
IEEE TRANSACTIONS TRANS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

RAPIDx: High-performance ReRAM Processing
in-Memory Accelerator for Sequence Alignment
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Abstract—Genome sequence alignment is the core of many bio-
logical applications. The advancement of sequencing technologies
produces a tremendous amount of data, making sequence align-
ment a critical bottleneck in bioinformatics analysis. The existing
hardware accelerators for alignment suffer from limited on-chip
memory, costly data movement, and poorly optimized alignment
algorithms. They cannot afford to concurrently process the massive
amount of data generated by sequencing machines. In this paper,
we propose a ReRAM-based accelerator, RAPIDx, using process-
ing in-memory (PIM) for sequence alignment. RAPIDx achieves
superior efficiency and performance via software-hardware
co-design. First, we propose an adaptive banded parallelism
alignment algorithm suitable for PIM architecture. Compared to
the original dynamic programming-based alignment, the proposed
algorithm significantly reduces the required complexity, data bit
width, and memory footprint at the cost of negligible accuracy
degradation. Then we propose the efficient PIM architecture that
implements the proposed algorithm. The data flow in RAPIDx
achieves four-level parallelism and we design an in-situ alignment
computation flow in ReRAM, delivering 5.5-9.7× efficiency and
throughput improvements compared to our previous PIM design,
RAPID. The proposed RAPIDx is reconfigurable to serve as a
co-processor integrated into the existing genome analysis pipeline
to boost sequence alignment or edit distance calculation. On short-
read alignment, RAPIDx delivers 131.1× and 46.8× throughput
improvements over state-of-the-art CPU and GPU libraries,
respectively. As compared to ASIC accelerators for long-read
alignment, the performance of RAPIDx is 1.8-2.9× higher.

Index Terms—Processing in-memory, genome analysis, sequence
alignment, non-volatile memory, dataflow optimization

I. INTRODUCTION

Genome techniques are becoming increasingly crucial in

various fields. Modern genome analysis techniques have been

applied to human DNA to diagnose genetic diseases by identi-

fying disease-associated structural variants [1]. The genome

sequence information is also used to infer the evolutionary

history of an organism over time [2]. These sequences can also

be analyzed to provide information on populations of viruses

within individuals, allowing for a comprehensive understanding

of underlying viral selection pressures [3].

DNA sequence alignment is a key step in genome analysis

that gains increasing significance due to the following reasons.

First, several types of sequencing errors occur when the

sequencing machine reads the genome. Additionally, genetic

mutations and variations also introduce sequence differences.

DNA alignment algorithms, like Needleman–Wunsch (NW) [4]

and Smith-Waterman (SW) [5], are used to identify the optimal

match between the query and reference sequences. The other
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Figure 1: Trend of unit sequencing cost [16] and genome data

volume [17] over the past decade.

reason is that the alignment step has become the bottleneck

of genome analysis pipeline because sequence alignment is a

computation-intensive and memory-intensive workload, taking

up 60-80% runtime of popular genome analysis tools [6]–

[9]. Therefore, boosting DNA sequence alignment plays an

important role in accelerating genome analysis.

Various algorithm optimizations have been developed for soft-

ware libraries [6], [7], [9], [10]. However, the limited computing

resources of CPU severely restrict the achievable performance.

These works fail to generate satisfactory processing throughput

and energy efficiency. To this end, many efforts have been

made to design acceleration solutions on ASIC [11]–[13],

GPU [8], [14], or FPGA [15] platforms. Through optimizing

algorithm and hardware architecture, these accelerators have

shown significant improvements in terms of efficiency and

processing speed. However, the memory-intensive nature of

DNA alignment algorithms makes them suffer from the limited

on-chip as well as expensive data movement between off-

chip memory and processing cores, incurring energy overhead

caused by data movement.

The advent of high-throughput next-generation sequencing

(NGS) technique [18] enlarges the gap between the processing

capabilities of existing alignment accelerators and the rapidly

generated genome data. Fig. 1 shows the unit cost of genome

sequencing has plunged by over 104× during the last decade.

Meanwhile, the genome data volume of whole genome sequenc-

ing (WGS) and GenBank [17] have also expanded by 102×
to 104×. The genome data growth has significantly surpassed

Moore’s Law, meaning that acceleration solutions with orders of

magnitude higher efficiency are needed for sequence alignment.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3239537

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 13,2023 at 23:06:50 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS TRANS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

Processing in-memory (PIM) is promising to mitigate the data

movement issue and provides massive parallelism. This is

because PIM enables in-situ data computation inside memory,

thereby throttling the latency and energy of data movement [19]–

[22]. Existing PIM-based accelerators for genome analysis [23]–

[28] take PIM’s advantages of high data parallelism and low-

cost data movement, showing orders of magnitude efficiency

and performance improvements over CPU and GPU.

We previously presented the PIM architecture for sequence

alignment, called RAPID [28], which computes DNA alignment

in memory. However, RAPID has the following deficits.

First, the original DP algorithm [4] used by RAPID is sub-

optimal since it is unable to measure the affine gap penalty,

which has been widely used in software libraries [7], [8]

and shown optimal alignment quality [29]. Second, RAPID

does not consider software-hardware co-optimization, thereby

wasting a large amount of energy and computing resources on

redundant computations. Recent works [9], [30] demonstrate

DP alignment algorithm exhibits great redundancy, and most of

computation can be skipped using banded alignment [31] to ac-

celerate the alignment process at the cost of negligible accuracy

degradation. In this paper, we propose a software-hardware

co-design, RAPIDx, that exploits digital PIM techniques on

ReRAM to enable a highly parallel and more energy-efficient

acceleration for sequence alignment. The key contributions of

this work can be summarized as follows:

• PIM-friendly dynamic programming (DP) alignment:
We consider the affine gap penalty to construct more

accurate scoring functions. Then we propose the adaptive

banded parallelized DP alignment that is friendly for PIM

implementation. The proposed alignment algorithm reduces

the required arithmetic precision from 32-bit to only 5-bit

and obtains higher data parallelism. Meanwhile, the adaptive

wavefront direction and bandwidth schemes significantly

reduce memory footprint and computational complexity by

over 10× at the cost of < 0.15% accuracy loss.

• High-performance PIM architecture: We propose efficient

PIM architecture for RAPIDx, which achieves four-level data

parallelism. RAPIDx leverages in-situ PIM operations [32] to

perform low-energy and row-parallel in-memory alignment.

Our peripheral circuits implement fast traceback as well

as complex functions not friendly for PIM. Compared to

previous RAPID [28], RAPIDx shows 5.5× latency reduction

and 6.2× energy improvements.

• System optimization and reconfigurable design: We design

novel PIM computing operations that are reconfigurable

to support multiple types of alignment scoring as well as

edit distance computation. This makes RAPIDx a multi-

purpose accelerator that is flexible to support alignment

and edit distance computations. We also analyze several

possible limiting factors when integrating RAPIDx into

existing computing system, including ReRAM cell’s limited

endurance, switching speed, and system considerations.

• Improvements and accelerations: We compare RAPIDx

with state-of-the-art CPU baselines (Minimap2 [7] and

Edlib [6]), GPU baseline (GASAL2 [8]), and ASIC baselines

(ABSW [11] and GenASM [12]) on various workloads. For

short-read alignment, RAPIDx delivers an average 131.1×

and 46.8× higher throughput compared to Minimap2 [7]

and GASAL2 [8], respectively. For long-read alignment,

1.8× to 2.9× throughput improvements are observed over

ABSW [11] and GenASM [12]. For edit distance calculation,

RAPIDx obtains up to 321× speedup over Edlib [6].

II. RELATED WORK

A. Software for Sequence Alignment
Several software libraries [6]–[9] have been developed for

boosted genome analysis. The main point is optimizing the

SW algorithm and CPU/GPU datapath to deliver accurate and

fast sequence alignment. BWA-MEM [9] is software to map

DNA sequences against large reference genomes. BWA-MEM

aligns the given sequences using Burrows-Wheeler Transform

(BWT) [33]. However, the memory footprint of aligning long

genome is large and the irregular memory access of BWT limits

the processing speed. Edlib [6] is a C++ library that exploits

Myers’s bit-vector algorithm [34] to parallelize the SW-based

alignment. To realize more accurate and efficient alignment,

Minimap2 [7] introduces two promising optimization strategies,

banded alignment [31] and difference-based SW [35], which

can be fitted into the datapath of single instruction, multiple data

(SIMD). Minimap2 generates over 10× speedup over BWA-

MEM. Even though these software libraries achieve fine-grain

optimization, the limited computing resources on CPU fail to

provide opportunities for further acceleration. Some researchers

shift the focus to GPU-based acceleration. CUDAlign 4.0

[14] increases the parallelism by splitting each SW alignment

into multiple GPUs and reducing the data dependency of the

traceback process. GASAL2 [8] optimizes the data organization

and develops efficient kernels for multiple sequence alignment

workloads. These libraries exploit the abundant computing

resources on GPU. But the resulted efficiency is not high

because optimizations for SW algorithms are lacked due to the

architectural limitations of GPU. In this work, RAPIDx is a

software and hardware co-design that realizes algorithm and

hardware optimizations at the same time.

B. Hardware Acceleration for Sequence Alignment
ASIC Accelerator: Various hardware accelerators [11]–[13],

[23]–[25], [27], [32] have be presented to obtain higher

energy efficiency and speedup for genome analysis. For ASIC

designs, one challenge is how to realize long-read alignment

under the constraints of limited on-chip memory. Darwin [13]

proposes near-optimal tiling methods to align arbitrary sequence

lengths, only requiring constant memory space. ABSW [11]

leverages the tiling schemes [13] and implements an adaptively

banded alignment on ASIC, achieving significant efficiency

improvement. GenASM [12] proposes an approximate string

matching algorithm and a systolic-array-based accelerator to

increase data parallelism while reducing memory footprint.

Although prior works employ a variety of optimizations, the

limited on-chip memory is still the bottleneck when aligning

long sequences.

PIM Accelerator: PIM is a promising solution to increase

data parallelism and energy efficiency via computing data

in situ [21], [26], [27], [36]. The PIM-based alignment

designs proposed in PRINS [23] and BioSEAL [24] accelerate

algorithms using resistive content addressable memory (CAM).
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Figure 2: (a) The pipeline of genome sequence analysis. (b) Alignment example of sequences ACGTCCG and AGTTATC with

affine gap penalties, (c) Score matrix, (d) Traceback matrix.

But the sequential associative search incurs a large amount

of write operation and internal data movement, degrading

efficiency, lifetime, and storage efficiency. Another set of works

accelerates short read alignment, where long sequences are

broken down into smaller sequences and heuristic methods

are applied. AlignS [26], AligneR [27] and PIM-Aligner [36]

exploit FM-index algorithm and PIM to realize short-read

alignment. However, FM-index incurs irregular memory access,

and is hard to exploit the data parallelism of PIM. RAPID

[28] is a ReRAM-based PIM accelerator to implement in-

situ alignment computation in the memory, which drastically

reduces the data movement. However, the adopted algorithm

in RAPID is sub-optimal and requires quadratic complexity,

limiting its capability of aligning long sequences. In this work,

we present several optimizations for alignment algorithms and

hardware architecture to fully leverage the highly parallel PIM

while providing satisfactory alignment quality. Our design,

RAPIDx, delivers up to 9.3× alignment efficiency improvement

compared to other PIM baselines.

III. BACKGROUND

A. Genome Sequence Analysis
1) Overall Pipeline
A typical pipeline of modern genome sequencing analysis

[7], [9], [10] involves indexing, seeding, filtering, and read

alignment steps as shown in Fig. 2 (a). For the indexing

phase, the entire reference sequence is stored into special

data structures, like BWT [33] and FM-indexing. The indexing

is for quickly obtaining the location of query sequence in

the reference sequence. Then, the seeding process uses the

indexing information to query the potential mapping locations

of genome reads. The filtering step discards invalid candidates

or combines nearby candidates from the seeding step. Finally,

the genome reads are aligned against the reference sequence

around the candidate location using the SW algorithm. Among

these steps, the most time-consuming step is read alignment

used to determine how the read sequence can be optimally

mapped to the reference sequence.

2) Sequence Alignment with Affine Gap Penalty
The sequence alignment can be described as finding the

maximum alignment score between the reference sequence

R = r1, r2, ..., rm and the query sequence Q = q1, q2, ..., qn.

Natural evolution and mutation as well as experimental errors

during sequencing poses two types of changes in sequences -

substitutions and indels. A substitution changes a base of the

sequence with another, leading to a mismatch whereas an indel

either inserts or deletes a base. Fig. 2 (b) shows the comparison

of two sequences, R = ACGTCCG and Q = AGTTATC. The

left part rigidly compares the ith base of Q with R, where

match and mismatch are considered. The right part assumes a

different alignment that involves insertion and deletion. Note

that the notation of dashes (−) is conceptual, and are used to

illustrate a potential scenario that one sequence has been (or

can be) evolved to the other.

Most sequence alignments are categorized into global or

local alignment. The global and local alignments can be

optimally addressed by NW algorithm [4] and SW algorithm

[5], respectively. NW and SW both build up and compute

the optimal alignment sequence based on DP [37], [38]. DP-

based methods involve forming alignment matrices, which

are used to compute scores of various alignments based on a

pre-defined scoring function. The scoring function is essential

for accurate alignment since it is used to update the scoring

matrix in DP. The previous work [39] mostly uses the scoring

function with linear gap penalty, where the penalty is increasing

linearly with the gap length. However, the linear gap penalty

is insufficient to accurately evaluate the alignment scores for

those sequences with the same total gap length. The gap-less

sequence is normally more biologically meaningful compared to

the sequence with more gaps. In this work, we adopt the scoring

function with affine gap penalties [40] that consider the number

and length of gaps. Fig. 2 shows an example of alignment

between sequence R = ACGTCCG and Q = AGTTATC using

affine gap penalties. The updating rules for scoring matrices

in DP with affine gap penalty can be expressed as:

Ei,j = max

{
Hi−1,j − o

Ei−1,j − e
Fi,j = max

{
Hi,j−1 − o

Fi,j−1 − e

Hi,j = max{Ei,j , Fi,j , Hi−1,j−1 − s(rj , qi)}
(1)

where E and F denote the alignment matrices that store

the scores of insertion and deletion, respectively. H is the

alignment score matrix that stores the total scores. s(rj , qi)
denotes the score of match A or mismatch B by comparing

rj and qi. The gap opening penalty is o while e denotes

the gap extension penalty. Fig. 2 (c) shows an example

of score matrix H calculated using Eq (1) with penalties

A = 2, B = 4, o = 4, e = 2. A traceback phase is required to

construct the optimal alignment path after the computation for

all alignment matrices. The traceback matrix in Fig. 2 (d) stores

the path information. For global alignment, the traceback starts

from the cell at the bottom-right corner while local alignment

starts from the cell with the maximum score.
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B. Difference-based Dynamic Programming (DP) Alignment
The updating function in Eq. (1) has the following limitations.

The maximum value in the alignment matrix scales up linearly

with the matrix dimension. The data bit width needs to be

increased as the sequence length increases to avoid computation

overflow. Previous accelerations [11], [13] use a fixed bit width

in the worst case, resulting in low computation efficiency.

To resolve this issue, the original DP updating is rewritten

into a computation-efficient form, named the difference-based

formulation [35]. The basic idea is to store and compute

the value difference of adjacent elements instead of the full-

precision value in the alignment matrix, thus reducing the

required arithmetic precision. As shown in the left side of Eq.

(2), four matrices ΔH , ΔV , ΔE, and ΔF are used to store

the difference values. After substituting the four difference

matrices into Eq. (1), the alignment matrices (H , E, and F )

are converted into the following difference-based formulation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ΔHi,j = Hi,j −Hi−1,j

ΔVi,j = Hi,j −Hi,j−1

ΔEi,j = Ei+1,j −Hi,j

ΔFi,j = Fi,j+1 −Hi,j

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai,j = max

⎧⎪⎨
⎪⎩
s(i, j),

ΔEi−1,j +ΔVi−1,j ,

ΔFi,j−1 +ΔHi,j−1

ΔHi,j = Ai,j −ΔVi−1,j

ΔVi,j = Ai,j −ΔHi,j−1

ΔEi,j = max{−o,ΔEi−1,j −ΔHi,j} − e

ΔFi,j = max{−o,ΔFi,j−1 −ΔVi,j} − e

(2)

where an intermediate variable Ai,j is added to the computation.

It should be noted that Eq. (2) only changes the expression of

original DP in Eq. (1) while retaining the identical information.

Eq. (2) can generate the identical alignment results as Eq. (1).

There are two benefits of the difference-based alignment

in Eq. (2). First, the arithmetic precision requirement is

significantly reduced. According to [7], [35], the data range of

ΔHi,j and ΔVi,j are bounded by [−o−e,−e] while ΔEi,j and

ΔFi,j are bounded by [−o− e,M + o+ e], where M denotes

the maximum value of s(i, j). Compared to the full-precision

alignment, the difference-based representations only needs

�log2(M +2o+2e+1)�-bit integer to calculate the alignment.

Second, the required data precision is only determined by the

used affine gap scores while independent with the sequence

length. This property allows us to use a unified data bit width

for different sequence lengths. For example, we use 5-bit integer

for computing alignment and 3-bit integer for calculating edit

distance as introduced in Section V-D.

C. Digital Processing In-Memory (PIM)
Various types of memory devices are used for PIM to resolve

the “memory wall” problem, including MRAM [26], [36],

PCM, and SRAM [41]. MRAM suffers from severe read

disturbance when the memory density increases [42]. ReRAM

has higher memory density than MRAM and SRAM because

the ReRAM cell is much smaller than MRAM and SRAM.

Moreover, ReRAM has lower leakage power compared to

other devices, making it an energy-efficient candidate for PIM.

FeFET [43] and NAND flash [44] are the other two potential

PIM candidates that are still in early development phase while
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Figure 3: Implementing NOR operation using ReRAM-based

digital processing in-memory (PIM).

ReRAM has been physically verified at scale [45]. ReRAM has

higher error rates, but this is not a significant issue for alignment

as alignment algorithms are already statistical in nature, and

can tolerate significant errors at bit level. Considering all these

benefits, we choose ReRAM-based PIM in this work.

Traditionally, PIM with memristors is based on reading

currents through different cells. However, some recent work

has demonstrated ways, both in literature [32], [46], [47]

and by fabricating chips [48], to implement logic using

memristor switching. Digital PIM exploits variable switching of

memristors. The output device switches whenever the voltage

across it exceeds a threshold [49]. This property can be

exploited to implement a variety of logic functions inside

memory [32], [46]. Fig. 3 shows an example of implementing

NOR operation using ReRAM-based PIM [32]. A voltage V0

is in parallel applied to the rows that contain the operand

cells ai and bi. The output cell oi switches to low voltage

status (logical ‘0’) from initial logical ‘1’ whenever one or

more inputs are ‘1’s, resulting in logical NOR operation. Since

NOR is a functionally complete logic gate, it can be used

to implement other logic operations like addition [46] and

multiplication [50]. For example, 1-bit addition (inputs being

A,B,C) can be represented in the form of NOR as:

Cout = ((A+B)′ + (B + C)′ + (C +A)′)′

S = (((A′ +B′ + C′)′ + ((A+B + C)′ + Cout)
′)′)′

(3)

where Cout and S are the generated carry and sum bits

of addition. (A + B + C)′, (A + B)′, and A′ represent

NOR(A,B,C), NOR(A,B), and NOR(A,A), respectively.

In-memory operations are in general slower than the cor-

responding CMOS-based implementations because memristor

devices switch slowly. However, PIM architectures can provide

significant speedup when it is exposed massive parallelism.

Meanwhile, the long processing latency is amortized due to the

high parallelism. In this work, RAPIDx utilizes two types of

PIM operations (XOR and addition) introduced in FELIX [32]

to perform in-memory alignment computation. This is because

FELIX’s PIM primitives achieve the same or significantly better

latency, memory consumption, and efficiency than other digital

PIM schemes [46], [51]. The other digital PIM scheme [52]

for floating-point arithmetic is not suitable for the fixed-point

arithmetic in RAPIDx.

Specifically, the XOR and 1-bit addition are realized through:

• XOR: XOR (⊕) can be expressed by OR (+), AND (.), and

NAND ((.)′) as A⊕B = (A+B).(A.B)′. We first calculate

OR and then use its output cell to implement NAND. This

operation is executed in parallel over all the columns of two

rows. This logic just requires 2 cycles and one additional
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memristor device, which acts as the output cell.

• Addition: Let A, B, and Cin be 1-bit inputs of addition, and

S and Cout the generated sum and carry bits respectively.

Then, S is implemented as two serial in-memory XOR

operations (A⊕B)⊕C. Cout, on the other hand, can be

executed by inverting the output of the Min function proposed

in [32]. Addition takes a total of 6 cycles and similar to

XOR, we parallelize it over all columns in two rows.

IV. EFFICIENT ALIGNMENT IN RAPIDX

In this section, we first analyze the challenges of realizing

efficient in-memory alignment using digital PIM. Then we

propose the adaptive banded parallelized DP alignment to

balance performance and accuracy loss.

A. Challenges of Alignment using PIM
1) Data Bit Width and Latency
Compared to CMOS-based circuits, the slow switching speed

of ReRAM cells incurs long latency when implementing PIM

operations in Section III-C. For example, 1-bit PIM addition

takes 6 to 12 clock cycles [32]. As discussed in Section III-B,

the data bit width and range grow linearly with the sequence

length. The previous accelerators [24], [28] adopt the original

DP algorithm which uses 32-bit integers to guarantee lossless

alignment. However, 32-bit integer is over-designed and incurs

long processing latency when aligning short sequences (<1kbp)

since the lower 12-bit width is enough to provide sufficient

data dynamic range [11]. Therefore, developing an alignment

algorithm using low bit-width data is beneficial to reduce PIM

latency. The difference-based DP alignment in Section III-B

is a potential solution to alleviate this as it needs fixed data

width independent of sequence length.

2) Data Parallelism
ReRAM-based PIM architectures [24], [25], [28], [36] offer

substantial opportunities of extending the data parallelism.

High parallelism amortizes the incurred long latency of PIM

operations. One example is the row-parallel PIM operation

[24], [32], where the bit-serial computation can be performed

in the entire memory row simultaneously. How to exploit the

architectural parallelism of ReRAM is key to attaining high

alignment throughput. The other challenge from the algorithm

is how to expose enough parallelism to ReRAM. For DP

alignment, adjacent cells in alignment matrices exhibit data

dependency. Previous works [7], [11], [13], [24], [35] utilize

the wavefront parallelism based on the fact that cells over

anti-diagonal have no data dependency. Unfortunately, this

parallelism is far enough for PIM architecture.

3) Complexity and Accuracy
Fig. 4 (a) illustrates the full DP alignment using Eq. (1), where

all cells in the matrices with shape m×n need to be computed

(m and n denote the lengths of reference and query sequences,

respectively). The complexity is prohibitive when aligning long

sequences. Banded alignment [30], [31] is an effective method

to reduce the complexity from quadratic to near-linear. It should

be noted that the banded approach is an approximate algorithm

that may introduce accuracy degradation. One simple solution

is to use a fixed and wide bandwidth (B = 128) as [11]. But

this degrades the throughput and performance gain since wider

bandwidth leads to higher complexity. The challenge is how

to select narrow bandwidth for various lengths while ensuring

the optimality of results.

B. Adaptive Banded Parallelized DP Alignment
We propose the adaptive banded parallelized DP alignment to

resolve the above-mentioned challenges. The difference-based

alignment in Eq. (2) relaxes the requirement of data precision

and reduces the bit width for DP alignment. However, the

computation of ΔHi,j ,ΔVi,j ,ΔEi,j , and ΔFi,j can only be

accomplished in a serial manner. Specifically, Ai,j needs to

be first computed before updating ΔHi,j and ΔVi,j . Then

the values of ΔVi,j and ΔEi,j require the newly updated

ΔHi,j and ΔVi,j . Consequently, parallelizing the computation

for each updating step is difficult due to the inherent data

dependency. We resolve this issue through further transforming

Eq. (2) into a parallelized version similar to [35]. The variables

in Eq. (2) are rewritten as the top part of Eq. (4), where

auxiliary o and e values are added to each variable in Eq.

(2). After substituting it into Eq. (2), we have the parallelized

difference-based alignment as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A′
i,j = Ai,j + 2o+ 2e

ΔH ′
i,j = ΔHi,j + o+ e

ΔV ′
i,j = ΔVi,j + o+ e

ΔE′
i,j = ΔEi−1,j +ΔVi−1,j + 2o+ 2e

ΔF ′
i,j = ΔFi,j−1 +ΔHi,j−1 + 2o+ 2e

⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A′
i,j = max{s′(i, j),ΔE′

i−1,j ,ΔF ′
i,j−1}

ΔH ′
i,j = A′

i,j −ΔV ′
i−1,j

ΔV ′
i,j = A′

i,j −ΔH ′
i,j−1

ΔE′
i,j = max{A′

i,j ,ΔE′
i−1,j + o} −ΔH ′

i,j−1

ΔF ′
i,j = max{A′

i,j ,ΔF ′
i,j−1 + o} −ΔV ′

i−1,j

(4)

where ΔH ′
i,j and ΔV ′

i,j only depend on new A′
i,j and previous

ΔV ′
i−1,j and ΔH ′

i,j−1, respectively. Likewise, ΔE′
i,j and

ΔF ′
i,j can be calculated by the old ΔH ′

i,j−1 and ΔV ′
i−1,j from

the previous iteration. In this case, the relaxed data dependency

between four alignment matrices provides higher computation

parallelism. After obtaining A′
i,j , the computation of ΔH ′

i,j ,

ΔV ′
i,j , ΔE′

i,j , and ΔF ′
i,j can be conducted in parallel to shorten

the processing latency. We call this the alignment matrix level

parallelism. The data range of four alignment matrices is shifted

to [0,M + 2o+ 2e] from [−o− e,M + o+ e], requiring the

same bit width as Eq. (2).

The banded alignment [31] significantly reduces the com-

plexity based on the observation that the optimal alignment path

normally locates not far away from the diagonal of alignment

matrices. The reduction is achieved by limiting the cells in

alignment matrices that need to be computed. Fig. 4 (b) shows

the banded DP alignment that only computes the cells located

within a bandwidth B = 6 of the diagonal, whereas the rest

cells are inactivated. In this way, only B wavefront cells

(the cells that are updated simultaneously) are computed and

moved over the main diagonal in each iteration. Bandwidth

and wavefront direction are the two key factors that determine

the accuracy and efficiency of banded alignment. The adaptive

banded parallelized alignment adopted by RAPIDx is adaptive

in the sense of bandwidth and wavefront direction as follows:

1) Adaptive Bandwidth
A narrow bandwidth B � m,n helps to perform a low-

complexity alignment as the banded DP has O(mB) com-
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Figure 4: Illustration of three variants of DP alignment algorithms. Bandwidth B = 6 in (b) and B = 3 in (c).

plexity. To balance the algorithm efficiency and accuracy,

the bandwidth B used in RAPIDx is adaptive based on

the processed sequence length. The other factor to consider

when choosing the bandwidth is the inflexibility of ReRAM-

based PIM. The proper bandwidth needs to be determined

before alignment computation. To this end, we express the

relationship between bandwidth B and sequence length L as

B = min(w + 0.01 × L, 100), where w denotes the base

bandwidth that determines the narrowest bandwidth while B
is set to the multiple of w. The function limits the maximum

bandwidth to 100 because previous BWA-MEM [9] shows

B = 100 is enough to guarantee optimal alignment for all

sequence lengths. On the other hand, a band with less than

20 is enough for over 99% cases as demonstrated in [30]

but a too narrow band may not guarantee the optimality of

alignment for long reads. This is because current long-read

techniques (see Table II) incur much more errors and the narrow

band can not fully cover the optimal path. Thus, we empirically

select the 0.01 coefficient to adaptively determine the minimum

bandwidth that provides negligible degradation according to L.

Based on the length of the given sequences, the bandwidth B
can be pre-determined before alignment. We provide detailed

experiments in Section VI-B to guide the selection of the

0.01 coefficient and the best w that only introduce negligible

accuracy loss.

2) Adaptive Wavefront Direction
The wavefront cells in Fig. 4 (b) and (c) can move either

rightward or downward in each iteration. The alignment tools,

like Minimap2 [7] and BWA-MEM [9], mostly use a pre-

defined direction in Fig. 4 (b), such that the wavefront moves

towards the main diagonal. When we use narrow bandwidth

(B = 3) in Fig. 4 (c), simply computing the wavefront over

the main diagonal may not obtain the optimal results because

the fixed wavefront direction lacks flexibility and is unable

to cover the optimal path. To this end, we use a simple

adaptive wavefront direction scheme to dynamically adjust

the moving direction of wavefront cells as in Fig. 4 (c). The

direction is decided based on the comparison result of two

edge cells in the band of score matrix. Specifically, if the

value of the rightmost cell is greater than the leftmost cell, this

suggests the optimal path is more likely to go rightward [53].

Hence, the current wavefront is moved rightward. Otherwise,

the wavefront is moved downward. The adaptive wavefront

Table I: Comparison of DP alignment algorithms in Fig. 4

Algorithm Complexity Critical AccuracyComputation Memory Path
Full DP O(mn) O(mn) 5 × 32 bit High

Banded Difference-based DP O(mB) O(mB) 8 × 5 bit Low

Adaptive Banded Parallelized DP O(mB) O(mB) 4 × 5 bit High

direction scheme only needs one comparison each iteration

but effectively improves the accuracy of long-read alignment

according to our test results in Table V.

We conduct an algorithmic analysis for the aforementioned

DP algorithms and compare their complexity, data parallelism,

and critical path in Table I. The critical path is defined as

the longest data path needed to accomplish one iteration of

cell updating. Thanks to the alignment matrix parallelism, the

proposed adaptive banded parallelized alignment only needs

half of the critical path of Eq. (2). More importantly, the

adaptive wavefront direction compensates for the accuracy loss

caused by narrow bandwidth, allowing the proposed algorithm

to generate near-optimal results using near-linear complexity.

V. IN-MEMORY ARCHITECTURE OF RAPIDX

We propose the PIM-based ReRAM accelerator, RAPIDx to

implement the adaptive banded parallelized DP alignment in

Section IV. RAPIDx utilizes the in-site PIM-based alignment

algorithm and the efficient data flow with four-level parallelism

to boost alignment process.

A. Overview
As shown in 1 of Fig. 5, RAPIDx is a ReRAM-based PIM

accelerator for genome sequence alignment. The algorithm

in Section IV-B exhibits various data parallelisms, including

wavefront and alignment matrix levels. RAPIDx is organized in

a multi-level hierarchy to extend the data parallelism. RAPIDx

consists of 64 tiles, each RAPIDx tile independently receiving

and transferring genome data through global I/O buffer and

global row driver. The read genome sequences are stored in

the sequence buffer within each tile. To minimize the data

movement, the forward DP cells updating and traceback com-

putation happen locally in each tile. There is no communication

between tiles. We conduct design space exploration in Section

VI-C to choose the hardware configurations resulting in the

best efficiency.

Fig. 5- 2 shows the internal structure of RAPIDx tile,

where one computation memory (CMs) and multiple traceback

memories (TBMs) are implemented. One CM is connected to

15 TBMs through the H-tree connection, allowing low-latency
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Figure 5: RAPIDx architecture. 1 ReRAM memory organization of RAPIDx. 2 Internal architecture of RAPIDx tile. 3

Peripheral circuits (shifter, interleaved bit-serial max finder, and traceback logic). 4 Interleaved bit-serial max finder.

and high-bandwidth data transfer between CMs and TBMs. The

number of TBM is more than CM because most of the memory

is used for storing traceback information. Each CM fetches the

reference and query sequences from the 2KB sequence buffer.

Then CM calculates A′, ΔH ′, ΔV ′, ΔE′, and ΔF ′ matrices

in Eq. (4) using PIM-based XOR and addition operations

combined with peripheral circuits. Each CM is able to access

TBMs and transfer traceback data through the H-tree routing.

Although the ReRAM subarray exhibits high data parallelism,

some computations of alignment and traceback can not be

efficiently realized in CM. For example, finding the point-wise

maximum values of two vectors in [28] is complex, requiring

both leading one detector and bit-wise logical operations. PIM

operations [32] is unable to support low-latency traceback in

Eq. (5) as well as the adaptive wavefront direction scheme.

In RAPIDx, we connect peripheral circuits to sense amplifier

(SA) and offload these operations to the peripheral circuits,

consisting of the shifter, interleaved bit-serial max finder, and

traceback logic as shown in Fig. 5- 3 and 4 .

In the peripheral circuits, we identify the max finder accounts

for the largest area and has the most complex structure.

The design of max finder faces several challenges. First, the

additional overhead should be as low as possible to ensure

not significantly sacrificing ReRAM memory density. Second,

the max finder should match the processing rate of CM while

minimally impacting the overall throughput. The max finding

scheme in [28] incurs long latency. We further reduce the

latency by offloading the max finding to the interleaved bit-

serial max finder in Fig. 5- 4 . The interleaved bit-serial max

finder is composed of k bit-serial max finders and the width

k equals to the SA’s bit width. This is to match the data rate

of SA. The classic bit-serial max finder receives 2-bit input

in parallel. However, only 1-bit data of multiple data points

in the same vector can be read from CM through SA due to

CM’s bit-serial data organization. Hence, we add a latch and

MUX before the input of bit-serial MAX finder to make it

support the comparison of bit-serial data.

B. Data Flow with Four-level Data Parallelism

To fully exploit the acceleration opportunities and increase

throughput, RAPIDx achieves four-level parallelism, namely

tile level, sequence level, wavefront level, and alignment matrix

level, as illustrated in Fig. 6. On the host side, query reads are

seeded and filtered in a batched processing manner. Then the

resulted kt batches of reference and query pairs are sent to

RAPIDx, where k denotes the number of memory segments in

Fig. 6 (b) and t denotes the number of tiles. The kt batches

of reference and query data are evenly distributed to each tile.

The tile-level parallelism enables different RAPIDx tiles to

process and align k independent sequences in parallel, allowing

the performance of RAPIDx to scale almost linearly with the

number of implemented tiles. The CM subarray with size

1024× 1024 used in this paper introduces long latency due to

the slow PIM operations [32]. The genome sequences in each

CM are processed in batch to amortize the long latency of PIM.

As illustrated in Fig. 6 (b), each CM processes a reference

and a query batch with batch size k. The CM is horizontally

divided into k memory segments to compute the k pairs of

reference and query sequences in parallel. The column width

of each memory segment equals the bandwidth B of banded

alignment. Hence, there are at most � 1024
B � memory segments.

RAPIDx achieves wavefront-level and alignment matrix-level

parallelism in the memory segments of CM. The wavefront-

level parallelism is based on the fact that the cells over anti-

diagonal have no data dependency since they only depend on

the cells in the previous diagonal. The row-parallel operations

of ReRAM subarray compute and update the B wavefront cells

over the anti-diagonal in Fig. 4 (c) simultaneously. Meanwhile,

the relaxed data dependency of parallelized alignment in Eq. (4)

provides the alignment matrix-level parallelism, where ΔH ′
i,j ,

ΔV ′
i,j , ΔE′

i,j , and ΔF ′
i,j can be computed in parallel.

C. In-memory Alignment
1) Forward DP Updating
As shown in Fig. 6 (c), the data in ReRAM subarray are

organized in the bit-serial manner, where each b-bit data lies ver-

tically in b consecutive rows over the bit line. The rows of each

memory segment are vertically divided into two regions, includ-

ing sequence rows and processing rows. The sequence rows

are used for storing DNA bases of reference and query. Before

starting the wavefront cells updating, the DNA bases related

to B wavefront cells are fetched from the sequence buffer and

written to the sequence rows. Since each DNA base, A,G,C,T,

is encoded with 2-bit data, the sequence rows occupy 4 memory

rows. The rest of memory rows work as processing rows and

reserved rows, which are responsible for updating wavefront

cells of A′
i,j ,ΔH ′

i,j ,ΔV ′
i,j ,ΔE′

i,j ,ΔF ′
i,j in Eq. (4) using PIM

operations [32]. The processing rows are partitioned into five
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partitions by switches and A′
i,j ,ΔH ′

i,j ,ΔV ′
i,j ,ΔE′

i,j ,ΔF ′
i,j are

stored and processed in each partition. Intermediate data rows

are inserted into the processing rows to store constant values

and intermediate results during computation. The constants

used for comparison and subtraction when updating the DP

alignment include 2o+2e and o. These pre-defined values are

replicated and pre-stored in the reserved rows. PIM operations

can directly access these values whenever needed. Specifically,

the forward DP updating is computed in the following orders:

1) First, the 5-bit data s′(i, j) are computed by comparing

reference and query wavefront sequences (see 1 of Fig.

6 (c)). s′(i, j) requires one comparison and addition to

generate the match or mismatch score. The comparison

between genome bases is done using 2-bit XOR operations.

2) Second, A′
i,j is obtained from the maximum value of s′(i, j),

ΔE′
i−1,j , and ΔFi,j−1 as shown in 2 of Fig. 6 (c). Two

max operations are needed in this step.

3) Third, four copies of A′
i,j are written to the intermediate

data rows related to ΔH ′
i,j ,ΔV ′

i,j ,ΔE′
i,j , and ΔF ′

i,j as 3

of Fig. 6 (c).

4) Third, ΔH ′
i,j and ΔV ′

i,j are updated in parallel using copied

Ai,j and previous ΔV ′
i−1,j ,ΔH ′

i,j−1. Meanwhile, ΔE′
i,j

and ΔF ′
i,j are updated in parallel based on copied A′

i,j

and ΔE′
i−1,j , ΔF ′

i,j−1, ΔH ′
i,j−1, ΔV ′

i−1,j of the previous

iteration. This step needs four subtractions, two additions,

and two max operations.

5) Finally, the alignment score matrix Hi,j need to be retrieved

using the function Hi,j = Hi−1,j +ΔHi,j = ΔH ′
i,j − (o+

e) +Hi−1,j , which requires one 5-bit subtraction and one

32-bit addition.

2) Adaptive Wavefront Direction
After wavefront cells are computed, the band will move either

downwards or rightwards by one cell. Fig. 7 illustrates how the

wavefront with bandwidth B = 3 is moved using peripheral

circuits, where the wavefront direction is controlled by the

shifter and sequence buffer. The max finder first compares the

leftmost and rightmost cells in score matrix H , determining

the next direction for wavefront. Then, the shifter receives the
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Figure 7: Illustration of adaptive wavefront direction and

traceback process using peripheral circuits.

direction signal and reads the corresponding genome sequence

from the sequence buffer. If the wavefront is moving rightwards,

the shifter fetches reference data. Otherwise, it fetches query

data. After shifting to the position of wavefront cells, the new

genome sequence is written to the sequence rows within CM.

In this way, the majority of computation data stay stationary

in CM using in-situ PIM-based alignment, reducing the data

movement overhead.

3) Traceback Process
Each iteration of DP alignment is followed by updating

traceback matrix. Eq. (1) can easily compute the traceback

matrix through comparing the corresponding values of three

alignment matrices I , D, and H . However, the difference-based

DP alignment in Eq. (2) and Eq. (4) only store the difference

values and do not explicitly give the score matrix H . Therefore,

we modify the formula of generating traceback information of

the original DP to calculate the traceback matrix TB as the

following equation:

TBi−1,j−1 =

⎧⎪⎨
⎪⎩

00, if s′i,j == (A+ o+ e) or (−B + o+ e)

01, if ΔH′
i,j == ΔE′

i−1,j −ΔV ′
i−1,j

10, if ΔH′
i,j == ΔF ′

i,j−1 −ΔH′
i,j−1

11, if others

(5)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3239537

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 13,2023 at 23:06:50 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS TRANS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

where two subtractions and four comparisons are needed. 00,

01, and 10 denote the cases of match or mismatch, deletion,

and insertion, respectively.

As shown in Fig. 7, to efficiently implement Eq. (5) in

memory, the traceback logic in 4 of Fig. 5 reads out the 4-bit

flags that indicate the traceback information from CM in a

bit-serial order. Then the traceback logic converts the 4-bit

flags into 2-bit traceback data and stores them into TBM. Since

there will be only one “1” in the 4-bit flags. The conversion

from 4-bit flags to 2-bit data is accomplished by implementing

one hot encoders within the traceback logic.

D. Reconfigurable Design with Dynamic Precision
The sequence alignment and edit distance calculation follow

the same data flow of forward cell updating. The difference

between alignment and edit distance calculation is the used

scoring function. The scoring function of edit distance compu-

tation normally requires lower data bit width than alignment

workloads. RAPIDx is reconfigurable to support these two

workloads by adopting two types of PIM precisions. Moreover,

we leverage the precision difference to further improve the

performance of edit distance calculation.

1) Alignment Computation
For different alignment tools and target genomes to be aligned,

various scoring functions with affine gap penalties may be

applied. For example, BWA-MEM [9] uses a matching score

A = 1, mismatch penalty B = 4, gap open penalty o = 6, and

gap extension penalty e = 1. The other popular alignment tool,

Minimap2 [7], uses a default scoring function with A = 2, B =
4, o = 4, e = 2. According to Section IV, the minimum data

width should satisfy �log2(M+2o+2e+1)�. For most scoring

functions with affine gap penalties, a 5-bit PIM precision is

able to realize accurate alignment without overflow.

2) Edit Distance Calculation
Edit distance (or Levenshtein distance) is a metric to measure

the minimum number of deletion, insertion, and substitution

required to transform one string to the other one. Edit distance

calculation can be regarded as a simplified version of sequence

alignment, where the matching score is 0 while mismatch/gap

opening/gap extension penalties are all 1. �log2(M + 2o +
2e+ 1)� = 3-bit data width provides sufficient precision for

edit distance calculation. Therefore, RAPIDx decreases the

arithmetic precision from 5-bit to 3-bit when computing edit

distance. This is beneficial to further improve throughput and

reduce energy dissipation.

RAPIDx realizes the switching between the mentioned

two types of PIM precisions through issuing different sets

of commands to CMs. The commands for 3-bit and 5-bit

precisions differ in they activate and access different ReRAM

rows in CM to realize different computing precisions. So the

overhead of PIM precision switching is negligible.

VI. EVALUATION

A. Experimental Setup
Methodology: We use VTEAM [49] with ROFF = 300k and

RON = 10k to model ReRAM cell. The other parameters are

same with [46] that align with the practical ReRAM device

[54]. The energy consumption and latency of PIM operations

in RAPIDx are measured based on 10,000 Monte Carlo

simulations in SPICE. The operation voltage of PIM is V0=1V,

and the worst-case switching latency is 2ns. The hardware

parameters of ReRAM subarray are obtained from NVSim [55].

Its peripheral circuits, including shifter, interleaved bit-serial

max finder, and traceback logic, are implemented using Verilog
and synthesized by Synopsys Design Compiler on 45nm process

node [56]. The area and energy consumption of sequence buffer

are estimated using CACTI [57]. RAPIDx’s frequency is set

to 500MHz, matching the switching time of ReRAM device.

We also develop a in-house simulator to estimate the DNA

alignment performance and energy consumption.

RAPIDx Configurations: Total 64 tiles are implemented in

RAPIDx and each RAPIDx tile has 2MB size, containing

one CM and 15 TBMs. Each ReRAM subarray consists of

1024 × 1024 cells and the width of column MUX output is

128-bit. The parameter selection is discussed in Section VI-C.

The arithmetic precision is set to 5-bit for sequence alignment

and 3-bit for edit distance calculation, which avoids overflow

and maximizes the performance.

Table II: Error rates of generated datasets

Type Substitution Insertion Deletion Total
PacBio 1.5% 9.0% 4.5% 15%

ONT 2D 16.5% 5.0% 8.5% 30%

Illumina 3% 1% 1% 5%

Datasets: We test RAPIDx’s performance on both short and

long reads. The sequence length of short reads ranges from

100bp to 500bp while the long reads vary from 2kbp to 10kbp.

We use the homologous chromosomes, GRCh38 [58], from the

National Center for Biotechnology Information (NCBI). The

chromosomes, including 1 to 22, X, and Y, are used and the

unmapped contigs are removed. These chromosomes contain 3

billion bp in total. The available memory space in RAPIDx is

not able to store the entire genome. We assume RAPIDx fetches

the query and reference sequences from the host memory for

alignment.

Table III: Hardware specifications of CPU and GPU baselines

CPU Intel Xeon E5-2680 GPU Geforce GTX 1080 Ti
12 cores / 24 threads / 2.5GHz

Cache L1/L2/L3: 32KB/256KB/30MB Frequency 1582 MHz

Memory 256GB / DDR4-2133MHz Memory 11GB GDDR5X

TDP 120W TDP 250 W

As Table II, we generate the long-read data (PacBio and

ONT datasets) using the sequence read simulator PBSIM [59].

PacBio and ONT have 15% and 30% error rate, respectively.

PBSIM’s default error profile and continuous long read (CLR)

mode are used. The short-read Illumina datasets are produced

by Mason [60] with 5% error rate. Both RAPIDx and other

baselines are tested using at least 100,000 reads for each length.

Table IV: Specifications of ASIC baselines

Design ABSW [11] GenASM [11]

Specifications 40nm with 480MHz frequency 28nm with 1GHz frequency

Area: 5.51mm2, Power: 1.2W Area: 10.69mm2, Power: 3.2W

Baselines: We compare the alignment performance of RAPIDx

with state-of-the-art CPU, GPU, PIM, and ASIC accelerators.

The CPU baselines include two libraries developed using

C++, Minimap2 [7] and Edlib [6]. Minimap2 utilizes banded

DP algorithms with affine gap penalties and adopts SIMD

and multithreading to maximize the performance. Edlib is a

C++ program that makes use of edit distance and Myers’s

bit-vector algorithm [34] to parallelize the alignment and
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distance computation. The GPU baseline, GASAL2 [8], is

optimized for GPU and delivers high throughput on various

alignment workloads. We compile and run the programs on

a server with hardware specifications in Table III. The other

parameters are the same as the original papers [6]–[8] without

explicit specifications. We compare RAPIDx with four PIM

designs, including RAPID [28], AlignS [26], AligneR [27], and

PIM-Aligner [36]. We also compare RAPIDx with two ASIC

accelerators, ABSW [11] and GenASM [12]. Their hardware

configurations are given in Table IV.

B. Algorithm Validation
The bandwidth of adaptive banded DP alignment is key to the

alignment accuracy and efficiency. The base bandwidth w in the

bandwidth calculation function B = min(w + 0.01× L, 100)
determines the resulted bandwidth for sequence length L. Large

w guarantees high alignment accuracy but increases the required

computation and memory complexity.

Table V: Alignment accuracy of banded DP algorithms

Read Type Adaptive Base bandwidth w
Wavefront 10 20 30 40 50

Short Read No 100.0% 100.0% 100.0% 100.0% 100.0%
(Illumina) Yes 100.0% 100.0% 100.0% 100.0% 100.0%

Long Read No 6.51% 39.69% 31.33% 61.44% 71.13%
(ONT 2D) Yes 99.23% 99.64% 99.85% 99.85% 99.95%

We perform Monte Carlo simulations to validate the accuracy

of adaptive banded parallelized DP alignment using different

parameters. The alignment results of original DP with affine

gap penalty in Eq (1) are regarded as the ground truth. Both

of the tested algorithm adopt the identical scoring function

A = 2, B = 4, o = 4, e = 2 with Minimap2 [7]. We randomly

sample 1,000,000 short and long sequence reads from the read

simulator. Illumina and ONT 2D in Table II are adopted as the

reading scheme for short reads and long reads, respectively.

Table V gives the alignment accuracy, where the base

bandwidth w is ranging from 10 to 50 and the bandwidth is

calculated by B = min(w+0.01×L, 100). We also add another

dimension that enables or disables the adaptive wavefront

direction. The results show that the accuracy for short read

is all 100% even without adaptive wavefront direction. This

is because Illumina only incurs 5% error. For long reads,

the algorithm without adaptive wavefront direction yields

unsatisfactory accuracy. Increasing w to 50 only yields 71.13%

accuracy. This is because ONT 2D has lower reading quality,

making the optimal alignment path more likely to be away

from the diagonal. The fixed wavefront direction is unable

to track and cover the optimal path. After enabling adaptive

wavefront direction, a base bandwidth w of 10 achieves 99.23%

accuracy. It is observed that the optimal w varies for reading

schemes and sequence lengths. To balance alignment efficiency

and accuracy, we choose w = 10 for short reads and w = 30
for long reads, which incurs 0.15% accuracy degradation.

C. Design Space Exploration
1) ReRAM Subarray Size
The ReRAM subarray size determines the memory density. The

parasitic wire resistance is a major factor limiting the ReRAM

size [46]. To study the impact of non-ideal wire resistance, we

use the same model in [46] and assume the unit wire resistance

between row or column is Rw = 10Ω. The upper bound and

lower bound of three critical voltages (operation voltage V0,

Figure 8: The lower bound and upper bound of voltages V0,

VHS , VV S under different ReRAM array sizes.
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Figure 9: Relationship between maximum sequence-level

parallelism and number of TBMs on long reads.

isolation voltages VHS and VV S) under different ReRAM array

size are depicted in Figure 8. It shows the used V0 = 1.0V falls

in the allowed value range when array size is 1024 × 1024.

The effective ranges for voltages VHS and VV S show we

can set the isolation voltages to VHS = 0.2V, VV S = 1.0V to

satisfy the constraints for size 1024×1024. Given these results,

the wire resistance does not affect the correct functionality

of RAPIDx under ReRAM array size 1024 × 1024. This is

because: 1. RAPIDx uses 2-input PIM operation to perform

alignment, reducing the effects of wire resistance. 2. The 10kΩ
RON is 10× larger than [46], making RAPIDx receive less

impact from the wire resistance. Meanwhile, the chip-verified

ReRAM [45] with 1024 dimension also demonstrates that the

ReRAM subarray in RAPIDx is practical to manufacture.

2) Number of TBMs in Each Tile

The memory complexity of alignment is dominated by trace-

back data storage because the traceback data for a batch of

sequences need to be stored until all DP alignment steps are

finished. Therefore, each CM can access the memory space

of t TBMs. The number of TBMs in each tile determines

the supported maximum sequence length of RAPIDx. Each

TBM is a 1024× 1024 ReRAM subarray, thus each TBM can

store 10242

2 points of traceback data, where 2 denotes the 2-bit

traceback information. Considering the sequence alignment or

edit distance calculation has a bandwidth B and sequence length

m, the number of TBMs t in each tile, satisfies m ≤ 10242

2B t.
However, the memory requirement increases linearly by k×
when each CM processes k sequences in parallel. In this

case, the maximum sequence level parallelism (or the memory

segment) becomes k ≤ � 10242

2m·B t�. On the other hand, k will not

exceed the maximum segment number in each ReRAM subarray

k ≤ � 1024
B �. Therefore, the relationship between number of

TBMs t, sequence-level parallelism k, and sequence length m
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Figure 10: Performance comparison for different column widths

of peripheral circuits.

is given by k ≤ min(� 1024
B �, � 10242

2m·B t�).
The sequence-level parallelism under various sequence

lengths and TBM numbers is given in Fig. 9. Shorter sequences

require less TBMs to achieve the maximum parallelism. The

kmax of sequences longer than 8kbp is limited by � 1024
B �. As

the maximum value of B is 100, � 1024
B � ≤ 10 for sequences

over 8kbp. In this case, the number of TBMs t, making

� 10242

2m·B t� > 10, can not further improve the performance. We

implement t = 15 TBMs to ensure sufficient sequence-level

parallelism for 10kbp while balancing area overhead. Thus,

each RAPIDx tile consists of 16 ReRAM subarrays.

3) Column Width of Peripheral Circuits
The peripheral circuits of CM are connected to the column

MUX of SA and have the same width as column MUX. The

column width of peripheral circuits is a design parameter

affecting the overall throughput, power, and area. Fig. 10

shows the comparison of performance for different widths

(from 16 to 256) of peripheral circuits. As shown in Fig.

10a, wider column width leads to higher throughput and the

increasing trend of throughput is slightly more significant than

area and power when the width is between 16 and 128. The

overhead here denotes the percentage of peripheral circuits

area to single ReRAM subarray. We depict the area efficiency

and power efficiency in Fig. 10b to understand the relationship

between efficiency and column width. Area efficiency and

power efficiency peak at width 128 and 256, respectively.

However, wider width introduces larger area overhead to CM.

We choose the column width of 128 to achieve good tradeoff

between efficiency and overhead.

D. Area and Power Results
The area and power breakdown of RAPIDx is summarized in

Table VI. The bit-serial max finder takes up 62.3% area and

61.6% power of the peripheral circuits, respectively. About

16% area of CM is consumed by peripheral circuits. Each

RAPIDx tile is composed of 1 CM and 15 TBMs, consuming

0.0.637mm2 area and 0.16W power. We measure the power

dissipation of RAPIDx under sequence alignments for long

sequence lengths (2kbp to 10kbp) with enabling the traceback

Table VI: Area and power breakdown of RAPIDx

Peripheral Circuits Area Power
(um2) (mW)

Shifter 542.6 0.03
Max Finder 4, 520.8 2.05

Traceback Logic 1, 872,4 1.21
Others 325.2 0.03

Total 7, 260.9 3.32

Seq. Buffer 8, 492.6 1.5

ReRAM Subarray 38, 395.0 9.76

RAPIDx Area Power
Per tile 637,334.4um2 0.16W

Total 40.8mm2 10.3W
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Figure 11: Comparison with four PIM baselines, RAPID [28],

AlignS [26], AligneR [27], and PIM-Aligner [36].

procedure. As a result, the area and power of RAPIDx with

64 tiles in total are 40.8mm2 and 10.3W, respectively.

E. Performance Evaluation
We measure the performance of RAPIDx on various sequence

lengths and compare with state-of-the-art acceleration solutions

for genome sequence analysis. The sequences are divided into

short reads (<1kbp) and long reads (>1kbp). Two types of

workloads are considered, including sequence alignment in

Section VI-E1 VI-E2 VI-E3 and edit distance calculation in

Section VI-E4. RAPIDx uses 5-bit integer for alignment and

3-bit integer for edit distance calculation.

1) Comparison with PIM Designs
Our previous work, RAPID [28], is also a ReRAM-based

PIM design for sequence alignment. First, we evaluate the

reduction of processing latency and energy by adopting the

parallelized DP alignment. The comparison of latency and

energy with the original DP alignment for a single step of

cells updating is shown in Fig. 11 (a). RAPID uses the

unoptimized DP alignment with 32-bit precision. The used

PIM operations are the same as RAPIDx. As a result, the

parallelized DP alignment based on difference presentation

yields 5.5× latency reduction and 6.2× energy reduction over

the original DP alignment. The latency and energy consumed

by forward DP computation are reduced by 82% and 84% over

the previous RAPID, respectively. The gain comes from the

reduced arithmetic precision from 32-bit to 5-bit as well as the
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parallelized computation. On the other hand, the reduction of

latency and energy for traceback is less significant. Although

the parallelized DP alignment requires less bit width, its

traceback is more complicated and involves more computations

than the original DP algorithm. The longest sequence support

by RAPIDx is 10kbp so we test the throughput of RAPID

and RAPIDx on this length in Fig. 11 (a). RAPIDx yields

9.7× throughput improvement over RAPID due to the low

complexity and high data parallelism provided by adaptive

banded parallelized DP alignment.

In Fig. 11 (b), we compare the energy efficiency with the

other three PIM designs for short-read alignment, including

AlignS [26], AligneR [27], and PIM-Aligner [36]. The read

length is 100bp and the alignment efficiency is measured

by the alignment throughput (reads per second) divided

by the power dissipation. RAPIDx delivers 5.9× to 9.3×
alignment efficiency compared to other PIM designs. It should

be also noted that the area of mentioned PIM designs is:

RAPIDx (40.8mm2), AlignR (36.1mm2), AlignS (62.5mm2),

and PIM-Aligner (59.3mm2). This shows that RAPIDx achieves

8.4× to 13.3× throughput/W/mm2 efficiency compared to

other designs. This is because the optimized adaptive banded

parallelized DP alignment in RAPIDx significantly reduces

computational complexity over the original full DP algorithm

and allows to fully exploit the internal data parallelism of

ReRAM. In comparison, AlignS, AligneR, and PIM-Aligner

realize alignment based on FM-index algorithm, which requires

multiple steps of computation and incurs data dependency [61].

AlignS, AligneR, and PIM-Aligner only support fixed read

length while RAPIDx supports both short reads and long reads,

making RAPIDx more scalable and reconfigurable.

2) Performance Comparison on Short-read Alignment
For alignment tasks on short reads, the length ranges from

100bp to 250bp and we use Minimap2 [7] as the CPU baseline

and GASAL2 [8] as the GPU baseline. Fig. 12 depicts the

alignment throughput of RAPIDx, Minimap2, and GASAL2

for short reads in log scale. The alignment throughputs for

three tested accelerators slightly decrease as the sequence

length grows. RAPIDx on average delivers 131.1× and 46.8×
throughput over Minimap2 and GASAL2, respectively. The

processing latency of RAPIDx is longer than the other two

counterparts due to the fact that a single PIM operation

of RAPIDx requires longer latency than CPU and GPU.

However, the row-parallel PIM operations provide higher

computation parallelism. The proposed multi-level parallelism

scheme ensures multiple reference and query sequences can be

aligned in parallel, significantly increasing the data parallelism

and PIM utilization. As a result, RAPIDx achieves an average

throughput of 13.9M reads/s for short-read alignment.

DP alignment is computation-intensive and the bottleneck

of CPU is the limited computing cores. Even though GPU has

much more computing capabilities than CPU, we observe that

GASAL2 only yields 2.4× to 3.6× speedup over Minimap2

because Minimap2 uses a banded DP algorithm and multi-

threading to reduce the complexity, thus improving the overall

throughput. In comparison, GASAL2 requires more computing

resources since it does not finely optimize the original DP align-

ment. RAPIDx is an algorithm and hardware co-optimization
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Figure 12: Alignment throughput comparison of RAPIDx,

GASAL2 [8], and Minimap2 [7] for short reads.
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Figure 13: Alignment throughput comparison of GenASM [12],

ABSW [11], and RAPIDx for long reads.

that addresses the deficits of Minimap2 and GASAL2.
3) Performance Comparison on Long-read Alignment
For long reads from 2kbp to 10kbp, ABSW [11] and GenASM

[12], are adopted as the two ASIC baselines. The throughput

comparison with ASIC for long-read alignment is shown in

Fig. 13, where the performance of ASIC baselines is scaled to

45nm process for the fair comparison. RAPIDx achieves the

highest throughput with an average speedup of 2.9× and 1.8×
over ABSW and GenASM, respectively. Due to the limited

on-chip memory space, both ABSW and GenASM are not able

to store the entire traceback matrix for long reads. They rely

on large off-chip memory to store the intermediate data. To

realize alignment for long sequences, they use the overlapping

scheme [13] to divide the long sequence into short chunks

and the neighbor chunks are overlapped. ABSW and GenASM

need to consecutively process the short chunks. As a result, the

overlapping area incurs additional computational complexity,

which degrades the performance.
ABSW and RAPIDx are based on banded DP algorithms.

The difference between this work and ABSW is RAPIDx

adopts the optimized 5-bit parallelized DP alignment based

on difference representations. ABSW uses 12-bit precision to

ensure arithmetic precision for DP alignment. RAPIDx’s lower

bit width reduces both the complexity and the memory footprint

of DP alignment compared to ABSW. The other limitation of

ABSW is it can only process a fixed bandwidth of 128 since

a total of 128 processing elements (PEs) are implemented and

dedicated to updating the wavefront of banded alignment. This

means ABSW is only able to align one sequence at a time. In

contrast, RAPIDx accepts a batch of sequences and distributes

them into different tiles to perform alignment in parallel.
4) Performance Comparison on Edit Distance Computation
To evaluate the performance of edit distance calculation, we

compare RAPIDx with Edlib [6] on three lengths (100bp,

1kbp, and 10kbp). Fig. 14 shows the throughput of RAPIDx

and Edlib with or without traceback process. Knowing the

edit distance of two sequences is enough for some scenarios,
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Figure 14: Throughput and latency comparison of RAPIDx

and Edlib [6] for edit distance computation.

without the need for traceback process. So we test the cases

with or without traceback. The throughput of RAPIDx with

traceback is 141× to 321× over Edlib. After disabling the

traceback, the speedup of RAPIDx is less significant. 56×
to 149× improvements of RAPIDx are observed compared

to Edlib. Although Edlib adopts optimized Myers’s bit-vector

algorithm [34] with banded alignment to increase computation

efficient, it is a single-thread program only able to access

limited computing resources of CPU. Hence, the performance

dramatically decreases after enabling traceback.

F. Discussions
Host-RAPIDx System Design: RAPIDx is a PIM-based

domain-specific accelerator and works as the domain-specific

co-processor for speeding up computation-intensive genome

sequence alignments. We consider a system that transfers

data between RAPIDx and the host. The sequencing and

configuration data are sent from the host to RAPIDx. We

estimate the memory bandwidth required by RAPIDx and

the results show that required memory bandwidth decreases

when sequence length grows. The required peak memory

bandwidth is 1.41GB/s at 100bp. For the host side, the popular

DDR4 Dual-Inline Memory Module (DIMM) that provides over

12.8GB/s data rate can easily satisfy the bandwidth requirement.

The other consideration is the processing latency. As pointed

out in Section VI-E, RAPIDx requires longer latency than

CPU. Considering that genome sequence alignment is not a

latency-sensitive task, the long latency will not become a major

factor that limits system performance. Hence, RAPIDx can

be integrated into existing computer machines with negligible

hardware modifications.

Flexible Scoring Functions: The affine gap penalty of DP

alignment will be changed according to different application

scenarios. RAPIDx is able to flexibly support various scoring

functions. When the gap open penalty o equals the gap

extension penalty e, the affine gap penalty becomes a linear

gap penalty scoring. If e = 0, RAPIDx implements a constant

gap penalty where only opening a gap leads to a penalty,

discouraging the number of gaps but tends to result in long

gaps. Whereas, if o 	= e and both of o and e are non-zero

values, we have affine gap penalty, which is the widely used

gap penalty model for DNA alignment. The affine gap penalty

tries to align the given sequences with fewer and smaller gaps

as compared to the constant gap penalty. No architectural and

data flow modifications need to be made to RAPIDx if we want

to switch between different scoring functions. The support for

flexible scoring is realized by setting associated constant values

into the intermediate data rows of CM before alignment.

ReRAM’s Write Endurance: ReRAM cell has limited write

endurance, so RAPIDx will fail after exceeding the endurance

limit. As shown in Fig. 6 (c), the wavefront alignment at each

iteration needs to write the rows in the computing region once.

Fig. 4 shows the required number of iterations equals to the

sum of reference and query sequences’ lengths. We can apply

wear leveling techniques to reduce the imbalance effect, thus

extending the write endurance of ReRAM. The wear leveling

is realized via moving the computing region over the row

dimension. Specifically, this can be done through changing

the writing address without additional overhead. Moreover,

we observe some ReRAM devices [62] provide 1012 write

endurance. In this case, RAPIDx can align over 1014 sequences

with length 150bp. We notice that one of the most advanced

next-generation sequencing (NGS) platforms from Illumina,

NextSeq 1000 & 2000, generates a maximum 1.2 billion reads

(each has a length of 150bp) in 11 to 48 hours [63]. Therefore,

each RAPIDx is able to support the alignment task of each

NGS sequencer for at least 100 years.

VII. CONCLUSION

In this work, we propose a novel PIM accelerator, RAPIDx, for

sequence alignment. We leverage the parallelized DP algorithm

using difference representation to reduce the required data width

from 32-bit to 5-bit integers. Based on this, we propose adaptive

banded parallelized DP alignment to adaptively adjust the

bandwidth and wavefront direction, reducing the quadratic com-

plexity to near-linear complexity while only incurring 0.15%

accuracy degradation. Then we present the PIM architecture on

ReRAM that exploits four-level data parallelism to efficiently

implement the proposed algorithm. We develop peripheral

circuits and row-parallel PIM data flow to support in-situ

alignment with low latency. The evaluation results demonstrate

that RAPIDx provides 131.1× and 46.8× better short-read

alignment throughput compared to CPU and GPU baselines,

respectively. For long-read alignment, RAPIDx delivers up to

2.9× and 9.3× throughput improvements compared to state-

of-the-art ASIC and PIM accelerators.
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[6] M. Šošić and M. Šikić, “Edlib: a c/c++ library for fast, exact sequence
alignment using edit distance,” Bioinformatics, vol. 33, no. 9, pp. 1394–
1395, 2017.

[7] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioin-
formatics, vol. 34, no. 18, pp. 3094–3100, 2018.

[8] N. Ahmed et al., “Gasal2: a gpu accelerated sequence alignment library
for high-throughput ngs data,” Bioinformatics, vol. 20, no. 1, pp. 1–20,
2019.

[9] H. Li and R. Durbin, “Fast and accurate long-read alignment with
burrows–wheeler transform,” Bioinformatics, vol. 26, no. 5, pp. 589–595,
2010.

[10] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
bowtie 2,” Nature methods, vol. 9, no. 4, pp. 357–359, 2012.

[11] Y.-L. Liao et al., “Adaptively banded smith-waterman algorithm for
long reads and its hardware accelerator,” in International Conference
on Application-specific Systems, Architectures and Processors, 2018, pp.
1–9.

[12] D. S. Cali et al., “Genasm: A high-performance, low-power approximate
string matching acceleration framework for genome sequence analysis,”
in IEEE/ACM MICRO, 2020, pp. 951–966.

[13] Y. Turakhia et al., “Darwin: A genomics co-processor provides up to
15,000× acceleration on long read assembly,” in ASPLOS, 2018.

[14] E. F. de Oliveira Sandes et al., “Cudalign 4.0: Incremental speculative
traceback for exact chromosome-wide alignment in gpu clusters,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 10, pp.
2838–2850, 2016.

[15] J. Arram et al., “Leveraging fpgas for accelerating short read alignment,”
IEEE/ACM TCBB, vol. 14, no. 3, pp. 668–677, 2017.

[16] “Dna sequencing costs: Data from the nhgri genome sequencing program
(gsp),” www.genome.gov/sequencingcostsdata.

[17] “Genbank and wgs statistics,” https://www.ncbi.nlm.nih.gov/genbank/statistics/.
[18] A. M. Wenger et al., “Accurate circular consensus long-read sequencing

improves variant detection and assembly of a human genome,” Nature
biotechnology, vol. 37, no. 10, pp. 1155–1162, 2019.

[19] M. Gokhale et al., “Processing in memory: The terasys massively parallel
pim array,” Computer, vol. 28, no. 4, pp. 23–31, 1995.

[20] J. Ahn et al., “Pim-enabled instructions: a low-overhead, locality-aware
processing-in-memory architecture,” in ISCA, 2015, pp. 336–348.

[21] S. Li et al., “Pinatubo: a processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in DAC, 2016, p.
173.

[22] S. Gupta et al., “Nnpim: A processing in-memory architecture for neural
network acceleration,” IEEE Transactions on Computers, vol. 68, no. 9,
pp. 1325–1337, 2019.

[23] R. Kaplan et al., “A resistive cam processing-in-storage architecture for
dna sequence alignment,” IEEE Micro, vol. 37, no. 4, pp. 20–28, 2017.

[24] ——, “Bioseal: In-memory biological sequence alignment accelerator for
large-scale genomic data,” in ACM International Systems and Storage
Conference, 2020, pp. 36–48.

[25] W. Huangfu, S. Li, X. Hu, and Y. Xie, “Radar: a 3d-reram based dna
alignment accelerator architecture,” in DAC, 2018, pp. 1–6.

[26] S. Angizi et al., “Aligns: A processing-in-memory accelerator for dna
short read alignment leveraging sot-mram,” in DAC, 2019, pp. 1–6.

[27] F. Zokaee et al., “Aligner: A process-in-memory architecture for short
read alignment in rerams,” IEEE Computer Architecture Letters, vol. 17,
no. 2, pp. 237–240, 2018.

[28] S. Gupta et al., “Rapid: A reram processing in-memory architecture for
dna sequence alignment,” in IEEE/ACM ISLPED, 2019, pp. 1–6.

[29] K. Liu et al., “Barking up the wrong treelength: the impact of gap
penalty on alignment and tree accuracy,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 6, no. 1, pp. 7–21, 2008.

[30] D. Fujiki et al., “Seedex: A genome sequencing accelerator for optimal
alignments in subminimal space,” in IEEE/ACM MICRO, 2020, pp. 937–
950.

[31] K.-M. Chao et al., “Aligning two sequences within a specified diagonal
band,” Bioinformatics, vol. 8, no. 5, pp. 481–487, 1992.

[32] S. Gupta et al., “Felix: Fast and energy-efficient logic in memory,” in
IEEE/ACM ICCAD, 2018, pp. 1–7.

[33] M. Burrows and D. Wheeler, “A block-sorting lossless data compression
algorithm,” in Digital SRC Research Report, 1994.

[34] G. Myers, “A fast bit-vector algorithm for approximate string matching
based on dynamic programming,” Journal of the ACM (JACM), vol. 46,
no. 3, pp. 395–415, 1999.

[35] H. Suzuki and M. Kasahara, “Introducing difference recurrence relations
for faster semi-global alignment of long sequences,” Bioinformatics,
vol. 19, no. 1, pp. 33–47, 2018.

[36] S. Angizi et al., “Pim-aligner: A processing-in-mram platform for
biological sequence alignment,” in DATE, 2020, pp. 1265–1270.

[37] S. F. Altschul et al., “Basic local alignment search tool,” Journal of
Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.

[38] D. J. Lipman and W. R. Pearson, “Rapid and sensitive protein similarity
searches,” Science, vol. 227, no. 4693, pp. 1435–1441, 1985.

[39] S. S. Banerjee et al., “Asap: Accelerated short-read alignment on
programmable hardware,” IEEE Transactions on Computers, 2019.

[40] O. Gotoh, “An improved algorithm for matching biological sequences,”
Journal of molecular biology, vol. 162, no. 3, pp. 705–708, 1982.

[41] K. Lee et al., “Bit parallel 6t sram in-memory computing with
reconfigurable bit-precision,” in DAC, 2020, pp. 1–6.

[42] J. Boukhobza et al., “Emerging nvm: A survey on architectural integration
and research challenges,” ACM Transactions on Design Automation of
Electronic Systems, vol. 23, no. 2, pp. 1–32, 2017.

[43] D. Reis et al., “Computing in memory with fefets,” in ISLPED, 2018,
pp. 1–6.

[44] M. Kim et al., “An embedded nand flash-based compute-in-memory array
demonstrated in a standard logic process,” IEEE Journal of Solid-State
Circuits, vol. 57, no. 2, pp. 625–638, 2021.

[45] C.-X. Xue et al., “A 22nm 4mb 8b-precision reram computing-in-memory
macro with 11.91 to 195.7 tops/w for tiny ai edge devices,” in ISSCC,
vol. 64, 2021, pp. 245–247.

[46] N. Talati et al., “Logic design within memristive memories using
memristor-aided logic (magic),” IEEE Transactions on Nanotechnology,
vol. 15, no. 4, pp. 635–650, 2016.

[47] J. Borghetti et al., “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[48] B. C. Jang et al., “Memristive logic-in-memory integrated circuits for
energy-efficient flexible electronics,” Advanced Functional Materials,
vol. 28, no. 2, p. 1704725, 2018.

[49] S. Kvatinsky et al., “Vteam: a general model for voltage-controlled
memristors,” IEEE TCAS II, vol. 62, no. 8, pp. 786–790, 2015.

[50] A. Haj-Ali et al., “Efficient algorithms for in-memory fixed point
multiplication using magic,” in IEEE ISCAS, 2018, pp. 1–5.

[51] S. Kvatinsky et al., “MAGIC – memristor-aided logic,” TCAS II, vol. 61,
no. 11, 2014.

[52] M. Imani et al., “Floatpim: In-memory acceleration of deep neural
network training with high precision,” in ISCA, 2019.

[53] H. Suzuki and M. Kasahara, “Acceleration of nucleotide semi-global
alignment with adaptive banded dynamic programming,” BioRxiv, p.
130633, 2017.

[54] J. J. Yang et al., “Memristive devices for computing,” Nature nanotech-
nology, vol. 8, no. 1, pp. 13–24, 2013.

[55] X. Dong et al., “Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory,” IEEE TCAD, vol. 31, no. 7,
pp. 994–1007, 2012.

[56] J. E. Stine et al., “Freepdk: An open-source variation-aware design kit,”
in IEEE International Conference on Microelectronic Systems Education,
2007, pp. 173–174.

[57] N. Muralimanohar et al., “Cacti 6.0: A tool to model large caches,” HP
laboratories, vol. 27, p. 28, 2009.

[58] N. C. for Biotechnology Information, “Genome
reference consortium human build 38,”
https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.26, 2013.

[59] Y. Ono et al., “Pbsim: Pacbio reads simulator—toward accurate genome
assembly,” Bioinformatics, vol. 29, no. 1, pp. 119–121, 2013.

[60] M. Holtgrewe, “Mason–a read simulator for second generation sequencing
data,” Technical Report FU Berlin, 2010.

[61] W. Huangfu et al., “Medal: Scalable dimm based near data processing
accelerator for dna seeding algorithm,” in IEEE/ACM MICRO, 2019, pp.
587–599.

[62] Q. Luo et al., “Nb1−x o2 based universal selector with ultra-high
endurance (> 1012), high speed (10ns) and excellent vth stability,”
in Symposium on VLSI Technology, 2019, pp. T236–T237.

[63] “Illumina sequencing platforms,” https://www.illumina.com/systems/seq
uencing-platforms.html.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3239537

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 13,2023 at 23:06:50 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS TRANS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 15

Weihong Xu received the B.E. degree in information engineering and M.E.
degree information science and engineering from Southeast University, Nanjing,
China, in 2017 and 2020, respectively. He is currently pursing the Ph.D. degree
with the Department of Computer Science and Engineering, University of
California at San Diego, La Jolla, CA, USA.

He is a member of the System Energy Efficiency Laboratory, University of
California at San Diego, where he works on emerging memory, storage and
domain-specific acceleration systems. His current research interests include
algorithm and hardware co-design based on near-data processing for deep
learning, database, and bioinformatics applications.

Saransh Gupta received his Ph.D. degree from the University of California,
San Diego, La Jolla, CA, USA in 2021. He received his B.E. (Hons) in
Electrical and Electronics Engineering from Birla Institute of Technology &
Science, Pilani - K.K. Birla Goa Campus in 2016 and M.S. in Electrical and
Computer Engineering from University of California San Diego in 2018. His
research interests include circuit, architecture, and system level aspects of
emerging computing paradigms.

Niema Moshiri received his Ph.D. degree from the University of California,
San Diego, La Jolla, CA, USA in 2019. He is an Assistant Teaching Professor
in the Computer Science & Engineering Department at the University of
California, San Diego. He works on computational biology, with a research
focus on viral phylogenetics and epidemiology. He also places a heavy emphasis
on teaching, namely on the development of online educational content, primarily
Massive Adaptive Interactive Texts (MAITs).
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