This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

StarCraftlmage: A Dataset For Prototyping Spatial Reasoning
Methods For Multi-Agent Environments

Sean Kulinski'

Purdue University ARL?

Abstract

Spatial reasoning tasks in multi-agent environments such
as event prediction, agent type identification, or miss-
ing data imputation are important for multiple applica-
tions (e.g., autonomous surveillance over sensor networks
and subtasks for reinforcement learning (RL)). StarCraft
Il game replays encode intelligent (and adversarial) multi-
agent behavior and could provide a testbed for these tasks;
however, extracting simple and standardized representa-
tions for prototyping these tasks is laborious and hinders
reproducibility. In contrast, MNIST and CIFARIO, despite
their extreme simplicity, have enabled rapid prototyping
and reproducibility of ML methods. Following the simplic-
ity of these datasets, we construct a benchmark spatial rea-
soning dataset based on StarCraft Il replays that exhibit
complex multi-agent behaviors, while still being as easy to
use as MNIST and CIFARI0. Specifically, we carefully sum-
marize a window of 255 consecutive game states to create
3.6 million summary images from 60,000 replays, includ-
ing all relevant metadata such as game outcome and player
races. We develop three formats of decreasing complexity:
Hyperspectral images that include one channel for every
unit type (similar to multispectral geospatial images), RGB
images that mimic CIFARIO, and grayscale images that
mimic MNIST. We show how this dataset can be used for
prototyping spatial reasoning methods. All datasets, code
for extraction, and code for dataset loading can be found at
hitps://starcraftdata.davidinouye.com/.

1. Introduction

Spatial tasks in multi-agent environments require rea-
soning over both agents’ positions and the environmental
context such as buildings, obstacles, or terrain features.
These complex spatial reasoning tasks have applications in
autonomous driving, autonomous surveillance over sensor
networks, or reinforcement learning (RL) as subtasks of the

DEVCOM Army Research Laboratory
TCorresponding Authors: Sean Kulinski skulinsk @purdue.edu and
David I. Inouye dinouye @purdue.edu.

Nicholas R. Waytowich

James Z. Hare
ARL}

David I. Inouyef
Purdue University

jayer 1 unit_ids[1] er 1_unit_values[1]

player_1_unit_ids{1] player 1_unit values(1]

Figure 1. Two samples (one per row) showing (Blue box/left) our
64 x 64 StarCraftHyper dataset which contains all unit IDs and
corresponding values for both players (color for unit IDs denotes
categorical unit ids), (Green box/middle) StarCraftCIFAR10 (32 x
32) which is easy to interpret where blue is player 1, red is player
2, and green are neutral units such as terrain or resources, and
(Orange box/right) StarCraftMNIST (28 x 28) which are grayscale
images further simplified to show player 1 as light-gray, player 2
as dark-gray, and neutral as medium-level shades of gray.

RL agent. For example, to predict a car collision, an au-
tonomous driving system needs to reason about other cars,
road conditions, road signs, and buildings. For autonomous
surveillance over sensor networks, the system would need
to reason over the positions of objects, buildings, and other
agents to determine if a new agent is normal or abnormal or
to impute missing sensor values. An RL system may want
to predict the cumulative or final reward or impute miss-
ing values given only an incomplete snapshot of the world
state, i.e., partial observability. Yet, collecting large realistic
datasets for these tasks is expensive and laborious.

Due to the challenge of collecting real-world data, prac-
titioners have turned to (semi-)synthetic sources for creat-
ing large clean datasets of photo-realistic images or videos
[11, 12, 24, 40]. For example, [I!] leveraged the Grand
Theft Auto V game engine to collect a synthetic video
dataset for pedestrian detection and tracking. [4] overlays
aerial images with crowd simulations to provide a crowd
density estimation dataset. Yet, despite near photo-realism,
these prior datasets focus on simple multi-agent environ-

22004

https://starcraftdata.davidinouye.com/
mailto:skulinsk@purdue.edu
mailto:dinouye@purdue.edu

ments (e.g., pedestrian-like simulations [! 1, 40]) and thus
lack complex (or strategic) agent and object positioning. In
sharp contrast to these prior datasets, human-based replays
of the real-time strategy game StarCraft II capture complex
strategic and naturally adversarial positioning of agents and
objects (e.g., buildings and outposts). Indeed, the human
player provides thousands of micro-commands that produce
an overall intelligent and strategic positioning of agents and
building units. The release of the StarCraft II API and
Python bindings [38] significantly reduces the barrier to us-
ing this rich data source for multi-agent environments. Yet,
the StarCraft II environment still requires significant over-
head including game engine installation, looping through
the game engine, understanding the API, etc. This greatly
limits the broad adoption of this very rich source of multi-
agent interactions as a benchmark dataset—in contrast to
the classic and extremely easy-to-use MNIST [27] and CI-
FARI10 [25] benchmark datasets that drove image classifi-
cation research in the early years and continue to be used
for prototyping new ML methods. In summary, prior multi-
agent datasets either lack complex strategic behavior or re-
quire significant implementation overhead.

To address these issues, we created StarCraftimage:
a simplified image-based representation of human-played
StarCraft II matches to serve as a large-scale multi-agent
spatial reasoning benchmark dataset that is as easy to use
as MNIST and CIFAR10 while still exhibiting complex and
strategic object positioning. As seen in Fig. 1, each image
in StarCraftlmage is akin to a detailed snapshot of the Star-
Craft II minimap and includes the locations of all units (both
moveable units and buildings), the units’ IDs, as well as im-
portant metadata like which player won that match, player
resource counts, the current map name, player ranking,
etc. We made two key design decisions when developing
StarCraftlmage. First, we chose to represent the matches
by snapshot images that summarize a window of approxi-
mately 10 seconds of gameplay rather than a video. This
design choice was motivated both by the ease-of-use crite-
ria (as images are easier to load and manipulate than videos)
and by the goal of performing spatial rather than temporal
reasoning tasks—though a video dataset for complex tem-
poral reasoning is a natural direction for future work.

Our second design choice was to represent the matches
via minimap-like images rather than photo-realistic render-
ings of the game state. This choice was motivated by two
reasons. First, minimap images are easy to use because they
are small yet still represent of the whole environment. By
using a minimap representation, we can encode the most
crucial game information (unit types, recent troop move-
ments, building locations, environmental features, etc.) in a
naturally compact representation. Indeed, the minimap rep-
resentation is critical for playing StarCraft II as evidenced
by the following quote from the famous StarCraft II player

Day[9] (Sean Plott): “...the two most important things [are]
the minimap and your money” [32]. Second, the minimap
representation allows for us to have many diverse samples
while still maintaining a small data footprint. The resul-
tant smaller disk size allows for rapid prototyping via quick
dataset downloads and swift data consumption. Compared
to prior common spatial reasoning datasets, our proposed
3.6 million image dataset has a total disk size of 8.4Gb
while the MOTSynth-MOT-CVPR22 dataset [|1], which
consists of 1.3 million images, has a disk size of 167Gb (20x
larger, while containing half the number of samples). Ul-
timately, we construct three different image representations
with decreasing complexity: Hyperspectral images which
give precise game state information by encoding the unit ids
and last-seen timestamps at each spatial location (mimick-
ing the hyperspectral geospatial representations), RGB im-
ages that mimic CIFARI10, and grayscale images that mimic
MNIST. Thus, our dataset is compatible with common ML
frameworks with minimal overhead or preprocessing effort.
Overall, we use 60k StarCraft II replays to create 3.6 mil-
lion summary images (not multi-counting different repre-
sentations) and corresponding metadata.

To demonstrate how multi-agent spatial reasoning tasks
can be easily prototyped using StarCraftimage, we also pro-
vide a series of benchmark tasks. We perform target identi-
fication (i.e., determining unit type from only knowing unit
locations) where the input is either an RGB or grayscale
image and the target image is hyperspectral with each chan-
nel corresponding to a unit type. We also perform more
complex tasks such as map event prediction (i.e., game out-
come and StarCraft race prediction) which serve as canon-
ical image-level reasoning problems. To show how our
image representations can be easily manipulated for other
tasks (like Rotated MNIST [26] or Color MNIST [2]), we
map missing data imputation as an image inpainting task
using both simulated sensor network faults and the fog-of-
war from the game engine. Ultimately, we hope to provide
a large-scale and rich multi-agent spatial reasoning dataset
that is very easy to use yet exhibits complex and strategic
placement of agents for complex spatial reasoning applica-
tions. We summarize our contributions as follows:

* We design and extract StarCraftimage as an easy-to-
use multi-agent spatial reasoning dataset under three
representations: 1) Hyperspectral images that encode
all unit ids and lasts seen timestamps for each spatial
location, 2) RGB images that mimic CIFAR10, and 3)
grayscale images that mimic MNIST.

* We apply StarCraftlmage on tasks such as target iden-
tification, movement prediction, and more. We also
propose several noise simulation models and discuss
several task modifiers such as domain generalization.

* We publicly release the datasets with a permissive CC

22005

Dataset Storage

StarCraftimage/

metadata.json # verbose metadata

StarCraftMNIST/... # train/test splits

StarCraftCIFAR/ ... # train/test splits

StarCraftHyper/

window_files/ # one file per window

801b3e...window_0.png
801b3e...window_1.png

o Static and dynamic replay metadata
can be viewed in flat .csv file

o For each replay, all windows are
contained in a dense .png format

o Unit and Map data represented in

Terran Protoss Zerg

Value
Matrix:

Bag-of-Units Representation

J

Length := max # units at one location
Aka “max sentence length” in batch

Logical View

Unit ids:
(“words”)

Neutral

Player 1 Player 2

Last seen |

timestamp
values:

Proposed Processing

153155 0 0 0 240 0 O
0157 0 0 0 241242 0
0 158159 0 O 0 244245
0 01600 0 0 0 0
0 0 162163 0 0 0
0 0 0 165169170 0

Values are “last seen” time
stamp in window [0, 255]
where 0 := not seen

E
i |6A
—)

64

dense bag-of-units 000 0 01730
0 0 0 0 0175 0

64|
Where C is the original channel size and E is the
embedding size

/
il{mbeddng Layer
64

Figure 2. An overview of our hyperspectral dataset from different perspectives. The raw image data is stored in texttt.png files using the
bag-of-units representation. A logical view of the dataset is a (sparse) hyperspectral image with many channels that include unit information
and visibility per player, resource information (neutral units), and map information. The bag-of-units representation enables processing
this very high-dimensional dataset using dense matrices only and leveraging embedding layers that are often used for processing sequences
of IDs; importantly, because the unit order does not matter, an order-invariant reduction such as max or sum should be used to arrive at a

representation with a fixed number of embedding channels E.

BY 4.0 license. We also release the StarCraft IT dataset
extraction code and the relevant data loaders and mod-
ules for using the data as a Python package with an
MIT license, and provide matainance as laid out in our
dataset nutrition label: Table 4.

2. Dataset Extraction and Construction

In this section, we describe how we extract observational
data from the simulated yet complex environment of the
StarCraft II (SC2) game. We then transform the raw data
into the hyperspectral, CIFAR10, and MNIST formats that
are readily usable in ML tools.

2.1. Extracting Raw Data From SC2 Replays

Due to SC2 being an almost entirely deterministic game,
an SC2 replay file contains an entire list of actions from
both players that can be used to re-simulate an entire match
by passing the actions back to the SC2 game engine. Each
replay file also contains metadata from the match such as:
the length of the match, the map/arena the match took place
in, and per-player statistics such as the match making rating
(MMR) (which can be thought of as the skill level of that
player), the actions-per-minute (APM) the player took, and
whether that player won, lost, or tied the match. Addition-
ally, Activison Blizzard (the maker of SC2) bundles large
sets of these replays together as a Replay Pack for others to
use. We used Replay Pack 3.16.1 - Pack 1 from [6].

To extract the game state, we used the PySC2 [38]
Python library developed for RL applications that interfaces
with the SC2 game engine. PySC2 exposes the raw game
state while re-simulating a match based on replay files.
Each raw game state consists of information such as the

location, allegiance, size, unit type ID, and health of ev-
ery unit (character, building, worker, solider, etc.) which
currently exists for that specific frame (where a frame is a
single unit of time in a game). The raw frame data also
contains dynamic map information including the visibility
for each player (the locations on the map that the player
can see due to friendly units/scouts being in that area, ver-
sus areas which are undiscovered and thus hidden) and the
current creep state (which is a terrain feature consisting of
purple slime in which most Zerg structures must be built and
upon which Zerg units will move faster). However, since the
PySC2 interface was designed for interacting with StarCraft
I, it comes with a steep learning curve and a complex data
representation — which greatly hinders our goal of having
clean observed game states that can be represented in a stan-
dard form. Thus, we use PySC2 to extract raw game state
observations and process these into standard image formats.

2.2, StarCraftHyper: Construction and Processing
of Hyperspectral Representation

Our most general format is a hyperspectral image for-
mat where each channel represents information for each
unit type for each player in SC2. To do this, we first use
PySC2 to extract raw frame data and for the f™ frame ob-
servation, we record the location of each unit present via
H¢luprp,xn, yn] = 1(uprp, Tn, yn) where 1 is an indica-
tor function that returns 1 if a unit is present, else 0, up;p
is the player-specific unit ID (PID), and z},, y; is the spa-
tial location of the unit. Since the raw data gives spatial
information in raw game-map spatial coordinates, we must
perform a coordinate transform to our square hyperspectral

(Traw Yraw) J We also

image coordinates: (xp,yn) = {max(z” -

22006

Player 1

Player 2

N Neutral N
@ Embedding

N Player N N Concatenate N Weight
Embedding - with Visibilit
Player
— N — I —

Concatenate Weight
— 8= (R, G, B]

Concatenate

> > Down-
with Map Info

Scale To
BH—ES—-A

Scale To

[0.0,0.45 juumnd

K—

Scaled
Values

= R R R e~ | G |
Overlaying images with precedence
WS ScaleTo ‘)
[0.48, 0.52] —) of P, P,, N (decreasing)
Nonzero
Masks

Figure 3. (Top) We embed the unit information of player 1, player 2, and neutral separately using an embedding of size 1. We then combine
with other dense features (visibility for players and terrain info for neutral). Finally, we concatenate each output into a 3-channel 32x32
px RGB image where the neutral channel is down-weighted for visual clarity. (Bottom) We take the RGB color image, rescale the values
of each channel, and overlay each channel into a single grayscale 28x28 px image where precedence is given to P1, then P2, and finally
neutral or background. We use precedence combinations as linear combinations of the layers could lead to unit information being canceled.

crop to only the playable area of the map. There are 170
unit IDs for Playerl, 170 IDs for Player2 units, and 44 IDs
for Neutral units, which is 384 PIDs (i.e., channels).
Next, to allow for video-like spatial movements, we form
a stack of 255 consecutive hyperspectral images Hgiqcr =
[H] where f € [0,255]." Given Hgtqek, which is a tensor
with shape (255, 384, 64, 64), we simplify this from a video
format to a static image format by collapsing the time axis
to create the summarized hyperspectral image H. We do
this by recording the frame index of the most recent frame
where a unit was present for each (PID,x,y) coordinate
(.e., Hlc,z,y] = argmax ; Hysack[f, ¢, 7,y] # 0) and if
Hgpoek[frc,x,y] = 0Vf € [0,255], then Hle, z,y] = 0).
Another possibility would be to average over the window of
frames instead of the last seen timestamp; however, the last
seen timestamp enables simple visualization of movement
via a ghosting-like effect, and the last seen timestamp pre-
serves time information (albeit only a compressed amount).
While this condensed representation does have the trade-
off that if a unit with the same PID crosses the same (z, y)
location more than once in a frame stack, only the last cross-
ing will be recorded in H, this is rare and seems a reason-
able trade-off for a much simpler representation. At this
step, the non-zero entries of [are saved as the raw repre-
sentation of our dataset—i.e., a sparse tensor representation.
We can compress H into a dense “bag-of-units” representa-
tion, which is similar to representing a sequence of words by
their IDs rather than by very high-dimensional one-hot vec-
tors, but where the order of the IDs does not matter (hence,
the term “bag” as in bag-of-words representations). Just as
the number of words of a sentence can vary in NLP, the
number of units at each location can vary. Therefore, as

'We chose 255 to ensure that the values fit in an unsigned 8-bit integer
and captures roughly 10 seconds of real time.

in processing word sequences, we pad the channels of the
dense representation with zeros (representing no unit) up to
the max number of units at any location (either in a sin-
gle sample or in a batch of samples), denoted by k. Con-
cretely, the bag-of-units representation collapses the chan-
nel axis into k£ ID matrices and %k timestamp matrices of
size (64, 64), where the ID matrix contains the PID of the
units present at each (x, y) coordinate, the timestamp matri-
ces contain the corresponding timestamp that the unit was
last seen, and £ is the max number of units present at one
(z,y) location in H. This highly-compressed bag-of-units
representation for the StarCraftHyper dataset can be seen in
the top right of Fig. 2 and is the default representation for
the StarCraftHyper dataset.

2.3. StarCraftCIFAR10 and StarCraftMNIST:
RGB and Grayscale Representations

To further simplify dataset usage and prototyping abil-
ity, we develop datasets that mimic CIFAR10 and MNIST
in terms of image size, number of channels, number of
classes, and number of train/test samples as seen in (mid-
dle) and (right) of Fig. 4. Thus, our StarCraftCIFAR10
and StarCraftMNIST datasets can be used for rapid initial
prototyping of new spatial reasoning methods just as these
ubiquitous datasets have been used for prototyping image
classification. These can model situations where agent and
building positions are known but the agent type is unknown
(e.g., low resolution satellite images or a network of pres-
sure sensors). One natural task is to infer unit types given
only unit location information, which is discussed in more
detail in future sections.

To construct StarCraftCIFAR10, we first follow the ap-
proach in subsection 2.4 to subsample our StarCraftHyper
dataset to 50,000 train windows and 10,000 test windows, to

22007

Figure 4. (Left) Our 64 x 64 StarCraftHyper dataset contains all unit IDs and corresponding values for both players (color for unit IDs
denotes categorical unit ids) where visibility is player specific but the terrain and pathing grid are shared (a few other layers are not shown,
see appendix). (Middle) StarCraftCIFAR10 (32 x 32) is easy to interpret where blue is player 1, red is player 2, and green are neutral units
which are usually just resources. (Right) MNIST (28 x 28) grayscale images are further simplified to show player 1 as white to white-gray,

player 2 as black to black-gray, and neutral as shades of gray.

match the dataset size of CIFAR10. To transform each hy-
perspectral window into a CIFAR10 format, we separate [{
into player-specific images and follow the process shown in
Fig. 3 (top). To construct the StarCraftMNIST dataset, we
similarly subsample from the full StarCraftHyper dataset,
but to a size of 60,000 train and 10,000 test images as in
MNIST. We process the images in the manner seen at the
top and bottom of Fig. 3, where the last step is a function
that overlays the V,,,, V},, Vv scaled maps on top of each
other such that any non-zero elements of V,,, will overwrite
the nonzero elements of Viy and nonzero V),, values will
overwrite both. We decided to overwrite rather than aver-
age because having a unit of player 1 and player 2 at the
same location would average to a gray background value
but that is in fact one of the most interesting locations. In
the next section, we discuss the creation of the 10 classes
for each window via a combination of the variables: Player
1 race, Player 2 race, and Player 1 outcome.

2.4. Dataset Exploration and Analysis

All in all, the StarCraftlmage dataset consists of
3,607,787 windows extracted from 60,000 replays which
are readily available in three representations (examples in
Fig. 4). The image data for each window is stored as a . png
file in the bag-of-units representation. The data can be ac-
cessed via directly loading in the relevant .png file and
metadata row, or more simply by using the corresponding
PyTorch dataset classes that we have developed (one class
for each representation).

Jointly with the image data collection, we also aggre-
gated relevant metadata for each window, such as the tem-
poral location of the window in the overall match (e.g., 75"
window of 130), which player won the match, the races of
the players, the name of match’s map, etc. (for a full list
of the metadata keys, please see Appendix D). This meta-
data has many uses for filtering replays based on conditions
for a specific application, e.g., training on a subset of maps

and testing on the held out set. Additionally, for canonical
class labels, we use the race of each player (Terran, Zerg, or
Protoss) and player 1’s outcome (Win and NotWin where
NotWin includes the rare Tie outcome) to split the over-
all dataset into 18 classes (3 races for player 1, 3 races for
player 2 and 2 outcomes). We chose these three variables
(Player 1 outcome, Player 1 race, Player 2 race) because
though outcome prediction is a canonical task, readily avail-
able ground truth for race prediction with this dataset is akin
to behavior or tactical strategy prediction, as unit type infor-
mation is hidden in the StarCraftCIFAR10 and StarCraftM-
NIST versions of the dataset. For StarCraftCIFAR10 and
StarCraftMNIST, we select only classes that have at least
one player as Zerg (5 total) with both outcomes to get ex-
actly 10 balanced classes to match the setup of CIFAR10
and MNIST—this could be done similarly for Terran and
Protoss but Zerg is the easiest to understand because some
Zerg-specific units are often spread across the battlefield.

3. Multi-Agent Spatial Reasoning Applications

In this section, we list examples of spatial reasoning
tasks on our datasets (e.g., global reasoning as a classifi-
cation task). We will also discuss simple noise models that
simulate more complex scenarios on top of the clean data
representations. Finally, we discuss natural task modifiers
such as domain generalization or adversarial contexts. In
all cases, we aim for a compromise between realism and
simplicity as this dataset is meant as an initial prototyping
dataset for complex or strategic agent and object positioning
rather than a fully realistic spatial reasoning dataset. Given
space constraints, we provide demos of these tasks in the
supplementary material both in Appendix F and as [Python
notebooks in our code repository.

3.1. Spatial Reasoning Examples

Target identification (Image colorization) The goal
here is to identify the unit type (e.g., marine unit) or af-

22008

filiation (player one, two or neutral) for every detected unit.
This can be seen as a setting where an image only shows if
a unit exists in its field of view (e.g., an aerial photo from
a UAV or a post-processed output from a LiDAR scanner).
For the task, we cast this problem as an image colorization
problem in which the input is either a StarCraftCIFAR10 or
StarCraftMNIST and the target output is the corresponding
StarCraftHyper or StarCraftCIFAR10 image.

Movement prediction (Simplified Multi-Object Track-
ing) Predicting what is going to happen next is clearly an
important task especially in time-critical applications such
as autonomous driving [2], disaster relief [1], or, more gen-
erally, optical flow [3]. While we do not generally consider
the time dimension after we summarize the window, for
this task, we can use the metadata to create pairs of adja-
cent window summary images where the input is the current
summary image and the target output is the next summary
image in the same match.

Predict final outcome or race (Classification) Spatial
reasoning systems are often used to predict the global prop-
erties of a system (e.g., crop yield predictions [31] or re-
ward predictions for RL models [38]), which can be cast as
classification. The most canonical task is to predict the final
outcome of the game (i.e., which player will win), which re-
quires reasoning over both fighting units and environmental
factors such as buildings and resources (e.g., even if there is
little movement/few fighting units in a window, a model can
still predict who will win based off of who has the strongest
base). Another canonical task for the simplified datasets
StarCraftCIFAR10 and StarCraftMNIST (which give only
unit location information rather than unit type information)
is to predict both players’ races, which requires recognizing
the common placement configurations for each race.

Imputing missing data (Image inpainting) Another
critical task in spatial reasoning is imputing missing values
for areas that lack coverage due to occlusion, data collection
failures, or adversarial attacks. [13, 39]. Here the input im-
age is a corrupted version of a sample from one of the three
datasets, and the target output image is the uncorrupted
sample. Due to StarCraftimage’s simple minimap repre-
sentation, simulating spatial corruptions (e.g., noisy mea-
surements or partial observability) is simple to do—unlike in
photo-realistic settings which would require editing the im-
ages or videos to hide or remove information. In the next
section, we go over examples of spatial corruption models.

3.2. Simulated Data Corruption Models

Random additive noise This corruption model is relevant
for settings where images are taken using noisy equipment

or a hierarchical system where reasoning happens on a (po-
tentially noisy) abstracted spatial representation. We can
implement this as a type of salt and pepper noise where the
salt noise can randomly add units to locations that do not
have units (i.e., false positives) and each real unit could pos-
sibly become missing (i.e., false negatives), as seen in the
left of Fig. 5.

Heterogeneous partial observations (Image masking)
Here the images can be seen as the fusion of irregular het-
erogeneous sensor networks. This can be simulated by pro-
ducing a mask that is based on static sensor locations and
detection ranges, see Fig. 5 (middle) for example. Further-
more, detailed sensor models can be used to pre-process the
masked observations to provide an accurate representation
based on the type of sensor implemented at a particular lo-
cation, e.g., acoustic sensors may only return a range of the
unit relative to its position. Sensor faults as above could be
implemented on top of this heterogeneous sensor network
(e.g., masking over a set of sensors’ visible range). For ex-
amples and benchmark results on such heterogeneous sen-
sor placements with aggregation failure simulations, please
see Appendix E.

Imprecise sensors (Blur) Low resolution imaging will
yield imprecise unit locations. Thus, we can implement
this noising process by performing blur operations on top
of the original datasets. This corruption is simplest to apply
to StarCraftCIFARI10 (e.g., Fig. 5, right) and StarCraftM-
NIST via standard CV packages but could also be applied
to StarCraftHyper (albeit with more computation).

3.3. Spatial Reasoning Task Modifiers

Robustness to distribution shift (Domain generalization)
A key challenge in applying ML to real-world settings is
training a model in one context but applying it to another
context [48]. This is known as the domain generalization
problem in which the goal is to perform the task well on an
unseen test domain [33]. The metadata that we provide can
provide natural segmentations of the dataset into domains.
One of the most canonical examples of distribution shift in
real-world settings is a change in the environment settings
[23]. While greatly simplified, we can simulate changes in
location by splitting the dataset based on the SC2 map and
holding out one or more maps for testing. Other excellent
domain splits could be players” MMR or APM, which cor-
respond to their skill level and frequency of actions. Player
two’s race (Terran, Protoss, or Zerg) is also another way to
split the dataset into 9 domains such as Terran vs. Terran,
Protoss vs. Zerg, or Terran vs. Protoss.

Robustness to adversarial attacks (Adversarial training)
While uncommon, adversarial attacks are a genuine concern

22009

Ground Truth Salt+Pepper Noise Corrupted Image Ground Truth

Visual Range

L] el] [e]

Heterogenous SN Ground Truth

Figure 5. Three example noise corruption models which are simulated on top of the StarCraftCIFAR10 dataset, where (left) simulated ran-
dom additive noise, (middle) simulates observations via a heterogeneous SN, and (right) simulates limited precision (blurry) observations.

for reasoning methods, especially those which involve hu-
mans such as autonomous driving. We can simulate this
idea by applying adversarial training methods under differ-
ent adversarial attack models such as LO pixel-wise attacks
[36] for attacking individual units. The adversarial training
literature already benchmarks using MNIST as a key diffi-
cult example [30], and thus, these StarCraft datasets could
be immediately relevant and provide a more realistic bench-
mark for the adversarial training literature.

Equipment usage optimization (Active learning) Opti-
mizing sensor location and power usage are key challenges
in sensor networks [9, 14]. Following the simulated sensor
network seen in the previous section, constrained power us-
age could be framed as an active learning problem in which
the algorithm can only query a fixed number of sensors for
each prediction problem. For optimizing sensor location,
the algorithm could attempt to determine where to place
the next sensor (i.e., to uncover information at a certain lo-
cation) to optimize the downstream task such as outcome
classification. A more complex case is moving sensors from
their original locations to another location under a budget on
geographic movement (e.g., a sensor on a robotic device).

4. Benchmark Evaluations

While we point the reader to Appendix E, where we give
full descriptions and results, here we introduce four bench-
mark multi-agent spatial reasoning tasks, which incorporate
training U-Net-based [35] ResNet [15] models. The four
benchmark tasks consist of two tasks on target identifica-
tion (given a 64x64 RGB image, predict the ID of each unit
at each location) and two tasks for unit tracking (given hy-
perspectral window k, predict what will happen in window
k + 1). Both task sets consist of first training and evalu-
ating on “clean” (unaltered) data. To highlight the extend-
ability of StarCraftlmage, we also perform both tasks on
corrupted data that has been passed through a simulation
of a noisy sensor network. The sensor network simulation
consists of 50 imaging sensors with a radius of 5.5 pixels
with different sensor placement methodologies (e.g., grid,
random) and communication failures during sensor fusion
(see Fig. 10 for details), and results in noisy training win-
dows. From the results seen in Table 1, it is clear that this
is a difficult problem, especially when reasoning over cor-

Table 1. Benchmark Evaluations on Unit Type Identification and
Next Hyperspectral Window Prediction with clean data and simu-
lated data corruptions.

Unit Identification (Acc) Next Wind. (MSE)
Placement = Clean Grid Rand. Clean Grid Rand.
Unet-ResNetl8 56.6% 403% 30.1% 397 4.11 4.5
Unet-ResNet34 58.5% 402% 30.8% 399 4.12 4.17
Unet-ResNet50 62.5% 44.0% 32.8% 4.00 4.06 4.15

rupted samples, and hopefully future work can build upon
these results.

5. Preliminary Real-World Experiment on
DOTA Satellite-Image Dataset

In this section, we explore whether performance on
StarCraftImage is predictive of performance on real-world
datasets. To this end, we use a version of the DOTA dataset
[41], which is a benchmark dataset for multi-object detec-
tion in satellite images, where the samples have been trans-
formed to match a similar format to StarCraftimage, which
we call DOTA-UnitID (see Fig. 6). This format is similar
to the scenario when we may have remote sensing or a sen-
sor network that can detect the presence of certain agents
or buildings but may not know what they are (e.g., due to
cloud cover only synthetic aperture radar data is available).

UnitID:

Figure 6. DOTA dataset examples, where the top row shows three
original (input, annotations) pairs from the DOTA dataset [41],
while the bottom row shows the three corresponding (input, label)
pairs from our DOTA-UnitID dataset. The DOTA-UnitID task is
to colorize the grayscale annotation mask.

In addition to the Unet-ResNet models seen above,
we trained two state-of-the-art segmentation models, a
SegFormer transformer model [42] (12" place in the
CityScapes Test leaderboard [7]) and a Lawin transformer
model [44] (3" place in [7]) on the clean Unit Identification

22010

task for both the StarCraftlmage dataset and the DOTA-
UnitID datasets. As seen in the second row of Table 2,
the model ranking is the same for both the DOTA-UnitID
and StarCraftlmage-UnitID experiments across all models
(e.g., the Unet-ResNet50 had the best unit accuracy across
both datasets), thus providing preliminary evidence that per-
formance improvements on our dataset will carry over to
real-world datasets. We note that the transformer results
are much below the results of the ResNet models. This is
likely due to these larger models requiring longer training
times than the CNN-based models. Despite this, these re-
sults suggest that StarCraftlmage is still a difficult dataset
even for SOTA models.

Table 2. Unit-ID experiment results on clean data for StarCraftIm-
age and Dota-UnitID. RX is short for a Unet-ResNet-X model.

Model \ Lawin [44] SegFormer [42] RI18 R34 R50

SCII | 27.0% 27.9% 56.6% 58.5% 62.5%
DOTA | 34.1% 35.0% 524% 52.8% 53.6%
6. Related Works

As with any ML task, accessible datasets are critical for
making advancements. For spatial reasoning tasks, these
include elementary reasoning datasets (e.g., CLEVR [20]),
scene understanding (e.g., Places [47]), geospatial datasets
(e.g., Chesapeake Land Cover [34]), optical flow datasets
(e.g., Middlebury [3]), and more.

Multi-Agent Spatial Datasets A notable area for multi-
agent spatial reasoning tasks is reasoning for autonomous
driving. For this, the well-known KITTI dataset [12] has
driven many advancements since its introduction in 2012,
and more recently the Waymo Open dataset[37]) has in-
troduced 1.1K additional scences with LiDAR and Cam-
era measurements for practitioners to benchmark on. More
generally, there is TAO [8], a multi-object tracking dataset,
which is akin to a video-version of Microsoft COCO [29]
and has over 800 object classes. In a similar vein to
our work exists pedestrian and crowd analysis (e.g., crowd
counting [5, 40], person RelD [46], population density es-
timation [4]), however, these datasets tend to have simple
agent behvaiors such as conversing or walking from one
point to another across a scene.

Synthetic Datasets Developing multi-agent spatial rea-
soning datasets can be expensive as they tend to involve
humans in the collection process. Thus, practitioners have
turned to collecting this data from simulations of the real
world. For pedestrian tracking, there is the MOTSynth
dataset [11], GCC [40], and the GTA dataset [24] which all
use Grand Theft Auto V to produce realistic pedestrian im-
ages/behaviors as agents walk across a scripted scene. Fol-
lowing [24], the GTAV’s rendering engine is used to pro-
duce exact crowd counts for [40] and bounding boxes, seg-
mentation masks, and depth masks of all agents for [1 1, 24].

Table 3. An overview of multi-object spatial reasoning datasets.
StarCraftlmage has the most complex agent positioning, the low-
est overhead, and the ability to simulate more complex scenarios
(e.g., data corruption, as seen in subsection 3.2). GT stands for
“ground truth”.

Frame Over- Noise

Dataset Count Agent Positioning head GT Sim
USD [5] 2K Real Pedestrian Some
GCC [40] 15K Simulated Crowd Low v
GTA [24] 250K Simulated Ped/Drive ~ Some v
MOTSynth [11] 1.4M Simulated Pedestrian Some v/
TAO [?] 2.2M Real YouTube Some
PySC2[38] n/a Complex / Strategic ~ High v

+ Replays (from human player)
StarCraftlmage 3.6M Complex / Strategic =~ Low v v
(ours) (from human player)

7. Conclusion

We introduce StarCraftimage as a multi-agent spatial
reasoning dataset with the overarching goal of being as easy
to use for prototyping and initial method testing as MNIST
and CIFARI10 while capturing complex and strategic unit
positioning for advanced spatial reasoning methods. To this
extent, we process raw frame data from 60 thousand hu-
man StarCraft II replays to formulate 3.6 million summary
images in three representations of decreasing complexity:
StarCraftHyper which is hyperspectral images that encode
the unit ids and last seen timestamps at each spatial loca-
tion, StarCraftCIFAR10 which is RGB images that mimic
CIFARI10, and StarCraftMNIST which is grayscale images
that mimic MNIST. We also include relevant metadata for
each summary image which can be used to filter the Star-
Craftlmage dataset when performing the tasks, corruption
extensions, and modifiers we discuss in section 3. While
we hope this work allows for easy prototyping and thus
simpler and more systematic advances in developing spatial
reasoning methods, we recognize that although this dataset
is based on complex human actions, it is still a simplified
simulated environment, and thus real-world data (or more
realistic data) will always be needed to fully evaluate meth-
ods. Additionally, our code for dataset processing, extract-
ing, and loading the data could be used to expand or spe-
cialize new StarCraft datasets for multi-agent spatial rea-
soning applications using the millions of publicly available
StarCraft II replays via Blizzard’s developer API without
the overhead of starting from scratch. Ultimately, we hope
our dataset provides the ML community with an easy-to-use
multi-agent spatial reasoning dataset that will significantly
reduce the barrier of entry for these important tasks.

Acknowledgements This work was supported by NSF
(I1S-2212097) and ARL (W911NF-2020-221).

22011

References

(1]

(2]

(3]

(4]

5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

Naveed Ahmad, Mureed Hussain, Naveed Riaz, Fazli Sub-
hani, Sajjad Haider, Khurram S Alamgir, and Fahad Shin-
wari. Flood prediction and disaster risk analysis using gis
based wireless sensor networks, a review. Journal of Basic
and Applied Scientific Research, 3(8):632-643, 2013. 6
Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David
Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019. 2

Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth,
Michael J Black, and Richard Szeliski. A database and eval-
uation methodology for optical flow. International journal
of computer vision, 92(1):1-31, 2011. 6, 8

Matthias Butenuth, Florian Burkert, Florian Schmidt, Stefan
Hinz, Dirk Hartmann, Angelika Kneidl, André Borrmann,
and Beril Sirmacek. Integrating pedestrian simulation, track-
ing and event detection for crowd analysis. In 2011 IEEE
International Conference on Computer Vision Workshops
(ICCV Workshops), pages 150-157. IEEE, 2011. 1, 8
Antoni B Chan, Zhang-Sheng John Liang, and Nuno Vascon-
celos. Privacy preserving crowd monitoring: Counting peo-
ple without people models or tracking. In 2008 IEEE confer-
ence on computer vision and pattern recognition, pages 1-7.
IEEE, 2008. 8

PW.D. Charles. S2clinet-proto repository. https :
//github.com/Blizzard/s2client - proto/
#replay-packs,2015. 3

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213-3223, 2016. 7

Achal Dave, Tarasha Khurana, Pavel Tokmakov, Cordelia
Schmid, and Deva Ramanan. Tao: A large-scale benchmark
for tracking any object. In European conference on computer
vision, pages 436—454. Springer, 2020. 8

Riham Elhabyan, Wei Shi, and Marc St-Hilaire. Cover-
age protocols for wireless sensor networks: Review and fu-
ture directions. Journal of Communications and Networks,
21(1):45-60, 2019. 7

Riham Elhabyan, Wei Shi, and Marc St-Hilaire. Cover-
age protocols for wireless sensor networks: Review and fu-
ture directions. Journal of Communications and Networks,
21(1):45-60, 2019. 16

Matteo Fabbri, Guillem Brasé, Gianluca Maugeri, Or-
cun Cetintas, Riccardo Gasparini, Aljovsa Ovsep, Simone
Calderara, Laura Leal-Taixé, and Rita Cucchiara. Motsynth:
How can synthetic data help pedestrian detection and track-
ing? In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 10849-10859, 2021. 1, 2,
8

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354-3361. IEEE, 2012. 1, 6, 8

Di Guo, Xiaobo Qu, Lianfen Huang, and Yan Yao. Sparsity-
based spatial interpolation in wireless sensor networks. Sen-

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

(29]

22012

sors, 11(3):2385-2407, 2011. 6

James Z Hare, Junnan Song, Shalabh Gupta, and Thomas A
Wettergren. Pose. r: Prediction-based opportunistic sensing
for resilient and efficient sensor networks. ACM Transac-
tions on Sensor Networks (TOSN), 17(1):1-41, 2020. 7
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770778, 2016. 7, 17, 19, 23

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classifica-
tion with convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 558-567, 2019. 17

Jeremy Howard and Sylvain Gugger. Fastai: a layered api
for deep learning. Information, 11(2):108, 2020. 17

Pavel Iakubovskii. Segmentation models pytorch. https:
//github.com/qubvel/segmentation_models.
pytorch, 2019. 17

Forrest N. Iandola, Song Han, Matthew W. Moskewicz,
Khalid Ashraf, William J. Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parame-
ters and <0.5mb model size. arXiv:1602.07360, 2016. 17
Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional
language and elementary visual reasoning. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 2901-2910, 2017. 8

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 19

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114,2013. 18
Pang Wei Koh, Shiori Sagawa, Henrik Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Balsubra-
mani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on
Machine Learning, pages 5637-5664. PMLR, 2021. 6
Philipp Krihenbiihl. Free supervision from video games. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2955-2964, 2018. 1, 8

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James
Bergstra, and Yoshua Bengio. An empirical evaluation of
deep architectures on problems with many factors of varia-
tion. In Proceedings of the 24th international conference on
Machine learning, pages 473-480, 2007. 2

Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998. 2

Wenwen Li and Chia-Yu Hsu. Geoai for large-scale image
analysis and machine vision: Recent progress of artificial
intelligence in geography. ISPRS International Journal of
Geo-Information, 11(7):385, 2022. 16

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In

https://github.com/Blizzard/s2client-proto/#replay-packs
https://github.com/Blizzard/s2client-proto/#replay-packs
https://github.com/Blizzard/s2client-proto/#replay-packs
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch

(30]

(31]

(32]
(33]

(34]

(35]

(36]

(37]

(38]

[39]

(40]

[41]

[42]

European conference on computer vision, pages 740-755.
Springer, 2014. 8

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 7

Ali Masjedi and Melba M Crawford. Prediction of sorghum
biomass using time series uav-based hyperspectral and lidar
data. In IGARSS 2020-2020 IEEE International Geoscience
and Remote Sensing Symposium, pages 3912-3915. IEEE,
2020. 6

Sean Plott. Starcraft ii mental checklist, 2011. 2

Joaquin Quifionero-Candela, Masashi Sugiyama, Neil D
Lawrence, and Anton Schwaighofer. Dataset shift in ma-
chine learning. Mit Press, 2009. 6

Caleb Robinson, Le Hou, Kolya Malkin, Rachel Soobit-
sky, Jacob Czawlytko, Bistra Dilkina, and Nebojsa Jojic.
Large scale high-resolution land cover mapping with multi-
resolution data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 12726—
12735, 2019. 8

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234-241.
Springer, 2015. 7, 16, 17

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai.
One pixel attack for fooling deep neural networks. IEEE
Transactions on Evolutionary Computation, 23(5):828-841,
2019. 7

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 24462454, 2020. 8

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko
Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo,
Alireza Makhzani, Heinrich Kiittler, John Agapiou, Julian
Schrittwieser, et al. Starcraft ii: A new challenge for rein-
forcement learning. arXiv preprint arXiv:1708.04782, 2017.
2,3,6,8,13,18

Angtian Wang, Yihong Sun, Adam Kortylewski, and Alan L
Yuille. Robust object detection under occlusion with context-
aware compositionalnets. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12645-12654, 2020. 6

Qi Wang, Junyu Gao, Wei Lin, and Yuan Yuan. Learning
from synthetic data for crowd counting in the wild. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 8198-8207, 2019. 1, 2, 8
Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Be-
longie, Jiebo Luo, Mihai Datcu, Marcello Pelillo, and Liang-
pei Zhang. Dota: A large-scale dataset for object detection in
aerial images. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018. 7

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-

(43]

[44]

(45]

[40]

(47]

(48]

22013

ers. Advances in Neural Information Processing Systems,
34:12077-12090, 2021. 7, 8

Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492—1500,
2017. 17

Haotian Yan, Chuang Zhang, and Ming Wu. Lawin trans-
former: Improving semantic segmentation transformer with
multi-scale representations via large window attention. arXiv
preprint arXiv:2201.01615,2022. 7, 8

Mohamed Younis, Izzet F Senturk, Kemal Akkaya, Sooky-
oung Lee, and Fatih Senel. Topology management tech-
niques for tolerating node failures in wireless sensor net-
works: A survey. Computer networks, 58:254-283, 2014.
16

Liang Zheng, Yi Yang, and Alexander G Hauptmann. Per-
son re-identification: Past, present and future. arXiv preprint
arXiv:1610.02984, 2016. 8

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2017. 8

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and
Chen Change Loy. Domain generalization: A survey. /[EEE
Transactions on Pattern Analysis and Machine Intelligence,
2022. 6

	. Introduction
	. Dataset Extraction and Construction
	. Extracting Raw Data From SC2 Replays
	. StarCraftHyper: Construction and Processing of Hyperspectral Representation
	. StarCraftCIFAR10 and StarCraftMNIST: RGB and Grayscale Representations
	. Dataset Exploration and Analysis

	. Multi-Agent Spatial Reasoning Applications
	. Spatial Reasoning Examples
	. Simulated Data Corruption Models
	. Spatial Reasoning Task Modifiers

	. Benchmark Evaluations
	. Preliminary Real-World Experiment on DOTA Satellite-Image Dataset
	. Related Works
	. Conclusion

