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Abstract. Coordinate-based neural networks parameterizing implicit
surfaces have emerged as efficient representations of geometry. They effec-
tively act as parametric level sets with the zero-level set defining the
surface of interest. We present a framework that allows applying defor-
mation operations defined for triangle meshes onto such implicit sur-
faces. Several of these operations can be viewed as energy-minimization
problems that induce an instantaneous flow field on the explicit surface.
Our method uses the flow field to deform parametric implicit surfaces
by extending the classical theory of level sets. We also derive a consoli-
dated view for existing methods on differentiable surface extraction and
rendering, by formalizing connections to the level-set theory. We show
that these methods drift from the theory and that our approach exhibits
improvements for applications like surface smoothing, mean-curvature
flow, inverse rendering and user-defined editing on implicit geometry.

Keywords: Implicit surfaces * Level sets - Euler-lagrangian
deformation

1 Introduction

Recent successes in generative modeling of shapes [13,46,52] and inverse render-
ing [41,69] are largely driven by implicit representations of geometry parameter-
ized as multi-layer perceptrons (MLPs) (or neural implicits [16]). These networks
can compactly represent highly-detailed surfaces at (theoretically) infinite reso-
lution [34,53,59,60]; they are defined continuously in R? and are differentiable —
enabling their usage in gradient-based optimization [25,69] and learning [2,12,37]
methods. Despite these advances, there is still a large body of work in geometry
processing, computer vision and graphics which relies on explicit surface rep-
resentations. Often these mesh-based algorithms are a better choice than their
implicit counterparts. For instance, in case of inverse rendering, differentiable
renderers for triangle meshes [18,26,27,42,71] are a) faster, b) more accurate,
and ¢) can handle more complex light-transport effects, in comparison to the
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renderers designed for implicit surfaces [23,41,69]. Similarly, geometry process-
ing algorithms for applications like surface smoothing and deformation [10,54,61]
are vastly superior in terms of compute and memory requirements than the ones
developed for neural implicit surfaces [67]. Most of these methods, however, are
highly specific to mesh geometry and are not easily adaptable to MLP-defined
surfaces. Our work is a theoretical attempt to bridge this gap.

We first introduce the following insight: several mesh-based algorithms define
an energy-minimization problem that is solved using gradient descent; the gradi-
ents used by the optimizer to update the geometry can be viewed as analogous
to an instantaneous explicit flow-field (V) applied on the surface. Informed by
the literature on fluid simulation [7] and level-sets [44], deformation of a surface
with such a flow field depends on the geometry representation.

The Lagrangian representation involves tracking the sur-
face explicitly as a set of a points (x) and connections (like v
triangles). The point-set is discrete and the connectivity is
static, which keeps the optimization relatively simple; we
can separately integrate the field at each point (update ver-
tices x — x’). But optimization of the resolution of the
surface is non-trivial and can also get unwieldy for problems which involve sur-
faces with unknown topology.

Alternatively, Fulerian descriptions can be used. Each
point in space has an object-property ¢ associated with it,
like the distance from the surface or its occupancy inside the
enclosed volume. The surface here is implicitly defined with
dynamic connectivity; one can smoothly vary the topology
during optimization. Canonically, ¢ is defined only on a dis-
crete voxel-grid and needs to be interpolated for points off the grid. Here, making
instantaneous updates to the surface is more involved as it requires changing ¢
values for a large set of points. A neural implicit is a continuous variant of an
Eulerian representation. Applying a flow field to such functions is non-trivial as
updates are required in the parameter (8) space as opposed to directly updating
o to @',

We propose a parametric level-set evolution method (Sect. 4) which propa-
gates neural implicit surfaces according to an explicitly generated flow field. Our
method comprises of three repeating steps, 1) A non-differentiable surface extrac-
tion method like Marching Cubes [31] or Sphere Tracing [21] is used to obtain a
Lagrangian representation corresponding to a neural implicit, 2) A mesh-based
algorithm is used to derive a flow field on the explicit surface (Sect. 4.1), and
3) A corresponding Eulerian flow field is used to evolve the implicit geometry
(Sect. 4.2).

X — %
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Previous methods [41,49,51] app-
roach the problem of using mesh-based
energy functions on FEulerian surfaces
with the idea of differentiable extraction
of Lagrangian representations. We show
these methods are not in accordance with
the level-set theory [45] (Sect. 5). The dis-
cussion also yields a more general proof
(Sect. 5.1) for differentiable surface extrac- ~ Fig. 1. Inverse-rendering recovery.
tion from level set functions with arbitrary gradient norms (|V¢| # 1). Our
method is more formally connected to the theory and we validate it with experi-
mental observations made on three diverse problem settings, 1) Curvature-based
deformation (Sect. 6.1), where we demonstrate more accurate surface smoothing
and mean-curvature flow than previous methods [49,67], 2) Inverse rendering of
geometry (Sect. 6.2), where we show accurate recovery from multi-view images
for high-genus shapes without object masks as in [41,69] (example in Fig. 1), and
3) User-defined shape editing (Sect. 6.3), where the implicit surface is deformed
60x faster than previous work [67].

2 Related Work

Coordinate-based MLPs have become a popular choice as function approxima-
tors for signals like images, videos and shapes [13,46,53,56,60]. Our work focuses
on using MLPs for approximating implicit geometry. Such representations are
compact, continuous and differentiable. These advantages are well suited with
gradient-descent based optimization and learning problems. Recent develop-
ments in generative modeling of shapes [11,35,46,52], 3D consistent image syn-
thesis [12,66], 3D reconstruction [5,57,72] and inverse rendering [25,43,68,69],
all rely on representing geometry using MLPs. For a more detailed discussion on
recent work regarding coordinate-based representations refer to the survey by
Xie et al. [65], and for inverse rendering the survey by Tewari et al. [63].

There is also a rich literature on geometry processing [8-10,54,55] and inverse
rendering [4,18,32,40] for explicit surface representations. Yang et al. [67] intro-
duce some of the geometry processing ideas to neural implicit surfaces, but the
method could be inaccurate (Sect. 6.1) and slow (Sect. 6.3).

For inverse rendering applications, differentiable renderers for triangle meshes
are used for gradient-based optimization. Physics-based renderers differenti-
ate through a light-simulation process [6,27,42,71] and provide accurate gra-
dients. Alternatively, differentiable rasterization [26,30,48] can be used for high-
performance gradient computation, but only for single-bounce rendering mod-
els. However, optimizing triangle meshes with gradient-descent is non-trivial.
Careful design of the optimization method [18,40] and error functions [32] is
required for robust optimization. To circumvent some of these issues, IDR [69]
and DVR [41] use implicit surface representations like SDFs and occupancy func-
tions [36] parameterized with MLPs. These methods mitigate some of the topo-
logical restrictions, but are not physics-based and are not in accordance with the
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level-set theory (Sect. 5.2). We propose an inverse rendering method which uses
explicit differentiable renderers for parametrically defined implicit surfaces. The
proposed method is not as sensitive to initialization as explicit methods [18,40]
are, does not require an object mask like implicit methods [41,69] do, and main-
tains the ability to vary topology during optimization.

Our method uses the level-set theory [45] as the foundation for optimizing
and deforming parametric implicit surfaces. Previous methods [3,39,64] for the
applications discussed in this work apply to non-parametric level sets. Perhaps
the most related works to our method are MeshSDF [49] and RtS [15]. Compared
to MeshSDF, our approach is more formally connected to the theory of level-
sets (Sect. 4), applies to all parametric functions (Sect. 5.1), and works for a
more diverse set of optimization problems like shape editing (Sect. 6.1, 6.3) and
inverse rendering (Sect. 6.2) — deviating from experimental observations made
by Remelli et al. [49] on learning-based settings. Compared to RtS [15], we
show geometry processing applications along with theoretical parallels (Sect. 5)
between parametric level-set methods like MeshSDF [49], DVR [41], IDR [69]
and the classical theory [44]. Our inverse rendering method is shown to work
(Sect. 6.2) for a set of high-genus shapes with a genus-0 initialization, in contrast
to object-pose optimization or small genus changes shown in [15]. Recent work
by Munkberg et al. [38] and Hasselgren et al. [22] also show promise in using
explicit differentiable renderers with implicit geometry for inverse problems.

3 Background

Consider a closed surface of arbitrary topology 052 evolving with respect to time
t. We define a Lagrangian representation of this surface with a finite set of k
points in R? as 00, = {x; | x; ~ 0Q; Vi € {1,2,3,...,k}}. This point-set can be
viewed as a triangle mesh if an additional set of connections between the points
is provided, and as a point cloud otherwise. Implicitly this surface can also be
represented with a family of level-sets ¢ : R?® — R, the zero iso-contour of which
represents the surface 0Qp = {x | ¢(x) = 0}. ¢ can be arbitrarily chosen, but a
canonical choice is a signed-distance function (SDF) which satisfies:

=(x i - 1

$(x) = (+) min {|}x —xc]l2}, (1)

where x¢ is the closest point on the surface to x and the sign of ¢(x) denotes
whether x is enclosed (—) within the shape or not (+).

Parameterizing ¢. Analytically defining ¢ for simple and regular shapes is rela-
tively straightforward [47], but is infeasible for most objects. Recent work on 3D
reconstruction [41,69] and generative shape modeling [13,46] suggests parame-
terizing ¢ using a multi-layer perceptron (MLP) with 6 as its parameters. The
networks are optimized by minimizing an energy function comprised of a distance
term [46] and a gradient term [19] enforcing |V¢| to be 1. We use SIREN [53]
as the parametric function of choice, although our method is agnostic to the
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network parameterization. The network acts approximately as an SDF at the
rest state (¢ = 0), but may not retain the SDF property (Eq.1) as the surface
evolves. We denote this surface as 0Qg(0) = {x | ®(x;0) = 0}, where ® is
parameterized with 6 as the weights and biases of the network. For clarity, we
use ® for parametric level-sets and ¢ for non-parametric.

4 Method

We begin the discussion by first characterizing the deformation of surfaces into
Lagrangian (Sect. 4.1) and Eulerian (Sect. 4.2) settings. We show that gradient
descent on energy functions defined for triangle meshes can be viewed as surface
deformation under the dynamics of a flow field V, which is discretely defined
only on the surface points 9€21,. We can use this flow field to deform a continuous
surface representation using the level-set equation. We extend the level-set equa-
tion to the case of parametric level-sets ® which enables us to use loss functions
defined on triangle meshes to deform MLP-defined level-sets.

Eulerlan Nk Lagrangian 02,
Parametric X; V(x;)
Level-Sets ' ‘
D(x;0) MC miny, €
—> —_—
< <«
Update j % ‘Z—’t‘

Fig. 2. Method Overview. We present a level-set method to evolve neural representa-
tions of implicit surfaces. Using Marching Cubes (MC) [31], a Lagrangian surface 02,
is extracted from an Eulerian representation 9Q2g encoded in the network parameters
0. An energy function £ is defined on 0 which is minimized using gradient-descent.
The gradients of the optimizer together act as a flow-field V on the surface points x,
which is used to evolve the non-parametric ¢ using the level-set equation. The values
of ¢ on the surface act as references to update the parameters 6 of the network.

4.1 Lagrangian Deformation

As mentioned earlier, in the Lagrangian setting, the surface is defined with a
finite set of points 9d€);,. A variety of methods in geometry processing and com-
puter vision define an energy function £ that is minimized to make instantaneous
updates to 0€p. Some recent examples include optimizing point-clouds for view-
synthesis [1,50] and triangle-meshes for inverse rendering of geometry [18,40].
The surface is updated using spatial gradients 2 3 , which is well studied in numer-
ical analysis [58] and optimization methods [14]. Through the lens of physics,
these gradients induce an instantaneous flow field V(x), which can be used to
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evolve the surface by integrating the following ordinary differential equation
(ODE):

Cc% = —g—i — V(x). < Lagrangian Deformation (2)
Numerically, this can be done using forward-Euler steps x‘t! = x! + AtV'(x).
This is easy to accomplish if the connectivity of the points remains static. More
sophisticated integration schemes can also be used [58]. Here, in case of optimiza-
tion problems solved using gradient descent, At is equivalent to the learning rate.
Several works in shape deformation [20] and inverse rendering [40] can be sub-
sumed by this ODE with different definitions for flow V and time-step At. We
next show that these readily available energy functions and optimization algo-
rithms defined for explicit surfaces can also be used to optimize MLP-defined
level-sets.

4.2 Eulerian Deformation

To avoid the topological complications associated with Lagrangian deformations,
we can instead define a corresponding Fulerian deformation field. By definition,
we know for points x € 99, ¢(x) = 0. Using implicit differentiation:
dp(x) 0¢ 0pIx O

i _-Eﬁi+-5;;52 —-Eﬁ’4-‘7¢"[——0 < From 2

= % =-V¢- V. < Eulerian Deformation (3)
This partial differential equation (PDE) is sometimes referred to as the level-set
equation [45], the material derivative [7] or the G-equation [33]. We extend this
PDE to obtain an evolution method for parametric level-sets ®. First, for each
time step ¢, we extract a Lagrangian surface representation Q2% from ® using
MC [31]. Depending on the task at hand, an energy function £ (e.g., photomet-
ric error for inverse rendering) is defined on 99} . Assuming £ is differentiable,
we compute % = —V'(x) for each vertex x; € 9Qy. With the flow field V7,
we update the level-set function as we would in the non-parametric case using
forward-Euler steps:

P =@t — AtV VI < From (3) (4)

The time step At here is a parameter which is dependent on the dynamics of
the flow-field. If V is highly non-linear, taking smaller steps (i.e., At is small)
is required, while for a simple field, larger values of At should suffice. For each
time step, we take the values of non-parametric ¢!t as the reference and update
the parameters of ® accordingly. This is achieved by minimizing the following
objective:

minJ(0) = o 3 116700 — B )

x€0Qr
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using gradient descent. Since the surface updates are small for each time step,
the number of descent steps required is in the order of 102. This makes the
method convenient for obtaining neural representations of deformed variants
of the initial geometry. After each optimization routine, we again extract the
Lagrangian surface using MC [31], which is subsequently fed into a mesh-based
energy-minimization problem. An overview of our method is shown in Fig. 2. For
each of the applications we show in Sect. 6, we define V' using a corresponding
energy function, and minimize J for each time step.

5 Theoretical Comparisons

The level-set method discussed in Sect. 4.2 subsumes two related works, 1) Differ-
entiable iso-surface extraction (MeshSDF) [49], and 2) Differentiable rendering
of implicit surfaces (DVR/IDR) [41,69]. We first show that MeshSDF minimizes
the level-set objective J defined in (5) with a single gradient-descent step. But the
surface does not propagate in agreement with the level-set equation, as outlined
in Sect. 5.1. We then show that these two seemingly disparate works (MeshSDF
and DVR) are closely related in Sect. 5.2. We end the discussion with an expla-
nation for how DVR deviates from the level-set equation.

5.1 Differentiable Iso-Surface Extraction

Result 1. Differentiable Iso-Surface Extraction [}9] takes a single gradient-
descent step to minimize the level-set objective function J (Eq.5).

Proof. MeshSDF [49] defines a Init Ours MeshSDF?
loss-function £ on a triangle
mesh extracted using Marching
Cubes [31] from an SDF param-
eterized with an MLP. They use
an MLP ®(x;6,z) conditioned
on a latent-code z characteriz-

. 0
ing the shape. Using £ they Fig. 3. MeshSDF® does not follow the level-

. set equation. (Left) A planar surface defined
ppda.te the latent-code z, which implicitly with a(n M)LP is influenced by a flow
15 dlff.erent from our gf)é‘l of field in the direction of its normal. The motion
updating 6 for an unconditional = ,t¢ained using differentiable iso-surface extraction
®. To clarify this distinction, (Right) is inconsistent with the field. Our method
we use MeshSDF’ to denote (Center) propagates the front as expected.

our variant which updates 6. To

update the parameters of the

MLP, we compute the following gradient using the chain-rule:

0L ~ cox o
06 5o, ox 0P 06

xE
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where x are the vertices on the mesh and ® is an SDF. The first and the third
gradient terms on the right are computed using automatic differentiation. The
second term g—g can be approximated as the inverted surface normal —n(x) =
—Vx® [49], when ® is an SDF. In the spirit of Lagrangian deformation (Eq.2),
_% acts as an instantaneous flow field V on the vertices x. The parameters of
the MLP are then updated as:

6 —0— Aa—L—G—AZVWb (7)

x€0,

where A is the learning rate. Alternatively, we can also update 6 using the objec-
tive function defined in Eq.5 using gradient descent:

o.J 5 (x . oD
6—6—Aor=6-2) > — ®B(x;0)) (‘ae)
x€0Q,
P

29 J From (4) (8)

=0—¢ Z V.V
x€0Q

where € is a constant. The last equivalency is valid when ¢!T!(x) — ®(x;0) =
—AtV -V (Eq.4), which is true only for the first gradient descent step. Subse-
quently, the value of ®(x;6) changes as the parameters get updated. Comparing
(7) and (8), we conclude that the optimization in MeshSDF? has the effect of
taking a single gradient-descent step to minimize J. Note that while the proof
by Remelli et al. [49] assumes ® is an SDF, the second update equation (8) does
not. It is valid for all level-set functions, with no restrictions on the values of the
gradient-norm (|V®|) and is also valid for occupancy functions [36]. O

However, by taking a single step to update 6, the surface does not propagate
in agreement with the level-set Eq. (3). This is problematic for applications which
require the surface to move as intended by the flow-field. An example application
is shown in Sect. 6.1. We also illustrate this with a toy example in Fig. 3 where a
planar surface propagates in the direction of its normal. A more formal discussion
is in Result 2.

Result 2. Differentiable iso-surface extraction [[9] does not propagate the
surface-front as dictated by the flow field.

Proof. We show this with an example flow field. Consider the surface-front propa-
gating with a constant speed 3 in the direction of the normal. The corresponding
FEulerian deformation is constant across the surface:

% =—|V¢|s =-0. < Assuming ¢ is an SDF (9)

With the same flow field, we can estimate the instantaneous change in ®
(parametric) for MeshSDF? as:

aq>_a<pae_aq>z 500 _
a9 ae

= B8 < From (7) and (9) (10)
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The term B on the right is constant for every point x on the surface. The
gradient %—%) is dependent on the position where it is evaluated and hence front-
propagation %—‘f is not constant. On the contrary, we minimize the objective
function defined in (5) which ensures that the surface propagation is constant

as in (9). O

For the implications of Result 1 and 2, and experimental comparisons, we
defer the discussion to Sect. 6.1.

5.2 Differentiable Surface Rendering

An alternate way of extracting a Lagrangian surface 0€1y from & is by com-
puting ray-surface intersections using ray-marching or sphere-tracing [21]. If
ray-marching is differentiable [24,29], one can backpropagate gradients from
error functions defined on 9y to the parameters 6 defining the implicit sur-
face. Recent developments in inverse rendering [36,69] rely on this idea. The
explicit surface extracted using ray-marching differs from the one obtained using
marching-cubes in two ways, 1) Ray-marching does not extract the connectivity
(e.g., triangle faces) among the intersection points. This restricts the usage of loss
functions which rely on attributes like the edge-length or differential operators
like the Laplacian. 2) The intersection points depend on the camera attributes.
The resolution of the image plane affects the density of points and the viewing
direction determines the visibility. As a result, 0€), obtained using ray-marching
could be sparser than the one obtained marching cubes. Furthermore, as we show
in Result 3, by using differentiable ray-marching the parameters get updated
exactly as when differentiable iso-surface extraction is used—although with a
less favorable Lagrangian representation (sparser and no connectivity). This is
in addition to the computational disadvantage associated with ray-marching.
We also formally show in Result 4 that surface evolution with differentiable
ray-marching is in disagreement with level-set theory for tangential flows.

Result 3. Surface evolution wusing differentiable ray-marching of parametric
implicit surfaces [36,69] is the same as using differentiable iso-surface extrac-
tion [49] when the viewing direction v, is parallel to the normal n at the inter-
section point x,,. The parameters 0 for the level-set function ® are updated as:

6H67A2V~V<I>aa—<§, (11)

where x,, are the visible points and V is the flow field. Comparing (11) and (7),
the gradient-descent step is the same. As in the case of MeshSDF?, here the
surface is evolved with a single step in the parameter space. We provide a more
detailed proof for (11) in the Appendix.
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Result 4. Differentiable ray-marching of parametric implicit surfaces [306,69]
disagrees with the level-set equation for tangential components V> of the flow
field V. The change in parameters A6 is:

o0d

A6 =D £V tan(arccos(Ve - vi)) 5o

X

70, (12)

which could be non- Ours
zero. A detailed proof
is in the Appendix.
Referring to Eq. 3, for

tangential flows the

Init DVR/IDR [36,69

o S Lo

u,

surface should not

d defor- ‘ ‘ . ‘
un f%rgo any  defor L |
mation, ie. ZF =

0. However, since 6
gets updated as in
(12), the surface does
deform. We instead

Fig. 4. Tangential flow fields may deform surfaces
when DVR/IDR is used for surface extraction. (Left)
A parametric Eulerian circle undergoes tangential deforma-

minimize the objec-
tive function J (Eq.5)
which is 0 for a tan-
gential field. We show

tion V* at surface points x,. (Middle) Using differentiable
surface rendering, the surface deforms incorrectly. (Right)
Our method agrees with the level-set equation and the resul-
tant deformation is the identity.

an example of tan-

gential deformation in

Fig. 4. Experimental comparisons in Sect. 6.2 validate that deforming ® accu-
rately is critical for applications like inverse rendering.

6 Applications

We focus on validating the proposed theory with computer graphics models in
three different settings, 1) Curvature-based deformations (Sect. 6.1), which can
be used to smooth/sharpen features and apply curvature defined flows on implicit
surfaces, 2) Inverse rendering of geometry (Sect. 6.2), where a differentiable
renderer for explicit geometry can be used to evolve implicit surfaces, and 3)
User-defined deformations (Sect. 6.3), where a user can specify alterations for a
given object.
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6.1 Curvature-based Deformation

To apply surface smoothing on paramet-
ric implicit surfaces, we first define a
corresponding explicit force field. For
the extracted Lagrangian surface 0€Qp
at each time step, we minimize the
Dirichlet-energy functional on the sur-
face. In the continuous setting, this is
defined as:

5(89):/89|wx|\2 ix.  (13)

Minimizing £ can be shown [8] to induce
the following explicit flow-field on the

721

—60

Fig. 5. The laplacian A® of an MLP-
defined level-set function is noisy.
We show the mean-curvature values for a
parametric level-set function of a square.

surface:

ox

i

Large values are observed for a zero-
curvature surface.

V(x) = MAx = =2 s(x)n(x),
(14)

where ) is a scalar diffusion coefficient, A is the Laplace-Beltrami operator and n
is the normal. k is the mean-curvature, which for an implicit surface is defined as
the divergence of the normalized gradient of ¢ (i.e., V- %) [44]. Tt is equivalent
to computing the laplacian A® of the MLP using automatic differentiation. In
Fig. 5 we show that such an estimation of the laplacian is noisy—significant mag-
nitudes are observed even for surfaces with zero curvature.! Instead of using (14)
as it is, which requires estimating A®, we approximate V = AAx ~ ALx; where
L is the discrete Laplacian we can compute using the Lagrangian surface. Note
that this is feasible only because of the hybrid (Eulerian+Lagrangian) nature
of our method. We use the flow-field to update ® using the method outlined
in Sect. 4.2. Figure6 shows qualitative comparisons for smoothing applied on
two surfaces. We show a comparison with a method which applies deformation
using the continuous Laplacian (A®) (NFGP) [67]. When £ is minimized using
MeshSDF? [49], the deformation is not curvature based and high-frequency fea-
tures are retained during the evolution.

Equation (14) is referred to as mean-curvature flow [17]. Since our method
deforms the surface in accordance with the flow-field, we can use (14) to apply
mean-curvature flow on a parametrically defined ¢. Yang et al. [67] minimize an
objective function which is handcrafted for a specific level-of-smoothness. Apply-
ing curvature-based flow is infeasible with their method since it would require a
new optimization objective for each level-of-smoothness. As MeshSDF? [49] does
not evolve the surface according to the level-set equation, the flow obtained with
it is incorrect. We show an example flow on a genus-0 surface in Fig. 7.

! This might be due to the unconstrained Lipschitz constants of MLPs [28].
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Y

Init MeshSDF? [49] NFGP [67] Ours

Fig. 6. Surface smoothing on parametric level-sets. We apply surface smoothing
on an MLP-defined implicit surface by minimizing Dirichlet energy on the correspond-
ing explicit surface. We use a discrete Laplacian to define a flow-field on the surface;
NFGP [67] uses its continuous counterpart and preserves too many high-frequency
details. MeshSDF® [49] fails to smoothen the surface.

6.2 Inverse Rendering of Geometry

We propose an inverse-rendering method which uses a differentiable renderer
designed for triangle meshes to optimize geometry defined using parametric level-
sets. As in the case of recent methods [4,41,69], we use an analysis-by-synthesis
approach. A photometric error comparing the captured and the rendered images
is minimized using gradient descent. The gradients of the error function are
used to define an explicit flow-field. A corresponding Eulerian deformation field
is obtained to evolve the level-set function ®. As a result we can take large steps
in inverse rendering of geometry with unconstrained topology and guarantees
on mesh quality. The resulting optimization is robust and does not require an
object-mask as in the (unlike [41,69]).

Our single-bounce forward rendering model uses a collocated camera and
point-light, with a known diffuse-Phong BRDF Although we choose Nvd-

iffrast [26] as the differentiable rasterizer in our method, in theory it can be
A A A L\
\K/ . \1\” = .

Paast

Fig. 7. We use an explicit mean-curvature flow-field to deform a parametrically defined
implicit surface. When the same flow-field is used with MeshSDF, the deformation is
not curvature-based. A genus-0 surface morphs into a sphere using our method while
MeshSDF retains high-curvature regions.

Mean-Curvature Flow N

Ours MeshSDF?
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IDR [69] LSIG [40] Ours Target
Implicit Explicit Implicit + Explicit

Fig. 8. Inverse rendering of high-genus shapes. A spherical surface is used for
initialization. IDR [69], which uses differentiable rendering of implicit surfaces does
not recover finer details. LSIG [40] uses a triangle-mesh and restricts the topology post
initialization. Using an explicit differentiable renderer to optimize implicit geometry,
our method can change topology during optimization and recover fine-details. Note
that IDR requires an object mask and a neural renderer.

swapped with any other differentiable renderer. Starting from an initial esti-
mate @, for each time-step ¢ we first extract the triangle mesh Q% and mini-
mize a photometric error £. We use the gradients of £ to define the flow-field
as V' (x;) = —g—i — ALx;, where Lx; is used for smooth evolution. Taking a
single descent step for 6 is sufficient since the evolution does not need to follow
a specific trajectory.

We evaluate the recovery on a diverse set of
shapes, each of which is rendered from 100 ran-
dom viewpoints. We use IDR [69] and LSIG [40]
as baselines. We test IDR in three settings, 1)
w/o Mask, 2) With known Phong shading, and
3) Using the Neural renderer in [69]. Quantita-
tive comparisons are in Table1 and qualitative
comparisons are in Fig.8. For a genus-0 shape
(Bunny) LSIG [40] is able to recover accurate
geometry, but the optimized meshes can have self intersections as shown on
the left. It struggles with high-genus shapes as the mesh connectivity remains
static throughout the optimization routine. Even with correct topology at ini-
tialization, the recovery is erroneous. Comparisons with IDR [69] are in Fig. 9.

LSIG [40] Ours

I Self Intersections
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Table 1. Quantitative evaluation on inverse rendering of geometry. An initial
sphere is optimized to a diverse set of shapes from multi-view images. Chamfer distance
is reported for geometric consistency and PSNR is reported to evaluate the visual
appearance of optimized geometry. IDR [69] w/o Mask does not converge for any of
the shapes. Methods marked with 1 require object masks. LSIG [40] works well for a
genus-0 shape (Bunny) but struggles with high-genus shapes. Shapes recovered using
our method are shown on the top.

| 48

/ ~ \\\. /\‘v",z‘z“\
% /';:;% "9000“\\;1 Gah)

Method Bunny Genus6 Rind VSphere Dino VBunny Kangaroo

'IDR - Phong [69] 9.67 3.71 10.24 16.93 3.71 14.80 2.77
"IDR - Neural [69] 9.84 1.35 021 0.16 2.07 9.11 5.43  Chamfer
LSIG [40] 0.06 2.85 3.94 4.78 2.09 4.66 1.80 x107%
Ours 0.18 0.12 556 3.71 125 0.10 1.62 | better

fIDR - Phong [69] 21.52 18.84 15.89 18.28 20.01 17.27 21.67
"IDR - Neural [69] 23.10 28.70 26.24 25.70 22.49 16.62 21.74 PSNR
LSIG [40] 38.51 25.67 22.81 24.06 25.11 21.77 25.52 dB
s 38.86 3294 28.46 30.50 28.16 29.62 26.48 1 better

6.3 User-Defined Shape Editing

We demonstrate deformation operations
on parametric level-sets using constraints

v/ defined by a user. The problem setup is
N in line with the extensive literature [10,

GT (Explicit) Ours (Implicit)

54,55,70] on shape editing for triangle
meshes. At t = 0, we first extract a
mesh from a neural implicit surface using
MC [31]. A user can specify handle regions
on this surface to either rotate, translate
or freeze parts of the shape along with their target locations. This generates
a sparse deformation flow-field on the surface which we densify by minimizing
a thin-shell energy function that penalizes local stretching and bending on the
surface [62]. More details are in the Appendix. Estimating the flow-field requires
solving a linear system —kgAV + kpA?V = 0, where A and A? are the lapla-
cian and bi-laplacian operators. ks and kg are weighting terms for stretching and
bending respectively. Additional constraints which adhere to user specifications
are also added to the linear system [9]. With the obtained flow-field, we update
the parameters of the level-set function such that the surface propagation is as
intended. We also use gradient regularization as in [19]. An example deformation
is shown in Fig. 10.

Fig. 10. User-defined editing on para-
metric level-sets.
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Target Ours IDR [69]
' Ea0 @Ero
v i

P\ e

Mask No No Yes Yes
Shading Phong Phong Phong Neural

Fig. 9. Qualitative comparison for inverse rendering using implicit represen-
tations. We evaluate IDR in three different settings. @ Without object-mask supervi-
sion it fails to converge to a reasonable geometry. @ With a known-reflectance model
(Phong) the silhouette of the object is recovered but without any details. @ It requires
a rendering network (unknown reflectance) and an object-mask for good convergence—
both of which not required by our method.

7 Discussion

—_— ._:' Lighting | Our work formulates a level-set evolu-
g’ -_ i tion method for parametrically defined
Coom. oL aT implicit surf.aces. It does' not re.quire sur-
-b w w face extraction to be dlfferentlz%ble and

; ) can be used to apply mesh algorithms to
neural implicit surfaces. We expect the
proposed method to be particularly use-
ful for inverse problems. We showcase
one example of joint recovery of geome-
try, material and lighting from multi-view
images in Fig. 11, where we use our surface evolution method along with compo-
nents from [38]. Although the surface deformation is as dictated by the flow field,
the corresponding implicit function may not retain gradient characteristics dur-
ing evolution. This could become a pertinent problem for algorithms like sphere
tracing [21] which require reliable distance queries, and is an interesting avenue
for future research. We hope this work encourages further inquiry into recent
work on geometry optimization by drawing connections to methods in computer
vision and graphics developed in the pre-deep-learning era.

Fig.11. Joint recovery of geometry,
complex material and lighting.
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