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Abstract—Brain-inspired hyperdimensional computing (HDC),
also known as Vector Symbolic Architecture (VSA), is an emerg-
ing “non-von Neumann” computing scheme that imitates human
brain functions to process information or perform learning
tasks using abstract and high-dimensional patterns. Compared
with deep neural networks (DNNs), HDC shows advantages
such as compact model size, energy efficiency, and few-shot
learning. Despite of those advantages, one under-investigated
area of HDC is the adversarial robustness; existing works have
shown that HDC is vulnerable to adversarial attacks where
attackers can add minor perturbations onto the original inputs
to “fool” HDC models, producing wrong predictions. In this
paper, we systematically study the adversarial robustness of HDC
by developing a systematic approach to test and enhance the
robustness of HDC against adversarial attacks with two main
components: (1) TestHD, which is a highly-automated testing
tool that can generate high-quality adversarial data for a given
HDC model; and (2) GuardHD, which utilizes the adversarial
data generated by TestHD to enhance the adversarial robustness
of HDC models. The core idea of TestHD is built on top of
fuzz testing method. We customize the fuzzing approach by
proposing a similarity-based coverage metric to guide TestHD to
continuously mutate original inputs to generate new inputs that
can trigger incorrect behaviors of HDC model. Thanks to the
use of differential testing, TestHD does not require knowing the
labels of the samples beforehand. For enhancing the adversarial
robustness, we design, implement, and evaluate GuardHD to
defend HDC models against adversarial data. The core idea of
GuardHD is an adversarial detector which can be trained by
TestHD-generated adversarial samples. During inference, once an
adversarial sample is detected, GuardHD will override the pre-
diction result with an “invalid” signal. We evaluate the proposed
methods on 4 datasets and 5 adversarial attack scenarios with 6
adversarial generation strategies and 2 defense mechanisms, and
compare the performance correspondingly. GuardHD is able to
differentiate between benign and adversarial inputs with over
90% accuracy, which is up to 55% higher than adversarial
training-based baselines. To the best of our knowledge, this paper
presents the first comprehensive effort in systematically testing
and enhancing the robustness against adversarial data of this
emerging brain-inspired computational model.

Index Terms—hyperdimensional computing, differential fuzz
testing, adversarial attack, robust computing

I. INTRODUCTION

Hyperdimensional computing (HDC) is an emerging com-

puting scheme based on the working mechanism of brain that

computes with deep and abstract patterns of neural activity
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instead of actual numbers. Compared with machine learn-

ing (ML) algorithms such as DNN, HDC is more memory-

centric, granting it advantages such as relatively smaller model

size, less computation cost, and one-shot learning capabili-

ties, making it a promising candidate in low-cost computing

platforms [1]. Recently, HDC has demonstrated promising

capability on various applications such as language classifi-

cation [2], vision sensing [3], brain computer interfaces [4],

gesture recognition [5], and DNA pattern matching [6]. How-

ever, despite the growing popularity of HDC, the discussions

on the reliability and robustness of HDC models are relatively

limited.

The traditional approach to testing ML systems is to curate

a specific set of data with corresponding labels and input

them into the system to assess the accuracy. However, as the

ML systems are scaling significantly and the input space is

becoming more sophisticated, such approach is hardly feasible

and scalable anymore. On the other side, researchers have

found that by adding even invisible perturbations onto original

inputs to create “adversarial attacks”, ML systems can be

“fooled” and produce wrong predictions [7], [8]. Just like

DNNs, HDC can also be vulnerable to small perturbations

on inputs, as shown in Fig. I. This brings a dire need of

frameworks to automatically generate high quality adversarial

samples to attack and test the HDC model as well as detection

and defense mechanisms that can leverage the generated

samples to enhance the robustness against attacks. However,

attempting to developing such a framework for HDC models

faces challenges from both sides on testing and defense.

(a) (b) (c)

Fig. 1. An example of adversarial image of HDC by mutating some pixels
in the image:(a) the original image as “8”; (b) the pixels mutated; (c) the
mutated image wrongly predicted as “3”.

Challenges on Adversarial Testing: Unlike traditional ML

systems such as DNNs with a well-defined mathematical for-

mulation and relatively fixed architecture (specific layer types

and network structures), HDC is not differentiable and less

application-agnostic. The encoding of HDC is largely unique

for each application and relies on random indexing to project

data onto vectors in a hyperdimensional space [2], adding

difficulty to efficiently acquire adequate information to guide

the adversarial generation process. As a result, gradient-related
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generation techniques used in DNNs cannot be directly applied

here since they rely on a set of well-defined mathematical

optimization problems as well [9]. Furthermore, the standard

approach to testing ML systems is to gather and label as

much real-world test data as possible [10], [11]. Google even

used simulation to generate synthetic data [12]. However, such

effort is not only largely short of scalability but also unguided

as it does not consider the internal structure of ML systems,

making it unable to cover more than a tiny fraction of all

possible corner cases.

Challenges on Adversarial Detection: Existing defense mech-

anisms for ML models are also not applicable to HDC models.

For example, the adversarial learning approaches [13] used

in robust ML training will degrade the prediction accuracy

of HDC models [14]. Moreover, adversarial training based

algorithms require extensive off-line or even “posthumous”

retraining and fine-tuning on specific models, resulting in

less flexibility and difficult integration into the existing HDC

systems particularly with real time requirements. On the other

hand, the existing works are often parochial, i.e., specific

to one or few attack scenarios such as gray-box attacks.

Such detection and defense methods may also suffer from

transferability deficiencies in realistic implementations as the

source of the attacks can come from unknown or rather diverse

sources.
To address the above-mentioned challenges, we present

an effort to enhance the robustness of HDC model against

adversarial attacks, which consists of two major components:

1). TestHD, built on top of our previous work HDTest [15], for

highly-automated adversarial generation based on differential

fuzz testing. Fuzz testing is a software testing technique that

strategically mutates inputs with the goal of generating faults

or exceptions automatically [16], [17]. TestHD can be used

in both black-box (unguided) and gray-box (coverage-guided)

scenarios, making it a highly scalable testing solution. 2).

GuardHD, a “sub-HDC model” dedicated to verify if the

input samples are benign or adversarial and can override

potential erroneous predictions caused by adversarials with

invalid signals. As GuardHD is also an HDC classifier, it

can be easily appended to the existing HDC model and can be

executed in parallel with the the original model inference while

having minimal impact compared with adversarial training

based defense algorithms.
Our main contributions are as follows:

• We present a systematic effort to test and enhance the

HDC robustness against adversarial attacks. Based on dif-

ferential fuzz testing, TestHD iteratively mutates inputs to

generate new inputs that can trigger incorrect behaviors

of HDC models without the necessity of knowing the

label. GuardHD, on the other hand, formulates an HDC

detector model which provides detection and defense

methodologies.

• TestHD develops various mutation strategies to generate

the inputs. TestHD leverages unique property of HDC

and introduce the guided fuzz testing based on the simi-

larity to improve fuzzing efficiency.

• GuardHD leverages the concept of “sub-model” into

HDC and propose GuardHD. GuardHD is an HDC

model dedicated to detect if an input sample is adversar-

ial. If so, it will override the original HDC output with

an “invalid” signal, to indicate an attempt to attack is

detected.

• We use four datasets: MNIST, Medical MNIST, MASK

and FACE to evaluate TestHD and GuardHD. We com-

pare the efficiency and quality of the generated samples

under different scenarios and strategies. Further, trained

using the adversarial samples generated by TestHD,

GuardHD can identify and defend the adversarial sam-

ples with over 90% accuracy on average, which is up to

55% higher than the adversarial training-based defense

methods [14], [18] across diverse scenarios. We also

perform design space exploration on GuardHD to further

evaluate and analyze its performance under different

HDC configurations.

In Sec. II, we present the related works as well as highlight

the main novelty of this paper. In Sec. III, we provide the

necessary background and preliminaries on HDC. Sec. IV

discuss TestHD and how it can generate quality adversarial

samples given an HDC model under test while Sec. V talks

about how to defend the adversarial attacks using GuardHD.

We present the experimental results of evaluating TestHD and

GuardHD at Sec. VI and Sec. VII respectively. We also

discuss the potential directions for future work at Sec. VIII

and conclude the paper at Sec. IX.

II. RELATED WORK

A. Hyperdimensional Computing

Since Kanerva’s first introduction of HDC for learning

tasks [19], HDC has been applied to various emerging appli-

cation domains [20]. In IoT, HDC is deployed in edge devices

for bio-signal (such as EEG, ECG and EMG) processing to

accurately detect seizures [21], or recognize hand gestures

recognition with 97.8% accuracy on average which surpasses

support vector machine by 8.1% [22]. HDC also shows

superior accuracy to neural networks in speech recognition

as well as smaller model size and memory footprint [23].

Moreover, biological sequence matching applications such

as DNA sequencing also experiences 2X to 4X speed-up

when using HDC as well as 5% accuracy increase [24].

HDC has also been applied to radar systems for energy

efficient and faster classification of indoor human activities

with comparable accuracy [25]. For optimization of HDC

processing, HDC-IM [26] proposed in-memory computing

techniques for HDC scenarios based on Resistive RAM. There

are also optimizations on HDC targeted at different computing

platforms such as FPGA [27] and 3D IC [28].

As HDC is increasingly applied into security-critical do-

mains recently, more related literature on HDC security and

privacy emerges. By applying genetic algorithms or software

fuzzing, adversarial images are generated for HDC that can

trigger wrong predictions [14]. In addition, HDC-based voice

2
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recognition systems is also found vulnerable to adversarial at-

tacks with small perturbations added in the audio sample [29].

System-wise, HDC is also subject to other security concerns

such as privacy leak [30] and IP stealing [31]. These studies

highlight the significant necessity of defense mechanisms to

offer protection against such attacks and enhance the model

robustness under input perturbations.

B. Adversarial Attack and Defense in DNNs

Recently, adversarial deep learning have demonstrated that

state-of-the-art DNN models can be fooled by crafted syn-

thetic images with minimal perturbations added to an existing

image. Goodfellow et al. proposed a fast gradient sign method

of generating adversarial examples with required gradient

computed efficiently using backpropagation [9]. Nguyen et
al. calculated the gradient of the posterior probability for

a specific class (e.g., softmax output) with respect to the

input image using backpropagation, and then used gradient

to increase a chosen unit’s activation to obtain adversarial

images [32]. As to defense, enhanced input processing such as

denoising algorithms can sanitize the input, i.e., mitigate the

perturbations maliciously added [33], [34]. Another line of

defense methods leverage the natural classification capability

of machine learning models to develop a classifier, as a

“sub model” or “adversarial detector” dedicated to identify

attacks [35], [36]. Techniques such as dimension reduction

can be implemented together with the adversarial detector as

a method to defend and eliminate noise that pertains to the

attack [37]. The attack samples can also be injected into the

training data during adversarial training to increase the model

robustness [38], [39].

C. Main Novelty

We highlight the main novelty of this work from two

perspectives: adversarial sample generation by TestHD and

adversarial defense by GuardHD. (1) As to adversarial sample

generation in HDC, while there is gradient-less method in

generating adversarial samples such as using genetic pro-

gramming [40], our work is the first to enabling adversarial

generation without the necessity of labels thanks to the use of

differential testing, which expands the scalability and flexibil-

ity of adversarial sample generation. Further, while fuzzing

methods have been widely applied in traditional software

testing, this is the first time fuzzing method has been applied

to HDC and we customize the fuzzing flow by developing

the novel HV similarity coverage and use it to guide fuzzing

process. (2) As to adversarial attack defense, this is the first

time an adversarial detection method has been developed

for HDC models, and we have, according to the specific

characteristics of HDC, customized the adversarial detection

method by developing two representative HVs where each of

them represent either benign sample or adversarial sample. Our

work also considers the performance of adversarial detection

under different attack scenarios, and provides design space

exploration by varying HV dimensions and data-types. Last but

not least, we also compare GuardHD with the state-of-the-art

adversarial defense methods [14], [15] in the HDC community.

III. HDC BACKGROUND

This section provides the necessary backgrounds and pre-

liminaries on understanding how HDC model works as an

algorithm in learning tasks.

A. Notions and Preliminaries

Hypervectors Hypervectors (HV) are the “building blocks” of

HDC models. They are high-dimensional holographic vectors

with i.i.d. elements (often numbers) [19]. An HV with d
dimensions can be denoted by Eq. 1, where hi is the i-th
element. Within an HDC model, the dimension of HVs is

usually consistent.

�H = 〈h1, h2, . . . , hd〉 (1)

Operations As HVs are vectors, we can perform different

vector operations using HVs to aggregate information. Addi-

tion (+), multiplication (∗) and permutation (ρ) are the three

common operations that are usually used in HDC, as shown

in Eq. 2. Addition and multiplication take two input HVs and

perform element-wise add or multiply operations. Permutation

takes one HV and perform cyclic shift by certain dimensions.

Note that the dimension of HV is not modified during all these

three operations.

�Hp + �Hq = 〈hp1 + hq1, hp2 + hq2, . . . , hpd + hqd〉
�Hp ∗ �Hq = 〈hp1 ∗ hq1, hp2 ∗ hq2, . . . , hpd ∗ hqd〉
ρ1( �H) = 〈hd, h1, h2, . . . , hd−1〉

(2)

The operations also have their corresponding “realistic”

meanings [19]. Addition is used to aggregate ‘parallel” in-

formation, i.e., information from the same modality. Mul-

tiplication is used to combine information from different

sources or modalities to produce another layer of information.

Permutation is used to reflect spatial or temporal changes in

the information which often occur during a sequence or series

of data.

Similarity Measurement In HDC, every HV possesses a

certain information. The similarity ζ between the two HVs

indicates the affinity between the information they correspond-

ingly possess. Different algorithms can be used to calculate the

similarity, such as the Euclidean (L2) distance, the Hamming

distance (for binary HVs), and cosine similarity (which we

use in this paper as noted in Eq. 3). Higher similarity means

higher affinity, i.e., more information in common between the

two HVs.

ζ( �Hp, �Hq) =

∑d
i=1 hpi · hqi√∑d

i=1 hpi
2 ·

√∑d
i=1 hqi

2
(3)
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B. Developing an HDC Model

As Fig. 2, there are 3 key phases in developing an HDC

model for classification tasks: Encoding, Training, and In-
ference.

Encoding Encoding is the fundamental process in developing

an HDC model, which is to project real-world features into

their high-dimensional space representations – the HV. En-

coding features a combination of HV operations over the item

memory, whereas such combination is developed and specified

according to the application. Item memory stores randomly

generated item HVs, each representing a unique feature value

according to the realistic properties of the feature.

Encoding can be described by Eq. 4. Assume each sample

has m input features : �F = 〈f1, f2, . . . , fm〉, thus there are

m item memories R corresponding to each feature R =
{R1,R2, . . . ,Rm}. Assume the application-specific combi-

nation is Γ, therefore, for each feature in the sample, we can

index its corresponding item HV from the item memory. Using

Γ, those item HVs are then encoded into the sample HVs �H
which will subsequently represent the sample in the model

development of HDC (training and inference).

�H = Γ(R, �F ) = Γ(R1[f1],R2[f2], . . . ,Rm[fm]) (4)

Training Training is to aggregate information of samples from

the same class. Training adds up the encoded hypervectors

sharing the same label into class HVs in a dedicated associative

memory A. Considering a classification task with k classes,

as every class HV in the associative memory stands for a

class, thus there are k class HVs in the associative memory.

The associative memory is initialized to zeros and for each

sample in the training set. Each sample HV �H l with label l
is then added into A iteratively. This process of training can

be denoted as Eq. 5.

A = { �A1, �A2, . . . , �Ak}
= {

∑
�H1,

∑
�H2, . . . ,

∑
�Hk} (5)

Inference Inference is to predict the class of unseen input

samples. In HDC, inference is based on checking the similarity

between the HV representing the unseen sample (i.e., the query

HV, �Hq) and every class HV in the associative memory. �Hq

is encoded using the same combination of HD operations Γ
as other samples. The class of the highest similarity with the

query HV is selected as the predicted label lp for this unseen

sample.

lp = argmax({ζ( �Hq, �A1), ζ( �Hq, �A2), . . . , ζ( �Hq, �Ak)}) (6)

IV. TESTHD: ADVERSARIAL GENERATION

In this section, we introduce how we target at an HDC

classifier and generate the adversarial attack images under

different scenarios such as black-box and gray-box scenarios,

where the images will be used when evaluating TestHD.
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Fig. 2. Overview of Hyperdimensional Computing on Classification tasks:
Encoding, Training and Inference.
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Fig. 3. Different behavior between a regular user and an attacker.

A. Threat Model

Assume we have an HDC model deployed for mask detec-

tion as an example shown in Fig. 3, a regular user inputs an

head photo to the HDC model and obtains output labels, i.e.,

whether the person in the head photo is wearing a mask or not.

An attacker however, aims to generate perturbed adversarial

photos that can successfully attack, or fool the model to output

a wrong label for prediction so that person not wearing a mask

is predicted as wearing a mask, or vice versa. To minimize

the perturbation visually, the generated photos are required to

resemble the original benign photo as much as possible.

We assume the attacker, same as a regular user, can input

images to the target HDC model and obtain corresponding

output labels. We assume the target HDC model under attack

has the associative memory A, and a benign image of size

W × H as an input sample to the classifier is X ∈ XW,H .

Using the encoding process from Sec. III, we can obtain

4
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the encoded sample HV for this image, �Hx = Γ(R,X ).
According to Eq. 6, the HDC model will make prediction lx
based on the highest similarity between the sample HV �Hx

and the class HVs inside the associative memory A.

The attacker tries to modify the benign image X by adding

perturbation PW,H , with the objective to generate adver-

sarial image X + PW,H so that, the sample HV obtained

from the same encoding HX+PW,H = Γ(R,X + PW,H)
can make the HDC model to produce a different prediction,

i.e., lX+PW,H �= lX . The attacker also wants to minimize

the difference between the original image and the generated

adversarial image according to the similarity metrics L. We

can formulate this as an optimization problem as Eq. 7.

min L(X + PW,H ,X )

s.t. lX+PW,H �= lX
(7)

Note that the attacker can use different adversarial gen-

eration strategies and the scenarios can be diverse as well

(black-box or gray-box). In realistic implementations, the

performance of detection and defense method can drastically

vary. Therefore, we provide a further discussion on the attack

scenarios and generation strategies in the following section. A

comprehensive evaluation on TestHD performance across the

scenarios and strategies is presented in Sec. VI.

B. Attack Scenario

In neural networks, algorithms can leverage different param-

eters such as calculating the gradient with the cost functions

(e.g. cross-entropy) to guide the adversarial image generation

to achieve the optimization goals [41], [42]. However in HDC,

due to the fundamental difference on the model construction,

i.e., prediction of HDC model is based on hypervector sim-

ilarity, and parameters used in neural networks like gradient

and cross-entropy are typically not available.

We assume two possible attack scenarios in this paper:

black-box and gray-box. Under the (hard-label) black-box

scenario, attackers are not able to gain access to the internal

establishments of the HDC model such as item memories and

associative memories, i.e., attackers can only input images to

the HDC model and observe the prediction labels. Therefore,

generation of adversarial images uses different pre-defined

perturbation mechanisms which are directly aggregated with

the original image to produce the modified image and check

if the predicted label becomes different. On the other hand,

under the gray-box scenario, attacker is able to obtain the

similarity metrics such as Hamming distance or cosine sim-

ilarity between the query HV of the image and the class

HV in the associative memory. Therefore, these metrics can

be leveraged to quantitatively guide the adversarial image

generation in HDC models to generate higher quality attack

images compared with those from the black-box scenario.

C. Adversarial Generation

The overview of TestHD is illustrated in Fig. 4.

TestHD takes the original input image t without necessarily

knowing the label of it. TestHD then applies mutation algo-

rithms (strategies) on the original input t to generate new input

t′. Both the generated input and the original input are then

sent to the HDC classifier for prediction. We then check if the

two predicted labels are different, and if yes, this indicates

a successful generation of an adversarial input. Otherwise,

TestHD will continue repeating the fuzzing process.

The mutation algorithm of TestHD is shown in Alg. 1.

Its objective is to generate adversarial images by applying

mutation strategies to change, or add perturbation on the

image. For each input in the unlabelled input image dataset,

first, TestHD uses the HDC model to get the predicted label

of the original input image (Line 3) as a reference label. Then,

TestHD applies mutation strategies on the original image to

generate different mutated images as seeds (Line 5). We use 20

for the number of seeds and 5 for the number of survivors for

each iteration, and user can also specify the desired amount

of seeds generated and survived. Again, TestHD feeds the

seeds into HDC and obtains the corresponding label of the

seeds as query labels (Line 6). By comparing the query labels

with reference labels, TestHD is able to know if there are

any discrepancies which indicate successful generation of an

adversarial image (Line 7–10). The adversarial images are

added to the set of adversarial samples and TestHD proceeds

to the next image. If all the seeds are still predicted the same

as the original input image, TestHD will select the survival

seeds and repeat the process, until a successful adversarial

image is generated, or the maximum allowed iter times is

reached (Line 4). Users can further customize iter times as

the budget for evaluating robustness of different HDC models

can vary based on the actual use-case and scenario.

However, how the seeds are selected to survive into the

next iteration is different between gray-box and black-box

scenarios. For black-box scenarios, the survival seeds are

randomly sampled from all the seeds (Line 13). For gray-

box scenarios, TestHD uses guided mutation for seeds update

based on the similarity that only the top fittest seeds can

survive. The coverage ω of a seed is defined as Eq. 8, where

A[y] is the class y’s HV of in the associative memory and
�Hy′ is the query HV of the seed, encoded by the HDC model.

In fuzz testing for other machine learning models such as

DNNs, coverage is usually defined by neuron coverage and

higher coverage usually indicates higher possibility to trigger

exceptional behaviors of the model [41], [42]. Although HDC

does not explicitly have neurons like neural networks, we

similarly define the coverage based on the similarity metrics

using the associative memory. Here in HDC, higher coverage

means lower similarity between the HV of the seed and

the original input image’s HV, indicating higher possibility

to generate an adversarial image, i.e., to trigger exceptional

behavior of the model.

ω = 1− ζ(A[y], �Hy′) (8)

To ensure the added perturbations are within the desired

range, we need quality metrics to evaluate the samples gener-
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TABLE I
TESTHD STRATEGIES OF ADVERSARIAL GENERATION

strategy description

gauss Add Gaussian noise onto image
rand Add random noise onto image
stripe Randomly set certain columns to create stripes
blur Apply Gaussian blur onto image

erosion Apply erosion onto image
dilation Apply dilation onto image

ated. One of the most applied metric is the distance between

the generated samples and the original samples, such as L2 or

L1 distances [40]–[42]. User can also implement their desired

metrics as a method and incorporate in TestHD. The quality

metrics can work with coverage in a synergy to control the

adversarial generation, for example, TestHD enables users to

set a hard threshold of such metrics so that when the distances

are beyond it, the generated image is regarded as unacceptable

and then discarded. On the other hand, the quality metrics

can also be incorporated in calculating the coverage as a

regularization during the fuzzing process.

We adopt 6 typical adversarial generation strategies for

HDC models as listed in Table I, including adding various

types of noises and applying morphological processing [14],

[18].

Algorithm 1 TestHD Generation Algorithm

Input inputs: unlabeled input images for testing.
HDC: the HDC model under test.
mutate: mutation strategies listed in Table I.

Output S: (set of) adversarial (input) images.
1: S = []
2: for t in inputs do
3: y = HDC(t)
4: while max allowed iterations not reached do
5: t’ = mutate(t)
6: y’ = HDC(t’)
7: for y’ in y’ do
8: if y’ != y then
9: S.append(y’)

10: break
11: else
12: if black-box scenario then
13: seeds = seeds.select random()
14: else if gray-box scenario then
15: seeds.calc coverage(HDC.am)
16: seeds = seeds.select fittest()
17: end if
18: end if
19: end for
20: end while
21: end for

V. GUARDHD: ADVERSARIAL DEFENSE

In this section, we introduce how GuardHD is developed

to defend the attacks from the adversarial samples generated.

A. Defense Mechanism

We formulate the adversarial attack defense task as a binary

classification problem, i.e., classifying the input sample to

be adversarial or not. In GuardHD, we augment our HDC

model by adding a “sub model” as such detector to classify

the input sample concurrently with the inference of the existing

HDC model. Specifically, we append an additional associative

memory – “GuardHD detection memory” into the existing

system. This memory accommodates two class hypervectors,

each representing the class of adversarial and benign input

sample, respectively. We configure the memory using the same

parameters such as HV dimension and data type with the

existing HDC model for ease implementation and integration.

We illustrate the defense mechanism of GuardHD in Fig. 5

with two cases: benign and adversarial input samples. In both

cases, the input is encoded using the same encoding scheme

and item memory as described in Sec. III to obtain the query

HV of the input. The existing HDC model checks the similarity

between the query HV and each of the class HVs in the

associative memory to output the prediction by the class with

highest similarity.

However, GuardHD has different behaviors when the input

is identified as benign and adversarial. When existing HDC

model is making an inference, GuardHD obtains a copy of the

query HV and checking the similarity between the query HV

and each of the two HVs inside the detection memory. If the

query HV is more similar to the benign HV, the input sample

is detected as benign, so the prediction from the existing

HDC model can be normally released from the multiplexer

as the final prediction result. On the other hand if the query

HV is more similar to the adversarial HV, the input sample

is instead detected as adversarial. GuardHD then controls

the multiplexer so that an “invalid” signal will be released

instead to override the prediction as the final output result. This

indicates that a potential adversarial input sample is identified

so that the corresponding prediction will not be passed to the

system.

B. Training of GuardHD

Training of GuardHD resembles the training of a typical

HDC classifier model. In general HDC model the number of

class HVs in the associative memory matches the number of

classes in the learning task. In contrast, GuardHD is always

a binary classifier, which means it requires only two HVs

(representing benign or adversarial samples) in the added

detection memory. Thus, the memory overhead introduced by

GuardHD is always fixed. The training samples are only

labelled as benign or adversarial, regardless of what their

original label is. The samples inside the original dataset can

be directly used as benign samples. The adversarial samples

are generated based on the benign samples as described above,

with the generation strategies mentioned in TestHD.
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VI. EVALUATION OF TESTHD

A. Experimental Setup

Dataset: Most of the existing works on HDC focus on

two datasets of MNIST and FACE for vision tasks as HDC

is usually recognized as an ultra light solution for edge

computing systems [43]–[46]. We expand to four datasets by

adding Medical MNIST and MASK as detailed below to

evaluate TestHD and GuardHD.

We show example adversarial samples generated from

black-box and gray-box scenarios for all the datasets with

corresponding original samples in Fig. 6 and Fig. 7. The

images are post-processed (resized) for presentation.

• MNIST: the handwritten digit classification datasets with

10 classes from number 0 to 9 [47].

• Medical MNIST: the medical imaging dataset of 6

classes: abdomen CT, breast MRI, CXR, chest CT, hand

CT, and head CT [48].

• MASK: the head photo dataset of 2 classes where the

person in the photo is wearing a face mask or not [49].

• FACE: the human face recognition dataset to classify if

the image contains a human face or not, where the images

are scraped from CIFAR-10 [50] and the celebrity faces

(CelebFaces) Dataset [51].

Quality Metrics: Since the images of the datasets are in

different size, we normalize L1 and L2 distance with the

number of pixels in each image. We also scales dataset with

floating point range (0 – 1) into integers (0 – 255) to make

the distance metrics consistent.

B. Quality of Adversarial Generation

TABLE II
ADVERSARIAL SAMPLE QUALITY: BLACK-BOX VS. GRAY-BOX

MNIST Medical MNIST FACE MASK

black-box
L1 10.127 6.741 9.400 4.670
L2 1.121 0.256 0.574 0.074

gray-box
L1 9.851 6.506 9.237 4.731
L2 1.093 0.246 0.570 0.076

TABLE III
ADVERSARIAL SAMPLE QUALITY: STRATEGIES

MNIST Medical MNIST FACE MASK

stripe
L1 8.435 2.979 4.422 1.133
L2 1.640 0.386 0.820 0.106

random
L1 2.456 3.936 5.042 4.500
L2 0.127 0.076 0.190 0.042

gaussian
L1 4.685 10.259 9.406 8.843
L2 0.252 0.207 0.369 0.087

erosion
L1 16.443 6.677 13.377 5.977
L2 1.884 0.281 0.765 0.097

dilation
L1 16.964 11.108 14.402 5.437
L2 1.910 0.397 0.855 0.088

blur
L1 10.951 4.783 9.261 2.314
L2 0.831 0.160 0.435 0.032

We present the average quality metrics of generated adver-

sarial samples under different scenarios (Table II) and using

different generation strategies (Table III) where we can make

several observations. For example, we notice that the quality

of the adversarial samples generated under gray-box scenario

is slightly higher, with 2% – 4% lower distance to the original
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(a) original samples

(b) generated (adversarial) samples

Fig. 6. Adversarial samples generated under the black-box scenario and their corresponding original samples.

(a) original samples

(b) generated (adversarial) samples

Fig. 7. Adversarial samples generated under the gray-box scenario and their corresponding original samples.

image on average for three out of the four datasets: MNIST,

Medical MNIST and FACE. We also observe that the quality

metrics can drastically vary between different strategies of

generation. For example, samples generated from gaussian

and random strategies are usually with lower distance from

the original image and samples generated from morphological

processing such as erosion and dilation are having much

larger distances. This is expected due to the natures of those

generation strategies. The noise added to the pixels in the

original image under the random and gaussian strategies are

following corresponding distributions that only a few pixels

will be significantly perturbed.

However, since the erosion and dilation techniques are

applied to the entire sample image, the distance can be

significantly higher, as all the pixels are changed according

to the morphological kernels. The metrics are also related to

the size of the image, e.g., adding a stripe of noise to a 28×28
image (MNIST) dataset will be quite a noticeable perturbation

since 1
28 ≈ 3.5% of the total pixels are mutated, while for an

128 × 128 image (FACE), only 1
128 < 1% of the total pixels

in the image are changed. This also indicates that traditional

metrics such as L1 and L2 may not always be appropriate in

describing the quality of generated samples.

C. Efficiency of Adversarial Generation

We also present the average generation time of each ad-

versarial sample under different scenarios and strategies in

Table IV. We can observe that for gray-box scenarios, the

generation time is considerably higher, since the guided seed

selection requires HDC model inference on each seed sample

and comparing the similarity metrics. As to strategies, random

and gaussian require much more time to complete since

they require more iterations of seed selections to generate

an adversarial sample. For morphological processing, most

of the adversarial samples are generated with one iteration

since any additional iteration is likely to excessively perturb

of the original sample. In addition, larger images also requires

longer time of generation as both applying the perturbations

and using HDC model to make inference will take additional

time to accomplish.

TABLE IV
GENERATION TIME (SEC) PER ADVERSARIAL SAMPLE UNDER DIFFERENT

SCENARIOS AND STRATEGIES

MNIST Medical MNIST
black-box gray-box black-box gray-box

stripe 0.046 0.119 0.238 0.575
random 0.498 1.520 2.386 7.646
gaussian 0.427 1.281 1.341 3.937
erosion 0.076 0.129 0.256 0.439
dilation 0.102 0.164 0.521 0.856

blur 0.285 0.469 1.133 2.148

FACE MASK
black-box gray-box black-box gray-box

stripe 0.079 0.182 0.207 0.843
random 0.887 2.712 2.429 10.007
gaussian 0.588 1.816 1.822 7.428
erosion 0.414 0.655 0.575 1.456
dilation 0.146 0.230 0.460 1.186

blur 0.518 0.813 1.000 3.296

VII. EVALUATION OF GUARDHD
A. Detection Accuracy of GuardHD

GuardHD performance is evaluated by detection accuracy,

i.e., the classification accuracy of predicting the input to be
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TABLE V
EVALUATION CONFIGURATION AND DETECTION ACCURACY, RECALL AND PRECISION OF GUARDHD

train/test set
MNIST Medical MNIST

detection accuracy recall precision detection accuracy recall precision

black-box/black-box 0.948 0.933 0.951 0.97 0.949 0.991
gray-box/gray-box 0.941 0.941 0.944 0.963 0.954 0.978

black-box+gray-box/black-box+gray-box 0.976 0.906 0.97 0.989 0.982 0.994

train/test set
MASK FACE

detection accuracy recall precision detection accuracy recall precision

black-box/black-box 0.883 0.802 0.885 0.819 0.886 0.737
gray-box/gray-box 0.876 0.877 0.823 0.826 0.797 0.797

black-box+gray-box/black-box+gray-box 0.903 0.972 0.873 0.877 0.919 0.857

(a) black-box (b) gray-box (c) black-box and gray-box

Fig. 8. Impact of dimension on the adversarial attack defense performance of GuardHD.

(a) black-box (b) gray-box (c) black-box and gray-box

Fig. 9. Impact of data type on the adversarial attack defense performance of GuardHD.

adversarial or benign. According to Table V, first we examine

the performance of GuardHD under individual scenario, i.e.,

train and evaluate on either black-box or gray-box samples.

We then evaluate GuardHD with all samples together, i.e.,

train and evaluate on both black-box and gray-box samples.

In addition to detection accuracy, we also present two other

metrics: recall and precision of GuardHD in Table V as

GuardHD is essentially a binary classification model. As

detection accuracy is GuardHD’s accuracy on identifying

adversarial samples, recall is to measure the successfully iden-

tified attacks over all attacks and precision is to assess the rate

of correctly identified attacks over all identified attacks. Those

additional metrics help with monitoring the false positives in

detection adversarial attacks.

For all of the four datasets, GuardHD is able to achieve

detection accuracy higher than 80%. This indicates that the

100% attack success rate of the attack set is now reduced to

less than 20% using GuardHD. Compared with adversarial

training methods, this can achieve up to 55% additional

attack success rate reduction [14], [15]. The highest detection

accuracy is for the Medical MNIST under the scenario of

having both the black-box and gray-box generated samples.

Except for the FACE dataset, we can observe that gray-

box generated adversarial samples are usually more difficult

to detect. However, by using the adversarial attack samples

generated from both scenarios together to train GuardHD,

the detection accuracy of GuardHD can increase by 2% –

5% across the four datasets.

The recall scores of all the scenarios are also above 80%

for most scenarios, indicating GuardHD has a high capability

of successfully defending adversarial attacks with just a small

amount of false negatives. All the precision scores are also
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higher than 80% except for FACE dataset, which shows that

GuardHD has just a small impact on the performance of the

original HDC model.

B. Design Space Exploration on GuardHD
As GuardHD is also an HDC model, we also perform

its design space exploration by evaluating the impact of two

GuardHD hyper-parameters related to HDC: the dimension

and the data type of HV. We sweep the dimensions from 5,000

to 30,000 and evaluate the data types from binary to 32-bit

integer as well as the single precision 32-bit float. Such design

space exploration can help identify optimal configurations

which is necessary especially when GuardHD is equipped

with HDC models that are deployed on resource limited

systems such as edge computing platforms or embedded

architectures.

As to HV dimension, from Fig. 8, we could observe a

general trend that when dimension decreases from 30,000 to

5,000, the detection accuracy suffers from degradation across

all the datasets. This is because an HV with a lower dimension

provides smaller vector space, thus the information it can

accommodate is “shallower” than that of a higher dimension.

This results in a decreased capability of accommodating the

information required as well as ensuring the orthogonality

of randomly generated HVs (which is critical for HDC).

However, increasing dimensions will not always guarantee

an accuracy increase. In most cases, detection accuracy sat-

urates when dimensions reaches 15,000. Particularly, further

increasing dimension to 30,000 will even cause slight accuracy

drops for certain configurations due to dimensions that are

excessively high for this application to effectively train.

As to the data types, we quantize the associative memory of

GuardHD from 32-bit float to different integer types including

binary, 8-bit and 16-bit signed integers. From Fig. 9, we can

observe that quantizing the GuardHD from float to 32-bit inte-

ger does not arouse noticeable accuracy degradation. However,

the 8-bit and binary integer GuardHD suffer more significant

accuracy downgrade, particularly for binary where accuracy

decreased to less than 70% which is barely acceptable for

accurately detect adversarial samples.

To further explain the effect of the configurations, we

present a deeper analysis on the HDC model performance

by introducing an additional evaluation metric: the detection
confidence. The detection confidence in GuardHD is defined

as the normalized difference of output similarity between the

correct class and the incorrect class given a set of samples.

The detection confidence ranges from -1.0 to 1.0 where, 1). a

positive sign means a correct prediction or vice versa, and 2)

a higher absolute value means the HDC model is in greater

confidence on making this prediction.

To not occupy excessive space. We randomly selected 50

samples from the test set of the MASK dataset and plot

their detection confidences under float and binary data type

in Fig. 10 as a case study. We can observe that when

quantizing from floating point into binary, although some

of the samples experience an increase in confidence, more

samples, particularly those at the borderline (correct prediction

with low confidence) are switching to incorrect predictions,

which essentially causes the degradation of accuracy.

This is reasonable because when we quantize the model

from data types with more bits such as floating point to binary

which only occupies one bit, there is a significant loss of data.

Specifically, for an HV with a dimension of 10,000 in 32-

bit data, we are able to obtain a resolution of 232
10000

, while

for a binary HV with the same dimension, the resolution is

reduced to only 21
10000

, which is a 232× smaller space. Such

reduction on resolution can drastically degrade the volume of

information that an HV can accommodate, impairing or even

destroying the orthogonality required to present information

from different modalities particularly when the initial item

memory is generated as well as the sample HVs are encoded.

In GuardHD, this is reflected as reduced confidence and even

prediction errors during the detection on input samples as

shown in Fig. 10.

TABLE VI
THE DETECTION ACCURACY OF GUARDHD UNDER “CROSS-CHECKING”

SCENARIOS.

train/test set MNIST Medical MNIST MASK FACE

black-box/gray-box 0.856 0.936 0.876 0.878
gray-box/black-box 0.9 0.945 0.906 0.881

C. Discussion on Attack Transferability Across Scenarios

In realistic implementations, the sources of the adversarial

attack samples and how they are generated (black-box or

gray-box) are usually unknown. The attacker may also face

different attack settings and the available resources to initialize

attacks can thus differ. For example, one attacker can possibly

leverage side-channels to obtain information of associative

memory to enable grey-box scenario of a specific architecture

such as FPGA, yet such side-channel may not present in an-

other architecture such as in-memory computing devices [31].

Another use-case is the emerging federated learning while

an HDC model can be distributed to different devices with

heterogeneous architectures [52], [53], therefore the scenario

of initiating attacks may also vary. While it is impossible and

also impertinent to exhaustively list the details of the scenarios

such as how to enable vulnerabilities like side-channels, or

how federated learning can be implemented in HDC, for a

more realistic evaluation we still check the transferability of

GuardHD by “cross-checking”, i.e., training with samples

from one scenario and evaluating with another.

In Table VI, we show the detection accuracy of

GuardHD under two cross-checking scenarios with samples

from different sources: training with gray-box samples and

evaluating with black-box samples and, training with black-

box samples and evaluating with gray-box samples. For some

applications such as MNIST and Medical MNIST, the cross-

checking detection accuracy of GuardHD is 2% – 10% less

compared with scenarios with samples from the same source

in Table V. However, even trained using samples from a single
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(a) HVs in floating point (b) HVs quantized into binary

Fig. 10. Detection confidence of GuardHD with 50 random samples under floating point and binary data type.
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Fig. 11. Comparison between GuardHD and the baseline on detection and
defense methodologies.

source of adversarial sample (either gray-box or black-box),

GuardHD is still able to main higher than 85% accuracy on

detecting adversarial from the other unseen sources. Inter-

estingly, for FACE application, the detection accuracy under

cross-checking scenarios becomes even higher to around 88%.

In addition, We notice that if we train GuardHD using the

gray-box samples, GuardHD can perform better compared

with training using the black-box samples by 2% – 7%.

This indicate GuardHD is flexibly transferable in realistic

implementations where adversarial samples can come from

diverse types of unknown sources.

D. Overhead of GuardHD

We also analyze the overhead from the added GuardHD de-

tection memory in two aspects: memory footprint (space

complexity) and computation (time complexity). We assume

that in the original HDC model, the item memory has N HVs

using data width of Wim, associative memory has C class HVs

using data width of Wam and all the HVs across the system

are in the dimension of D.

The space complexity of the existing HDC model is

O(D(NWim + CWam)) while the GuardHD space com-

plexity is only O(DWam). According to our analysis, the

GuardHD overhead is less than 10% of the original HDC

model and with quantization, the overhead can be further

reduced to around 5%.

Fig. 12. GuardHD vs. adversarial training baseline in detection accuracy.
GuardHD is up to 55% higher than the baseline.

As to time complexity, for HDC in general, encoding is

the most computational intensive phase which accounts for

74% – 79% of the training and inference time [54]. In our

applications, specifically, the time complexity of encoding is

O(DN2) while for inference the GuardHD complexity is

only O(D). Across the four applications, time overhead on

GuardHD is also less than 10% of the original HDC model. In

short, GuardHD can enable over 80% accuracy for detecting

adversarial attacks, at the expense of less than 10% overhead

on both space and time.

E. GuardHD vs. Adversarial Training

The majority of the state-of-the-art adversarial detection

and existing defense methods for HDC models are based on

adversarial training, i.e., the generated adversarial samples

are used for (re-)training the model [14], [15]. According

to this concept, we implement a comparative study between

GuardHD and such baseline, where the two detection and

defense methods use the same set of adversarial samples gen-

erated, as illustrated in Fig. 11. GuardHD uses the adversarial

samples for training the detection model while the baseline

uses them for retraining the original HDC model. We then

use another set of unseen adversarial samples to attack and

observe the detection accuracy of GuardHD and the baseline.

Note that existing works on adversarial training for HDC

usually use attack success rate or accuracy as the metric for

evaluation [40], [55]. For fair comparison with GuardHD, we

also use detection accuracy in the place of attack success rate

or attack accuracy as the metric for the adversarial training

baseline.

In Fig. 12, we notice that the baseline detection and defense

method that is based on retraining can only successfully
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identify 40% – 60% of all the attacks while GuardHD can

consistently defend more than 80% of the attacks. Addition-

ally, retraining based methods can potentially induce accuracy

drops as adversarial samples incorporated in retraining are

actually considered as noise or perturbation to the original

dataset [14], which is also a common drawback of adversarial

training on other machine learning algorithms such as deep

neural networks [56]. A significant qualitative advantage of

GuardHD is that GuardHD does not modify the existing

HDC model, i.e., GuardHD brings less significant accuracy

degradation compared with the adversarial training based

methods.

VIII. DISCUSSION AND FUTURE WORKS

While TestHD considers the use of L1 and L2 distance

as the quality metrics of adversarial samples generated, it is

possible to use other quality metrics. For example, generative

models embrace more sophisticated metrics such as Inception

Score [57] and Frechet Inception Distance (FID) [58] which

align better with human judgement. However, such metrics

rely on deep network models which can potentially occupy

extremely high overhead and, how such metrics can transfer

from content generation to adversarial generation is also

outstanding.

Currently, TestHD provides two high-level budget metrics:

the number of maximum allowed iterations of fuzzing and the

generation time to indicate the cost of initiating the adversarial

attacks. Depending on the specific generation strategies and

computing resources, those metrics may not completely re-

flect the actual resources required particularly considering the

budgets from the attacker can vary under different scenarios.

Therefore, it is a potential future direction to explore if there

are metrics at a finer granularity to more accurately assess the

resources needed for adversarial attack under varying budgets.

While we compare GuardHD with adversarial training-

based defense methods, there are more defense strategies

that can be potentially applied to defend HDC models. For

example, one of the successful methods for adversarial de-

fense in DNN community is feature squeezing which aims to

reduce the space available to an adversary by “squeezing out”

unnecessary input features [59]. However, as those methods

are originally designed and implemented for DNNs, how to

transfer to the HDC domain will still need further study.

IX. CONCLUSION

As the emerging brain inspired hyperdimensional computing

(HDC) is increasingly applied to security critical domains and

applications, it is found vulnerable to attacks from adversarial

input samples. In this paper we propose to test and enhance

the robustness of HDC models against adversarial attacks

by developing TestHD and GuardHD. TestHD is a highly-

automated and scalable testing approach based on the differ-

ential fuzz testing principles. TestHD can iteratively mutates

inputs to generate adversarial inputs to expose incorrect be-

haviors of HDC models, under either (unguided) black-box or

(guided) gray-box scenarios. GuardHD is an approach for de-

fending HDC against adversarial attacks. GuardHD performs

binary classification within HDC model to detect adversarial

data, which can be integrated to the existing HDC models with

negligible overhead. We evaluate TestHD and GuardHD on 4

datasets and 5 adversarial attack scenarios with 6 adversarial

generation strategies and 2 defense mechanisms. Experimental

results also show that GuardHD is able to classify between

benign and adversarial input samples with accuracy over 90%

on average, surpassing adversarial-training baseline method by

up to 55%.
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Tajana Šimunić Rosing (F’05) received the M.S.
degree in engineering management concurrently
with the Ph.D. degree from Stanford University,
Stanford, CA, USA, in 2001 with the Ph.D. topic
“Dynamic Management of Power Consumption.”
She is a Professor, a Holder of the Fratamico En-
dowed Chair, and the Director of System Energy
Efficiency Laboratory, University of California at
San Diego, La Jolla, CA, USA. From 1998 to 2005,
she was a full-time Research Scientist with HP Labs,
Palo Alto, CA, USA, while also leading research

efforts with Stanford University, Stanford, CA, USA. She was a Senior Design
Engineer with Altera Corporation, San Jose, CA, USA. She is leading a
number of projects, including efforts funded by DARPA/SRC JUMP CRISP
program with focus on design of accelerators for analysis of big data, DARPA
and NSF funded projects on hyperdimensional computing and SRC funded
project on IoT system reliability and maintainability. Her current research
interests include energy efficient computing, cyber-physical, and distributed
systems.

Xun Jiao is Assistant Professor in the Department
of Electrical and Computer Engineering at Villanova
University, USA. He received the dual bachelor’s
degree from the joint program of Beijing Univer-
sity of Posts and Telecommunications, China and
Queen Mary University of London, UK in 2013. He
received the Ph.D. degree from the Department of
Computer Science and Engineering from University
of California, San Diego in 2018. His research inter-
ests include embedded systems, design automation,
and brain-inspired computing. He is an associate

editor of IEEE TCAD, and a TPC member of DAC, GLSVLSI, and LCTES.

14

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3263120

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 13,2023 at 23:02:43 UTC from IEEE Xplore.  Restrictions apply. 


