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Abstract—Brain-inspired hyperdimensional computing (HDC),
also known as Vector Symbolic Architecture (VSA), is an emerg-
ing ‘“non-von Neumann” computing scheme that imitates human
brain functions to process information or perform learning
tasks using abstract and high-dimensional patterns. Compared
with deep neural networks (DNNs), HDC shows advantages
such as compact model size, energy efficiency, and few-shot
learning. Despite of those advantages, one under-investigated
area of HDC is the adversarial robustness; existing works have
shown that HDC is vulnerable to adversarial attacks where
attackers can add minor perturbations onto the original inputs
to “fool” HDC models, producing wrong predictions. In this
paper, we systematically study the adversarial robustness of HDC
by developing a systematic approach to test and enhance the
robustness of HDC against adversarial attacks with two main
components: (1) TestHD, which is a highly-automated testing
tool that can generate high-quality adversarial data for a given
HDC model; and (2) GuardHD, which utilizes the adversarial
data generated by TestHD to enhance the adversarial robustness
of HDC models. The core idea of TestHD is built on top of
fuzz testing method. We customize the fuzzing approach by
proposing a similarity-based coverage metric to guide TestHD to
continuously mutate original inputs to generate new inputs that
can trigger incorrect behaviors of HDC model. Thanks to the
use of differential testing, TestHD does not require knowing the
labels of the samples beforehand. For enhancing the adversarial
robustness, we design, implement, and evaluate GuardHD to
defend HDC models against adversarial data. The core idea of
GuardHD is an adversarial detector which can be trained by
TestHD-generated adversarial samples. During inference, once an
adversarial sample is detected, GuardHD will override the pre-
diction result with an ““invalid” signal. We evaluate the proposed
methods on 4 datasets and 5 adversarial attack scenarios with 6
adversarial generation strategies and 2 defense mechanisms, and
compare the performance correspondingly. GuardHD is able to
differentiate between benign and adversarial inputs with over
90% accuracy, which is up to 55% higher than adversarial
training-based baselines. To the best of our knowledge, this paper
presents the first comprehensive effort in systematically testing
and enhancing the robustness against adversarial data of this
emerging brain-inspired computational model.

Index Terms—hyperdimensional computing, differential fuzz
testing, adversarial attack, robust computing

I. INTRODUCTION

Hyperdimensional computing (HDC) is an emerging com-
puting scheme based on the working mechanism of brain that
computes with deep and abstract patterns of neural activity
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instead of actual numbers. Compared with machine learn-
ing (ML) algorithms such as DNN, HDC is more memory-
centric, granting it advantages such as relatively smaller model
size, less computation cost, and one-shot learning capabili-
ties, making it a promising candidate in low-cost computing
platforms [1]. Recently, HDC has demonstrated promising
capability on various applications such as language classifi-
cation [2], vision sensing [3], brain computer interfaces [4],
gesture recognition [5], and DNA pattern matching [6]. How-
ever, despite the growing popularity of HDC, the discussions
on the reliability and robustness of HDC models are relatively
limited.

The traditional approach to testing ML systems is to curate
a specific set of data with corresponding labels and input
them into the system to assess the accuracy. However, as the
ML systems are scaling significantly and the input space is
becoming more sophisticated, such approach is hardly feasible
and scalable anymore. On the other side, researchers have
found that by adding even invisible perturbations onto original
inputs to create “adversarial attacks”, ML systems can be
“fooled” and produce wrong predictions [7], [8]. Just like
DNNs, HDC can also be vulnerable to small perturbations
on inputs, as shown in Fig. I. This brings a dire need of
frameworks to automatically generate high quality adversarial
samples to attack and test the HDC model as well as detection
and defense mechanisms that can leverage the generated
samples to enhance the robustness against attacks. However,
attempting to developing such a framework for HDC models
faces challenges from both sides on testing and defense.

(a) (b) ()

Fig. 1. An example of adversarial image of HDC by mutating some pixels
in the image:(a) the original image as “8”; (b) the pixels mutated; (c) the
mutated image wrongly predicted as “3”.

Challenges on Adversarial Testing: Unlike traditional ML
systems such as DNNs with a well-defined mathematical for-
mulation and relatively fixed architecture (specific layer types
and network structures), HDC is not differentiable and less
application-agnostic. The encoding of HDC is largely unique
for each application and relies on random indexing to project
data onto vectors in a hyperdimensional space [2], adding
difficulty to efficiently acquire adequate information to guide
the adversarial generation process. As a result, gradient-related
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generation techniques used in DNNs cannot be directly applied
here since they rely on a set of well-defined mathematical
optimization problems as well [9]. Furthermore, the standard
approach to testing ML systems is to gather and label as
much real-world test data as possible [10], [11]. Google even
used simulation to generate synthetic data [12]. However, such
effort is not only largely short of scalability but also unguided
as it does not consider the internal structure of ML systems,
making it unable to cover more than a tiny fraction of all
possible corner cases.

Challenges on Adversarial Detection: Existing defense mech-
anisms for ML models are also not applicable to HDC models.
For example, the adversarial learning approaches [13] used
in robust ML training will degrade the prediction accuracy
of HDC models [14]. Moreover, adversarial training based
algorithms require extensive off-line or even “posthumous”
retraining and fine-tuning on specific models, resulting in
less flexibility and difficult integration into the existing HDC
systems particularly with real time requirements. On the other
hand, the existing works are often parochial, i.e., specific
to one or few attack scenarios such as gray-box attacks.
Such detection and defense methods may also suffer from
transferability deficiencies in realistic implementations as the
source of the attacks can come from unknown or rather diverse
sources.

To address the above-mentioned challenges, we present
an effort to enhance the robustness of HDC model against
adversarial attacks, which consists of two major components:
1). TestHD, built on top of our previous work HDTest [15], for
highly-automated adversarial generation based on differential
fuzz testing. Fuzz testing is a software testing technique that
strategically mutates inputs with the goal of generating faults
or exceptions automatically [16], [17]. TestHD can be used
in both black-box (unguided) and gray-box (coverage-guided)
scenarios, making it a highly scalable testing solution. 2).
GuardHD, a “sub-HDC model” dedicated to verify if the
input samples are benign or adversarial and can override
potential erroneous predictions caused by adversarials with
invalid signals. As GuardHD is also an HDC classifier, it
can be easily appended to the existing HDC model and can be
executed in parallel with the the original model inference while
having minimal impact compared with adversarial training
based defense algorithms.

Our main contributions are as follows:

o« We present a systematic effort to test and enhance the
HDC robustness against adversarial attacks. Based on dif-
ferential fuzz testing, TestHD iteratively mutates inputs to
generate new inputs that can trigger incorrect behaviors
of HDC models without the necessity of knowing the
label. GuardHD, on the other hand, formulates an HDC
detector model which provides detection and defense
methodologies.

o TestHD develops various mutation strategies to generate
the inputs. TestHD leverages unique property of HDC
and introduce the guided fuzz testing based on the simi-
larity to improve fuzzing efficiency.
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o GuardHD leverages the concept of “sub-model” into
HDC and propose GuardHD. GuardHD is an HDC
model dedicated to detect if an input sample is adversar-
ial. If so, it will override the original HDC output with
an “invalid” signal, to indicate an attempt to attack is
detected.

o We use four datasets: MNIST, Medical MNIST, MASK
and FACE to evaluate TestHD and GuardHD. We com-
pare the efficiency and quality of the generated samples
under different scenarios and strategies. Further, trained
using the adversarial samples generated by TestHD,
GuardHD can identify and defend the adversarial sam-
ples with over 90% accuracy on average, which is up to
55% higher than the adversarial training-based defense
methods [14], [18] across diverse scenarios. We also
perform design space exploration on GuardHD to further
evaluate and analyze its performance under different
HDC configurations.

In Sec. II, we present the related works as well as highlight
the main novelty of this paper. In Sec. III, we provide the
necessary background and preliminaries on HDC. Sec. IV
discuss TestHD and how it can generate quality adversarial
samples given an HDC model under test while Sec. V talks
about how to defend the adversarial attacks using GuardHD.
We present the experimental results of evaluating TestHD and
GuardHD at Sec. VI and Sec. VII respectively. We also
discuss the potential directions for future work at Sec. VIII
and conclude the paper at Sec. IX.

II. RELATED WORK
A. Hyperdimensional Computing

Since Kanerva’s first introduction of HDC for learning
tasks [19], HDC has been applied to various emerging appli-
cation domains [20]. In IoT, HDC is deployed in edge devices
for bio-signal (such as EEG, ECG and EMG) processing to
accurately detect seizures [21], or recognize hand gestures
recognition with 97.8% accuracy on average which surpasses
support vector machine by 8.1% [22]. HDC also shows
superior accuracy to neural networks in speech recognition
as well as smaller model size and memory footprint [23].
Moreover, biological sequence matching applications such
as DNA sequencing also experiences 2X to 4X speed-up
when using HDC as well as 5% accuracy increase [24].
HDC has also been applied to radar systems for energy
efficient and faster classification of indoor human activities
with comparable accuracy [25]. For optimization of HDC
processing, HDC-IM [26] proposed in-memory computing
techniques for HDC scenarios based on Resistive RAM. There
are also optimizations on HDC targeted at different computing
platforms such as FPGA [27] and 3D IC [28].

As HDC is increasingly applied into security-critical do-
mains recently, more related literature on HDC security and
privacy emerges. By applying genetic algorithms or software
fuzzing, adversarial images are generated for HDC that can
trigger wrong predictions [14]. In addition, HDC-based voice
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recognition systems is also found vulnerable to adversarial at-
tacks with small perturbations added in the audio sample [29].
System-wise, HDC is also subject to other security concerns
such as privacy leak [30] and IP stealing [31]. These studies
highlight the significant necessity of defense mechanisms to
offer protection against such attacks and enhance the model
robustness under input perturbations.

B. Adversarial Attack and Defense in DNNs

Recently, adversarial deep learning have demonstrated that
state-of-the-art DNN models can be fooled by crafted syn-
thetic images with minimal perturbations added to an existing
image. Goodfellow et al. proposed a fast gradient sign method
of generating adversarial examples with required gradient
computed efficiently using backpropagation [9]. Nguyen et
al. calculated the gradient of the posterior probability for
a specific class (e.g., softmax output) with respect to the
input image using backpropagation, and then used gradient
to increase a chosen unit’s activation to obtain adversarial
images [32]. As to defense, enhanced input processing such as
denoising algorithms can sanitize the input, i.e., mitigate the
perturbations maliciously added [33], [34]. Another line of
defense methods leverage the natural classification capability
of machine learning models to develop a classifier, as a
“sub model” or “adversarial detector” dedicated to identify
attacks [35], [36]. Techniques such as dimension reduction
can be implemented together with the adversarial detector as
a method to defend and eliminate noise that pertains to the
attack [37]. The attack samples can also be injected into the
training data during adversarial training to increase the model
robustness [38], [39].

C. Main Novelty

We highlight the main novelty of this work from two
perspectives: adversarial sample generation by TestHD and
adversarial defense by GuardHD. (1) As to adversarial sample
generation in HDC, while there is gradient-less method in
generating adversarial samples such as using genetic pro-
gramming [40], our work is the first to enabling adversarial
generation without the necessity of labels thanks to the use of
differential testing, which expands the scalability and flexibil-
ity of adversarial sample generation. Further, while fuzzing
methods have been widely applied in traditional software
testing, this is the first time fuzzing method has been applied
to HDC and we customize the fuzzing flow by developing
the novel HV similarity coverage and use it to guide fuzzing
process. (2) As to adversarial attack defense, this is the first
time an adversarial detection method has been developed
for HDC models, and we have, according to the specific
characteristics of HDC, customized the adversarial detection
method by developing two representative HVs where each of
them represent either benign sample or adversarial sample. Our
work also considers the performance of adversarial detection
under different attack scenarios, and provides design space
exploration by varying HV dimensions and data-types. Last but
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not least, we also compare GuardHD with the state-of-the-art
adversarial defense methods [14], [15] in the HDC community.

III. HDC BACKGROUND

This section provides the necessary backgrounds and pre-
liminaries on understanding how HDC model works as an
algorithm in learning tasks.

A. Notions and Preliminaries

Hypervectors Hypervectors (HV) are the “building blocks™ of
HDC models. They are high-dimensional holographic vectors
with i.i.d. elements (often numbers) [19]. An HV with d
dimensions can be denoted by Eq. 1, where h; is the i-th
element. Within an HDC model, the dimension of HVs is
usually consistent.

H = (hy,ha,...,hq) (1)
Operations As HVs are vectors, we can perform different
vector operations using HVs to aggregate information. Addi-
tion (+), multiplication (x) and permutation (p) are the three
common operations that are usually used in HDC, as shown
in Eq. 2. Addition and multiplication take two input HVs and
perform element-wise add or multiply operations. Permutation
takes one HV and perform cyclic shift by certain dimensions.
Note that the dimension of HV is not modified during all these
three operations.

H,+ Hy = (hyp1 + hg1, hps + hea, - - . hpa + hga)
ﬁp * ﬁq = <hp1 * hqlvhp2 * hq27' : '7hl)d * hqd) 2)

V(H) = (hay hayhay o ha—1)

S

The operations also have their corresponding “realistic”

meanings [19]. Addition is used to aggregate ‘parallel” in-
formation, i.e., information from the same modality. Mul-
tiplication is used to combine information from different
sources or modalities to produce another layer of information.
Permutation is used to reflect spatial or temporal changes in
the information which often occur during a sequence or series
of data.
Similarity Measurement In HDC, every HV possesses a
certain information. The similarity ( between the two HVs
indicates the affinity between the information they correspond-
ingly possess. Different algorithms can be used to calculate the
similarity, such as the Euclidean (L2) distance, the Hamming
distance (for binary HVs), and cosine similarity (which we
use in this paper as noted in Eq. 3). Higher similarity means
higher affinity, i.e., more information in common between the
two HVs.

—

- R hos
C(Hy Hy) = izl

= i=1 qi
\/Z?=1 hzﬂ'2 : \/Z?zl hqu

3)
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B. Developing an HDC Model

As Fig. 2, there are 3 key phases in developing an HDC

model for classification tasks: Encoding, Training, and In-
ference.
Encoding Encoding is the fundamental process in developing
an HDC model, which is to project real-world features into
their high-dimensional space representations — the HV. En-
coding features a combination of HV operations over the item
memory, whereas such combination is developed and specified
according to the application. Item memory stores randomly
generated item HVs, each representing a unique feature value
according to the realistic properties of the feature.

Encoding can be described by Eq. 4. Assume each sample
has m input features : F = (f1, f2y- -+, fm), thus there are
m item memories R corresponding to each feature R =
{R1,Ra,..., R }. Assume the application-specific combi-
nation is I, therefore, for each feature in the sample, we can
index its corresponding item HV from the item memory. Using
T, those item HVs are then encoded into the sample HVs H
which will subsequently represent the sample in the model
development of HDC (training and inference).

ﬁ:F(Raﬁ):F(Rl[fILRQ[fé]""7Rm[fm]) 4)

Training Training is to aggregate information of samples from
the same class. Training adds up the encoded hypervectors
sharing the same label into class HVs in a dedicated associative
memory A. Considering a classification task with & classes,
as every class HV in the associative memory stands for a
class, thus there are k class HVs in the associative memory.
The associative memory is initialized to zeros and for each
sample in the training set. Each sample HV H'! with label !
is then added into A iteratively. This process of training can
be denoted as Eq. 5.

A={AL A2 ... Ak}
=" HL Y HLLL Y HY

Inference Inference is to predict the class of unseen input
samples. In HDC, inference is based on checking the similarity
between the HV representing the unseen sample (i.e., the query
HV, H, ¢) and every class HV in the associative memory. H
is encoded using the same combination of HD operations F
as other samples. The class of the highest similarity with the
query HV is selected as the predicted label [, for this unseen
sample.

®)

1, = argmax({C(Hy, A1), C(H,, A2),...,((H,, AV)})  (6)

IV. TESTHD: ADVERSARIAL GENERATION

In this section, we introduce how we target at an HDC
classifier and generate the adversarial attack images under
different scenarios such as black-box and gray-box scenarios,
where the images will be used when evaluating TestHD.

4
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Fig. 2. Overview of Hyperdimensional Computing on Classification tasks:
Encoding, Training and Inference.
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Fig. 3. Different behavior between a regular user and an attacker.

A. Threat Model

Assume we have an HDC model deployed for mask detec-
tion as an example shown in Fig. 3, a regular user inputs an
head photo to the HDC model and obtains output labels, i.e.,
whether the person in the head photo is wearing a mask or not.
An attacker however, aims to generate perturbed adversarial
photos that can successfully attack, or fool the model to output
a wrong label for prediction so that person not wearing a mask
is predicted as wearing a mask, or vice versa. To minimize
the perturbation visually, the generated photos are required to
resemble the original benign photo as much as possible.

We assume the attacker, same as a regular user, can input
images to the target HDC model and obtain corresponding
output labels. We assume the target HDC model under attack
has the associative memory A, and a benign image of size
W x H as an input sample to the classifier is X € X"W:H |
Using the encoding process from Sec. III, we can obtain
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the encoded sample HV for this image, H, = I'(R,X).
According to Eq. 6, the HDC model will make prediction [,
based on the highest similarity between the sample HV H,
and the class HVs inside the associative memory .A.

The attacker tries to modify the benign image X by adding
perturbation P | with the objective to generate adver-
sarial image X + P"W'H so that, the sample HV obtained
from the same encoding Hy, pwu = T(R,X + PWH)
can make the HDC model to produce a different prediction,
ie., lyypwu # lx. The attacker also wants to minimize
the difference between the original image and the generated
adversarial image according to the similarity metrics £. We
can formulate this as an optimization problem as Eq. 7.

min  L(X + P X)

s.t. @

lxypwn #lx

Note that the attacker can use different adversarial gen-
eration strategies and the scenarios can be diverse as well
(black-box or gray-box). In realistic implementations, the
performance of detection and defense method can drastically
vary. Therefore, we provide a further discussion on the attack
scenarios and generation strategies in the following section. A
comprehensive evaluation on TestHD performance across the
scenarios and strategies is presented in Sec. VI.

B. Attack Scenario

In neural networks, algorithms can leverage different param-
eters such as calculating the gradient with the cost functions
(e.g. cross-entropy) to guide the adversarial image generation
to achieve the optimization goals [41], [42]. However in HDC,
due to the fundamental difference on the model construction,
i.e., prediction of HDC model is based on hypervector sim-
ilarity, and parameters used in neural networks like gradient
and cross-entropy are typically not available.

We assume two possible attack scenarios in this paper:
black-box and gray-box. Under the (hard-label) black-box
scenario, attackers are not able to gain access to the internal
establishments of the HDC model such as item memories and
associative memories, i.e., attackers can only input images to
the HDC model and observe the prediction labels. Therefore,
generation of adversarial images uses different pre-defined
perturbation mechanisms which are directly aggregated with
the original image to produce the modified image and check
if the predicted label becomes different. On the other hand,
under the gray-box scenario, attacker is able to obtain the
similarity metrics such as Hamming distance or cosine sim-
ilarity between the query HV of the image and the class
HV in the associative memory. Therefore, these metrics can
be leveraged to quantitatively guide the adversarial image
generation in HDC models to generate higher quality attack
images compared with those from the black-box scenario.

C. Adversarial Generation

The overview of TestHD is illustrated in Fig. 4.
TestHD takes the original input image ¢ without necessarily
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knowing the label of it. TestHD then applies mutation algo-
rithms (strategies) on the original input ¢ to generate new input
t’. Both the generated input and the original input are then
sent to the HDC classifier for prediction. We then check if the
two predicted labels are different, and if yes, this indicates
a successful generation of an adversarial input. Otherwise,
TestHD will continue repeating the fuzzing process.

The mutation algorithm of TestHD is shown in Alg. 1.
Its objective is to generate adversarial images by applying
mutation strategies to change, or add perturbation on the
image. For each input in the unlabelled input image dataset,
first, TestHD uses the HDC model to get the predicted label
of the original input image (Line 3) as a reference label. Then,
TestHD applies mutation strategies on the original image to
generate different mutated images as seeds (Line 5). We use 20
for the number of seeds and 5 for the number of survivors for
each iteration, and user can also specify the desired amount
of seeds generated and survived. Again, TestHD feeds the
seeds into HDC and obtains the corresponding label of the
seeds as query labels (Line 6). By comparing the query labels
with reference labels, TestHD is able to know if there are
any discrepancies which indicate successful generation of an
adversarial image (Line 7-10). The adversarial images are
added to the set of adversarial samples and TestHD proceeds
to the next image. If all the seeds are still predicted the same
as the original input image, TestHD will select the survival
seeds and repeat the process, until a successful adversarial
image is generated, or the maximum allowed iter_times is
reached (Line 4). Users can further customize iter_times as
the budget for evaluating robustness of different HDC models
can vary based on the actual use-case and scenario.

However, how the seeds are selected to survive into the
next iteration is different between gray-box and black-box
scenarios. For black-box scenarios, the survival seeds are
randomly sampled from all the seeds (Line 13). For gray-
box scenarios, TestHD uses guided mutation for seeds update
based on the similarity that only the top fittest seeds can
survive. The coverage w of a seed is defined as Eq. 8, where
Aly] is the class y’s HV of in the associative memory and
H ' 1s the query HV of the seed, encoded by the HDC model.
In fuzz testing for other machine learning models such as
DNNSs, coverage is usually defined by neuron coverage and
higher coverage usually indicates higher possibility to trigger
exceptional behaviors of the model [41], [42]. Although HDC
does not explicitly have neurons like neural networks, we
similarly define the coverage based on the similarity metrics
using the associative memory. Here in HDC, higher coverage
means lower similarity between the HV of the seed and
the original input image’s HV, indicating higher possibility
to generate an adversarial image, i.e., to trigger exceptional
behavior of the model.

w=1-((Alyl,Hy) ®)

To ensure the added perturbations are within the desired
range, we need quality metrics to evaluate the samples gener-

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:02:43 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3263120

TABLE I
TESTHD STRATEGIES OF ADVERSARIAL GENERATION

strategy description

gauss Add Gaussian noise onto image

rand Add random noise onto image

stripe Randomly set certain columns to create stripes

blur Apply Gaussian blur onto image
erosion Apply erosion onto image
dilation Apply dilation onto image

ated. One of the most applied metric is the distance between
the generated samples and the original samples, such as L2 or
L1 distances [40]-[42]. User can also implement their desired
metrics as a method and incorporate in TestHD. The quality
metrics can work with coverage in a synergy to control the
adversarial generation, for example, TestHD enables users to
set a hard threshold of such metrics so that when the distances
are beyond it, the generated image is regarded as unacceptable
and then discarded. On the other hand, the quality metrics
can also be incorporated in calculating the coverage as a
regularization during the fuzzing process.

We adopt 6 typical adversarial generation strategies for
HDC models as listed in Table I, including adding various
types of noises and applying morphological processing [14],
[18].

Algorithm 1 TestHD Generation Algorithm

Input inputs: unlabeled input images for testing.
HDC: the HDC model under test.
mutate: mutation strategies listed in Table I.
Output S: (set of) adversarial (input) images.
1: S=1]
2: for t in inputs do

3 y = HDC(t)

4 while max allowed iterations not reached do
5: t’ = mutate(t)

6: y’ = HDC(t)

7 for y’ in y’ do

8: if y’ !=y then

9: S.append(y’)

10: break

11: else

12: if black-box scenario then

13: seeds = seeds.select_random()
14: else if gray-box scenario then

15: seeds.calc_coverage(HDC.am)
16: seeds = seeds.select_fittest()
17: end if

18: end if

19: end for
20: end while
21: end for

V. GUARDHD: ADVERSARIAL DEFENSE

In this section, we introduce how GuardHD is developed
to defend the attacks from the adversarial samples generated.

A. Defense Mechanism

We formulate the adversarial attack defense task as a binary
classification problem, i.e., classifying the input sample to
be adversarial or not. In GuardHD, we augment our HDC
model by adding a “sub model” as such detector to classify
the input sample concurrently with the inference of the existing
HDC model. Specifically, we append an additional associative
memory — “GuardHD detection memory” into the existing
system. This memory accommodates two class hypervectors,
each representing the class of adversarial and benign input
sample, respectively. We configure the memory using the same
parameters such as HV dimension and data type with the
existing HDC model for ease implementation and integration.

We illustrate the defense mechanism of GuardHD in Fig. 5
with two cases: benign and adversarial input samples. In both
cases, the input is encoded using the same encoding scheme
and item memory as described in Sec. III to obtain the query
HYV of the input. The existing HDC model checks the similarity
between the query HV and each of the class HVs in the
associative memory to output the prediction by the class with
highest similarity.

However, GuardHD has different behaviors when the input
is identified as benign and adversarial. When existing HDC
model is making an inference, GuardHD obtains a copy of the
query HV and checking the similarity between the query HV
and each of the two HVs inside the detection memory. If the
query HV is more similar to the benign HV, the input sample
is detected as benign, so the prediction from the existing
HDC model can be normally released from the multiplexer
as the final prediction result. On the other hand if the query
HV is more similar to the adversarial HV, the input sample
is instead detected as adversarial. GuardHD then controls
the multiplexer so that an “invalid” signal will be released
instead to override the prediction as the final output result. This
indicates that a potential adversarial input sample is identified
so that the corresponding prediction will not be passed to the
system.

B. Training of GuardHD

Training of GuardHD resembles the training of a typical
HDC classifier model. In general HDC model the number of
class HVs in the associative memory matches the number of
classes in the learning task. In contrast, GuardHD is always
a binary classifier, which means it requires only two HVs
(representing benign or adversarial samples) in the added
detection memory. Thus, the memory overhead introduced by
GuardHD is always fixed. The training samples are only
labelled as benign or adversarial, regardless of what their
original label is. The samples inside the original dataset can
be directly used as benign samples. The adversarial samples
are generated based on the benign samples as described above,
with the generation strategies mentioned in TestHD.
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Fig. 5. Workflow of GuardHD framework with benign input and adversarial
input samples. L 10.127 6.741 9.400 4.670
black-box 15 121 0.256 0574  0.074
L 9.851 6.506 9.237 4.731
gray-box L2 1.093 0.246 0.570 0.076
VI. EVALUATION OF TESTHD
A. Experimental Setup
o TABLE III
Dataset: Most of the existing works on HDC focus on ADVERSARIAL SAMPLE QUALITY: STRATEGIES
two datasets of MNIST and FACE for vision tasks as HDC
is usually recognized as an ultra light solution for edge MNIST ~ Medical MNIST ~ FACE =~ MASK
computing systems [43]-[46]. We expand to four datasets by . L1 8435 2.979 4.422 1.133
. ? . tr
adding Medical MNIST and MASK as detailed below to Stipe 3 ;2‘5‘2 gggg ggig 2;88
evaluate TestHD and Guarde. random "5 "5 0.076 0190 0042
We show example adversarial samples generated from saussian L1 4.685 10.259 9.406  8.843
black-box and gray-box scenarios for all the datasets with L2 0252 0207 0.369 ~ 0.087
. . . . . . L1 16.443 6.677 13.377 5.977
corresponding original samples in Fig. 6 and Fig. 7. The erosion 5 egy 0.281 0765  0.097
images are post-processed (resized) for presentation. dilation L1 16964 11.108 14.402 5437
. .. . . . L2 1.910 0.397 0.855 0.088
o MNIST: the handwritten digit classification datasets with Ll 10951 4783 9261 2314
10 classes from number 0 to 9 [47]. blur 15 03831 0.160 0435  0.032

o Medical MNIST: the medical imaging dataset of 6

classes: abdomen CT, breast MRI, CXR, chest CT, hand
CT, and head CT [48].
e« MASK: the head photo dataset of 2 classes where the
person in the photo is wearing a face mask or not [49].
o FACE: the human face recognition dataset to classify if
the image contains a human face or not, where the images

We present the average quality metrics of generated adver-
sarial samples under different scenarios (Table II) and using
different generation strategies (Table III) where we can make
several observations. For example, we notice that the quality
of the adversarial samples generated under gray-box scenario
is slightly higher, with 2% — 4% lower distance to the original
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(b) generated (adversarial) samples

Fig. 6. Adversarial samples generated under the black-box scenario and their corresponding original samples.

S|

FIESE

(b) generated (adversarial) samples

Fig. 7. Adversarial samples generated under the gray-box scenario and their corresponding original samples.

image on average for three out of the four datasets: MNIST,
Medical MNIST and FACE. We also observe that the quality
metrics can drastically vary between different strategies of
generation. For example, samples generated from gaussian
and random strategies are usually with lower distance from
the original image and samples generated from morphological
processing such as erosion and dilation are having much
larger distances. This is expected due to the natures of those
generation strategies. The noise added to the pixels in the
original image under the random and gaussian strategies are
following corresponding distributions that only a few pixels
will be significantly perturbed.

However, since the erosion and dilation techniques are
applied to the entire sample image, the distance can be
significantly higher, as all the pixels are changed according
to the morphological kernels. The metrics are also related to
the size of the image, e.g., adding a stripe of noise to a 28 x 28
image (MNIST) dataset will be quite a noticeable perturbation
since % ~ 3.5% of the total pixels are mutated, while for an
128 x 128 image (FACE), only 135 < 1% of the total pixels
in the image are changed. This also indicates that traditional
metrics such as L1 and L2 may not always be appropriate in
describing the quality of generated samples.

C. Efficiency of Adversarial Generation

We also present the average generation time of each ad-
versarial sample under different scenarios and strategies in
Table IV. We can observe that for gray-box scenarios, the
generation time is considerably higher, since the guided seed
selection requires HDC model inference on each seed sample
and comparing the similarity metrics. As to strategies, random
and gaussian require much more time to complete since

8

they require more iterations of seed selections to generate
an adversarial sample. For morphological processing, most
of the adversarial samples are generated with one iteration
since any additional iteration is likely to excessively perturb
of the original sample. In addition, larger images also requires
longer time of generation as both applying the perturbations
and using HDC model to make inference will take additional
time to accomplish.

TABLE IV
GENERATION TIME (SEC) PER ADVERSARIAL SAMPLE UNDER DIFFERENT
SCENARIOS AND STRATEGIES

MNIST Medical MNIST
black-box  gray-box  black-box  gray-box
stripe 0.046 0.119 0.238 0.575
random 0.498 1.520 2.386 7.646
gaussian 0.427 1.281 1.341 3.937
erosion 0.076 0.129 0.256 0.439
dilation 0.102 0.164 0.521 0.856
blur 0.285 0.469 1.133 2.148
FACE MASK
black-box  gray-box  black-box  gray-box
stripe 0.079 0.182 0.207 0.843
random 0.887 2.712 2.429 10.007
gaussian 0.588 1.816 1.822 7.428
erosion 0.414 0.655 0.575 1.456
dilation 0.146 0.230 0.460 1.186
blur 0.518 0.813 1.000 3.296

VII. EVALUATION OF GUARDHD
A. Detection Accuracy of GuardHD

GuardHD performance is evaluated by detection accuracy,
i.e., the classification accuracy of predicting the input to be
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TABLE V
EVALUATION CONFIGURATION AND DETECTION ACCURACY, RECALL AND PRECISION OF GUARDHD

) MNIST Medical MNIST
train/test set detection accuracy  recall  precision | detection accuracy recall  precision
black-box/black-box 0.948 0.933 0.951 0.97 0.949 0.991
gray-box/gray-box 0.941 0.941 0.944 0.963 0.954 0.978
black-box+gray-box/black-box+gray-box 0.976 0.906 0.97 0.989 0.982 0.994
. MASK FACE
train/test set detection accuracy  recall  precision | detection accuracy  recall  precision
black-box/black-box 0.883 0.802 0.885 0.819 0.886 0.737
gray-box/gray-box 0.876 0.877 0.823 0.826 0.797 0.797
black-box+gray-box/black-box+gray-box 0.903 0.972 0.873 0.877 0.919 0.857
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Fig. 8. Impact of dimension on the adversarial attack defense performance of GuardHD.
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Fig. 9. Impact of data type on the adversarial attack defense performance of GuardHD.

adversarial or benign. According to Table V, first we examine
the performance of GuardHD under individual scenario, i.e.,
train and evaluate on either black-box or gray-box samples.
We then evaluate GuardHD with all samples together, i.c.,
train and evaluate on both black-box and gray-box samples.

In addition to detection accuracy, we also present two other
metrics: recall and precision of GuardHD in Table V as
GuardHD is essentially a binary classification model. As
detection accuracy is GuardHD’s accuracy on identifying
adversarial samples, recall is to measure the successfully iden-
tified attacks over all attacks and precision is to assess the rate
of correctly identified attacks over all identified attacks. Those
additional metrics help with monitoring the false positives in
detection adversarial attacks.

For all of the four datasets, GuardHD is able to achieve
detection accuracy higher than 80%. This indicates that the

100% attack success rate of the attack set is now reduced to
less than 20% using GuardHD. Compared with adversarial
training methods, this can achieve up to 55% additional
attack success rate reduction [14], [15]. The highest detection
accuracy is for the Medical MNIST under the scenario of
having both the black-box and gray-box generated samples.
Except for the FACE dataset, we can observe that gray-
box generated adversarial samples are usually more difficult
to detect. However, by using the adversarial attack samples
generated from both scenarios together to train GuardHD,
the detection accuracy of GuardHD can increase by 2% —
5% across the four datasets.

The recall scores of all the scenarios are also above 80%
for most scenarios, indicating GuardHD has a high capability
of successfully defending adversarial attacks with just a small
amount of false negatives. All the precision scores are also

9
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:02:43 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution

requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3263120

higher than 80% except for FACE dataset, which shows that
GuardHD has just a small impact on the performance of the
original HDC model.

B. Design Space Exploration on GuardHD

As GuardHD is also an HDC model, we also perform
its design space exploration by evaluating the impact of two
GuardHD hyper-parameters related to HDC: the dimension
and the data type of HV. We sweep the dimensions from 5,000
to 30,000 and evaluate the data types from binary to 32-bit
integer as well as the single precision 32-bit float. Such design
space exploration can help identify optimal configurations
which is necessary especially when GuardHD is equipped
with HDC models that are deployed on resource limited
systems such as edge computing platforms or embedded
architectures.

As to HV dimension, from Fig. 8, we could observe a
general trend that when dimension decreases from 30,000 to
5,000, the detection accuracy suffers from degradation across
all the datasets. This is because an HV with a lower dimension
provides smaller vector space, thus the information it can
accommodate is “shallower” than that of a higher dimension.
This results in a decreased capability of accommodating the
information required as well as ensuring the orthogonality
of randomly generated HVs (which is critical for HDC).
However, increasing dimensions will not always guarantee
an accuracy increase. In most cases, detection accuracy sat-
urates when dimensions reaches 15,000. Particularly, further
increasing dimension to 30,000 will even cause slight accuracy
drops for certain configurations due to dimensions that are
excessively high for this application to effectively train.

As to the data types, we quantize the associative memory of
GuardHD from 32-bit float to different integer types including
binary, 8-bit and 16-bit signed integers. From Fig. 9, we can
observe that quantizing the GuardHD from float to 32-bit inte-
ger does not arouse noticeable accuracy degradation. However,
the 8-bit and binary integer GuardHD suffer more significant
accuracy downgrade, particularly for binary where accuracy
decreased to less than 70% which is barely acceptable for
accurately detect adversarial samples.

To further explain the effect of the configurations, we
present a deeper analysis on the HDC model performance
by introducing an additional evaluation metric: the detection
confidence. The detection confidence in GuardHD is defined
as the normalized difference of output similarity between the
correct class and the incorrect class given a set of samples.
The detection confidence ranges from -1.0 to 1.0 where, 1). a
positive sign means a correct prediction or vice versa, and 2)
a higher absolute value means the HDC model is in greater
confidence on making this prediction.

To not occupy excessive space. We randomly selected 50
samples from the test set of the MASK dataset and plot
their detection confidences under float and binary data type
in Fig. 10 as a case study. We can observe that when
quantizing from floating point into binary, although some
of the samples experience an increase in confidence, more
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samples, particularly those at the borderline (correct prediction
with low confidence) are switching to incorrect predictions,
which essentially causes the degradation of accuracy.

This is reasonable because when we quantize the model
from data types with more bits such as floating point to binary
which only occupies one bit, there is a significant loss of data.
Specifically, for an HV with a dimension of 10,000 in 32-
bit data, we are able to obtain a resolution of 232", while
for a binary HV with the same dimension, the resolution is
reduced to only 21" which is a 232x smaller space. Such
reduction on resolution can drastically degrade the volume of
information that an HV can accommodate, impairing or even
destroying the orthogonality required to present information
from different modalities particularly when the initial item
memory is generated as well as the sample HVs are encoded.
In GuardHD, this is reflected as reduced confidence and even
prediction errors during the detection on input samples as
shown in Fig. 10.

TABLE VI
THE DETECTION ACCURACY OF GUARDHD UNDER “CROSS-CHECKING”
SCENARIOS.
train/test set ‘ MNIST  Medical MNIST MASK FACE
black-box/gray-box 0.856 0.936 0.876 0.878
gray-box/black-box 0.9 0.945 0.906 0.881

C. Discussion on Attack Transferability Across Scenarios

In realistic implementations, the sources of the adversarial
attack samples and how they are generated (black-box or
gray-box) are usually unknown. The attacker may also face
different attack settings and the available resources to initialize
attacks can thus differ. For example, one attacker can possibly
leverage side-channels to obtain information of associative
memory to enable grey-box scenario of a specific architecture
such as FPGA, yet such side-channel may not present in an-
other architecture such as in-memory computing devices [31].
Another use-case is the emerging federated learning while
an HDC model can be distributed to different devices with
heterogeneous architectures [52], [53], therefore the scenario
of initiating attacks may also vary. While it is impossible and
also impertinent to exhaustively list the details of the scenarios
such as how to enable vulnerabilities like side-channels, or
how federated learning can be implemented in HDC, for a
more realistic evaluation we still check the transferability of
GuardHD by “cross-checking”, i.e., training with samples
from one scenario and evaluating with another.

In Table VI, we show the detection accuracy of
GuardHD under two cross-checking scenarios with samples
from different sources: training with gray-box samples and
evaluating with black-box samples and, training with black-
box samples and evaluating with gray-box samples. For some
applications such as MNIST and Medical MNIST, the cross-
checking detection accuracy of GuardHD is 2% — 10% less
compared with scenarios with samples from the same source
in Table V. However, even trained using samples from a single
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Fig. 11. Comparison between GuardHD and the baseline on detection and
defense methodologies.

source of adversarial sample (either gray-box or black-box),
GuardHD is still able to main higher than 85% accuracy on
detecting adversarial from the other unseen sources. Inter-
estingly, for FACE application, the detection accuracy under
cross-checking scenarios becomes even higher to around 88%.

In addition, We notice that if we train GuardHD using the
gray-box samples, GuardHD can perform better compared
with training using the black-box samples by 2% — 7%.
This indicate GuardHD is flexibly transferable in realistic
implementations where adversarial samples can come from
diverse types of unknown sources.

D. Overhead of GuardHD

We also analyze the overhead from the added GuardHD de-
tection memory in two aspects: memory footprint (space
complexity) and computation (time complexity). We assume
that in the original HDC model, the item memory has N HVs
using data width of W;,,, associative memory has C' class HVs
using data width of W, and all the HVs across the system
are in the dimension of D.

The space complexity of the existing HDC model is
O(D(NW,p, + CW,,,)) while the GuardHD space com-
plexity is only O(DW,,,). According to our analysis, the
GuardHD overhead is less than 10% of the original HDC
model and with quantization, the overhead can be further
reduced to around 5%.
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Fig. 12. GuardHD vs. adversarial training baseline in detection accuracy.
GuardHD is up to 55% higher than the baseline.

As to time complexity, for HDC in general, encoding is
the most computational intensive phase which accounts for
74% — 79% of the training and inference time [54]. In our
applications, specifically, the time complexity of encoding is
O(DN?) while for inference the GuardHD complexity is
only O(D). Across the four applications, time overhead on
GuardHD is also less than 10% of the original HDC model. In
short, GuardHD can enable over 80% accuracy for detecting
adversarial attacks, at the expense of less than 10% overhead
on both space and time.

E. GuardHD vs. Adversarial Training

The majority of the state-of-the-art adversarial detection
and existing defense methods for HDC models are based on
adversarial training, i.e., the generated adversarial samples
are used for (re-)training the model [14], [15]. According
to this concept, we implement a comparative study between
GuardHD and such baseline, where the two detection and
defense methods use the same set of adversarial samples gen-
erated, as illustrated in Fig. 11. GuardHD uses the adversarial
samples for training the detection model while the baseline
uses them for retraining the original HDC model. We then
use another set of unseen adversarial samples to attack and
observe the detection accuracy of GuardHD and the baseline.
Note that existing works on adversarial training for HDC
usually use attack success rate or accuracy as the metric for
evaluation [40], [55]. For fair comparison with GuardHD, we
also use detection accuracy in the place of attack success rate
or attack accuracy as the metric for the adversarial training
baseline.

In Fig. 12, we notice that the baseline detection and defense
method that is based on retraining can only successfully
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identify 40% — 60% of all the attacks while GuardHD can
consistently defend more than 80% of the attacks. Addition-
ally, retraining based methods can potentially induce accuracy
drops as adversarial samples incorporated in retraining are
actually considered as noise or perturbation to the original
dataset [14], which is also a common drawback of adversarial
training on other machine learning algorithms such as deep
neural networks [56]. A significant qualitative advantage of
GuardHD is that GuardHD does not modify the existing
HDC model, i.e., GuardHD brings less significant accuracy
degradation compared with the adversarial training based
methods.

VIII. DISCUSSION AND FUTURE WORKS

While TestHD considers the use of L1 and L2 distance
as the quality metrics of adversarial samples generated, it is
possible to use other quality metrics. For example, generative
models embrace more sophisticated metrics such as Inception
Score [57] and Frechet Inception Distance (FID) [58] which
align better with human judgement. However, such metrics
rely on deep network models which can potentially occupy
extremely high overhead and, how such metrics can transfer
from content generation to adversarial generation is also
outstanding.

Currently, TestHD provides two high-level budget metrics:
the number of maximum allowed iterations of fuzzing and the
generation time to indicate the cost of initiating the adversarial
attacks. Depending on the specific generation strategies and
computing resources, those metrics may not completely re-
flect the actual resources required particularly considering the
budgets from the attacker can vary under different scenarios.
Therefore, it is a potential future direction to explore if there
are metrics at a finer granularity to more accurately assess the
resources needed for adversarial attack under varying budgets.

While we compare GuardHD with adversarial training-
based defense methods, there are more defense strategies
that can be potentially applied to defend HDC models. For
example, one of the successful methods for adversarial de-
fense in DNN community is feature squeezing which aims to
reduce the space available to an adversary by “squeezing out”
unnecessary input features [59]. However, as those methods
are originally designed and implemented for DNNs, how to
transfer to the HDC domain will still need further study.

IX. CONCLUSION

As the emerging brain inspired hyperdimensional computing
(HDC) is increasingly applied to security critical domains and
applications, it is found vulnerable to attacks from adversarial
input samples. In this paper we propose to test and enhance
the robustness of HDC models against adversarial attacks
by developing TestHD and GuardHD. TestHD is a highly-
automated and scalable testing approach based on the differ-
ential fuzz testing principles. TestHD can iteratively mutates
inputs to generate adversarial inputs to expose incorrect be-
haviors of HDC models, under either (unguided) black-box or
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(guided) gray-box scenarios. GuardHD is an approach for de-
fending HDC against adversarial attacks. GuardHD performs
binary classification within HDC model to detect adversarial
data, which can be integrated to the existing HDC models with
negligible overhead. We evaluate TestHD and GuardHD on 4
datasets and 5 adversarial attack scenarios with 6 adversarial
generation strategies and 2 defense mechanisms. Experimental
results also show that GuardHD is able to classify between
benign and adversarial input samples with accuracy over 90%
on average, surpassing adversarial-training baseline method by
up to 55%.
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