
“turning on” a new lamp (g, h) or “opening” a window with incoming sunlight
(i, j). In each case, global effects such as highlights, shadows and interreflections
are accurately created for the entire scene by the neural renderer, and are also
properly handled when we edit materials of scene surfaces (f). In the accompa-
nying video, we show that these editing effects are consistent as we move virtual
objects and light sources, or gradually change materials. These abilities signifi-
cantly surpass prior methods for intrinsic decomposition or inverse rendering. As
summarized in Table 1 and Sect. 2, our method is the first to allow a broad range
of single image scene relighting abilities in the form of inserting objects, changing
complex materials and editing light sources, with consistent global interactions.
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Fig. 3. Overview of our method. We start from a LDR RGB image, with depth map
and visible light source masks estimated from the image or given as inputs. We first
estimate per-pixel reflectance (albedo, normal, roughness) using a network (blue). Next,
we estimate light sources (windows and lamps, visible and invisible) using four networks
(green). To render the predictions back into an image, we use a neural renderer with
three modules: direct shading, shadow (yellow), and indirect shading module (orange).
The result is per-pixel shading (diffuse irradiance), which can be turned into per-pixel
lighting (a grid of incoming radiance environment maps) using another network (red).
(Color figure online)

2 Related Work

Inverse Rendering. Inverse rendering seeks to estimate factors of image forma-
tion (shape, materials and lighting) [30], which has traditionally required mul-
tiple images and controlled setups [7,9,14,45]. Several single-image works on
material acquisition [22,26], or object-level shape and reflectance reconstruction
use known [16,33] or semi-controlled lighting [27]. We consider a complex indoor
scene under unknown illumination and jointly estimate its geometry, material
and lighting from a single LDR image. Intrinsic decomposition [2–4,23,24,39]
decomposes an image into Lambertian reflectance and diffuse shading. A recent
work also predicts a shadow map [51]. Several deep learning methods estimate
complex SVBRDFs and lighting [25,38]. But none of the above can estimate or
edit light sources. We instead propose a novel physically-based 3D light source
representation and neural rendering framework that estimates and edits individ-
ual light sources with distant shadows and global illumination being explicitly
handled.

Lighting Estimation and Representation. Many single image approaches esti-
mate lighting as a single environment map [10,11,21], which cannot express
spatial variation of indoor illumination. Some recent works model spatial varia-
tions as per-pixel environment maps [1,13,25,50], or volumes [41,44]. However,
these non-parametric representations can mainly be used for object insertion,
while we estimate editable light sources with physically meaningful properties
(position, geometry, direction, and intensity). Gardner et al. [12] predict a fixed
number of spherical Gaussian lobes to approximate indoor light sources but do
not handle light editing or its global effects. Zhang et al. recover geometry and
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radiance of an empty room but cannot handle furniture inside [49]. Karsch et al.
reconstruct geometry, reflectance and lighting but do not model windows and
invisible scene contributions, require extensive user inputs [18] or face artifacts
from imperfect heuristics or optimization [19]. In contrast, our physically-based
neural renderer synthesizes photorealistic images with complex light transport,
to enable relighting, light source insertion and removal from a single image.

Neural Rendering and Relighting. NeRF [31] and other volumetric neural ren-
dering approaches have achieved photo-realistic outputs, but usually limited to
view synthesis [29,31,48]. A few recent works [5,6,8,40,46] handle relighting,
but use a per-object optimization from a large set of images. Philip et al. [35]
demonstrate relighting for outdoor scenes but require multiple images. Concur-
rent to our work, Philip et al. [36] consider indoor relighting, but require a large
number of high-resolution RAW images, cannot reconstruct directional sunlight
and do not support material editing and object insertion with their neural ren-
derer. As shown in Fig. 2 and Table 1, our modeling and neural rendering enable
applications not possible for prior works, such as light source insertion/removal,
virtual objects insertion and editing materials with non-local effects, from a sin-
gle image.

3 Material and Light Source Prediction

Our overall framework is summarized in Fig. 3. In this section, we describe our
novel, physically meaningful and editable reflectance and light source represen-
tations, while Sect. 4 describes our neural renderer that is differentiable with
respect to light sources to facilitate training and editing of complex light trans-
port. For per-pixel reflectance, we train a U-net similar to [25] to predict material
parameters: diffuse albedo (A), normal (N) and roughness (R), following the
SVBRDF model of [17]. The inputs are a 240 × 320 LDR image (I) and its
corresponding depth map (D), which in our case can be predicted by a state-of-
the-art monocular depth prediction network [37]. We predict the normals directly,
instead of computing them as the normalized gradient of depth to avoid artifacts
and discontinuities. Thus, our prediction is given by {A,N,R} = MNet(I,D).

3.1 Light Source Representation

To enable high-quality indoor scene relighting, we need lighting representations
that are editable, expressive enough for different types of lighting and realis-
tic enough for convincing rendering of complex scenes. We model radiance and
geometry of two types of common light sources with very different properties: (a)
windows that can cover large areas and may induce strong directional sunlight,
and (b) lamps that tend to be small and with more complex geometry.
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Fig. 4. Comparisons of direct shading rendered from different window representations
with different sampling methods. We show that our 3 SGs models ambient lighting
much better than a single SG, as shown in the green circle, and MIS sampling leads to
much less noise compared to sampling window area uniformly. (Color figure online)

Fig. 5. A demonstration of our visible lamp geometry representation. Our representa-
tion for visible lamps is much less likely to cause highlight artifacts and wrong shadows
compared to a standard 3D bounding box.

Radiance. The emitted radiance of lamps can be modeled by a standard Lam-
bertian model, where every surface point with intensity w emits light uniformly.
However, the radiance distribution of windows can be strongly directional due
to sunlight coming through on a clear day, which is important for capturing
realistic indoor lighting but often neglected by prior methods [36,41,42]. A
recent work [44] models directional lighting with a single spherical Gaussian
(SG), but as shown in Fig. 4, cannot recover ambient effects leading to sub-
optimal rendering. Instead, we model the directional distribution of window
radiance with 3 SGs corresponding to the sun, sky and ground. Each SG is
defined by three parameters Gk = (wk, λk,dk), for intensity, bandwidth and
direction of lighting. For a ray in direction l that hits the window, its intensity
is LW(l) =

∑
k wk exp

(
λk(dk · l − 1)

)
, where k ∈ {sun, sky, grnd}. Figure 4

shows that our representation with multiple importance sampling leads to direct
shading close to the ground-truth.

Geometry. Window geometry can be simply approximated by a rectangle
{c,x,y}, where c is the center and x,y are the two axes. However, lamps present
more diverse geometry. Naively representing a lamp with a 3D bounding box
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{c,x,y, z} works for invisible lamps, but it often leads to artifacts for visible
lamps, as the imperfect shape generates incorrect highlights. Therefore, we care-
fully design a new visible lamp representation shown in Fig. 5. We first identify
the visible surface based on the depth D and lamp segmentation mask ML,
reconstruct the invisible surface by reflecting the visible surface with respect to
the lamp center c and then add the boundary area. As shown in Fig. 5, our new
representation can effectively constrain the lamp geometry and achieve realis-
tic rendering without highlight artifacts for difficult real world examples. More
details are in the supp.

3.2 Light Source Prediction

We use four neural networks to predict visible and invisible light sources for the
lamp and window categories. For visible light sources, the inputs include extra
instance segmentation masks. We can obtain the mask by either fine-tuning
a Mask R-CNN [15] for our dataset, combined with a graph-cut based post
processing to refine the boundaries, or manually draw the masks. While this is
not our main focus, we include both qualitative and quantitative analysis in the
supp. Let MW be a mask for a window and ML be a mask for a lamp. We have

{c,w} = VisLampNet(I,A,D,ML),
{c,x,y,Gsun,Gsky,Ggrnd} = VisWinNet(I,A,D,MW).

We assume one invisible lamp and one invisible window. These are deliber-
ate simplifications: while invisible lights can contribute significant illumination,
they are hard to infer using only indirect cues. We limit the expressivity of the
representation to account for this ill-posedness and find it to be a good choice in
practice1. When a scene has no invisible light source, their predicted intensities

Fig. 6. Direct rendering shadows with ray tracing leads to boundary artifacts as shown
in red color in the third column. Our trained depth-based shadow renderer achieves
high-quality shadows for both real and synthetic scenes, with re-rendered images closely
matching the inputs. (Color figure online)

1 The real scene in Fig. 1 has 4 invisible lamps and the last real scene in Fig. 6 has 2.
In both cases, we achieve reasonable approximation with one invisible lamp.
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are close to zero, as shown in Fig. 3 and Fig. 8. To learn a better separation of
visible and invisible light sources, we provide a mask M =

∑
W MW +

∑
L ML

of all visible sources to the invisible light sources estimation networks:

{c,x,y, z} = InvLampNet(I,A,D,M),
{c,x,y,Gsun,Gsky,Ggrnd} = InvWinNet(I,A,D,M).

4 Neural Rendering Framework

To achieve photorealistic indoor light editing, we need a rendering framework
that can handle complex light transport typical for indoor scenes, such as sharp
directional lighting, hard and soft shadows and non-local interreflections. While
existing differentiable path tracers can handle all these effects, they are compu-
tationally expensive. More importantly, they require the full reconstruction of
reflectance and geometry of the entire scene, including its invisible parts.

To address these limitations, we introduce a neural rendering framework that
combines the advantages of physically-based rendering and learning-based ren-
dering. It works with our light source representations, does not require full scene
reconstruction, achieves high performance, and is differentiable. Our framework,
illustrated in Fig. 3 (right), has 4 modules: (1) a physically-based direct shad-
ing module that computes the direct irradiance from each light source through
Monte Carlo sampling; (2) a hybrid shadow module that can render hard/soft
shadows for each light source; (3) an indirect shading module that predicts non-
local global illumination; (4) a per-pixel lighting module that predicts per-pixel
environment map, which can be used to insert specular objects.

Our direct shading and shadows are computed based on ray tracing, while
global illumination and per-pixel lighting are predicted by networks. The rea-
son is that without full scene reconstruction, global illumination can only be
computed heuristically (Fig. 7), which is suited for neural networks. Conversely,
direct illumination and non-local shadowing can be efficiently computed by ray
tracing, but remain tricky for neural methods.

Table 2. Shadow rendering error with or w/o network inpainting.

Ray traced Ours

L2 0.011 0.005

4.1 Direct Shading Rendering Module

We use inspiration from physically-based rendering [34] to sample the surface of
each light source and connect those samples to the scene points. Formally, let
p be a shading point and q be a point uniformly sampled on the light surface,
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with p→q the unit vector from p to q. The direct shading Ej caused by light
source j is computed as:

Ej(p) =
area(j)

Nj

∑

q

Lj(q→p)max(cos θp cos θq, 0)
||q − p||22

, (1)

where cos θp = p→q · N(p), cos θq = q→p · N(q) and Nj is the number of
samples for light source j. While our Monte Carlo estimation in (1) converges
fast for lamps, it is not optimal for high-frequency directional sunlight coming
through windows, since only when q→p aligns with the sun direction, will the
L(q→p) return a significant contribution. To tackle this issue, with Pr(l) the
probability of sampling direction l from Gsun, we also generate samples according
to the angular distribution of Gsun:

Ej(p) =
∑

l

Lj(l)Ij(l) max(cos θp, 0)
NjPr(l)

, (2)

where Ij(l) is an indicator function to detect if ray l starting from p can hit the
window plane. Note that both (1) and (2) are unbiased but with different vari-
ances, which we combine with multiple importance sampling (MIS) [43]. Details
are in the supp. Figure 4 compares the direct shading of a window, where we
observe that our MIS method can render high-quality direct shading with much
fewer samples, which makes training with rendering loss possible.

4.2 Depth-Based Hybrid Shadow Rendering Module

Recall that in the above shading computation, Ej, j ∈ {W} ∪ {L} does not
consider visibility and therefore cannot handle shadows. We could check visi-
bility by ray tracing during the Monte Carlo sampling above, but this causes
artifacts due to incomplete geometry, as shown in Fig. 6. We instead design a
depth-based shadow rendering framework that combines Monte Carlo ray trac-
ing with learning-based inpainting and denoising. Our shadow modules are not
differentiable, as this is not necessary for our application: we train our network
on a synthetic dataset, which provides the ground truth direct shading without
the shadow effects, so back-propagation of error through the shadow renderer is
not necessary.

Our approach first creates a mesh from the depth map, and then uses a GPU-
based ray tracer to cast shadow rays from surfaces to light sources. To address
the boundary artifacts, we first modify the renderer to detect the occlusion
boundaries, then train a CNN to fill in the shadow at these regions. This hybrid
approach outperforms both pure ray tracing and a CNN trained to clean up the
entire ray traced shadow image. Formally, let SInit be the initial shadow image
rendered from depth map D and let MS be the mask for occlusion boundaries.

S = MS · DShdNet(SInit,D,N) + (1 − MS) · SInit. (3)

The total direct shading from all sources is Ed =
∑

j EjSj. As seen in Fig. 1, 6
and 7, our framework can render higher quality soft and hard shadows that are
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Fig. 7. Our neural renderer models both direct and indirect illumination accurately,
while a ray tracer using only single-view predictions cannot model indirect illumination
and has artifacts near occlusion boundaries.

closer to the ground-truths compared to a standard ray tracer. Table 2 shows
that our CNN reduces the shadow error by more than 50%.

4.3 Indirect Shading Prediction

To render indirect illumination with a ray tracer, we would need full recon-
struction of scene reflectance and geometry, which is infeasible from a single
image. Instead, we train a 2D CNN to predict indirect shading in screen space.
A similar idea was adopted by a recent work [47]. We use a network with large
receptive field covering the entire image to model non-local inter-reflections. Our
indirect shading is EInd = IndirectNet(Ed,D,N,A), which is added to the
direct shading for the final shading prediction. In Fig. 7, we compare the indirect
illumination rendered by our network and by a ray tracer using an incomplete
textured mesh built from depth map and reflectance map predicted from a single
image. Quantitative and qualitative results on real and synthetic examples show
that our neural rendering layer renders both direct and indirect illumination
accurately, while a ray tracer cannot handle indirect illumination with partial
geometry and reflectance, leading to a darker image with similar intensity as the
one with direct illumination only.

4.4 Predicting Lighting from Shading

The above framework cannot yet handle specular reflectance, which motivates
us to add another network to infer spatially varying per-pixel lighting L, taking
the above shading (irradiance) E as input. We follow [25] to predict a grid of
environment maps. We use a similar network architecture but replace the input
image I with the shading E so that the predicted local lighting is a function of
our lighting representation: L = LightNet(E,M,A,N,R,D). The predicted L
can be used to render specular materials, shown in Fig. 11 and Fig. 12 in Sect. 5.
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Fig. 8. Comparisons of light source prediction and rendering before and after the opti-
mization on a real scene. Our neural renderer allows using the rendering loss to learn
and refine light source intensity and direction

4.5 Implementation Details

Dataset. We train on OpenRooms [28] – a large-scale synthetic indoor dataset
for inverse rendering – which is unique among currently available datasets in
providing ground truths for all our outputs, such as light source geometry, per-
light source shadings (with and without occlusion) and per-light source shadows.
Thus, it allows to train each module separately, significantly simplifying training.

Optimized Light Source Parameters. We augment the OpenRooms dataset with
optimized light source parameters {Gsun,Gsky,Ggrd} for windows, leading to
sharper and more interpretable predictions. To compute those, we minimize the
L1 difference between the rendered direct shading without occlusion Ej, j ∈ {W}
and its corresponding ground truth, through our differentiable Monte Carlo ren-
dering module (Sect. 4.1). More details are in the supp. The optimized direct
shading is seen in Fig. 4 to closely match the ground truth.

Losses. We use L2 loss to train MNet. The loss function for light source pre-
diction is the sum of a rendering loss (Lossren), a geometry loss (Lossgeo), and
a light source loss (Losssrc). For Lossren, we define it to be the L1 distance
between the rendered direct shading Ej and its ground-truth, without shadows
applied. For Lossgeo, we uniformly sample points {q} from the ground-truth
and predicted light source geometry to compute their RMSE Chamfer distances
and add an L1 loss for its surface area to encourage sharper lighting. For Losssrc,
we use L2 loss for direction d, log L2 loss for intensity w and bandwidth λ. To
train the shadow network, we use scale-invariant gradient loss proposed in [32]
and find that it leads to many fewer artifacts compared to a simple L2 loss. We
supervise indirect shading with L1 loss and per-pixel lighting with rendering loss
and log L2 loss similar to [25]. More details are in the supp.

Training and Inference. We use Adam [20] with learning rate 10−4 and β (0.9,
0.999). We first train the MNet and then use its predictions as inputs to train
InvLampNet, InvWinNet, VisLampNet and VisWinNet separately. We
also train rendering modules independently by providing them with ground-truth
Ed and S. The typical inference time is less than 3s. More details are in the supp.
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Fig. 9. Light source prediction on our synthetic dataset for four types of light sources.
We visualize light source geometry and direct shading Ej without occlusion. Our
method recovers both geometry and radiance of four types of light sources reasonably
well.

Fig. 10. Our reflectance, lighting and rendering results on a synthetic and a real exam-
ple. Ground truths for the synthetic example are shown in the insets. We observe that
even for invisible light sources, our framework accurately reconstructs their geometry
and radiance, which enables realistic rendering of shadings, shadows, interreflections
and per-pixel lighting and final images.

Refinement. While so far our framework can achieve high-quality light source
prediction and indoor lighting editing in many cases, our differentiable neural
renderer enables us to further refine the light source parameters by minimizing
the rendering loss between the rendered and the input image. Figure 8 shows
an example where we correct the intensity of an invisible lamp with our render-
ing loss-based refinement. Note that as this is an extremely ill-posed problem,
good initialization from our network predictions is essential for the refinement
to achieve good results. More discussions are in the supp. We only apply the
refinement to real images shown in the paper, not to the synthetic images.

5 Experiments

We present light source estimation and neural rendering results on real and syn-
thetic data, as well as various scene editing applications, especially light editing,
on real data. For synthetic data, we test both ground-truth and predicted depths
from DPT [37] w/o fine-tuning and use ground truth light source masks. For real
data, we generate all depth predictions using DPT [37] and manually draw light
source masks. While not being our main focus, we also evaluate a Mask RCNN
[15] for light source detection in the supp.
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Fig. 11. We achieve similar quality as prior state-of-the-art on Garon et al. [13] dataset
for object insertion. Our method accurately reconstructs the complex lighting from
windows to render more realistic highlights and shadows. See Fig. 12 for other editing
tasks not possible for prior works.

Table 3. Light source prediction on
OpenRooms with ground truth and
predicted depth. We report RMSE
chamfer loss and L1 error of direct
shading w/o shadows Ej.

Geometry Rendering

Cham (qj, q̄j) Ej

Gt. Pred. Gt. Pred.

Vis. lamp 0.279 1.15 0.317 0.557

Vis. window 0.415 1.14 0.849 0.952

Inv. lamp 0.712 0.988 0.289 0.357

Inv. window 3.50 3.71 0.312 0.328

Table 4. Quantitative errors for our
neural rendering framework on Open-
Rooms with ground-truth and pre-
dicted depth. We report L1 loss for the
sum of direct shading with shadows Ed

and shading with global illumination E.
We report log L2 loss for per-pixel light-
ing L.

Direct shading Shading Perpix. envmap

Ed E L

Gt. Pred. Gt. Pred. Gt. Pred.

0.283 0.325 0.336 0.391 0.090 0.105

Light Source Predictions and Neural Rendering. Figure 9 shows qualitative
results on synthetic images with ground truth depth. Qualitative synthetic
results with predicted depth are in the supp. We observe that our method can
recover both the geometry and radiance for all 4 types of light sources reason-
ably well, which enables us to render their direct shading quite close to the
ground-truths. The major errors are global shifts of colors and intensities, while
the locations of highlights are usually correct. This is reasonable given the ambi-
guities between materials and lighting. Table 3 reports the quantitative errors
with both ground truth and predicted. The errors for windows are larger than
those of lamps, since the outdoor lighting coming through windows is much more
complicated compared to area lighting. In addition, the direct shading errors for
invisible light sources are lower. This is because their overall contributions are
usually lower since many of them are far away from the camera location. We
observe that our method also achieves comparable rendering errors even with
predicted depth, suggesting that it can generalize well to inaccurate geometry.
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Table 5. User study on Garon et al. dataset.

Gardner et al. [11] Garon et al. [13] Li et al. [28]

72.4% 69.2% 52.0%

Fig. 12. Various editing applications demonstrated on 3 real examples. In addition
to high-quality object insertion (a, b and c), our framework allows editing geometry,
material and lighting of indoor scenes, with consistent non-local effects. This includes
distant shadows projected to the bed, table and floor (d, e, f and i) or to the entire
room when the object blocks the light source (g and h), changing color of walls that
causes non-local color bleeding (j, k and l) and adding virtual light sources into the
scene (g, h, i, l, m, n, o), such as turning on a lamp or opening a virtual window. (Color
figure online)

Figure 10 shows our neural rendering results on a synthetic and a real exam-
ple. Quantitative results are summarized in Table 4. For the synthetic example,
our shadow prediction network combined with Monte-Carlo ray tracing can ren-
der distant shadows from a single depth map without boundary artifacts. Our
indirect shading prediction network models non-local interreflections from only
single-view reconstruction of geometry and materials. All the modules combined
together lead to accurate reconstruction of shading and per-pixel lighting. For
the real example, even though we do not have ground truths, we observe that
the light source position, the highlight in the direct shading and shadows are
all visually consistent. The re-rendered image closely matches the input, which
further demonstrates that our framework can generalize well to real examples.

Comparisons with Prior Works. We reiterate that our method enables applica-
tions (e.g. light source editing) that are not possible with any prior work. While
this makes direct comparisons challenging, we compare on a subset of tasks like
object insertion that prior works support. We use Garon et al. dataset [13] for
comparison, which is a widely-used, real dataset for spatially-varying lighting
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Fig. 13. Our accurate reconstruction of visible/invisible light sources allows separating
their contributions and turn them on and off. Our results closely match the ground-
truth insets.

evaluation. We conduct a user study by requiring 200 users to compare our
results with prior results and report the percentage of users who believes ours
are better. Even though we are solving a harder problem, both qualitative and
quantitative results in Fig. 11 and Table 5 show that our method achieves perfor-
mance comparable to the prior state-of-the-arts which only handle local editing
of the scene. Our per-pixel lighting prediction can be used to render specular
objects realistically, with highlights, shadows and spatial consistency being cor-
rectly modeled. Specifically, our window representation and MIS based rendering
layer can better handle high-frequency, complex sunlight, leading to rendering
results closer to the ground truths, as presented in Fig. 11.

Novel Scene Editing Applications. In addition to object insertion (a, b, c) with
realistic highlights and shadows, the true advantage of our framework is its
ability to handle non-local effects in novel scene editing applications, which is
only made possible by our accurate reconstruction of indoor light sources and
high-quality neural rendering framework. These non-local effects include distant
shadows and highlights, which is shown in (d, e, f) of Fig. 12 where the inserted
virtual objects block the light coming from the visible window or the invisible
lamp. This is further demonstrated in (g, h, i), where the inserted virtual lamp
causes highlights on the nearby geometry and shadows that cover the whole
wall behind the virtual bunny and sphere. Moreover, our framework can model
non-local interreflection accurately. As shown in (j, k, l), as we change the color
of walls to orange and blue, our indirect shading network paints the inserted
white objects with correct color bleeding. In (m, n, o), we demonstrate our
framework’s ability to turn on an invisible lamp or open a virtual window. In n,
o, we use the 3 SG approximation of the environment map shown in n.1 and o.1
respectively. Our representation combined with our neural renderer can render
realistic directional sunlight. Our accurate reconstruction of indoor light sources
further allows us to separate their contributions. As shown in both Fig. 1 and
13, our framework allows turning off visible and invisible, lamps or windows in
the scene, with changed appearance similar to the ground-truth insets2.

2 The second example is from the internet so we do not have its ground truth.
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Please see supplementary material for ablation studies, error distributions,
failure cases, limitations and a video illustrating consistent scene editing effects
as we move virtual objects and light sources, or gradually change the wall color.

6 Conclusions

We presented a method that enables full indoor scene relighting and other editing
operations from a single LDR image with its predicted depth and light source
segmentation masks. The first key innovation is our lighting representation; we
estimate multiple global 3D parametric lights (lamps and windows), both visible
and invisible. The second is our hybrid neural renderer, capable of producing
high-quality images from our representations using a combination of Monte Carlo
and neural techniques. We show that this careful combination can for the first
time handle challenging scene editing applications including object insertion,
material editing, light source insertion and editing, with realistic global effects.
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