
TCAD-2022-0655 1

HyperSpikeASIC: Accelerating Event-based
Workloads with HyperDimensional Computing and

Spiking Neural Networks
Tianqi Zhang, Justing Morris, Kenneth Stewart, Graduate Student Member, IEEE, Hin Wai Lui, Behnam

Khaleghi, Anthony Thomas, Thiago Goncalves-Marback, Baris Aksanli, Member, IEEE, Emre O.
Neftci, Member, IEEE, and Tajana Rosing, Fellow, IEEE

Abstract—Today’s Machine Learning(ML) systems, running
workloads such as Deep Neural Networks, which require billions
of parameters and many hours to train a model, consume a signif-
icant amount of energy. Due to the complexity of computation and
topology, even the quantized models are hard to deploy on edge
devices under energy constraints. To combat this, researchers
have been focusing on new emerging neuromorphic computing
models. Two of those models are Hyperdimensional Computing
(HDC) and Spiking Neural Networks (SNNs), both with their
own benefits. HDC has various desirable properties that other
Machine Learning (ML) algorithms lack such as robustness to
noise, simple operations, and high parallelism. SNNs are able to
process event-based signal data in an efficient manner. This
work develops HyperSpike, which utilizes a single, randomly
initialized, and untrained SNN layer as a feature extractor
connected to a trained HDC classifier. HDC is used to enable more
efficient classification as well as provide robustness to errors. We
experimentally show that HyperSpike is on average 31.5× more
robust to errors than traditional SNNs. On Intel’s Loihi [1],
HyperSpike is 10× faster and 2.6× more energy efficient over
traditional SNN networks. We further develop HyperSpikeASIC, a
customized accelerator for HyperSpike. By decoupling the neuron
and synapses, HyperSpikeASIC skips the inactive neurons and
limits the neuron state updating to once per time step at most.
HyperSpikeASIC is 601× faster and 3467× more energy efficient
than HyperSpike running on Intel’s Loihi for SNN acceleration,
and 12.2× faster and 211× more energy efficient than the state-
of-the-art SNN ASIC implementation [2].

I. INTRODUCTION

The Internet of Things (IoT) era put more stringent demands
on battery lifetime due to a large number of compute-intensive
machine learning algorithms that are deployed on edge de-
vices. The slowdown of Moore’s Law has made this challenge
even greater. Some designers are pinning their hopes on
using cloud computing to centralize state-of-the-art machine
learning models and distribute the results to edge devices.

This work was supported in part by PRISM and CoCoSys, centers
in JUMP 2.0, an SRC program sponsored by DARPA, in part by SRC-
Global Research Collaboration grant Task No. 2988.001, and also NSF
grants 1527034, 1730158, 1826967, 1830331, 1911095, 2003277, 1652159,
2003279, 2100237, 2112167, 2052809, 2112665.

T. Zhang, B. Khaleghi, A. Thomas, T. Marback, and T. Rosing are with
the University of California, San Diego (UCSD), La Jolla, CA 92093 USA
(e-mail: tiz014@ucsd.edu; bkhalegh@eng.ucsd.edu; ahthomas@eng.ucsd.edu;
tmarback@ucsd.edu; tajana@eng.ucsd.edu).

J. Morris is with California State University San Marcos (CSUSM), San
Marcos, CA 92096 USA (e-mail: hwlui@uci.edu; eneftci@uci.edu).

K.Stewart, H. Lui and E. Neftci are with the University of Cali-
fornia, Irvine (UCI), Irvine, CA 92697 USA (e-mail: kennetms@uci.edu,
hwlui@uci.edu; eneftci@uci.edu).

B.Aksanli is with the San Diego State University (SDSU), San Diego,
CA 92182 USA (e-mail: baksanli@sdsu.edu).

This raises concerns for privacy-conscious users, adds a lot
of communication overhead, and prevents the deployment of
real-time tasks.

Neuromorphic computing models and corresponding ac-
celerators are currently being explored as an alternative to
classical machine learning for edge devices. Their key strength
is unprecedented energy efficiency, which makes them an ex-
cellent match for power-limited applications such as those used
in the IoT. Two such promising neuromorphic computational
models are Hyperdimensional Computing (HDC) and Spiking
Neural Networks (SNNs).

SNNs are neuromorphic models that mimic the dynamics
of biological neurons via spike-based communication mecha-
nism [3]. Such spike-based information transfer can implic-
itly utilize the inter-spike time interval to efficiently carry
information, decreasing the signal processing energy consump-
tion [4]. The SNN can be trained with backpropagation-based
or plasticity-based algorithms. Due to the activation of spiking
neurons being binary and thus non-differentiable, in addition
to the processing component of SNNs being temporal, it’s
difficult to train SNN models directly with backpropagation-
based methods [5]. Some approaches use a surrogate gradient
with smoothed activation function for error gradients [6],
[7]. Plasticity-based algorithms, like Spike-timing-dependent
plasticity (STDP), adjust the weights depending on the interval
of relative spike timings from presynaptic and postsynaptic
neurons [8], [9]. Both require a nonlinear function and at
least one addition tracing variable for each synaptic to update
the weights, whose number is proportional to the square of
the number of neurons [7]. Some emerging neuromorphic
sensors, such as Dynamic Vision Sensor (DVS), can sample
the signal and encode it into temporal signal directly for SNN
processing [10]. However, the lower signal-to-noise ratio of
these novel sensors, coupled with the randomness of spiking
coding and the storage limitation of SNN network weights,
pose challenges for real-world deployment [11], [12].

Brain-inspired Hyperdimensional Computing (HDC) uses
high dimensional vectors, hypervectors (HV), to represent
signals. Unlike traditional processing systems where infor-
mation is quantized and encoded into single digital values,
HDC encodes data into hypervectors, and then combines
them to carry information [13]. HDC uses simple, easy-to-
parallelize operations for learning (addition, multiplication,
permutation, nearest neighbor search) [14], and as such, is a
perfect match for hardware acceleration [15], [16]. HDC has
been successfully applied to many classification tasks, such
as activity recognition, face detection, language recognition,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 2

image classification [17], [18], [15], as well as clustering[19],
[20], recommendation systems[21], and others[22], [23]. HDC
can be trained in one shot with little to no retraining needed. It
stores only the trained class HVs, thus dramatically reducing
the storage needs compared to neural networks, for example,
[24] shows only 3.66% storage is required compared to
the neural network with the same accuracy for the speech
recognition task. HDC is also more robust to noise because
of its high dimensionality [25]. However, for some types of
data, such as large images and event-based data, HDC needs
an additional feature extractor before encoding the data into
hypervectors to achieve state-of-the-art accuracy.
HyperSpike combines a single untrained SNN convolution

layer with HDC: the randomized SNN layer extracts the
features which are then encoded into hypervectors for training
by the HDC layer. This completely removes the need for
expensive SNN training [5], while significantly enhancing ro-
bustness via HDC classification layer. Our recent work showed
that HyperSpike using Intel’s Loihi platform and showed com-
parable accuracy to the state-of-the-art SNNs, with improved
performance by 10×, reduced energy consumption by 2.6×,
while being 31.5× more robust to errors than SNNs [26].

In this work, we develop an accelerator for HyperSpike,
called HyperSpikeASIC, and test it with a wider variety
of workloads and network structures: HyperSpike could be
applied with not only a convolution layer for event-based
image signals but also with a fully-connected layer for 1D
signals with sigma-delta modulation, thus making it possible
to run both DVS camera and EMG workloads. Our design
takes event-based coding and decouples synapse state update
and neuron state update using efficient independent process
elements (PEs) to skip inactive neurons update: synapses PEs
update the synapse states first and accumulate them, while
the neuron PEs only update the active neurons. We trade off
the ratio of the two between throughput and area. Compared
with HyperSpike using Intel’s Loihi for SNN acceleration,
HyperSpikeASIC implements SNN and HDC on the same chip
to eliminate inter-chip communication and achieves 3, 657×
higher throughput area ratio (or 601× on delay) and 3, 467×
more energy efficiency. Compared with the state-of-the-art
SNN accelerator[2], we achieve 98× boost on throughput area
ratio (or 12.2× on delay) and 211× more energy efficiency.

II. BACKGROUND AND RELATED WORK

A. Spiking Neural Networks
SNNs can be formulated as a type of recurrent neural

network with binary activation functions [27]. With this for-
mulation, SNN training can be carried out using standard tools
of auto differentiation. To best match the dynamics of existing
digital neuromorphic hardware implementing SNNs [28], our
neuron model consists of a discretized Leaky Integrate and
Fire (LIF) neuron model with a time step Δt written in the
form of a Spike Response Model [29]:

P t+Δt
j = αP t

j + St
in,

Rt+Δt
i = αRt

i + αU t
iS

t
i ,

U t+Δt
i =

∑

j

WijP
t+Δt
j −Rt+Δt

i ,

St+Δt
i = Θ(U t+Δt

i).

(1)

where the constant α = exp(− Δt
τmem

) reflects the decay
dynamics of the membrane potential during a Δt timestep,
where τmem and is the membrane time constant. The time step
in our experiments was fixed to Δt = 1ms, which has been
demonstrated to achieve the balance between computational
complexity and accuracy [7]. Ri here represents the reset and
refractory period of the neuron, and state Pi is the pre-synaptic
trace that captures the leaky dynamics of the membrane
potential. St

i = Θ(U t
i) represents the spiking non-linearity,

computed using the unit step function, where Θ(Ui) = 0 if
Ui is smaller than threshold Uth, otherwise 1. We distinguish
here the input spike train St

in from the output spike train St.
For the purposes of computing the gradient, the derivative of
Θ is replaced with the derivative of a smooth function, the
fast sigmoid function [30], following the surrogate gradient
approach [27].

SNN accelerators use Pseudo Random Number Generators
(PRNGs) when choosing the routing path [31], adding noise
to the fire threshold [32][4], modifying the weight changing
probability [33], and converting the coding format [34]. Very
few works take advantage of this randomness for feature
extraction. Single or multiple fully connected layer models are
widely used [4][33][34][35] in SNN accelerators. However,
a fully connected layer requires storing more weight than a
convolutional layer. The weights are stored in the scratchpad
memory or on each PE locally, which takes the majority of
the area [31]. Binary-weight SNN accelerators [33][34][36]
have been proposed to reduce the size of the weight mem-
ory but require more layers for equivalent accuracy. Spike
convolutional neural network (SCNN) models were adopted
in [37] and [38] and implemented on the TrueNorth [39]
chip. Following the orderliness of CNN dataflow, some SCNN
accelerators scan the pixels of SCNN inputs and do not
consider the fact that only some neurons fire at a time and
thus do not get the benefits from the spatial sparsity of
inputs [40]. The SNN accelerators are also customized for
the models that only use SNN as a feature extractor, like
in SAILnet spares coding algorithm [41] and Liquid State
Machine (LSM) [2]. In HyperSpikeASIC, we use HDC as a
classifier to reduce the storage requirement of SNN weights
and the time and complexity needed for training. We use a
randomly initialized layer of the SNN as a feature extractor
to convert the DVS signal to HDC-friendly feature vectors.
The proposed architecture takes advantage of spike sparsity
for event-driven input to skip inactive neuron state updates.
It avoids the need for training the SNN by using HDC’s
lightweight training instead. Through HDC it also gains the
benefit of high noise robustness.

B. Hyperdimensional Computing

HDC models the sparse distributed memory, which is a
mathematical representation of human memory, with spare
high-dimensional vectors, by mimicking the brain’s neural
network[42]. There are three major steps for HDC: encoding,
training, and inference. Encoding maps input data into high-
dimensional vectors with associative algebra. In HD space,
each dimension is expected to carry independent information.
The high redundancy of HVs makes it less sensitive to
noise and thus being widely explored for scenarios requiring
robustness [43]. The training stage combines HVs from the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 3

same class and creates a model storing the class HVs. During
inference, HDC checks the similarity between the incoming
sample’s HV and the trained model to find the most similar
class.

(1) Encoding: Let us assume a feature vector F =
{f1, f2, . . . , fn}, with n features in the original domain. The
goal of encoding is to map this feature vector to a D dimen-
sional space vector: H = {h1, h2, . . . , hD}. The encoding
first randomly generates D dense bipolar vectors with the same
dimensionality as the original domain, P = {p1,p2, . . . ,pD},
where pi ∈ {−1, 1}n. Many different projection matrices have
been purposed as different encoding methods, for example,
BRIC only keeps several elements near the diagonal to reduce
encoding computational intensity on large-scale HV [18]. Non-
linear operators, like shuffle, are also introduced into encoding
for times series data [44]. As there is no additional feature
extractor in those works, the fine-designed encoding stage is
critical to the accuracy. In this work, our HDC only works
as a classifier and thus we use the simple randomly generates
bipolar vectors as projection vectors. The inner product of a
feature vector with each generated vector gives us a single
dimension of a hypervector (HV) in high-dimensional space.
To encode a feature vector into an HV, we perform a matrix-
vector multiplication between the projection matrix and the
feature vector using:

H = sign(P × F) (2)

where sign(·) is a sign function that maps the result of the
dot product to +1 or -1.

(2) Training: HD computing is very easy to train - only
addition is needed to create class hypervectors. After encoding,
the original samples are represented as hypervectors. Consider
HV Hi as the encoded HV of input i with the procedure
explained above. Let the label of input i is li. HD training
simply adds all hypervectors belong to the same class to
generate the final class hypervector. Specifically, the class HV
of label j, denoted by Cj , is:

Cj =
∑

i∈{i|li=j}
Hi. (3)

In contrast to the simple training that HDC requires, neu-
ral networks require complex backpropagation algorithms to
train.

(3) Similarity checking: The inference searches for the
most similar class HV to the encoded query. When hyper-
vectors are binary, such as in this work, the search is done
using Hamming distance. When HVs are not binary, cosine
similarity is used instead. Assume the pairwise vector distance
metrics Dist(a, b) is used. The predicted label of query vector

H, denoted by l̂ is

l̂ = argmin
j

Dist(H, Cj) (4)

HDC is lightweight enough to run with acceptable perfor-
mance on CPUs [45]. However, utilizing a parallel architecture
can significantly speed up HDC execution time. Imani et al.
showed two orders of magnitude speed up when HD runs on
GPU [46]. Salamat et al. proposed a framework that facilitates
fast implementation of HDC algorithms on an FPGA [47].
HDC ASIC accelerators provide significant improvements in
performance [14] due to the bit-level operations that are

Fig. 1. Overall System Architecture of HyperSpike.

easily accelerated in silicon. There have been multiple works
on implementing HDC on new emerging computing hardware
such as ReRAM crossbar [48]. However, these works assume
an older model of ReRAM and do not consider various sources
of errors common to ReRAM. In this paper, we accelerate
HyperSpike in an ASIC (see Section IV) and show that our
design is very robust to significant levels (3.4%) of bit error
rates (see Section V-B).

Several works show that HDC is inherently robust to
noise [49], [50], [25]. Work in [49] investigated the robustness
of HDC to RTL errors and found that the HDC-based approach
tolerated 8.8× higher probability of bit-level errors, similar
to [50]. Work in [25] showed that HDC is also robust to
wireless communication errors.

The semantic pointer architecture implements a type of HD-
computing using SNNs and the Neural Engineering Frame-
work [51] . Since then other approaches to using semantic
pointer architectures for SNN computation have been proposed
such as representing phasors as spike times [52] and represent-
ing hypervectors as Sparse Block-Codes [53]. However, none
of these works have been implemented in hardware[54].

HyperSpike differs from previous approaches as it links
two separate blocks, namely SNNs and HD computing, rather
than implementing SNNs using HD or vice versa. Our initial
implementation for HyperSpike [26] used the Intel Loihi [28]
to evaluate the neuromorphic processing component. The Intel
Loihi is a 60-mm2 neuromorphic processor fabricated in Intel’s
14-nm process that integrates a wide range of features such
as hierarchical connectivity, dendritic compartments, synaptic
delays, and programmable synaptic learning rules [28]. Results
from previous studies have demonstrated that brain-inspired
networks implemented on the Intel Loihi, such as SNNs,
using precise spike-timing relationships from event-based data
processing, perform certain computations with orders of mag-
nitude lower latency and energy compared to the conventional
state-of-the-art approaches such as those based on feedforward
deep neural networks [55]. Loihi is also capable of low-power
edge learning without needing a cloud [3]. It uses SRAM
for the state, causing the state bit cost to be higher than
conventional processors. To reduce the cost of the Loihi chip
one could store state in ReRAM but at the cost of higher bit
error rates [56].

III. MOTIVATIONS AND BENEFITS OF SNNS WITH HDC

This section shows that neither SNN nor HDC model
can perform well when analyzing event-based tasks in high
error regimes. Therefore, we combine SNN with HDC to
create HyperSpike. In addition to overcoming those challenges,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 4

N-MNIST DVSGesture ASL-DVS
Datasets

0

25

50

75

100
A

cc
u

ra
cy

(%
)

HD-RP HD-TS SNN HyperSpike

Fig. 2. Comparison of Using Existing HDC vs Traditional SNNs

Random Trained
0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Layer 1
Layer 2
Layer 3

(a) SNN-MLP

Random Trained
0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

(b) HyperSpike

Fig. 3. Impact of Random Weights on HyperSpike and Traditional SNNs
Across Different Layers of the SNN using the N-MNIST dataset.

HyperSpike only requires one SNN layer and doesn’t need ex-
pensive SNN training. Figure 1 provides a high-level overview
of HyperSpike. High energy efficiency memory (A) can be
used by HyperSpike to store the parameters of the SNN and
HDC layers. The high energy efficiency memory, such as
ReRAM and MRAM, is typically at the cost of reliability [56].
We will demonstrate that the HyperSpike is less sensitive to
memory errors in Section V-B. But in the ASIC design, we
still used SRAM generated by the memory compiler. The
SNN algorithm is shown in part (B), while HDC is in part
(C). HyperSpikeASIC accelerates both SNN and HDC in an
ASIC. The details of our hardware accelerator are provided in
Section IV.
HyperSpike combines SNN as a feature extractor and HDC as
a classifier. The SNN processes the event-based spikes at the
input and generates a feature vector at the last time step of
each read. Our results in Figure 3 show that HyperSpike only
requires a single layer untrained SNN. The HDC encodes the
feature vector from the output of the SNN and is trained. We
used the online training method discussed in SectionII-B for
class HVs. Then, for inference, the encoded HV is compared
to the class HVs using the Hamming distance metric.

HDC cannot process event-based data alone: Figure 2
shows the accuracy of HDC on three event-based datasets
which are collected by DVS directly [57], [58], [59]. We
tested two encoding methods: one that targets feature vectors
using random projection (HD-RP) [18] and the other using the
encoding method for times series data (HD-TS) [44]. With
an average HDC accuracy of 57%, compared to an average
accuracy of 94% on SNNs, we can see that existing HDC
systems that do not use SNN-based feature extraction cannot
classify DVS data as accurately. To combat this, we need a
feature extractor to represent the event-based data better. The
following experiments show that SNN can transform the event-
based data into feature vectors that HDC can encode and use
for accurate classification.
The HD-RP generates the projection matrix P randomly. Each

element of the P follows the Bernoulli distribution. The HD-
TS will consider the timestamp of feature fi. Assume the
timestamp of feature fi is tfi . The jth column of projection

matrix P , denoted by
−→
P·,j is
−→
P·,j = ρtfj−→g·,j (5)

where gij is random constant coefficient and ρ is permutation
operation. ρk means to rotate a vector k times. For example,
[a, b, c, d]T ρ = [b, c, d, a]T , [a, b, c, d]T ρ2 = [c, d, a, b]T . No-
tice for different sample, the projection matrix P for HD-RP
is same but for HD-TS is different because the timestamp tfi
of feature fi may vary among different sample.

SNN requires multiple layers for acceptable accuracy
alone Figure 3a shows the accuracy of SNN-MLP with
different numbers of layers on the N-MNIST dataset. The
SNN is trained with the backpropagation-based algorithm
DECOLLE [7]. We can see that at least 2 layers are required
to get acceptable accuracy for SNN models. The SNN results
in figure 2 adopting 3-layer trained SNN. The configuration
of SNN models for different datasets is shown in TableII.

SNN is sensitive to in memory errors: When a query
comes in for processing on HyperSpike, the data is first stored
in the memory shown as (A) in Figure 1. Previous designs with
emerging computing hardware assumed that the technology
had ideal characteristics and no errors, which is not true in
general. We evaluate bit-level errors in Section V. These errors
extend to all data stored in memory, such as SNN weights and
hypervectors for HDC. However, as we describe below, HDC
is able to overcome these errors due to its robustness. Although
we model our memory separately from our compute chip, our
experiments can be generalized to other applications where bit
error rates occur on the model parameters. For instance, our
results would extend to HyperSpike storing model parameters
and computing in ReRAM. This can be further generalized to
other hardware with bit error rates (BER), such as emerging
non-volatile memories, low voltage memories, or even wireless
communication [56].

HyperSpike Removes the Need for SNN Training: Fig-
ure 3 compares the accuracy results of using random weights
and trained weights with both HDC as the classifier and a more
traditional MLP as the classifier on N-MNIST. The results
show that when using a traditional classifier, such as an MLP,
training of the SNN weights is necessary. In contrast, HDC is
able to achieve high accuracy even with random SNN weights.
We got similar results for all tested datasets.

HyperSpike Only Needs One Untrained SNN Layer:
Figure 3 also shows the accuracy of attaching HDC to different
layers of the SNN on N-MNIST. The data in Figure 3b
shows that HDC attached to SNN layers is able to achieve
high accuracy across all layers of the attached SNN, unlike a
standalone trained SNN shown in Figure 3a that only achieves
high accuracy in the last layer. In fact, we can see that HDC
achieves comparable accuracy to its maximum accuracy with
just one SNN layer. This trend is true across all the datasets
we tested. Therefore, HyperSpike utilizes just one SNN layer
as a preprocessing step to transform the data from DVS data
to a feature vector. This allows HyperSpike to save even more
energy over traditional SNN networks.

IV. HyperSpikeASIC DESIGN

This section introduces HyperSpikeASIC, which accelerates

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 5

X Y C
X Y C

X Y C

Controller Synapses
Array

Weight

Input
FIFO +

×

-
×
+

mode

Neuron State

Synapses State

Synapses

X Y C T
Input AER

Neuron

FIFO

Exp
Unit

×

×

×

×

×

×

+

+
+

+

+
+

Base

^

Class
HV

+ Partial
Hamming
Distance

Synapses State Update
SNN

Neuron State Update
SNN HDC

+
sign bit

+

+

T

Fig. 4. Hardware Architecture

Fig. 5. Example HyperSpikeASIC Dataflow

HyperSpike. Figure 4 shows the proposed accelerator archi-
tecture. The first two stages, synapse state update, and neuron
state update are a part of the SNN hardware and the last
stage is HDC. The SNN accelerator has (i) decoupled synapse
process elements (PEs) and neuron PEs to support a highly
efficient convolutional layer and (ii) variable precision neuron
state update to increase throughput and provide enough preci-
sion for HDC. The HDC accelerator uses INT8 hypervectors
for training and binary hypervectors with Hamming distance
for inference. HyperSpikeASIC fetches data from memory
and performs the SNN layer operations first. It supports
SNN models with up to 32K neurons in order to support a
variety of applications. The computations use 16-bit fixed-
point precision [60] to reduce the impact of the bit errors.

As shown in Figure 4, HyperSpikeASIC has three stages:
synapses and neuron state update, and HDC. The first two
stages are SNN processing for feature extraction, while the
last one is HDC for classification. The input data are fetched
from the input FIFO and decoded. When a pre-synapse neuron
fires, the states of synapses need to be updated. The synapses
PEs accumulate the corresponding weights and store the
intermediate result in the synapse state memory. The detail

about synapses state update is discussed in Section IV-A.
When the controller detects that an input belongs to a new
time step, the updated synapse states are written into the
buffer along with the addresses of the neuron connected to the
fired input neuron. The neuron PEs use that information from
the buffer to update the neuron state following the procedure
talked about in Section IV-B. The number of synapse PEs,
NSY N , and neuron PEs, NNEU , is different because there are
typically more synapse states required to update than neuron
states. When one frame is done, the neuron PEs fetch all the
neuron states and work in readout mode (see Section IV-B)
to generate the features for HDC. HDC maps those states to
HVs and compares them with the stored class hypervectors to
find the closest class (see Section IV-D).

Figure 5 shows an example of processing stages. The most
front of HyperSpikeASIC is the synapse state update module,
which receives the event-based inputs and processes them
spike by spike. The spikes that fire in the same time step
aggregate to the synapse state. Only partial post-synaptic
neurons would receive the updated synapse states. The neuron
state module updates time step by time step and skips the
inactive neurons. In detail, the event that occurs at time t

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 6

always comes before the event occurs at time t+d. However,
if two events occur in the time range [t, t + w) and thus are
treated as occurring in the same time step, the event at the
bottom of the sensor may come before or after the event at the
top of the sensor. The update frequency is further reduced for
HDC as HDC only readouts the neuron state once per sample.
The first stage of HDC is to map the neuron state to HVs
no matter training or inference. And then the HDC training
would accumulate the encoded HV to the corresponding class
HV while HDC inference searches for the most similar class
HV to the encoded query. There are 3 input spikes at time
t0, two of which are positive events (shown as orange) while
one is a negative event (shown as blue). As the input is event-
based, we may receive the spikes chronologically but out of
order on spatial. Let’s assume we have received and processed
the negative and left-down positive events and will process
the right-up positive event. The figure 5 shows that each pre-
synaptic neuron connects to 9N post-synaptic neuron, where
N is the channel size. That is, the synapse state located
in the green region will be updated. As it is the last spike
fired at t0, the next step is to update the neuron states.
Each neuron state would be updated once at most. In this
example, the neuron in the yellow region, the union set of
neurons that received spikes, will be updated. After finishing
processing the last spike belonging to this input sample,
it would readout each neuron’s state to generate the HVs.
Limited by the bandwidth of neuron state storage, we fetch
them along channel dimension, shown as the purple vector.
The HDC encoding is matrix multiplication. The base vectors
matrix is bipolar, which means only add/minus operators are
necessary. HVs generated by different features (neuron states)
of the same sample are bonded by accumulation. And then,
we use the sign of it as the final HV. The HD training is
supervised: fetch the class HV corresponding to the label and
update it following equation (3). The HD inference will search
for the most similar class HV under Hamming distance. Noted
that we use binary HDC; we will only use the sign bits of class
HVs.

Figure 6 shows two types of pipeline scheduling of SNN:
with or without combining spikes. We process the data frame
by frame in the first approach and spike by spike in the second
approach. Due to the post-synaptic neuron usually receiving
more than one spike at each time step, the neuron PEs may
be idle for a long time if there are as many neuron PEs
as synapses PEs. Therefore, by combining the spikes that
fire in the same time step’s spikes by accumulating them to
the intermediate synapse state, we can explore the optimized
configurations of the ratio of the number of synapses PEs to
the number of neuron PEs, which is discussed in Section V-C.

A. Synapses State Update

SNN encoding: The SNN may take rate coding or temporal
coding. For rate coding, the encoded value is represented as the
rate of spiking, which needs a higher spiking rate to guarantee
enough information is represented compared to temporal cod-
ing. Some experimental results find the rate coding in sensory
and motor systems [61]. Some works contributed to converting
the ANN to SNN take rate coding and proving the conver-
sion error can be 0 [62], [63], [64]. Rate coding is simple

Fig. 6. Pipeline Scheduling of SNN

for implementation and robust to errors, but requires high
energy consumption and latency due to dismissing temporal
information in spike trains. The temporal coding, like Time
to First Spike (TTFS) [65] and Inter-Spike Interval (ISI) [66],
uses the timing of spikes to carry information. The spiking
ratio of temporal coding depends on the time resolution: the
higher time resolution requires more time steps but less spiking
ratio. The time resolution may differ with different workloads,
and the input spiking can vary from dense to sparse. Some
sensors may generate temporal coding directly, like DVS: each
pixel of DVS generates events asynchronously when it detects
changes and naturally encodes the information with temporal
coding. It is also common to use temporal rate to encode 1D
physiological signal processing[67]. Compared with rate code,
temporal code has been proved to provide higher information
capacity with lower response times but requires higher timing
precision[68].

Synapses state update combining: Event-driven systems
like DVS usually encode events with Address Event Repre-
sentation (AER), which is efficient for temporal coding. To
make HyperSpikeASIC compatible with both the EMG and
DVS datasets, we represent an EMG signal preprocessed by
sigma-delta modulation with AER as well. The AER packet
includes weight w, height h, channel c, and spiking time t.
As in a real-time system, the input data is sorted by time t.
The time resolution Δ of SNN does not need to be as high as
the original data so that several consecutive input events may
be bucketed in one time step. The input FIFO would combine
the events that occurred in the same time step and store the
spike time t in front of the events’ address which fire from
t to t + Δ. In this case, there is no guarantee that the input
spike is ordered by position in one time step as it is in the
original input.

As the input data are event-driven, not all neuron or synapse
states are required to update at each time step. Figure 7 shows
the spiking and neuron state changes in 2 successive CONV
layers. Each neuron can be represented with a letter and a
number. The capital letter is used for the pre-synaptic neuron
while the lowercase letter is for the post-synaptic neuron. For
example, A2 represents the pre-synaptic neuron located at the
second row first column. The arrows are the spikes and the
shadows are neurons that need an update. If the Chebyshev
distance between two fired neurons is smaller than the CONV
kernel size KCONV , i.e., B6, D5, some of the post-synaptic
neurons, i.e., c5, c6, would be influenced by both.

We use a bitwise mask to store the addresses of neurons that

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 7

(a) Dense Input (b) Sparse Input

Fig. 7. 2 Layer Neurons with Convolution Linked Synapses

receive no spike in one time step. As the position of the post-
synaptic whose state requires an update is the same between
different output channels, the bitwise mask can be shared by all
post-synaptic neuron channels: when the synapses state update
PE receives one input, the mask bits of its position and its
nearby K2

CONV −1 position will be set. As shown in Figure 7,
the mask bits corresponding to the shadowed neuron are set.
The intermediate results of synaptic potential would store in
the synapse state scratch-pad memory.

Synapses state readout: When the timestamp of the next
input is t + 1, which means all the necessary synaptic states
have been updated, the synapses state update PEs are in
synapses state readout stage of in Figure 6: transmit the non-
zero state to buffer and clear the scratch-pad memory. Read the
mask byte by byte and translate the multi-hot position to serials
of neuron state address. In this approach, only the updated
synaptic state will be read and the non-updated position will
be skipped. Similar to the input FIFO, the buffers between
synapses and neuron PEs use a time stamp as a delimiter
between two time steps.

The synapses state buffer decouples the synapses state
update and neuron state update: all the synapses PE work
at the same time step while the neuron PE may work at a
different time step. Because the cycles required to process
one-time-step data of synapse and neuron state update may
be different, which depends on the number of spikes of pre-
synaptic neuron and the number of overlapped post-synaptic
neurons respectively, the bottleneck may be changed even
during processing the same sample. Therefore, there would be
some bubbles like the one between synapses state readout and
neuron state update shown in the normal mode of Figure 6.
From PE’s perspective, we may reduce the processing time
of neuron state update by adding more neuron PEs, thus
reducing the possibility of bubbles. However, more neuron
PEs means a larger area and more likely to be idle. Therefore,
we optimized the ratio of the number of synapses PEs to the
number of neuron PEs via β = NSY N/NNEU to make the
tradeoff between throughput and area, which is discussed in
Section V-C. The number of FIFOs in the synapse state buffer
equals the number of synapses PEs. As NSY N �= NNEU , a
neuron PE may consume data stored in different FIFO.

B. Neuron State Update

Because the update is event-driven, the neurons that receive
no spikes are skipped. Therefore, there may be multi-time step
intervals Δt between one neuron update and the next update.
Because there is no input spike between timestamp t and t+
Δt, we have:

Sτ
in = 0, ∀ τ ∈ (t, t+Δt) (6)

Rewrite equation 1:

P t+Δt
j = αΔt

0 P t
j + St+Δt

in ,

Rt+Δt
i = αΔt

0 (Rt
i + U t

iS
t
i),

U t+Δt
i =

∑

j

WijP
t+Δt
j = αΔt

0 U t
i +

∑

j

WijS
t+Δt
in ,

St+Δt
i = Θ(U t+Δt

i −Rt+Δt
i).

(7)

Following (7), the neuron state memory stores neuron po-
tential U t

i , refractory Rt
i and last fire timestamp. As shown

in neuron state update stage of Figure 6, the accumulated
synapses state

∑
j WijS

t+Δt
in is added to to decayed neuron

potential αΔt
0 U t

i . If the difference between potential and
refractory exceeds the threshold, the neuron would fire and
update its last fire timestamp. The exponential calculation unit
(marked as Exp Uint) and two multipliers in the neuron state
update PE of Figure 4 are used for decay.

The exponential calculation: The exponential calculation
unit is shown in Figure 8. It is based on a piecewise lookup
table and has two modes: fast mode for neuron state update
and precise mode for neuron state readout. The first part of
the lookup table stores the key as an arithmetic sequence and
the common difference is 1. The common difference between
the key in the second part is the maximum key in the first
part. The set of keys of two parts of the lookup table is
{x|x < 2M1 , x ∈ N+} and {2(x+M1)|x < 2M−M1 , x ∈ Q}
respectively, where M is the input width of the exponential
calculation unit and M1 is the width of the first part of the
lookup table. We choose M1 = 5,M = 8 for Figure 8. In
the fast mode, we use the fetched value as the output of the
exponential calculation unit. If the most significant M −M1

bits is zero, fetch from the first part, otherwise fetch from the
second part. Because it’s rare that one neuron doesn’t receive
any spike for a long time during SNN inference, we would
fetch most of the results from the first part without precision

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 8

110 01110

+offset ×
mode

Lookup
Table

Fig. 8. Exponential Unit of Neuron PE

loss. We are going to readout the final neuron potential and
feed them to HDC. Because some neurons may be inactive
for a long time, but we expect a more precise output to feed
to the HDC classifier, the exponential unit will work at the
precise mode to interpolate. Because αx1+x2

0 = αx1
0 αx2

0 , x1 =
x%2M1 , x2 = �x/2M1�, the exponential unit multiplies the
fetched result from the first part and the second part to get the
precise result.

C. Synapses Update Bypass
When the input is sparse, there are only a few input spikes

in one time step. As shown in Figure 7.b, it is inefficient to
integrate the synapse state because there are few overlapping
post-synaptic neurons. In such a case, one synapse PE might
be able to produce enough intermediate results for one neuron
PE. The synapse PE only fetches the weight and passes it to
neuron PE directly. Figure 6 shows the pipeline of process
data spike by spike without combining. There is no synapses
state readout stage. As one post-synaptic neuron may receive
multiple spikes in a time step, it will update its state multiple
times with Δt = 0, indicating that potential and refractory
decay operations have been done. When input events are
pushed into the input FIFO, a counter will track the number
of events that belong to the same time step. If the number
of events that belong to the same time step exceeds a given
threshold, indicating the input is sparse, the synapse update
will bypass.

D. HDC architecture
The HDC encodes (maps) the readout neuron states to

hypervectors (HVs) by a bank of multiplexers and an adder
tree. The base vectors are bipolar, and thus the projection
operation can be simplified to add or minus the readout
features. As shown in the HDC part of Figure 4, we use a
2-1 multiplexer controlled by base vector P to select add or
minus the readout features. After the adder tree, we detect the
sign of each accumulated result as the encoded HV. Due to the
limitation of readout bandwidth, we need multiple cycles to
readout all features. Therefore, a register is inserted between
the adder tree and the sign function. As the HV dimensions are
large, it is inefficient to encode it all at once. We split each HV
into several segments and handle them one at a time. During
the training stage, we only need to accumulate the created
HVs to the corresponding class HV. During the inference, we
use Hamming distance for the similarity checking. As the HV
is binary, we only need the sign bits of class HV. We xor the
HVs with the class HVs’ sign bits and accumulated results for

hamming distance. Finally, we chose the class with the closest
Hamming distance as the result.

V. EVALUATION

A. Experimental Setup

HyperSpikeASIC software and hardware: We tested
HyperSpike accuracy with and without bit errors on an Intel
Core i7 7600 CPU using an optimized C++ implementation.
HyperSpikeASIC has been implemented using SystemVerilog
at the RTL level and synthesized by the Synopsys Design
Compiler. The SRAM is generated by the ARM memory
compiler with the 28nm node. We get the power information
from the report of Synopsys Power Compiler. We evaluate
the average energy by multiplying the average power and
average running time. The cycle used for training is the same
as inference, and thus the evaluated energy of training is equal
to that of inference.

State of the art hardware comparison: We compare
HyperSpikeASIC to HyperSpike [26] and state-of-the-art SNNs
on neuromorphic hardware [35], [36], [38], [2]. HyperSpike
accelerator was implemented with 56 Loihi cores for SNN
by using the Intel Nahuku board [28] and HDC base on
tinyHD [14] on N-MNIST, DVS-Gesture, and DVS-ASL as
in work [26]. Besides, we expand the evaluation of the
EMG dataset with the same setups as in [26]. The HDC
in HyperSpike is implemented in SystemVerilog at the RTL
level and synthesized by Synopsys Design Compiler with the
45 nm open-source NanGate cell library [31]. The results of
HyperSpike are scaled down adopting CACTI for memory area
and power, and the scaling trend of Intel [70] for the logic cells
area. The power of logic cells is first obtained by the report
of Synopsys Power Compiler and then scaled using HSPICE
simulations with Predictive Technology Model (PTM) [71].

State of the art software comparison:We implemented
the SNN models with PyTorch and HD modules in Python.
The trained SNN model and VAE is implemented with
DECOLLE[7]. The configuration of SNN and HDC is shown
in Table II. The SNN-MLP is tested with at most 3 layers.
When we test the HyperSpike, the HDC is directly connected
to layer 1. The SNN-MLP will also take the layer 2 and layer
3. The HyperSpike is updated step by step. The number of
time step used for each dataset is also list in Table II

Benchmarks: We tested our proposed approach on 3 event-
based DVS datasets and using Electromyography (EMG)
data. The DVS datasets are: 1) the Neuromorphic MNIST(N-
MNIST) Handwritten digit Recognition dataset [72]; 2) the
IBM DvsGesture dataset [58]; and 3) the American Sign
Language (ASL) DVS dataset [73]. The N-MNIST dataset
consists of 32×32, 300ms long event data streams of MNIST
images recorded with an ATIS Camera [57]. The dataset
contains 60,000 training event streams and 10,000 test event
streams. The IBM DVSGesture dataset consists of recordings
of 29 different individuals performing 10 different gestures,
such as clapping, and an ‘other’ gesture class containing
gestures that do not fit into the first 10 classes [58]. The
DVS-ASL dataset contains 24 classes corresponding to letters
A-Y, excluding J, in American Sign Language recorded using
a DAVIS 240C event-based sensor [59]. The dataset contains
4200 240× 180 100ms long event data streams of each letter,
for a total of 100,800 samples.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 9

TABLE I
ACCURACY OF HyperSpike VS OTHER SNN CLASSIFIERS AT FULL PRECISION AND QUANTIZED TO 16 BITS. PERFORMANCE NUMBERS ARE RELATIVE

TO QUANTIZED SNN+MLP

Dataset SNN+MLP [27] Quantized SNN+MLP [60] SNN+VAE [69] Quantized SNN+VAE [69] HyperSpike Quantized HyperSpike

Metrics Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Speedup Energy Efficiency

N-MNIST 98.4% 97.4% 98.2% 97.4% 98.6% 95.2% 1.1× 1.1×
DVS-Gesture 93.8% 86.8% 83.6% 72.8% 87.2% 85.3% 14× 2.2×

DVS-ASL 89.7% 87.1% 89.7% 87.1% 88.2% 87.8% 14.9× 4.6×
EMG 97.2% 96.8% 95.8% 97.3% 97.6% 96.6% 1.1× 1.5×

10-5 10-4 10-3 10-2 10-1 100

Bit Error Rate

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

(a) N-MNIST

10-5 10-4 10-3 10-2 10-1 100

Bit Error Rate

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

(b) DVS-Gesture

10-5 10-4 10-3 10-2 10-1 100

Bit Error Rate

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

(c) DVS-ASL

10-5 10-4 10-3 10-2 10-1 100

Bit Error Rate

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

(d) EMG

Fig. 9. Impact of Varying Levels of Bit Error Rates on the Accuracy of Quantized HyperSpike vs Other Quantized SNN Models.

2000 4000 6000 8000 10000
Dimensionality

0

5

10

15

A
cc

u
ra

cy
 L

o
ss

 (
%

)

N-MNIST 0.1%
DVSGesture 0.1%
ASL-DVS 0.1%
EMG 0.1%
N-MNIST 3.4%
DVSGesture 3.4%
ASL-DVS 3.4%
EMG 3.4%

Fig. 10. Impact of Dimensionality on the Robustness of HyperSpike

TABLE II
CONFIGURATION OF SNN

Dataset Input Size Layer1 HDC Dimession Layer2 Layer3 #Time Steps

N-MNIST 32×32 CONV(7×7× 16) 4096 CONV(7×7× 32) CONV(7×7× 32) 50

DVS-Gesture 32×32 CONV(7×7× 32) 4096 CONV(7×7× 64) CONV(7×7× 64) 100

DVS-ASL 60×30 CONV(7×7× 16) 4096 CONV(7×7× 32) CONV(7×7× 32) 100

EMG 64×1 FC(128) 4096 FC(64) FC(32) 100

In addition to the event-based datasets, we also evaluate
HyperSpikeASIC on Electromyography (EMG) data. The data
is collected from an array of 64 electrodes connected to the
forearm at a sampling frequency of 2000Hz. The dataset
consists of 6 different hand and wrist gestures with 12 seconds
of repetitions of each of the gestures. The data is converted
into spikes using sigma-delta modulation before being input
into SNN layers.

B. HyperSpike Accuracy with Bit Errors
Table I compares HyperSpike with SNNs using different

classifiers at the output of the SNN network. The results show
that HyperSpike with a full precision SNN is able to achieve
similar accuracy to state-of-the-art solutions. HyperSpike is
able to achieve accuracy within 2.6%(1%) of the other clas-
sifiers (quantized). However, HDC makes HyperSpike sig-
nificantly more energy efficient (2.6x) because HyperSpike
only needs to use the first layer of the SNN while its HDC
layer uses parallel operations which are easily accelerated in
hardware. HyperSpike is significantly more robust (58.3x) over

the current state-of-the-art SNN classifiers. Figure 9 shows a
comparison of HyperSpike with SNNs using different classi-
fiers at the output of the SNN network. All SNN networks
are quantized to 16-bit fixed-point precision [60] to reduce
the impact of the bit errors. If an exponent bit is flipped in
a floating point number, the resulting numerical error is more
significant than flipping a mantissa bit. Taking this further,
binary representations offer the highest resilience to bit flip
errors as no matter which bit is flipped, the resulting numer-
ical error is the same. This gives HyperSpike an advantage
over SNN classifiers as the HDC classification portion of
HyperSpike uses binary quantization. Our experiments show
that HyperSpike is 31.4× more robust than SNNs using MLPs
(lost 31.4× less accuracy than SNNs using MLPs) as a
classifier when the BER is 0.1%, which is a typical error rate
for systems that have high bit errors. HyperSpike is 58.3×
more robust than SNNs using MLPs as a classifier when the
BER is 3.4%. We additionally tested SNNs using a VAE for
classification.Our results apply to HyperSpike running on a
ReRAM architecture such as [74]. They can similarly also
extend to wireless communication errors if the parameters are
sent and shared across different devices in a network. This
indicates that one could create a computing architecture for
HyperSpike that utilizes BER emerging hardware and does
not need to add the overhead of error correction as HyperSpike
is robust to the errors due to its HDC layer. Figure 10 tests
HyperSpike with varying dimensionalities in typical (blue
lines - 0.1%) and high (red lines - 3.4%) bit error rates.
The results indicate that HyperSpike robustness scales with
the dimensionality of the HDC model used for classification.
As we increase the dimensionality of the HDC model, the
accuracy loss decreases. This is consistent with prior work,
which has shown that HDCs robustness is a function of high
dimensionality [25].

C. SNN Configurations
To better understand the trade-off between area and through-

put, we fix the number of neuron PE NNEU = 16 and change
the ratio to the number of synapse PEs via β = NSY N/NNEU .

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 10

TABLE III
COMPARISON OF THE RESULTS WITH THE SPIKING NEURAL NETWORK IMPLEMENTATIONS

BWSNN [36] AsycnSNN[35] LSMCore [2] DVS-Gestrue[38] This Work

Technology 90nm 28nm 40nm 28nm (TrueNorth[75]) 28nm
Area 2.07mm2 1.28mm2 18.49mm2 4.3cm2 2.70mm2

Power 0.62mW 3.42mW 4.9W 178.8 mW 480.1mW
Frequency 10MHz 6.7MHz 400MHz - 500MHz
Neurons 8K 1280 1.31M 4K 32K

Dataset MNIST N-MNIST N-MNIST DVS-Gestrue N-MNIST DVS-Gestrue DVS-ASL EMG
Net BWSNN MLP LMS SCNN CONV+HDC CONV+HDC CONV+HDC FC+HDC

Accuracy 98.0% 95.7% 98.7% 96.5% 95.2% 85.3% 87.8% 96.6%
Energy 0.59uJ/Image 3.97pJ/Synaptic Operation(SOP) 3.38mJ/Image 18.8mJ/Image 16.30uJ/Image 205.61uJ/Image 237.52uJ/Image 6.11uJ/read

Throughput 1.05K/s - 1.44k/s 9.5/s 17.5K/s 2.18K/s 2.01k/s 78.4K/s

N-MNIST(Normalized) DVS-Gesture(Normalized) DVS-ASL(Normalized)
N-MNIST(Raw) DVS-Gesture(Raw) DVS-ASL(Raw)

0 2 4 7 Loihi
SNN Configuration

0

1000

2000

3000

4000

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
A

re
a

R
at

io

0

1

2

3

T
h

ro
u

g
h

p
u

t
A

re
a

R
at

io
 o

f
H

yp
er

S
p

ik
e

(I
m

ag
es

/s
/m

m
2)

0 2 4 7 Loihi
SNN Configuration

0

500

1000

1500

2000

2500

3000

3500

E
n

er
g

y
E

ff
ic

ie
n

cy

100

101

102

103

E
n

er
g

y
o

f
H

yp
er

S
p

ik
e

(m
J/

Im
ag

es
)

Fig. 11. Comparison of different β configuration of purposed SNN vs Intel’s
Loihi on Throughput Area Ration and Energy.

The throughput-to-area ratio and energy with different datasets
and configuration β are shown in Figure 11. The results are
normalized using those of the HyperSpike as the denominator.
The raw results of the HyperSpike (marked as Loihi on the x-
axis) are shown at the right of the figures with a lighter color.
We chose β = 0, 2, 4, 7, 49, where β = 0 represents the area of
synapses PEs and the synapses state memory described in IV.A
is removed and it could only work without combining spikes;
β = 7 represents the number of synapses neuron PEs is as
much as the convolutional kernel size of SNN, as CONV = 7.
We get the largest boost on both throughput area ratio and

energy efficiency when β = 4 on N-MNIST and DVS-gesture
dataset but when β = 7 on DVS-ASL. This is because the
workload of synapse PEs is heavier than neuron PEs. As we
convert the input size of DVS-ASL from 240×180 to 60×30
by combining pixels, the number of neurons is reduced, but
the number of input events remains. Because each neuron
will update no more than once per time step, the workload
of neuron PEs is reduced. Thus, for DVS-ASL dataset, we
can get more benefits from increasing β.

We got the maximal throughput area ratio and energy effi-
ciency boost on DVS-gesture. This is because the complexity
of connectivity among neurons in DVS-gesture is the highest.
The overhead of routing in Loihi is not trivial. However, thanks
to the customized design, we can determine the data transfer
path in hardware. We got the minimal throughput area ratio
boost on ASL but the minimal energy efficiency boost on N-
MNIST. That is because the input of N-MNIST is much more
sparse than the input of ASL. Plenty of time is wasted on
communication between Loihi and the host on N-MNIST and
the chip is idle, which consumes less energy. The overhead
of inter-chip communication is more significant for N-MNIST
than DVS-ASL. In the proposed architecture, the generated
feature could be consumed by the HDC directly. However, as
the number of neuron PEs is less than Loihi when many neuron
states need to update, we can only achieve less throughput
boost.

Therefore, we take β = 4 to trade off performance and
overhead. HyperSpikeASIC contains 16 neuron PEs and 64
synapses PEs. The width of the SNN weights, which are
randomly initialized, and the width of synapse states is 16.
Each neuron PE is able to store 2048 neuron states and each
state is 45-bit width (16 bits for potential, 16 bits for refractory,
and the remaining 13 bits for last fire time). The exponent
lookup table is 16bits × 128, 96 of which are used for the
first part of linearly growing keys and 32 of which are used
for the second part of geometrically growing keys.

D. HyperSpike Accelerator Performance and Statistics

Table III summarizes the comparison of results among dif-
ferent implementations and performance in different datasets.
Compared with previous SNN approaches, we achieve higher
throughput on DVS-Gestrue and N-MNIST. However, we
consume more energy on handwritten digit recognition tasks
compared with [36]. One major reason is that work uses a stan-
dard MNIST dataset instead of DVS output and thus requires
fewer spikes. In the [35], energy efficiency is normalized to
synapse operation (SOP). It adopted an asynchronous design

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 11

SNN-MLP [7] HyperSpike [26] HyperSpikeASIC
SNN-MLP Area HyperSpike Area HyperSpikeASIC Area

N-MNIST DVS-Gesture DVS-ASL EMG
10-2

10-1

100

101

102

103

104

D
el

ay
 (

m
s)

N-MNIST DVS-Gesture DVS-ASL EMG Area
10-3

10-2

10-1

100

101

102

103

104

E
n

er
g

y
(m

J)

0

10

20

30

40

50

60

70

80

90
A

re
a

(m
m

2)

Fig. 12. Performance, Energy Consumption and Area of HyperSpikeASIC
as compared to HyperSpike [26] and SNN[7] on Intel’s Loihi[1]

Fig. 13. Area and Power Breakdown

to increase the energy efficiency of handling each synaptic
operation. But it must update all the synapses and neurons
for each input, while HyperSpikeASIC will skip the inactive
ones. As the HyperSpikeASIC can process 64 synapse state per
cycle, the energy consumption will be 480.1mw

500MHz×64SOP/cycle =

15pJ/SOP . This metric of TrueNorth is typically 26pJ/SOP
[75].

Figure 12 compares purposed HyperSpikeASIC with
HyperSpike [26] and a more traditional SNNs[7] using an
MLP as the output classifier running on an Intel Loihi chips for
acceleration. The results show that HyperSpikeASIC is 7, 549×
and 3, 467× more energy-efficient and 4, 437× and 656×
faster than traditional SNN MLP and HyperSpike respectively.
There are two main reasons for this. (1) Only one SNN layer
is required by HyperSpike model and the HDC layer is more
efficient and faster than the traditional SNN MLP classifier.
Since SNNs dominate both latency and energy consumption
of the whole design, the algorithm that uses simple and highly
paralleled HDC layers instead of MLP SNN and compresses
feature extraction to only one layer is more efficient. (2) The
proposed ASIC design reduces the communication overhead
between SNN and HDC and has been optimized for event-
based classification tasks such as those presented in this paper.

We can see that the difference in performance between SNN
MLP and HyperSpike [26] in the delay and energy on the
N-MNIST and EMG is trivial because the network scale of
these two datasets is small. HyperSpike boosts the performance
mainly by shrinking the SNN, which means the smaller
the original network, the less performance gain HyperSpike
provides. However, the HyperSpikeASIC reduces the delay
significantly for these two datasets compared with HyperSpike
because inter-chip communication overhead accounts for more
of the delay. We see the largest energy savings on the DVS-
Gesture and DVS-ASL when comparing HyperSpikeASIC
with HyperSpike [26]. This is because the customized design
reduces the inner-chip communication overhead and is more
energy-efficient on state updates. The differences between
datasets are largely due to the differences in the network
architectures, with larger architectures requiring more time and
energy to execute.

Another advantage of our accelerator over state-of-the-art
is the reduced chip area. Figure 12 compares the area needed
to accelerate HyperSpike with the area needed to accelerate a
traditional SNN with an Intel Loihi chip. For the traditional
SNN, we only include the percent area of the Loihi chip
used for acceleration. For HyperSpike, we add up the area
from the number of Loihi cores our chip needs plus the area
needed for our HDC ASIC. For HyperSpikeASIC, the area
takes both SNN and HDC into account. We compare the chip
area needed for the largest dataset, DVSGesture. As a result,
this hardware could run all three datasets. The data shows
that HyperSpikeASIC is 32.88× and 9.73× smaller than the
SNN-MLP accelerator and HyperSpike, respectively.

Figure 13 shows the area and power breakdown of different
components. The synapses state update takes the majority of
area and power consumption. There are 4 times more synapse
PEs than neuron PEs, but the area and power consumption of
synapse PEs are around two times more than neuron PEs; each
synapse PE is around 2 times larger and has greater energy
consumption than neuron PE.

E. Overhead

The throughput bottleneck of HyperSpikeASIC is SNN.
More specifically, because of how slow the SNN is, the HDC
will be idle 80% of the time on average. The SNN also takes up

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 12

the majority of the area - 83%. Because the SNN needs random
access to the neuron state and synapse state, the throughput
of the SNN is limited by the memory bandwidth of state
storage. As a result, we use multiple memory banks to provide
sufficient memory bandwidth. The state storage consumes 88%
area of the SNN module.

VI. CONCLUSION

In this paper, we create HyperSpike, a method for im-
proving the energy efficiency and robustness of spike neural
networks with Brain-Inspired Hyper-Dimensional Computing.
It expands the HDC’s applications to event-based data. The
first layer of HyperSpike is a randomly initialized SNN layer
that does not need to be trained. This layer processes the event-
based signal data from a neuromorphic sensor and outputs
feature vectors. Then, the trained HDC layer interprets these
feature vectors to perform classification. By combining SNNs
and HDC in this way, HyperSpike is able to achieve high
classification accuracy with HDC on event-based data while
being much smaller, faster, and more energy efficient. We
show that HyperSpike is able to process not only original
event-based data like the output of dynamic vision sensors
but physiological signals like electromyography with sigma-
delta modulation, which shows the possibility of cascading
HyperSpike to traditional ADC instead of just event-based
sensors. Our results show that HyperSpike is 31.4× more
robust to errors than traditional SNNs. Our HW implementa-
tion HyperSpikeASIC is 601× faster and 3.467× more energy
efficient than the hardware implementation of HyperSpike
with general purpose SNN acceleration platform Loihi[1] and
tinyHD[14]. and 12.2× faster and 211× more energy efficient
than the state-of-the-art SNN implementation[2].

REFERENCES

[1] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu,
D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng,
A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore
processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–
99, January 2018.

[2] L. Wang, Z. Yang, S. Guo, L. Qu, X. Zhang, Z. Kang, and W. Xu,
“Lsmcore: Ieeebiographya 69k-synapse/mm2 single-core digital neu-
romorphic processor for liquid state machine,” IEEE Transactions on
Circuits and Systems I: Regular Papers, 2022.

[3] K. Stewart, G. Orchard, S. B. Shrestha, and E. Neftci, “Online
few-shot gesture learning on a neuromorphic processor,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 10, no. 4, pp. 512–521, Oct 2020. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9229141

[4] J. Park, J. Lee, and D. Jeon, “7.6 a 65nm 236.5nj/classification neuro-
morphic processor with 7.5% energy overhead on-chip learning using
direct spike-only feedback,” in 2019 IEEE International Solid- State
Circuits Conference - (ISSCC), 2019, pp. 140–142.

[5] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, B. Kay et al.,
“Opportunities for neuromorphic computing algorithms and applica-
tions,” Nature Computational Science, vol. 2, no. 1, pp. 10–19, 2022.

[6] F. Zenke and S. Ganguli, “Superspike: Supervised learning in multilayer
spiking neural networks,” Neural Comput., vol. 30, no. 6, p. 1514–1541,
jun 2018. [Online]. Available: https://doi.org/10.1162/neco a 01086

[7] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for
deep continuous local learning (decolle),” Frontiers in Neuroscience,
vol. 14, p. 424, 2020.

[8] C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training deep spiking
convolutional neural networks with stdp-based unsupervised pre-training
followed by supervised fine-tuning,” Frontiers in neuroscience, vol. 12,
p. 435, 2018.

[9] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and
M. Ganjtabesh, “First-spike-based visual categorization using reward-
modulated stdp,” IEEE transactions on neural networks and learning
systems, vol. 29, no. 12, pp. 6178–6190, 2018.

[10] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis et al., “Event-
based vision: A survey,” arXiv preprint arXiv:1904.08405, 2019.

[11] S. Sheik, S. Paul, C. Augustine, C. Kothapalli, M. M. Khellah,
G. Cauwenberghs, and E. Neftci, “Synaptic sampling in hardware
spiking neural networks,” in 2016 IEEE International Symposium on
Circuits and Systems (ISCAS), 2016, pp. 2090–2093.

[12] R. Graca and T. Delbrück, “Unraveling the paradox of intensity-
dependent dvs pixel noise,” ArXiv, vol. abs/2109.08640, 2021.

[13] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[14] B. Khaleghi, H. Xu, J. Morris, and T. Š. Rosing, “tiny-hd: Ultra-
efficient hyperdimensional computing engine for iot applications,” in
2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2021, pp. 408–413.

[15] A. Dutta, S. Gupta, B. Khaleghi, R. Chandrasekaran, W. Xu, and
T. Rosing, “Hdnn-pim: Efficient in memory design of hyperdimensional
computing with feature extraction,” in Proceedings of the Great Lakes
Symposium on VLSI 2022, ser. GLSVLSI ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 281–286. [Online].
Available: https://doi.org/10.1145/3526241.3530331

[16] M. Imani, Z. Zou, S. Bosch, S. A. Rao, S. Salamat, V. Kumar, Y. Kim,
and T. Rosing, “Revisiting hyperdimensional learning for fpga and low-
power architectures,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2021, pp. 221–234.

[17] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed
hyperdimensional coding applied to the analysis of mobile phone use
patterns,” IEEE Transactions on Neural Networks and Learning Systems,
vol. PP, no. 99, pp. 1–12, 2015.

[18] M. Imani et al., “Bric: Locality-based encoding for energy-efficient
brain-inspired hyperdimensional computing,” in ACM/IEEE Design Au-
tomation Conference (DAC). IEEE, 2019, pp. 1–6.

[19] M. Imani, S. Pampana, S. Gupta, M. Zhou, Y. Kim, and T. Rosing,
“Dual: Acceleration of clustering algorithms using digital-based pro-
cessing in-memory,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2020, pp. 356–371.

[20] M. Imani, Y. Kim, T. Worley, S. Gupta, and T. Rosing, “Hdcluster: An
accurate clustering using brain-inspired high-dimensional computing,”
in 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), 2019, pp. 1591–1594.

[21] Y. Guo, M. Imani, J. Kang, S. Salamat, J. Morris, B. Aksanli, Y. Kim,
and T. Rosing, “Hyperrec: Efficient recommender systems with hyper-
dimensional computing,” in 2021 26th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2021, pp. 384–389.

[22] B. Khaleghi, M. Imani, and T. Rosing, “Prive-hd: Privacy-preserved
hyperdimensional computing,” in 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC), 2020, pp. 1–6.

[23] Y. Kim, M. Imani, N. Moshiri, and T. Rosing, “Geniehd: Efficient
dna pattern matching accelerator using hyperdimensional computing,”
in Proceedings of the 23rd Conference on Design, Automation and Test
in Europe, ser. DATE ’20. San Jose, CA, USA: EDA Consortium,
2020, p. 115–120.

[24] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdi-
mensional computing for efficient speech recognition,” in 2017 IEEE
International Conference on Rebooting Computing (ICRC), 2017, pp.
1–8.

[25] J. Morris, K. Ergun, B. Khaleghi, M. Imani, B. Aksanli, and T. Rosing,
“Hydrea: Towards more robust and efficient machine learning systems
with hyperdimensional computing,” in 2021 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2021, pp. 723–728.

[26] J. Morris, H. W. Lui, K. Stewart, B. Khaleghi, A. Thomas, T. Marback,
B. Aksanli, E. Neftci, and T. Rosing, “Hyperspike: Hyperdimensional
computing for more efficient and robust spiking neural networks,” in
2022 Design, Automation Test in Europe Conference Exhibition (DATE),
2022, pp. 664–669.

[27] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for
deep continuous local learning (decolle),” Frontiers in Neuroscience,
vol. 14, p. 424, 2020. [Online]. Available: https://www.frontiersin.org/
article/10.3389/fnins.2020.00424

[28] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, P. Joshi, A. Lines,
A. Wild, and H. Wang, “Loihi: A neuromorphic manycore processor
with on-chip learning,” IEEE Micro, vol. PP, no. 99, pp. 1–1, 2018.

[29] W. Gerstner and W. Kistler, Spiking Neuron Models. Single Neurons,
Populations, Plasticity. Cambridge University Press, 2002.

[30] F. Zenke and S. Ganguli, “SuperSpike: Supervised Learning in
Multilayer Spiking Neural Networks,” Neural Computation, vol. 30,
no. 6, pp. 1514–1541, 06 2018. [Online]. Available: https://doi.org/10.
1162/neco\ a\ 01086

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 13

[31] G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Krishna-
murthy, “A 4096-neuron 1m-synapse 3.8-pj/sop spiking neural network
with on-chip stdp learning and sparse weights in 10-nm finfet cmos,”
IEEE Journal of Solid-State Circuits, vol. 54, no. 4, pp. 992–1002, 2019.

[32] A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson,
R. Alvarez-Icaza, P. Datta, J. Sawada, T. M. Wong, V. Feldman, A. Amir,
D. B.-D. Rubin, F. Akopyan, E. McQuinn, W. P. Risk, and D. S. Modha,
“Cognitive computing building block: A versatile and efficient digital
neuron model for neurosynaptic cores,” in The 2013 International Joint
Conference on Neural Networks (IJCNN), 2013, pp. 1–10.

[33] H. Tang, H. Kim, H. Kim, and J. Park, “Spike counts based low
complexity snn architecture with binary synapse,” IEEE Transactions
on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1664–1677,
2019.

[34] M. Koo, G. Srinivasan, Y. Shim, and K. Roy, “sbsnn: Stochastic-bits
enabled binary spiking neural network with on-chip learning for energy
efficient neuromorphic computing at the edge,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 67, no. 8, pp. 2546–2555,
2020.

[35] J. Zhang, M. Liang, J. Wei, S. Wei, and H. Chen, “A 28nm configurable
asynchronous snn accelerator with energy-efficient learning,” in 2021
27th IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC). IEEE, 2021, pp. 34–39.

[36] P.-Y. Chuang, P.-Y. Tan, C.-W. Wu, and J.-M. Lu, “A 90nm 103.14
tops/w binary-weight spiking neural network cmos asic for real-time
object classification,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1–6.

[37] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch
et al., “From the cover: Convolutional networks for fast, energy-efficient
neuromorphic computing,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 113, no. 41, p. 11441,
2016.

[38] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza, J. Kusnitz,
M. Debole, S. Esser, T. Delbruck, M. Flickner, and D. Modha, “A
low power, fully event-based gesture recognition system,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 7388–7397.

[39] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba,
M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson,
and D. S. Modha, “Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 10, pp. 1537–1557, 2015.

[40] L. Zhang, J. Yang, C. Shi, Y. Lin, W. He, X. Zhou, X. Yang, L. Liu,
and N. Wu, “A cost-efficient high-speed vlsi architecture for spiking
convolutional neural network inference using time-step binary spike
maps,” Sensors, vol. 21, no. 18, p. 6006, 2021.

[41] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, “A 640m pixel/s 3.65mw
sparse event-driven neuromorphic object recognition processor with on-
chip learning,” in 2015 Symposium on VLSI Circuits (VLSI Circuits),
2015, pp. C50–C51.

[42] P. Kanerva, “Encoding structure in boolean space,” in ICANN 98.
Springer, 1998, pp. 387–392.

[43] N. R. Shanbhag, N. Verma, Y. Kim, A. D. Patil, and L. R. Varshney,
“Shannon-inspired statistical computing for the nanoscale era,” Proceed-
ings of the IEEE, vol. 107, no. 1, pp. 90–107, 2018.

[44] A. Rahimi, A. Tchouprina, P. Kanerva, J. d. R. Millán, and J. M. Rabaey,
“Hyperdimensional computing for blind and one-shot classification of
eeg error-related potentials,” Mobile Networks and Applications, pp. 1–
12, 2017.

[45] M. Imani et al., “A binary learning framework for hyperdimensional
computing,” in DATE. IEEE/ACM, 2019.

[46] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring
hyperdimensional associative memory,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on. IEEE,
2017, pp. 445–456.

[47] S. Salamat et al., “F5-hd: Fast flexible fpga-based framework for
refreshing hyperdimensional computing,” in FPGA. ACM, 2019, pp.
53–62.

[48] S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and energy-efficient
logic in memory,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–7.

[49] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing,” in
Proceedings of the International Symposium on Low Power Electronics
and Design. ACM, 2016, pp. 64–69.

[50] H. Li et al., “Hyperdimensional computing with 3d vrram in-
memory kernels: Device-architecture co-design for energy-efficient,
error-resilient language recognition,” in IEDM. IEEE, 2016, pp. 16–1.

[51] C. Eliasmith, T. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, and
D. Rasmussen, “A large-scale model of the functioning brain,” Science,
vol. 338, no. 6111, pp. 1202–1205, 2012.

[52] E. P. Frady and F. T. Sommer, “Robust computation with rhythmic
spike patterns,” Proceedings of the National Academy of Sciences,
vol. 116, no. 36, pp. 18 050–18 059, 2019. [Online]. Available:
https://www.pnas.org/content/116/36/18050

[53] E. P. Frady, D. Kleyko, and F. T. Sommer, “Variable binding for sparse
distributed representations: Theory and applications,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1–14, 2021.

[54] D. Kleyko, M. Davies, E. P. Frady, P. Kanerva, S. J. Kent, B. A.
Olshausen, E. Osipov, J. M. Rabaey, D. A. Rachkovskij, A. Rahimi, and
F. T. Sommer, “Vector symbolic architectures as a computing framework
for nanoscale hardware,” 2021.

[55] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra,
P. Joshi, P. Plank, and S. R. Risbud, “Advancing neuromorphic com-
puting with loihi: A survey of results and outlook,” Proceedings of the
IEEE, vol. 109, no. 5, pp. 911–934, 2021.

[56] M. Davies, “Lessons from loihi: Progress in neuromorphic computing,”
in 2021 Symposium on VLSI Circuits, 2021, pp. 1–2.

[57] C. Posch, D. Matolin, and R. Wohlgenannt, “A qvga 143 db dynamic
range frame-free pwm image sensor with lossless pixel-level video
compression and time-domain cds,” Solid-State Circuits, IEEE Journal
of, vol. 46, no. 1, pp. 259–275, jan. 2011.

[58] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low
power, fully event-based gesture recognition system,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 7243–7252.

[59] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240×
180 130 db 3 μs latency global shutter spatiotemporal vision sensor,”
IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341,
2014.

[60] H. W. Lui and E. Neftci, “Hessian aware quantization of spiking neural
networks,” 2021.

[61] K. H. Srivastava, C. M. Holmes, M. Vellema, A. R. Pack, C. P. H.
Elemans, I. Nemenman, and S. J. Sober, “Motor control by precisely
timed spike patterns,” Proceedings of the National Academy of
Sciences, vol. 114, no. 5, pp. 1171–1176, 2017. [Online]. Available:
https://www.pnas.org/doi/abs/10.1073/pnas.1611734114

[62] T. Bu, W. Fang, J. Ding, P. Dai, Z. Yu, and T. Huang, “Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural
networks,” in International Conference on Learning Representations,
2021.

[63] B. Han, G. Srinivasan, and K. Roy, “Rmp-snn: Residual membrane
potential neuron for enabling deeper high-accuracy and low-latency
spiking neural network,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp. 13 558–13 567.

[64] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,” Frontiers in neuroscience, vol. 11,
p. 682, 2017.

[65] B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[66] R. Snider, J. Kabara, B. Roig, and A. Bonds, “Burst firing and
modulation of functional connectivity in cat striate cortex,” Journal of
Neurophysiology, vol. 80, no. 2, pp. 730–744, 1998.

[67] N. Nuntalid, K. Dhoble, and N. Kasabov, “Eeg classification with
bsa spike encoding algorithm and evolving probabilistic spiking neural
network,” in International conference on neural information processing.
Springer, 2011, pp. 451–460.

[68] D. Auge, J. Hille, E. Mueller, and A. Knoll, “A survey of encoding
techniques for signal processing in spiking neural networks,” Neural
Processing Letters, vol. 53, no. 6, pp. 4693–4710, 2021.

[69] K. Stewart, A. Danielescu, L. Supic, T. Shea, and E. Neftci, “Gesture
similarity analysis on event data using a hybrid guided variational auto
encoder,” arXiv preprint arXiv:2104.00165, 2021.

[70] M. T. Bohr and I. A. Young, “Cmos scaling trends and beyond,” IEEE
Micro, vol. 37, no. 6, pp. 20–29, 2017.

[71] “Predictive technology model,” http://ptm.asu.edu/.
[72] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting

static image datasets to spiking neuromorphic datasets using saccades,”
Frontiers in Neuroscience, vol. 9, nov 2015.

[73] Y. Bi, A. Chadha, A. Abbas, , E. Bourtsoulatze, and Y. Andreopoulos,
“Graph-based object classification for neuromorphic vision sensing,”
in 2019 IEEE International Conference on Computer Vision (ICCV).
IEEE, 2019.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

TCAD-2022-0655 14

[74] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory
acceleration of deep neural network training with high precision,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2019, pp. 802–815.

[75] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron
integrated circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, 2014. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.1254642

Tianqi Zhang is currently pursing the MS degree
with the Department of Electrical and Computer
Engineering, University of California at San Diego,
CA, USA. His current research interests include
algorithm and hardware co-design, neuromorphic
computing, and domain-specific accelerators.

Justin Morris received his Ph.D. degree from Uni-
versity of California, San Diego and San Diego State
University in 2022. He is an Assistant Professor of
Computer Engineering at the California State Uni-
versity, San Marcos. His research interests include
hyperdimensional computing, machine learning, and
processing in-memory.

Kenneth Stewart (Graduate Student Member,
IEEE) is currently pursuing the Ph.D. degree with
the University of California Irvine. His current re-
search focuses on developing learning algorithms
for neuromorphic hardware and their application to
areas such as computer vision and robotics. His
research interests include neuromorphic computing,
online learning, robotics, artificial intelligence, and
applications thereof.

Hin Wai Lui received has B.A in Engineering from
Cambridge University and MPhil in Engineering and
Entrepreneurship from the Hong Kong University of
Science and Technology. He is currently pursuing a
PhD in computer science at UC Irvine. His main
interests are spiking neural network training, neuro-
morphic hardware, and brain-inspired computing.

Behnam Khaleghi received the BS and MS de-
grees from the Department of Computer Engineer-
ing, Sharif University of Technology, in 2013 and
2016, respectively. He is currently working toward
the PhD degree with the Department of Computer
Science and Engineering, University of California
San Diego, CA, USA. His research interests include
brain-inspired computing, ML acceleration, recon-
figurable computing, and VLSI design automation.

Anthony Thomas received his Bachelor of Science,
with high honors, in Agricultural Economics from
the University of California, Berkeley in 2013 and
previously worked as a Senior Research Analyst
at Brown University for Justine Hastings and Jesse
Shapiro. He is currently a graduate student in Com-
puter Science and Engineering at the University of
California, San Diego. His research interests include
neurally plausible models of data representation and
learning.

Thiago Goncalves-Marback is currently pursuing
the MS degree with the Department of Computer
Science and Engineering, University of California
San Diego, CA, USA. His research interests include
hyperdimensional computing and machine learning,

Baris Aksanli (Member, IEEE) is currently an As-
sistant Professor with the Electrical and Computer
Engineering Department, San Diego State Univer-
sity, San Diego, CA, USA. Previously, he was a
Postdoctoral Researcher at the Computer Science
and Engineering Department, University of Cali-
fornia San Diego. As a Researcher, his affiliations
include the Multi Scale Systems Center (MuSyC),
the TerraSwarm Research Center, and the Center for
Networked Systems (CNS); and the collaborators of
his projects include Google, Microsoft, Panasonic,

Intel, and IBM. His research interests include energy efficiency and peak
power management of large-scale systems, such as data centers and smart
grids, efficient battery usage in data centers and residential houses, battery
lifetime modeling, cost and energy aware automation of residential houses,
learning techniques to enhance user behavior modeling and context extraction,
house/building/data center, and grid interaction.

Emre O. Neftci (Member, IEEE) received the M.Sc.
degree in physics from Ecole Polytechnique Federale
de Lausanne, Switzerland, and the Ph.D. degree
from the Institute of Neuroinformatics, University
of Zurich and ETH Zurich, in 2010. He is currently
an Assistant Professor with the Department of Cog-
nitive Sciences and Computer Science, University of
California at Irvine. His current research explores the
bridges between neuroscience and machine learning,
with a focus on the theoretical and computational
modeling of learning algorithms that are best suited

to neuromorphic hardware and non-von Neumann computing architectures.

Tajana Rosing (Fellow, IEEE) received the MS
degree in engineering management concurrently and
the PhD degree from Stanford University, Stanford,
CA, USA, in 2001. She is a professor, a holder of
the Fratamico Endowed chair, and the director of
System Energy Efficiency Laboratory, University of
California at San Diego, La Jolla, CA. From 1998
to 2005, she was a full-time research scientist with
HP Labs, Palo Alto, CA, while also leading research
efforts with Stanford University, Stanford. She was a
senior design engineer with Altera Corporation, San

Jose, CA. She is leading a number of projects, including efforts funded by
DARPA/SRC JUMP CRISP program with focus on design of accelerators for
analysis of Big Data, DARPA and NSF funded projects on hyperdimensional
computing, and SRC funded project on IoT system reliability and main-
tainability. Her current research interests include energy-efficient computing,
cyber–physical, and distributed systems.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3264167

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:00:25 UTC from IEEE Xplore. Restrictions apply.

