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Abstract—Recent years have seen growing interest in
leveraging deep learning models for monitoring epilepsy
patients based on electroencephalographic (EEG) signals.
However, these approaches often exhibit poor generaliza-
tion when applied outside of the setting in which train-
ing data was collected. Furthermore, manual labeling of
EEG signals is a time-consuming process requiring ex-
pert analysis, making fine-tuning patient-specific models
to new settings a costly proposition. In this work, we pro-
pose the Maximum-Mean-Discrepancy Decoder (M2D2) for
automatic temporal localization and labeling of seizures in
long EEG recordings to assist medical experts. We show
that M2D2 achieves 76.0% and 70.4% of F1-score for tem-
poral localization when evaluated on EEG data gathered
in a different clinical setting than the training data. The
results demonstrate that M2D2 yields substantially higher
generalization performance than other state-of-the-art deep
learning-based approaches.

Index Terms—Maximum mean discrepancy, temporal
localization, epileptic seizure, non-invasive EEG.

I. INTRODUCTION

E PILEPSY is a chronic neurological disorder characterized
by persistent seizures and affects over 70 million people

worldwide [1]. The root causes of epilepsy and broadly effective
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treatments remain the subject of ongoing investigations. Gather-
ing data on the frequency and duration of seizures is an important
component of this research and informs both clinical diagnosis
on an individual level and a broader understanding of the condi-
tion as a whole. In particular, epileptic seizures are known to be
associated with particular patterns in an electroencephalogram
(EEG). Neurologists can inspect EEG recordings to determine
the timing and frequency of seizures to develop a detailed
understanding of this condition, in line with the recent trends
in precision medicine. However, this process is time-consuming
for medical professionals and requires hospital stays by patients.

In recent years, deep learning (DL) models have emerged as a
state-of-the-art technique thanks to their ability to automatically
learn useful features for discriminating seizures from regular
brain activity. These models are typically trained on a large
database of EEG signals collected from epileptic patients in
a clinical setting, and hand-labeled by experts. One typically
wishes that such models are useful beyond the immediate setting
in which they were trained. That is, a model trained on one set of
patients should continue to deliver high accuracy when applied
to data gathered from a different set of patients in a different
setting.

The most basic approach to satisfy this goal is to use deep
learning methods in which one simply applies a pre-trained
model to a new patient [2], [3]. However, the precise manifesta-
tion of seizures in EEG signals varies on a person-to-person
basis, and existing deep learning approaches generally need
to fine-tune models to target a new set of patients [4], [5],
[6], [7]. Because these approaches assume access to at least
some labelled EEG data for each new patient, they can typically
achieve high-accuracy. However, this necessitates acquiring new
labeled data for every new patient, which, in turn, requires a
costly process of collecting and manually annotating a large
volume of EEG data.

Our goal in this work is to reduce the burden of this process.
We propose a new deep learning-based technique for approxi-
mate temporal localization of seizures in long EEG recordings.
Our approach takes as input a long EEG signal, and returns a
time stamp t such that a seizure occurred within t±Δ minutes.
Thus, the expert only needs to search an interval of 2Δ minutes,
instead of the entire signal. The parameterΔ controls the tradeoff
between the volume of data to be annotated, and the fraction
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of seizures which are identified. Our primary contribution is to
show that our approach is able to localize seizures more precisely
than existing work when evaluated on a completely new data
set.

Our approach is called the “Maximum-Mean-Discrepancy
Decoder” (M2D2). At a high level, one may think of a deep
learning model as consisting of an encoder, which yields a
derived representation of an input signal, and a decoder, which
infers a class label from the derived representation. Intuitively,
the representations derived by the encoder should have high
intra-class similarity but low inter-class similarity. That is, the
regions of the signal corresponding to seizures should all map
to “similar” representations, and moreover, these representa-
tions should be “different” from those of non-seizure regions.
We observe that this intuition is made precise by the notion
of “maximum-mean-discrepancy” (MMD) from statistics. The
MMD defines a general notion of similarity between samples
from two probability distributions and, intuitively, works by
measuring the similarity of points within and between each
sample - just as we seek to do here.

Building on this observation, we train the decoder portion of
our network to localize seizures based only on the empirical
MMD between a candidate seizure region and the rest of the
signal. We hypothesize that, by only giving the decoder access
to the MMD, the encoder will produce representations that
tend to have high intra-class and low inter-class similarity, and
that, as a consequence, will exhibit better generalization than
conventional architectures in which the decoder can directly
access much more information about the input signals. To the
best of our knowledge, we are the first to consider the use of
MMD as a layer within a supervised deep neural network. We
show that M2D2 leads to improved generalization performance,
compared to the state-of-the-art techniques, when evaluating
our model on a dataset collected in an entirely different clinical
setting.

Furthermore, seizures vary widely in length from only a few
seconds to over several minutes [8]. Prior work has fixed the
length of the candidate seizure region at the average length of a
seizure [9]; however, this may miss short or long seizures. In the
proposed work, thanks to the M2D2 architecture, we are able to
use a range of possible values for the candidate region length to
address this issue.

The contributions of our work are summarized as follows:
� To the best of our knowledge, we are the first to evaluate the

temporal seizure localization on a dataset different from
the training dataset. This setting is more reflective of the
real-world scenario where the models are applied beyond
the immediate clinical setting in which they are trained.

� We use MMD computation as a layer implemented within
a deep neural network. This layer enables the model to
learn features based on not only the current input but also
the distribution of the adjacent windows and the entire
signal.

� In this work, the candidate seizure region is not fixed at
a single length. Instead, a range of possible sizes for the
candidate region of seizure is considered, and the network
is trained to choose the best length.

The rest of this article is organized as follows. In Sec-
tion II, we review the background in EEG signal analysis,
MMD and Variational Information Bottleneck. Furthermore,
the related works in seizure temporal localization are inves-
tigated. In Section III, we describe our proposed model, the
M2D2 framework and the details of the architecture. Also,
the training and back-propagation process of M2D2 is stud-
ied. In Section IV, the experimental setup is discussed, and
then, in Section V the results are shown. Next, in Section VI,
we discussed the results in different points of view. Finally,
in Section VIII, we summarize the main conclusions of this
work.

II. BACKGROUND AND RELATED WORK

In the following section, we provide the necessary technical
background on EEG analysis and the statistical techniques used
in M2D2.

A. EEG Analysis

We here provide a brief overview of electroencephalography
as it pertains to our work [10]. EEG analysis records a time-
series of electrical impulses generated by the brain. The particu-
lar spatiotemporal patterns of these impulses are generally held
to be related to brain activity at a particular moment in time. For
instance, specific waveforms in the EEG can be associated with
everyday activities like blinking or chewing. Similarly, certain
atypical neurological conditions, e.g., the seizures associated
with epilepsy, manifest in EEG recordings making their analysis
an important diagnostic tool. The waveforms in an EEG are
generated by measuring the voltage difference between pairs
of electrodes distributed over the scalp. The readings produced
by each such pair are called a channel. Thus, an EEG contains
a spatial and temporal component, both of which are typically
relevant for analysis.

EEG recordings typically contain a multitude of artifacts
which present a significant complication for analysis. Arti-
facts may arise from natural causes–common examples being
muscular activities like chewing or blinking and changes in
conductance from sweat–or non-natural causes–a common ex-
ample being jostled or disconnected electrodes. Artifact removal
is an essential component of EEG analysis and is typically
performed as a pre-processing step [11], [12]. Furthermore,
while seizures (or ictal EEG) have some common trends, their
precise manifestation is different across patients [13], making
reliable decision-making in the presence of such artifacts and
heterogeneity challenges.

B. Maximum-Mean-Discrepancy

The maximum mean discrepancy is a metric on the space
of probability distributions [14]. Intuitively, the MMD works by
representing a pair of distribution as points in a high-dimensional
feature space and then measuring the distance be the two repre-
sentative points. More formally, let k : X × X → R be a real,
continuous, positive-definite kernel function with an associated
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reproducing kernel Hilbert space (RKHS)H. Letp be a probabil-
ity measure supported onX . For our purposes, we may assumeX
is a Euclidean space. The kernel mean embedding (KME) of p is
defined as μp =

∫
X k(·, x) dp(x) [15]. Given a pair of measures

p and q supported onX , the MMD is simply the distance between
their respective KMEs:

MMD2(p, q) = ‖μp − μq‖2H.

Given samples P = {x1, . . ., xn} and Q = {y1, . . ., ym} drawn
i.i.d. from p and q respectively, the MMD can be estimated
empirically as [14]:

M̂MD
2
(p, q) =

1

n2

∑
x,x′∈P

k(x, x′) +
1

m2

∑
y,y′∈Q

k(y, y′)

− 2

nm

∑
x∈P,y∈Q

k(x, y). (1)

Intuitively, when the sampled points have a high intra-
distribution similarity (measured by the first two terms) and a
low inter-distribution similarity (measured by the third term),
the MMD will be large. Throughout the remainder of the work,
we will work with the squared-MMD, which suffices for our
purposes.

C. Variational Information Bottleneck

In principle, the MMD can be applied directly to the raw signal
values. However, in practice, performance is often improved
by obtaining a lower-dimensional representation of the signal
that compresses away uninformative short-term fluctuations. To
do so, we here leverage a technique from Information Theory
known as “Information Bottleneck” (IB). Given a pair of cor-
related random variables X and Y , the IB problem is to obtain
a compressed representation Z of X that contains the minimal
amount of information needed to predict Y [16]. Assuming X
and Y are described by a distribution p(X,Y ), the IB problem
can be formalized as solving:

p∗(Z|X) = argmax
p(Z|X)

I(Z;Y ) s.t. I(Z;X) ≤ γ,

where I(A;B) is the mutual information between a pair of
random variables A and B. Sampling from p∗(Z|X) can be
seen as an encoding process which takes an input x ∈ X and
maps it to a codeword z ∈ Z . The objective I(Z;Y ) ensures
the codewords are informative about the outcome of interest
Y , and the constraint I(Z;X) ≤ γ restricts the information the
codewords convey about the original signal. Given the encoder
p(Z|X), a corresponding “decoder” distribution p(Y |Z), can be
computed analytically.

In practice, one typically has access to a set of samples
{(xi, yi)}ni=1 drawn i.i.d. from p(X,Y ) which is unknown. The
problem is intractable in this case, and so a common approach is
to instead assume a parametric form for the encoder qφ(Z|X),
and decoder qθ(Y |Z), and to then minimize a “variational”

upper bound [17], [18]:

L̂IB(θ, φ) =
1

n

n∑
j=1

Ez[− log qθ(yj | zj)]

+ βDKL(qφ(Z|xj) || p(Z)),

where DKL(A ‖B) is the KL-divergence between A and B.
In practice, the encoder and decoder distributions are typically
parameterized using neural networks [18], [19], [20]. From a
practical perspective, the VIB is useful, because the learned
representations enjoy robustness to certain types of signal ar-
tifacts [17], [20] which may improve the resilience of seizure
detection algorithms [21].

D. Related Work

Algorithmic approaches for detecting and localizing seizures
in EEG recordings have been extensively studied in the literature.
Earlier work focused on methods for extracting hand-crafted
features from EEG signals which are then used as input to
learning algorithms like logistic regression models and support-
vector-machines [13], [22], [23], [24], [25], [26].

More recently, there has been an increasing trend toward
deep learning-based methods which obviate the need for fea-
ture extraction and typically lead to higher accuracy using
convolutional neural networks (CNN), and EEG signals [27],
[28], [29]. In [30] Long Short-Term Memory (LSTM) mod-
ules are used with the CNN to improve the seizure detection
accuracy. In [31] a self-learning method is used to pre-train a
Graph Neural Network (GNN) for the seizure detection and
seizure type classification task. It is shown that by using the
pre-training, the seizure detection performance can increase
F1-score by 4.3%. In [32], we use the knowledge distillation
technique to detect seizures using only ECG signals, while
the teacher model uses multi-modal ECG and EEG signals.
Using high-accurate individual ECG signal alleviate the sig-
nal acquisition in real-life scenarios. Of particular note here
is our prior work in [21] used CNN with the VIB to detect
seizures from EEG recordings. However, they use a simple
decoder architecture that does not incorporate the MMD as we do
here.

There has also been prior interest in using MMD or similar
techniques to localize seizures. The work in [9] uses a sim-
ilar approach that imputes the location of a seizure by find-
ing a window of samples that maximizes the sum-of-squared
Euclidean distances between samples in the window and the
remainder of the signal. This is similar to computing the MMD
with a linear kernel, and is subsumed by the more general
kernel based MMD. Our approach is loosely motivated by
the work in [33], [34]. This work assumes that a seizure rep-
resents a change in the behavior of an unknown underlying
(time-dependent) density describing an EEG signal, and uses
the MMD to obtain the “change point” that partitions the signal
into two maximally different distributions. Unlike our approach,
this work is entirely unsupervised and considers only simple,
hand-crafted features of the signal when computing the MMD.
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Fig. 1. Unrolled representation of the M2D2 architecture. The structure has a CNN as an encoder to extract codewords from the input signal. The
decoder consists of the MMD layer, GRU, and a fully connected layer to produce the output for every signal window.

Moreover, these works do not present any systematic evaluation
of their methods on a broad sample of EEG data. An important
contribution of our work is to undertake the first extensive
empirical evaluation of MMD in seizure temporal localization
problems.

III. METHODOLOGY

A. Problem Formulation

Let {x1, . . ., xT } : xi ∈ X ⊆ Rn be the raw samples from a
n-channel EEG recording, where t ∈ [T ] indexes time. In our
setting, the total length of the recordings is around one hour
and the xi are sampled at a rate of 256 Hz, although neither of
these parameters are of particular importance. We partition the
recording into a set of non-overlapping windows each consisting
of r samples, which we denote by {w1, . . .,wL} : wi ∈ Xn×r.
We take r = 1024 corresponding to a length of 4 seconds. Let
[wi,wj ], where j ≥ i, be the interval of windows corresponding
to a seizure event. Our goal is to identify any i∗ ∈ [i, j].

B. M2D2 Framework

The inputs to our model are the wi formed by grouping to-
gether a set of r contiguous readings of the raw signal. These in-
puts are then encoded to a lower-dimensional representation z ∈
Rd(d 
 nr) using the VIB method described above. We define
qφ to be a multivariate Gaussian whose mean and covariance ma-
trix are parameterized using one-dimensional convolutional neu-
ral networks. That is, qφ(Z|X = x) = N (μ(x),Σ(x)), where
μ(x) and Σ(x) are computed using a 1D CNN. The output of
our model is a scalar value ŷ ∈ [0, 1] which is the probability
that a particular w contains a seizure. The entire architecture is
trained end to end to minimize the binary cross-entropy between
the fitted values ŷ and the ground truth.

Our primary novelty comes in our definition of the decoder.
Let Z = {z1, . . ., zL} be the compressed representations for

each of the input windows in our training data. Our approach
groups together a set of m adjacent zi into a candidate ictal
(seizure) region, which we denote P . We then compute the
empirical maximum mean discrepancy between P and the re-
mainder of the signal Q. The resulting vector of distances is
used as a set of input features for the decoder. More formally, let

define δt = M̂MD
2
(P,Q). The decoder can then be described

as a function fθ(δ1, δ2, . . ., δL) that returns a value ŷ ∈ [0, 1]
corresponding to the probability thatwt contains a seizure. Thus,
the decoder has access only to the MMD between each candidate
region and the remainder of the signal. Intuitively, the MMD
output quantifies how different the distribution of the samples in
P is from the distribution of the remaining samples. We describe
the architecture of our decoder in more detail in the following
section.

C. M2D2 Architecture

The architecture of M2D2 is summarized in Fig. 1. As de-
scribed above, we first encode wt to a codeword zt which is
generated by sampling from qφ(Z|x). A complication arises
because computing δt requires knowledge of all the zi–some
of which occur in the future. To address this issue, we compute
δt using zi in two passes. In the first “forward” pass, we have
access to all zt′ for t′ ≤ t. In the second “backward” pass, we
have the analogous quantities for t′ > t. Any particular δt can
then be easily obtained in a streaming fashion by computing
kernel evaluations between the zi and summing up these values.
Thereby we avoid the need to store all the individual kernel
evaluations.

Fig. 1 presents the MMD cell. As an input, the cell takes zt in
each time step. The cell has also an state to remember z values
over time. The memory unit is updated in every time step by
inserting a copy of zt inside state to prepare zt′≤t (zt′≥t during
the backward pass) for the next time step. Given these stored zi
values, the MMD cell can compute any particular δt.
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As mentioned in Section I, seizures vary in length from only
a few seconds to over several minutes, meaning that there is
not a single value of m (number of adjacent windows in the
candidate region) that is generally appropriate. In the M2D2
architecture, we are able to use a range of possible values for m
to address this issue. Technically, the MMD block computes δmt
for various lengths m and allows the decoder to determine the
best combination of these values. This non-linear combination
depends on not only the current zt but also all the adjacent zt′ .
Therefore, we use a GRU module in the decoder to find the
combination of δmt based on the output of the MMD block in all
time steps t′. We use a GRU in preference to a simple RNN to
avoid the vanishing and exploding gradient problem [35]. We use
a bi-directional GRU because we need information from both
t′ ≥ t and t′ < t. The output of the GRU layer goes to a simple
fully-connected (FC) layer, followed by a linear layer with a
sigmoid activation (logistic regression) to predict the output.
We show the results of an ablation study in Section VI-A to
study the effect of every component of M2D2 on the model’s
performance.

D. Training

The proposed M2D2 framework can be trained end-to-end via
back-propagation using standard methods based on stochastic
gradient descent. To show how gradients are computed for the
MMD layer, let θ be the parameters of the last layer in the
encoder. Then, the gradient of δt with respect to θ is given by:

∂δt
∂θ

=
∂δt
∂zt

· ∂zt
∂θ

, (2)

∂δt
∂zt

=
2

m2

t+m−1∑
i=t+1

k′(zi, zt) +
1

m2
k′(zt, zt)

− 2

mL

⎛
⎝

t+m−1∑
i=t+1

k′(zi, zt) +
L∑

j=1

k′(zt, zj)

⎞
⎠ (3)

where k′ is the derivative of the kernel function. A detailed
derivation can be found in the appendix.

As (3) shows, the gradient is obtained without multiplication
through the time steps, which addresses the problem of vanishing
and exploding gradients. A minor issue is that the gradient in-
volves a sum over a large number of terms in every time step. This
may cause the gradient to become large in absolute magnitude,
which leads to large fluctuations in the weights. To address this
problem, we add a penalty, defined as λ(‖z‖2 − 1) for λ > 0 a
tunable parameter, that helps to control the magnitude of k.

IV. EXPERIMENTS

A. Datasets

In this work, we consider the setup of real-world and stigma-
free wearable monitoring devices [36]. In such settings, in
order to make monitoring devices energy efficient and visually
unobtrusive, one typically only has access to a reduced set of
electrodes. Thus, to be reflective of practically relevant settings,

in the datasets, we consider only the electrodes F7T3 and F8T4
in the standard 10–20 system, [37], which can be easily hidden
in glasses [13]. The datasets used in this work are as follows:

1) Epilepsiae [38]: This dataset is one of the largest public
databases in the world for seizure disorder [39], [40]. It contains
totally 4747 EEG recordings from 30 different epilepsy patients.
From these recordings, 262 recordings contains at least one
epileptic seizure. The data is collected from child and adoles-
cent patients in hospitals across multiple countries. The EEG
data is divided into recording sessions of up to one hour. The
number of total recordings varies for each patient between 96
and 281 sessions. The total length of seizures in this database
is 348 minutes. The average length of each epileptic seizure is
76.5± 76.8 seconds.

2) CHB-MIT [41]: This dataset consists of EEG recording for
originally-labeled 23 patients sampled at a frequency of 256 Hz.
The data is collected from pediatric patients at the Children’s
Hospital of Boston (CHB) in the United States. The recording
length varies in different patients from one hour up to four hours.
In total, the dataset contains 664 EEG recordings from which 129
recordings contain epileptic seizures with a total of 182 seizures.
Totally the dataset has 182.2 minutes of seizure time out of 961
hours of signal. The length of seizure attacks is 60.1± 67.1
seconds, by average.

B. Baseline Methods

We compare our method against the following baselines,
which are modeled after methods previously proposed in the
literature.

1) Baseline VIB (B-VIB) [21]: Our work in [21] uses the
variational information bottleneck approach described in the
Background section. We consider the architecture proposed in
this work. The decoder is a standard fully-connected network
which consists of a single hidden layer followed by a linear layer
which outputs the probability that a given window–wi–contains
a seizure. The imputed location of the seizure is taken to be the
window that maximizes this probability (e.g., has the highest ŷ).

2) Baseline MMD (B-MMD): In this baseline, first, we train a
Variational Autoencoder (VAE) [42] whose encoder is identical
to the B-VIB approach described above. Using the pre-trained
encoder in this VAE, we extract the codewords (zi). After ex-
tracting the codewords for all wi in the session, we apply MMD
computation as described in (1). For all t in the signal, we com-
pute a score δt, which is the MMD between a candidate seizure
region and the remainder of the signal. Similar to our proposed
method, this baseline uses MMD to find the seizure temporal
location. However, instead of using the codeword vector as input
to a decoder, B-MMD imputes the location of the seizure as the
window that maximizes δt. Since MMD is computed separately
from the CNN encoder, the output cannot back-propagate to
the encoder to fine-tune the weights and parameters. Therefore,
we categorize this baseline as unsupervised learning with MMD.
This baseline is analogous to [34] except for the embedding part,
which in B-MMD, a deep learning method is used, whereas [34]
uses a pre-determined set of features.
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3) Fully Convolutional Network (B-FCN) [40]: This approach
reshapes the signal into a 3D array, which can be loosely inter-
preted as an “image,” and uses a convolutional neural network
to perform classification. This work applies 23-channel EEG
signals to the network. Therefore, to have a fair comparison,
we apply the same method to the two-channel datasets used
here and retrain the network accordingly. For each window, the
network returns a predicted probability that the window contains
a seizure. We localize the seizure as the window maximizing this
value.

4) Medically-Relevant Features (B-FET) [13]: This baseline
manually extracts medically-relevant time and frequency do-
main features from the EEG data, and trains a Random Forest
classifier on the feature space. The features consist of various
entropy measures and the spectral power of the EEG signal in
specific frequency bands. The entropy measures in this baseline
include suggested features in [43], [44], such as sample en-
tropy, permutation entropy, and Renyi entropy. Also, the feature
vector has Shannon entropy and Tsallis entropy. Furthermore,
the absolute and relative band powers calculated as features in
B-FET are δ, θ, α, β, and γ. These features are commonly
considered relevant by clinicians in the context of epilepsy [45].
The predicted seizure location is the window with the highest
score returned by the random forest.

C. Evaluation Method

In this work, our goal is to find the location of a seizure within
a long EEG recording. We define the evaluation error as the
distance between the detected seizure location to the nearest wi,
which is a seizure signal in the ground truth. Thus, if the detected
point is inside the interval of seizures, the error will be zero.
We only consider sessions containing at least one seizure. In a
real-world case, we assume that the patient is able to indicate that
they experienced a seizure within one hour (e.g., via interaction
with a monitoring device). In general, being able to localize
seizures in long time periods is useful since after a seizure attack,
patients may be disoriented or unconscious.

Following standard practice, we partition our data into train,
validation, and test sets. The training set is used to fit model
parameters, the validation set is used for hyperparameter tuning
and model selection, and the test set is used to obtain a final
estimate of the out-of-sample error for the model minimizing
the validation error. Our hyperparameter tuning methodology is
described in the Appendix. We use the following methods for
partitioning the data:

1) Leave-One-Out Cross Validation (LOOCV): We here par-
tition the data into train, test, and validation sets using the
principle of “leave-one-out” cross-validation. In LOOCV, one
cycles through each patient in the dataset, holding out their data
as a test set. The remaining patients are used for training and
validation.

2) New Unseen Test Set: To evaluate the performance of
our method on a completely different dataset from which it was
trained, we perform another set of experiments in which we
train and validate on one dataset, but test on the other (e.g., train
on CHB-MIT, test on Epilepsiae). This setting is potentially

more challenging since the test set is derived from a different
clinical setting. However, it is more reflective of the actual
performance our model would achieve if it were applied beyond
the immediate clinical setting in which it was trained. To the
best of our knowledge, we are the first work to perform this
type of evaluation in the context of evaluating seizure detection
procedures.

D. Implementation Details

We here describe key details of M2D2 implementation. A
more detailed description can be found in the Appendix.

1) Hyper-Parameters Tuning: In the LOOCV evaluation, for
every patient, we train a separate model. The EEG recordings as-
sociated with the held out patient form the test set while the other
22 patients are in the training and validation set. In the unseen
new dataset evaluation, the test set is from the Epilepsiae (CHB-
MIT) dataset; thus, we choose all the hyper-parameters, based
on the validation set in the CHB-MIT (Epilepsiae) dataset.

The latent space length d is the most important hyper-
parameter, which is chosen based on grid search. The
possible values are 2, 4, 8, 16, and 32. We select the
value leading to the lowest cross-validation error. Regard-
ing the kernel selection, when computing the MMD, we
choose k using cross-validation between polynomial kernels:
k(x, z) = (1 + 〈x, z〉)n, n ∈ {1, 2, 3, 4, 5}, and radial basis
functions (RBF) kernels: k(x, z) = exp(−γ||x− z||2), γ ∈
{0.01, 0.1, 1, 10, 100}. However, we show in Section VI-E that
our method is generic to any particular choice of kernel. We
train the models for 100 epochs or until the validation loss fails
to decrease for ten consecutive epochs.

2) MMD Simplification: Givenm samples fromP (the candi-
date ictal region), and n samples from Q, the exact computation
of the MMD is O((m+ n)2). However, in our case, P is very
small compared to Z (the entire recording), and so the second
term in (1) changes very little as P is varied. Accordingly,
to simplify implementation, we set Q = Z in which case the
second term of (1) is a constant. This approximate MMD reduces
the computation significantly to O(m(m+ n)) (recall that m is
small) and consequently reduces training and inference time.

To understand the implications of using the simplified form of
MMD, we perform the following experiment. After training the
proposed model, we freeze the weights of the encoder. Then,
we extract the latent representation of all input signals using
the “LOOCV” method in CHB-MIT. Next, we calculate both
the exact and simplified MMD for different window sizes, and
compute the correlation between the exact and simplified values.
The average of correlation coefficient for different window
length m is obtained as 0.95 ± 0.01. On the other hand, the
amount of computation saved using the simplified MMD is
between 98.1% to 99.4% for different m values. Consequently,
simplified values are tightly correlated with the exact ones while
dramatically reducing computational overhead. In Section VI-F,
we discuss, visualize, and compare exact and simplified MMD
in more detail.

3) Pre-Processing and Implementation: The EEG signal is
pre-processed using a Butterworth 50 Hz low-pass filter and
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Fig. 2. Distribution of errors in temporal localization under different evaluations when models are trained on one dataset and tested on the same
dataset (LOOCV) or on a new unseen test set (→).

by standardizing each 4-second window to have zero mean and
unit-variance input signals.

We train and test our models on a platform with an 8-core Intel
i7-9700 K CPU and a single NVIDIA RTX 2080 GPU with 2944
CUDA cores.

V. RESULTS

A. Temporal Localization Error Distribution

Fig. 2 summarizes the results. The boxplots show the distri-
bution of the errors in seizure temporal localization. The red line
indicates the median error in each box, and the upper and lower
limits of the colored box indicate the 75th and 25th percentile,
respectively. The upper and lower whiskers indicate the 95th

and 5th percentiles, respectively, and the black dots indicate
outliers. To keep plots readable, we do not show outliers with
over one hour of error. We emphasize that this is just for dis-
play purposes, and reported numeric results are inclusive of all
data.

As shown in Figs. 2(b) and 2(d), we find that our approach
yields superior performance when evaluated on a different
dataset than was used for training. In other words, when training
on CHB-MIT and evaluating on Epilepsiae (shown in Fig. 2(b))
or vice-versa (shown in Fig. 2(d)), our approach is able to lo-
calize seizures with lower error than any of the baselines. These
results are consistent with our goal of developing techniques for
temporally localizing seizures that offer better generalization in
new data settings.

In Figs. 2(a) and 2(b), the same dataset is considered for
training and testing. As shown, our approach delivers competi-
tive performance in the leave-one-out evaluation. For instance,
in these figures, our proposed method has a median of zero,
meaning that the imputed temporal location of a seizure falls
within an actual seizure in over half of the cases.

By comparing the results of our proposed model with the
baselines, we see that B-MMD has a wider distribution with

a substantially higher median error. While at first glance the
B-MMD and M2D2 methods appear similar, they are trained
quite differently. In M2D2 the encoder is trained end-to-end
in a supervised fashion and, thus, can fine-tune the extracted
features for the MMD computation. By contrast, in B-MMD, the
encoder cannot be fine-tuned, and thus the features are extracted
by optimizing an unsupervised cost function. Moreover, the B-
MMD is only able to consider a fixed length candidate region for
seizures, whereas our approach can consider multiple possible
window lengths. This underscores the value of using a neural
network to learn good signal features in our approach. On the
other hand, we can see that B-FET offers the best performance
when evaluated using leave-one-out. However, as can be seen
in Fig. 2(d), this model has the largest median error when eval-
uated on CHB-MIT as an unseen test set. This emphasizes the
need to develop models which can maintain performance when
applied outside of the data environment from which they were
trained.

B. Quantitative Results

The proposed M2D2 model and the decoders in B-VIB, B-
FCN, and B-FET return a value ŷi ∈ [0, 1] for every input wi

corresponding to the probability that wi is a seizure. We define
a threshold τ with the condition that if ŷi < τ , then the signal
in i is detected as a non-seizure. Also, if ŷi >= τ , a seizure
point is detected by the model. This definition is used in the
temporal localization task, and new metrics are defined inspired
by [46]. For a one-hour EEG recording that contains seizures, if
all the outputs ŷi for the whole signal are less than τ , then we
categorize the signal as a False Negative (FN). True Positive (TP)
is defined as the points i∗ where ŷi∗ > τ and i∗ is in the ground
truth. Likewise, False Positive (FP) points are the points i∗ where
ŷi∗ > τ but they are not in the ground truth.

The metrics precision, recall, and F1-score are defined as
follows for all the models. The threshold τ is chosen for every
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TABLE I
PRECISION, RECALL, AND F1-SCORE UNDER DIFFERENT EVALUATIONS.

FOR THE LOOCV EVALUATIONS, THE RESULTS ARE REPRESENTED
AS THE AVERAGE OF EACH METRIC FOR EVERY PATIENTS

single model to optimize the F1-score in the validation set.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F1-score =
2 ∗ (Recall ∗ Precision)

Recall + Precision

The results are represented in Table I. As seen in this table,
in the new unseen test set evaluation, the proposed model has
an F1-score significantly better than the baseline methods. To
understand the reason for this gap between the proposed results
with the baseline methods, one can note that M2D2 is trained to
predict the seizure probability of each point using the compari-
son between two distributions. On the other hand, the baseline
methods predict seizures only based on the input window wi

regardless of the rest of the signal. Therefore, the M2D2 model
has a limited number of points with high probability in the
output, while the baseline methods can have high probable
seizure points as many as all the inputs. As a consequence, the
FP points increase in the baselines, and the precision metric
decrease. Note that the baseline models still provide the max-
imum probability for a point close to the ground truth; thus,
they perform well in the temporal localization discussed in Sec-
tion V-A. However, using the quantitative results provided in this
section, we show the better performance of M2D2 if the model
is applied beyond the immediate clinical setting in which it was
trained.

The B-MMD baseline is excluded from the experiment be-
cause its MMD output is not a probability limited between zero
and one, and the definition of τ is not as same as the other
baselines.

Fig. 3. Ablation study for the M2D2 decoder and comparison with
models without MMD block, GRU layer or both. As seen, the least error
is when the complete M2D2 is used.

C. Temporal Localization With Acceptable Errors

In Table II, we show the number of EEG sessions in which
at least one seizure is correctly localized in time. A seizure is
correctly localized with an acceptable temporal error of Δ if,
the time distance between the predicted seizure point and the
nearest ground truth (GT) seizure is less thanΔ. Therefore, each
model chooses a single point i∗, and if there is a point g in GT
where (|i∗ − g| ≤ Δ), it is a hit, otherwise, it is a miss. The total
number of hits are represented in the Table 1 as Top-1 results.
Similarly, for the top-3 result in this table, the model chooses
three different points I∗ = {i∗1, i∗2, i∗3}, and if there is a point g
in GT where for any i∗, we obtain (|i∗ − g| ≤ Δ), it is a hit.

All the projected numbers in this table are obtained by running
every experiment three times and reporting their median number.
As can be seen, these results provide corroboration that our
method is able to localize seizures with higher precision than
the baselines when evaluated on the unseen test set.

VI. DISCUSSION OF RESULTS

We here offer additional discussion of results as well as some
additional analysis of our approach that aims to provide insight
into why it exhibits better generalization than the baselines.

A. Ablation Study

The M2D2 decoder contains MMD, GRU, and fully-
connected (FC) layers. To evaluate the contribution of these
layers, we performed the ablation study and trained four different
models with identical encoders and different decoders. The
decoders are (1) a complete M2D2 module, (2) an MMD block
followed by an FC layer, (3) a GRU followed by an FC layer,
and (4) a single FC layer. The results of the unseen evaluation
are shown in Fig. 3.

We observe that removing any component of the M2D2 de-
coder causes an error increase. Therefore, the results underscore
that each element is necessary for the model to perform as
desired. In particular, the decoder with GRU and FC layers is an
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TABLE II
NUMBER OF CORRECTLY LOCALIZED SEIZURES UNDER DIFFERENT EVALUATIONS FOR VARIOUS DURATION OF THE TARGET WINDOW. THE NUMBERS ARE

OUT OF THE TOTAL NUMBER OF SEIZURE SESSIONS IN THE TEST SET, I.E., 262 SESSIONS IN EPILEPSIAE AND 129 SESSIONS IN CHB-MIT. THE
PROPOSED METHOD OUTPERFORMS THE BASELINES IN THE TEMPORAL LOCALIZATION FOR THE NEW UNSEEN TEST SET EVALUATION

RNN where it is impossible to define a candidate seizure region.
The GRU layer only compares the current feature vectors with
a non-linear combination of the remainder of the signal.

B. Class Separability Measures

We hypothesize that the MMD layer in our approach may
lead to better separation between the ictal (seizure) and non-ictal
representations (z). Since the decoder only has access to these
z-space features, discriminating the two classes will be easier if
the MMD between the z-corresponding to each class is large. We
compare the separability of the z produced by our method and
the baselines using the J-score. Intuitively, the J-score compares
the distances between samples “within” a class, and “between”
samples in different classes. If the within-class distance is small
relative to the between-class distance, then the J-score is large,
indicating better separability. The J-score is computed from the
within and between-class scatter matrices [47] as follows:

SW =

n+∑
i=1

(z+i −m+)(z+i −m+)T

+

n−∑
i=1

(z−i −m−)(z−i −m−)T

SB = n+(m+ −m) + n−(m− −m)

where n+ and n− denote the number of samples in the seizure
and non-seizure classes, respectively. Similarly, z+i and z−i
denote the i-th sample in the seizure class and the i-th sample
in the non-seizure class, respectively. m+ and m− denote the
mean vectors of the samples in seizure and non-seizure classes.
Finally, m denotes the mean vector of all samples. The class
separability measure is defined as J = trace(SB)/trace(SW ), where
a small within-class scatter and large between-class scatter cause
a large separability.

TABLE III
CLASS SEPARABILITY OF CODEWORDS z FOR THE PROPOSED METHOD

AND THE BASELINES WITH THE SAME ENCODER STRUCTURE

Fig. 4. Two-channel EEG signal for one hour recording and the output
of B-VIB and the proposed models.

Table III compares J-scores of our approach and the baselines
for the unseen evaluation methods. As we see in the table, the
J-score for the proposed method is much larger than the baseline
methods indicating that the derived representations of seizure
and non-seizure points are better separated than in the baseline
methods. Note that the B-FET and B-FCN baselines do not have
an analogous derived representation and so are not included here.

C. Artifact Study

Fig. 4 shows a one-hour session of EEG signal extracted from
the CHB-MIT dataset with two different channels, F7-T7 and
F8-T8. The annotation of this signal indicates that the seizure
occurs from time 7‘:12“ until 8‘:21“. This seizure time is shown
in Fig. 4 with a red rectangle span on the background. Other
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Fig. 5. The effect of a spike on the output of the MMD with short and
long candidate region of seizure.

parts of the signal are normal EEG, but as we can see in
the figure, from 23‘:18“ until 33‘:50“, there is an artifact. As
shown in the figure, the proposed model can make the artifact
ineffective while the baseline model can predict the artifact as a
seizure window. This is because the MMD layer compares the
distribution of codewords inside and outside a short window.
The seizure lengths (1:09 for this case) are usually shorter than
these artifacts (the artifact duration is 10:32). Therefore, our
proposed model can realize the similarity of samples from inside
and outside the candidate window (with the nominal duration of
seizures for each patient) and then detect them as non-seizure
segments.

D. Window Length in M2D2

As mentioned in Section III, seizures vary fairly widely in
length, and in M2D2, we use a variety of window lengths m
to cover different seizure lengths. In this section, we describe
some usual problems in EEG signals, and we show and discuss
how various window lengths in M2D2 help to address the
problems.

1) Spikes and Sharp Waves: In Section VI-C, we discussed
the artifacts in EEG signals and how M2D2 improves robust-
ness to them. “Spikes” and “Sharp waves” are other abnormal
waveforms which may appear in EEG signals. A spike is a
sharp-pointed peak clearly distinguished from the background
and typically lasts between 20 to 70 milliseconds. If the duration
is between 70 to 200 milliseconds, the wave becomes a sharp
wave [45]. Since we assume the segment length as 4 seconds,
and the segments are longer than the duration of spikes and sharp
waves, they are usually addressed by the convolution layers in
the encoder. However, in some cases, we can see the effect of
spikes in the output. Fig. 5 shows a one-hour EEG signal and the
output prediction of the proposed method. The seizure is shown
with a red rectangle span in the background. A spike occurs one
minute after the seizure and lasts 50 ms, and it notable perturbs
the corresponding zt. As shown in this figure, for short window
lengths (e.g. 20 seconds), the spike meaningfully changes the
output of the MMD layer. On the other hand, for the long window
length, which is 68 seconds, the spike is nearly eliminated from
the output of the MMD layer. Note that the model output in
the figure is the output of the model after the GRU and fully
connected layers.

Fig. 6. The effect of multiple seizures on the MMD with short and long
candidate region of seizure.

Fig. 7. The effect of m on temporal localization in recordings with
different seizure length.

2) Multiple Seizures in One Session: The frequency of
seizures varies from patient to patient. Some patients suffer from
more frequent seizures and may have multiple seizures in an
hour–the typical length of recordings in our data. Fig. 6 shows
a session with two different seizures. The first seizure happened
from 27‘:44“ until 28‘:45“, and the second one from 56‘:54“
until 57‘:26“. As we see in the figure, the output of the MMD
layer using a short window length (20 seconds) is largest in the
second seizure, i.e., the shorter one, which lasts 32 seconds.
The first seizure is better detected by the longer window length,
underscoring that different window lengths are appropriate for
different seizures and that using a static window length as in [9]
is not optimal.

3) Different Seizure Length: In general, short seizures are
detected by shorter window lengths and longer seizures by
longer window lengths. Therefore, in the dataset, there are some
cases in which the short and long windows detect different
localization. Fig. 7 shows two different sessions with seizures
of 64 seconds and 164 seconds, respectively. The MMD layer

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 13,2023 at 23:08:21 UTC from IEEE Xplore.  Restrictions apply. 



212 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 1, JANUARY 2023

Fig. 8. The robustness of M2D2 to the chosen kernels.

works differently for these seizures, and interestingly, the output
is correct for both cases, which shows the rest of the layers in
M2D2, i.e., GRU and fully-connected layers, work properly to
choose the best value of window length.

E. Kernel Robustness

In this section, we show the robustness of M2C2 in choos-
ing the kernel function. In this experiment, we train several
models with an identical pre-trained encoder with different
M2D2 decoders, which vary in the kernel functions. The kernels
are chosen between linear, polynomial kernel with orders of 2,
3, 4, and 5, and RBF kernels with γ in range of 0.01, 0.1, 1,
10, and 100. The error time in the unseen test set evaluation
of CHB-MIT → Epilepsiae is shown in Fig. 8. As we see in
this figure, all of the chosen kernels except the RBF kernel with
γ = 100 temporally localize the seizures almost in the same way.

F. Simplified MMD Visualization

As mentioned in Section IV-D2, we use a simplified MMD
because the exact MMD is compute-intensive. To discuss the
differences between the “simplified MMD” and “Exact MMD,”
we performed a new experiment. We visualize the MMD for
every EEG recording in CHB-MIT containing seizure. We used
the leave-one-out cross-validation, and thus, the models are
trained and tested on CHB-MIT. The following figures show how
much the simplified and exact MMD are different. In Fig. 9(a),
we choose the EEG recording, which has the highest correlation
between the simplified and exact MMD. The seizure time is
shown in a red rectangle span in the background. As we can
see in this figure, the trend of the MMD is similar; however, the
MMD values shown in the y-axis are different by two orders of
magnitude. The absolute values of the MMD has no effect on
our work because of the following reason. In this paper, the goal
is temporal localization of the seizures in the EEG recording,
i.e., to find t in which δt has the highest value. Therefore, the
absolute value of δt is not essential.

Fig. 9(b) corresponds to the EEG recording with a corre-
lation that has the median value among all correlations. The
correlation value is between the simplified and exact MMD.
Finally, Fig. 9(c) shows the MMDs for an EEG recording with

Fig. 9. The MMD for EEG recordings with the highest (a), median (b),
and lowest (c) correlation between the simplified and exact MMD.

the lowest correlation value. The figure shows that the model
cannot detect the seizure location because the maximum of the
MMD is not inside the red rectangle. However, the simplified
MMD and exact MMD have almost the same trends in their
values.

VII. LIMITATIONS AND FUTURE WORK

We see two notable limitations of our work. First, our work is
in furtherance of developing models for seizure localization that
can be deployed on lightweight wearable devices. While we
address one important limitation of prior work by developing
an empirical approach that offers substantially improved
generalization, our model is still heavy-weight (in terms of
latency and energy-use) compared to the types of approaches that
can be deployed in real world devices. While we experiment
with modified versions of the MMD computation that can
improve total computation, and hence energy efficiency and
latency, an important component of future work will be to
develop light-weight realizations of our techniques which can
be deployed on practical, wearable devices. In addition, we
have evaluated our model on two large publicly available EEG
datasets with long relevant EEG recordings; however, this is

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 13,2023 at 23:08:21 UTC from IEEE Xplore.  Restrictions apply. 



AMIRSHAHI et al.: M2D2: MAXIMUM-MEAN-DISCREPANCY DECODER FOR TEMPORAL LOCALIZATION OF EPILEPTIC BRAIN ACTIVITIES 213

likely not reflective of the full diversity of patients with epilepsy,
due to the limited amount of data available in the context of
epilepsy.

VIII. CONCLUSION

In this work, we have considered the problem of automat-
ically localizing epileptic seizures from EEG recordings. Ex-
isting deep learning-based methods for this problem typically
need to be fine-tuned to be applied beyond the immediate
data environment in which they were trained. However, this
process requires acquiring new labeled training data which is
costly to obtain. In this work, we have taken a step towards
resolving this issue by introducing the M2D2 neural network
architecture for automatic temporal localization of epileptic
brain activities in long EEG recordings. Our approach groups
together a set of low-dimensional codewords corresponding
to a candidate seizure region and introduces a novel decoder
architecture which computes a set of features based on the
maximum-mean-discrepancy between each candidate region
and the remainder of the signal. These features are used by a re-
current decoder to impute the location of a seizure. Using an ex-
tensive empirical evaluation, we have shown that this approach
leads to substantially better generalization than prior approaches
when tested in a completely new data environment without any
fine-tuning. From a methodological perspective, our work has
introduced a new technique for detecting phenomena of interest
in time-series. From a practical perspective, our work has im-
proved existing techniques by reducing the need for fine-tuning
and specialization of models for seizure detection to new data
environments.
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