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Abstract—Recent years have witnessed a significant expansion
in Internet-of-Things (IoT) applications. Although the battery
energy availability can be improved with energy harvesting,
the overall device reliability management has been overlooked
in the existing literature. State-of-the-art reliability models of
solar panels, electronics and rechargeable batteries show expo-
nential dependence of failures on temperature. This work is
the first to develop a comprehensive reliability deployment
framework for energy-harvesting IoT networks, reflecting the
non-negligible thermal stresses on each hardware component.
Our framework improves the reliability on both pre-deployment
and post-deployment stages. Prior to deployment, given the histor-
ical temperature and solar radiation of the region, we formulate
a Mixed Integer Linear Program (MILP) to place the mini-
mum number of nodes, while ensuring (i) full target coverage,
(ii) complete connectivity, (iii) energy-neutral operation, and
(iv) reliability constraints at each deployed node. We propose
a polynomial-time heuristic, R-TSH, to approximate the optimal
placement in large-scale deployments. While R-TSH optimizes
long-term reliability, the prompt temperature or link quality dif-
ferences from the historical patterns can significantly degrade
device reliability after deployment. The post-deployment section
of our design consists of a reliability-driven routing algorithm,
AODV-Rel, that adapts to real-time environmental and link qual-
ity changes. Extensive analysis is done using a real-world dataset
from the National Solar Radiation Database. Simulations in
ns-3 show that R-TSH meets all reliability constraints even after
5 years of deployment as compared to the state of the art. In addi-
tion, it is 2000x faster than the optimal solution, while placing
only 28% more nodes. AODV-Rel further extends the minimal
operational lifetime by 1.5 and 2.8 months under temperature
deviation and wireless interference.

Index Terms—IoT networks, energy harvesting, reliability,
sensor deployment, adaptive routing.

Manuscript received 7 February 2021; revised 13 August 2021 and 3 May
2022; accepted 7 September 2022. Date of publication 20 September 2022;
date of current version 7 March 2023. This work was partially sup-
ported by Semiconductor Research Corporation task #2805.001, and in
part by National Science Foundation under Grants #1911095, #1826967,
#1730158, #1527034, #2100237, #2112167, #2003279. This article is an
extended version of our conference paper [1] presented at CNSM’2020 [DOI:
10.23919/CNSM50824.2020.9269122]. The associate editor coordinating the
review of this article and approving it for publication was S. Clayman.
(Corresponding author: Xiaofan Yu.)
Xiaofan Yu, Kazim Ergun, Xueyang Song, and Tajana Šimunić Rosing
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I. INTRODUCTION

RECENT years have witnessed a rapid deployment of
Internet-of-Things (IoT) for environmental monitoring

such as in Smart City [2] and Smart Agriculture [3] applica-
tions. Experts predict that there will be 29.4 billion IoT devices
globally by 2030. Energy harvesting techniques significantly
prolong the lifetime of IoT devices [5]. Existing work on the
deployment of energy harvesting sensor networks has studied
minimizing the deployment cost after ensuring: (i) coverage,
i.e., all points of interest (PoIs) are covered, (ii) connectiv-
ity, i.e., all devices are directly or indirectly connected to a
gateway, and (iii) energy-neutral operation [6], [7].
Although the energy availability can be enhanced with

energy harvesting, reliability degradation is often overlooked
in existing literature. Even with infinite energy sources, all
hardware components degrade over time and ultimately require
repair or complete replacement. As reported by Cisco [8], if
not managed carefully, maintenance expenditures can account
for up to 80% of the total IoT deployment costs. $3.2M/year
is spent on administrative labor and technical support due to
system failures for every 100,000 devices.
Previous works have shown that the failure rates, as mea-

sured by mean-time-to-failure (MTTF, i.e., the expected time
to failure), of electronics devices and solar harvesting systems
are exponentially related to temperature [9], [10]. The capacity
and the power output of batteries also degrade exponentially
in hot environments, while the aging status is quantified by
the State of Health (SoH) metric [11]. Starting from SoH of
100%, a battery reaches its end of life when SoH decreases to
80% regardless of the remaining charge [12]. Using state-of-
the-art reliability models and various chip core temperatures,
the MTTF ratio (compared to the MTTF baseline under 25 °C)
of electronic devices and the SoH of batteries after 5 years of
use are shown in Figure 1.
To the best of our knowledge, a comprehensive reliability

deployment framework that includes key hardware compo-
nents in energy-harvesting IoT networks has not been studied
to date. Without such guidelines, reliability-driven deployment
and management becomes difficult, especially for outdoor
environmental monitoring at extreme temperatures.
In this paper, we develop a comprehensive reliability-driven

framework with two stages:
(i) the pre-deployment stage optimizes long-term sensor

placement to manage the reliability of an energy-harvesting
IoT network, (ii) the post-deployment stage adjusts routing
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Fig. 1. Impact of chip core temperature on reliability. Higher temperature
significantly reduces the reliability.

in real time as a function of environmental and link quality
variations. Device placement sets the upper bound on the relia-
bility and useful life of IoT networks. Once deployed, adaptive
routing automatically balances the load to approach that upper
bound and mitigates unexpected reliability degradations. Both
stages consider the effect of environmental conditions (such
as temperature and solar radiation) on reliability.
In summary, the contributions of this paper are:
(1) We propose a comprehensive reliability-aware deploy-

ment framework for energy-harvesting IoT networks
including pre- and post-deployment stages. We lever-
age the state-of-the-art reliability models of solar panels,
electronics and battery state-of-health, all of which
exponentially depend on temperature.

(2) In the pre-deployment stage, we formulate a Mixed
Integer Linear Program (MILP) for placing the mini-
mal number of sensors, while ensuring (i) reliability, (ii)
full coverage of points of interest (PoIs), (iii) complete
connectivity, and (iv) energy-neutral operation. We show
that the proposed problem is NP-complete, and offer a
polynomial-time heuristic, Reliability-driven Two-Stage
Heuristic (R-TSH) for large-scale deployments.

(3) In the post-deployment stage, we design an adaptive
routing algorithm, AODV-Rel, based on Ad-hoc On-
demand Distance Vector (AODV) to dynamically man-
age reliability in real time. AODV-Rel balances reliability
in reaction to changes in the environmental conditions
or links quality.

(4) We evaluate the benefits of our framework using
real-world solar irradiance and ambient temperature
dataset from the National Solar Radiation Database
(NSRDB) [13]. The experiments are performed both in
MATLAB and in RelIoT1 [14], [15], a reliability sim-
ulator based on ns-3 [16]. We conduct comprehensive
evaluation on the deployment decisions given by R-TSH
versus the optimal solution and existing heuristics, and
on the adaptive routing algorithm under temperature and
link quality variations. Our results indicate R-TSH meets
all reliability constraints with 28% more nodes than
the optimal solution, but executes 2000x faster. AODV-
Rel further extends the minimal operational lifetime of
deployed nodes by 2.8 months under nearby wireless
interference.

1RelIoT is available at: https://github.com/UCSD-SEELab/RelIoT.

II. RELATED WORK

A. Sensor Deployment in Wireless Sensor Networks

Existing literature on sensor deployment mainly optimizes
coverage [17], connectivity [18], and network lifetime [19].
All published work optimizing coverage assumes single-use
batteries, so their network lifetime is limited. Application
requirements can be categorized into area coverage, target
coverage, and barrier coverage [20]. The optimization goal
is designing a network with a minimum deployment cost or
longest lifetime while satisfying the coverage and connectivity
requirements [21]. To find the optimal solution, grid place-
ment is transformed into integer programming models and
solved with conventional solvers. However, NP-hardness of
integer programming problems results in poor scalability, and
therefore encourages efficient heuristics [17], [18], [22].
Yang and Chin [6] is the first to formulate a sensor

placement problem to achieve energy-neutral operation with
the goal of covering fixed targets and ensuring connectivity
to the gateway. In addition to using Mixed Integer Linear
Programming (MILP) optimization, the authors proposed two
greedy heuristics that require 20% and 10% more sensors than
their MILP. The later work of Zhu et al. [7] considers the
placement of directional energy-harvesting sensors for target
coverage. They also consider the size of the solar panels at
each site as variables that determine the energy harvesting
rate. Three heuristics were offered, along with the corre-
sponding analyses on time complexity and performance bound.
Nevertheless, neither of [6] or [7] considered reliability, which
can cause significant problems in outdoor environments.

B. Reliability-Driven Network Deployment

Reliability has become increasingly important for large-
scale networks that may introduce enormous maintenance
costs. Previous works placed redundant nodes to enhance the
fault tolerance of the network. Extra nodes can be placed
to achieve k-coverage (i.e., any point of interest (PoI) needs
to be covered by at least k sensors) or m-connectivity (i.e.,
any sensor is required to directly connect to m other nodes).
Both strategies temporarily mitigate the negative influence
on network functionality upon failures. However, very few
existing papers leverage the models of hardware failure mech-
anisms and address how to preventively reduce the resulting
failure rates. Yu et al. [23] integrated single-use battery deple-
tion and electronics failure mechanisms to model and optimize
maintenance costs in sensor deployments. Their methodology
does not apply to energy-harvesting networks.
Our previous work [1] is the first to study reliability-driven

deployment in energy-harvesting sensor networks, where the
thermal-based reliability models of batteries and electronics
are considered. This paper extends and improves [1] in the
following ways: (i) it completes the reliability framework for
energy-harvesting systems by including thermal-based failure
models of solar panels, in addition to device and battery relia-
bility models; (ii) Besides sensor placement optimization prior
to deployment, we design an adaptive routing algorithm for
dynamic reliability management after deployment; and (iii)
a detailed evaluation of the generated deployments and their
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Fig. 2. Components of a solar energy-harvesting system considered in
this paper. We consider reliability models for solar panel, electronics and
rechargeable batteries.

properties is done with the state of the art ns-3-based reliability
simulator RelIoT [14], [15] using real-world data.

III. RELIABILITY MODELS OF ENERGY-HARVESTING

SYSTEMS

Reliability of a system is the probability R(t) that the system
will not fail until time t [9]. It is related to the failure rate
of a system, which shows a bathtub curve as a function of
time [24]. We focus on the useful lifetime of systems dur-
ing which the failure rates are constant. Failures in sensor
networks can be categorized into link, software, and hardware
failures [25]. Both link and software failures can be recov-
ered or avoided with good design. In this paper, we consider
permanent hardware failures which are very costly, as they
require device repair or replacement.
Most energy-harvesting systems leverage the Harvest-Store-

Use Architecture [5], as shown in Figure 2. The harvesting
system includes solar panel(s) and a harvesting circuit for
power conversion [26]. The storage system uses supercapaci-
tors and/or rechargeable batteries. We focus on batteries in this
work as they have low cycle lifetime, e.g., 1000 cycles [27].
We next introduce the state-of-the-art reliability models for
solar panels, electronics and rechargeable batteries.

A. Solar Panel Reliability Model

Photovoltaic systems have exponential dependence between
the failure rate and temperature. We leverage the state-of-the-
art reliability model in [10], which is obtained from step-stress
aging tests on III-V high concentrator solar cells. The ratio of
solar panel’s MTTF in comparison to its counterpart under a
standard temperature of Tref = 25°C is estimated as shown
below, where Ea is activation energy and k is Boltzmann
constant. Tamb is the ambient temperature of the environment.

MTTFsp(Tamb) = exp

[
Ea

k

(
1

Tamb
− 1

Tref

)]
. (1)

B. Electronics Reliability Model

Previous research has studied common electronics failure
mechanisms such as time-dependent dielectric breakdown,
negative bias temperature instability, and electromigration,
all of which are exponentially dependent on the tempera-
ture [9], [28]. We use the term core temperature to refer to the

internal temperature of a chip. The MTTF for each mechanism
can be modeled as a function of time, voltage, temperature,
and technological parameters. In [24], the authors showed that
the MTTF of all above-mentioned mechanisms share a sim-
ilar form depending on the core temperature Tc . We extract
this general expression to estimate MTTF as the ratio to the
baseline at Tref = 25°C:

MTTFe(Tc) = exp

(
Ea

kTc

)
/ exp

(
Ea

kTref

)
, (2)

where Ea is the activation energy, k is Boltzmann’s constant.
According to the thermal dissipation model in [29], Tc lin-
early depends on average power consumption P of device and
ambient temperature Tamb at the deployed location:

Tc = k1P + k2Tamb + k3. (3)

where k1, k2 and k3 are device-specific parameters obtained
by fitting into experimental traces.

C. Battery Reliability Model (SoH)

In contrast to the state-of-charge (SoC) model that predicts
the available charge in a battery, we utilize the state-of-health
(SoH) model, which denotes the aging level of a battery
in comparison when it is new. Although a battery can be
recharged with harvested energy, it loses its ability to deliver
energy, eventually making it unusable. The operational lifetime
of a battery is defined as the time when SoH reduces from 1
to 0.8 [12]. Battery aging consists of calendar aging and cycle
aging [30]. While calendar aging is exponentially accelerated
as a function of time, temperature, and state-of-charge stresses,
cycle aging additionally accounts for the degradation due to
the depth of discharge (DoD) during each charge-discharge
cycle. We use the state-of-the-art semi-empirical SoH model
in [12] for Lithium-Ion batteries. Since our goal is to optimize
long-term state-of-health, we focus on calendar aging with
time and temperature stresses:

SoH (t ,Tcell ) = exp

{
−kt t exp

[
kTTref

(
1− Tref

Tcell

)]}
.

(4)

Here t is the elapsed time since deployment. Tcell is the
internal battery cell temperature and Tref is the reference tem-
perature of 25 °C. kt and kT are predetermined constants.
Similar to estimating core temperature, we use the thermal
model in [29] to convert ambient temperature Tamb to battery
cell temperature Tcell with different linear coefficients.

IV. PRE-DEPLOYMENT OPTIMIZATION VIA

SENSOR DEPLOYMENT

A. Sensor Placement Problem Formulation

We assume that sensor nodes can be deployed in a candidate
grid space N to cover a set of points of interest (PoIs) denoted
by O. For ease of reading, we list the important symbols used
in our formulation in Table I. Assuming at most one device
can be placed at a grid point and only one gateway exists,
the optimization problem minimizes the number of deployed
nodes subject to the following constraints:
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TABLE I
LIST OF IMPORTANT NOTATIONS IN PROBLEM FORMULATION

• Probabilistic coverage constraint: Each PoI is covered
with at least a predetermined probability.

• Complete connectivity: All generated data can be suc-
cessfully routed to the gateway.

• Energy-neutral operation: At each deployed site, the
energy consumption is less than the harvested energy.

• Reliability constraints: Using the models in Section III,
the reliability of each deployed device after a prede-
termined time duration Time is greater than a given
bound.

The binary variables of the problem are xi (Eq. (5)) and
si (Eq. (6)). While xi suggests whether a device is placed at
location i, si further indicates whether the device performs
sensing actions. xi and si enable the problem to distinguish
relay nodes (i.e., nodes that only route data) and sensor nodes
(i.e., nodes that carry out both sensing and transmission). The
continuous variables are fij and fiB which representing the
flow quantity from node i to j and from node i to the gateway.

xi =

{
1 if a device is placed at i
0 otherwise.

(5)

si =

{
1 if a sensor is placed at i
0 otherwise.

(6)

We show an example deployment in Figure 3. Each grid
point is a candidate site. The red triangles represent deployed
sensor nodes (xi = 1, si = 1) whose sensing radius is shown
by the red circle. Both PoIs (green diamonds) are successfully
covered by the deployed sensors with level K = 1. The blue
dots are pure relay nodes (xi = 1, si = 0) that only route
data. All nodes are connected to the gateway (orange star).

Fig. 3. An example deployment instance.

Now we rigorously formulate the problem as MILP:

min
∑
i∈N

xi (7)

subject to∑
i∈N

si · log(1− cov(i , j )) ≤ log(1− pth), ∀j ∈ O (8a)

siηG +
∑
j∈Γi

fji =
∑
j∈Γi

fij + fiB , ∀i ∈ N (8b)

∑
i∈ΓB

fiB =
∑
i∈N

siηG (8c)

si ≤ xi , ∀i ∈ N (8d)∑
j∈Γi

fij ≤ γxi , ∀i ∈ N (8e)

xi ≤ SPi , ∀i ∈ N (8f)

Pi ≤ min
{
Ri ,PSoH ,i ,PMTTFe ,i

}
, ∀i ∈ N (8g)

xi ∈ {0, 1}, si ∈ {0, 1}, ∀i ∈ N (8h)

0 ≤ fij ≤ γ, ∀i ∈ N , j ∈ N , i �= j (8i)

Eq. (8a)-(8g) are deployment constraints that we will explain
next. Eq. (8h) and (8i) give the lower and upper limits for all
variables.

Probabilistic Coverage Constraint: Targeting at general
applications, we employ the state-of-the-art probabilistic cov-
erage model for wireless sensor networks [21], [31]. Suppose
that d(i, j) represents the Euclidean distance between i ∈ N
and j ∈ O. The probabilistic coverage model is defined as:

cov(i , j ) =

⎧⎨
⎩

1 if d(i , j ) ≤ Sc ,

e−ω·d(i ,j ) if Sc < d(i , j ) ≤ Sr ,
0 otherwise.

(9)

where Sc is the starting distance of uncertainty in detection,
and Sr is the maximal sensing radius. We require the over-
all detection probability of target j ∈ O to be at least a
predetermined threshold pth :

pj = 1−
∏
i∈N

(1− si · cov(i , j )) ≥ pth . (10)

By applying the log operation on both sides and following
similar derivations as in [32], we are able to convert the prod-
uct of probabilities into sum, as shown in Eq. (8a). Since the
probabilities of cov(i, j) can be computed in advance, Eq. (8a)
is a linear constraint.
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Connectivity Constraint: To account for a variety of modern
wireless communication technologies, we model the connec-
tivity with a maximal reachable distance which can be set
according to the technology and transmission power. We
assume the feasible communication range of each device to
be Cr . Then the neighbor set Γi of grid node i is defined as
Γi = {j ∈ N | dij < Cr , j �= i}, where dij denotes the
Euclidean distance between grid locations i and j. ΓB repre-
sents a set of gateways neighbors. The connectivity constraints
require: (i) flow conservation, i.e., the sum of the outgoing flow
should equal to the sum of the incoming flow and generated
data (if any) at each node (Eq. (8b)), (ii) complete connec-
tivity, i.e., all data generated from end devices converge into
the gateway (Eq. (8c)). Eq. (8d) and (8e) are feasibility con-
straints. The former equation states that a sensor can only be
placed at the site where a device exists, while the latter one
claims that no flow can pass through node i if no device is
located there. γ = ηG |N | is defined as the maximum flow
quantity possible in the network.

Energy-Neutral Operation Constraint: To achieve energy-
neutral operation at each deployed spot, the average power
of the device should be less than or equal to the harvesting
rate. Energy-harvesting sensor node consumes ambient power
(e.g., dissipated power during sleep state), sensing power, and
communication power [33]. We assume that the system wakes
up once in a sampling interval Tcycle , performs the sensing
task, transmits the packet, and sleeps again before the next
cycle. The average power of a device at grid i is then:

Pi = P0 + siEsη +
∑
j∈Γi

(
Ptx

(
dij

) fij
BW

+ Prx
fji
BW

)
, (11)

where P0 is a constant that denotes the dissipation of ambi-
ent power. Es is the energy consumed per sensing task and
η = 1/Tcycle is the sampling frequency. Thus, Esη stands
for the average power in sensing. With si , sensing power
is only counted when a sensor is placed at i. The last
term in the bracket is the average transmission and recep-
tion power models using typical parameters for BPSK [34].
The transmission power varies polynomially with the distance:
Ptx (d) = pto+k ·dα, where pto , k and α are predefined con-
stants. The average reception power Prx is fixed. BW is the
bandwidth limitation.
The average energy harvesting rate Ri at grid location i

can be determined by the average solar irradiance level λi
(W/m2) [7]: Ri = ξiAλi , where A is the surface area of
the solar panel, ξi is the end-to-end conversion efficiency
of the solar system at node i. λi is available from online
databases such as NSRDB [13]. We assume uniform A among
all deployed nodes in our formulation. ξi depends linearly on
ambient temperature Tamb,i and solar irradiance level λi at
node i [35]:

ξi = aTamb,i + aRthλi + b, (12)

where Rth is the thermal resistance of solar panel and a, b are
predetermined constants. a, b,Rth are obtained from experi-
mental measurements. Combining the above components, we
write the energy-neutral operation constraint at i as Pi ≤ Ri .

Reliability Constraints: We now explain how to convert the
nonlinear reliability models in Section III to linear constraints.
All reliability models rely on the distribution of ambient tem-
perature, Tamb , at the specific location. The expectation of
reliability at a specific location i can be calculated as in
Eq. (13), where pTamb,i

is the probability associated with the
temperature distribution at location i.

MTTFsp,i =

∫ ∞

−∞
MTTFsp

(
Tamb,i

)
pTamb,i

dTamb,i (13a)

SoHi =

∫ ∞

−∞
SoH

(
Tcell,i

(
Tamb,i ,Pi

))
pTamb,i

dTamb,i

(13b)

MTTFe,i =

∫ ∞

−∞
MTTF

(
Tc,i

(
Tamb,i ,Pi

))
pTamb,i

dTamb,i

(13c)

The solar-panel reliability model depends only on ambi-
ent temperature (Eq. (1)) thus MTTFsp,i is fully determined
given a temperature distribution. If high ambient temperature
puts the MTTF ratio of the solar panel below a reference value
MTTFsp,ref , we label the current location as unsuitable for
deploying solar panels. We introduce the notation SPi to indi-
cate whether the solar panel can be installed at a particular
location:

SPi =
[
MTTFsp,i ≥ MTTFsp,ref

]
. (14)

Here, the notation [Cond] gives 1, when the inner condition
Cond is met; otherwise 0. With SPi , we specify the solar panel
reliability constraint at each site i as Eq. (8f).
For electronics and battery reliability, we require SoHi and

MTTFe,i to satisfy reference thresholds:

SoHi ≥ SoHref (15a)

MTTFe,i ≥ MTTFe,ref (15b)

Note that after the integral in Eq. (13), the expectations of SoH
and MTTF only rely on the average power of the device at
location i. Given the distribution of ambient temperature, SoHi

and MTTFe,i monotonously decrease with Pi . Therefore we
can determine the corresponding upper bounds on the average
power to meet the reliability constraints. We employ the binary
search algorithm to efficiently estimate the power upper bound
caused by battery SoH and electronics MTTF constraints (i.e.,
PSoH ,i and PMTTFe ,i ) within a precision of ε. Initiating the
two ends of search space to 0 and Pmax , it takes at most
log2(�Pmax

ε �) iterations to locate the desired power bound.
Since both the energy-neutral operation and reliability con-

straints are expressed as power upper bounds, they can be
combined into one single linear inequality as in Eq. (8g).

Complexity Analysis: The number of decision variables in
the formulated MILP is 2|N | + |N |2, where 2|N | of them
are binary and the rest |N |2 variables are continuous. After
simplification, we arrive at |N | + 1 equality constraints and
3|N | + |O| inequality constraints. We implement and solve
the proposed problem in CPLEX 12.10 [36]. However, the
proposed problem cannot be solved in polynomial time since
it is NP-complete.
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First, the problem belongs to the class of NP. For any given
instance, we can verify whether it satisfies Eq. (8a)-(8g) in
polynomial time. Then, we consider a relaxed version of (P) by
setting G = 0,P0 = 0,Es = 0,Ptx = Prx = 0. Namely, we
relax the flow, power and reliability constraints as arbitrary
values of fij < γ can satisfy the above constraints. With only
the coverage constraints, the relaxed problem is equivalent to
the minimum set cover problem whose goal is to find a cover
for a given set of targets O with the minimum number of grid
points from N . Hence, the proposed problem is reducible to a
well-known NP-complete problem of minimum set cover [37].
It is also clear that arbitrary instances of set covering can be
encoded as an instance of the proposed problem. Therefore
the proposed problem is NP-complete.

B. Proposed Heuristic: R-TSH

Given that our optimization problem is NP-complete, we
design a heuristic, Reliability-driven Two-Stage Heuristic (R-
TSH) for large-scale problems. We add reliability constraints
to the Two-Stage Heuristic (TSH) proposed in [7]. In contrast
to TSH [7] which attempts to minimize the deployment cost,
R-TSH disables a node i which violates solar panel MTTF con-
straints (Eq. (8f)), and makes selections based on the equiv-
alent power bound Pbd ,i = min{Ri ,PSoH ,i ,PMTTFe ,i} to
address the electronics MTTF and the battery SoH require-
ments. In this way, R-TSH meets the reliability constraints
and ensures energy-neutral operation. The complete flow of
R-TSH is shown in Algorithm 1.
R-TSH first filters out the sites that violate solar-panel relia-

bility constraints (line 4). Next it selects the nodes that satisfy
SoH and electronics MTTF constraints in two stages. The first
sensor selection stage (line 4 - 20) selects the sensor locations
with the maximum benefit:

Benefiti = |Si ∩ U| · Pbd ,i (16)

where Si denotes the set of PoIs covered by location i and
U represents the PoIs that have not been fully covered. The
benefit function favors locations that cover more PoIs while
meeting power bounds. The selecting loop exits once the prob-
abilistic coverage is attained, or no new coverage can be made.
The latter case indicates that the problem is infeasible.
The second stage focuses on the communication-path selec-

tion. Here we construct a directed graph GP by including all
connectable edges and assign the following weight to edge
(i, j) with tuned parameters ω1, ω2:

W(i , j ) ← ω1[i /∈ S] + ω2

(
Ptx

(
dij

)
+ Prx

)
ηG/BW

Pbd ,i − (P0 + Esη[i ∈ S]) (17)

The first term appends additional cost to the edge if i is not
added to the sensors set S in stage 1. The second term com-
putes the ratio of increased transmission power and remaining
power budget. Intuitively, the communication paths costing
less transmission power and less critical in energy bounds
as well as reliability constraints are given higher priorities.
Dijkstra’s algorithm is used to concurrently find the short-
est paths F from selected sensors S to the gateway c in
GP (line 25). All selected sensor nodes and relay nodes are
returned in X . The routing graph is captured by F .

Algorithm 1 R-TSH
Input: N ,O, c,K ,SP ,Pbd ,i
Output: X ,S,F
1: S ← ∅ 	 selected sensor node set
2: U ← {1, 2, . . . , |O |} 	 PoIs not fully covered
3: qi ← K , ∀i ∈ N 	 unsatisfied coverage requirements
4: N ← {i | SPi = 1, i ∈ N} 	 filter out unapproved sites
5: while U �= ∅ do
6: Si ←

∑
j∈U cov(i , j ), ∀i ∈ N 	 PoIs covered by i

7: i∗ ← arg max
{|Si ∩ U| · Pbd ,i | i ∈ N − S}

8: if |Si∗ ∩ U| = ∅ then
9: break 	 no new coverage
10: end if
11: for all k ∈ |Si∗ ∩ U| do
12: qk ← qk − 1
13: if qk ≤ 0 then
14: U ← U − {k}
15: end if
16: end for
17: S ← S ∪ {i∗} 	 update sensor node set
18: end while
19: if U �= ∅ then
20: return Null 	 infeasible in full coverage
21: end if
22: V ← {N , c}, E ← {(i , j ) | i , j ∈ V, i �= j , j ∈ Γi}
23: W(i , j ) ← ω1[i /∈ S] +ω2

(Ptx (dij )+Prx )ηG/BW
Pbd,i−(P0+Esη[i∈S]) , ∀(i , j ) ∈

E
24: GP ← CreateGraph(V, E ,W)
25: F ← ShortestPathTree(GP,S, c)
26: X ← {i | i ∈ F}
27: return X ,S,F

Complexity Analysis: The initialization from line 1 to 3
is O(|O| + |N |). The while-loop in line 4 takes at most
K |O| iterations. If the matrix of cov(i, j) is calculated and
stored in advance, both line 5 and 6 cost O(|N |) time. The
for loop in line 10 consumes O(|O |) time. Hence the time
complexity of the first stage (line 4 - 10) is O(K |N ||O|).
In the second stage (line 21 - 25), the constructed graph
is sparse. Suppose that the feasible communication radius
is Cr and the distance between the two adjacent sites is d.
Then one site can connect to at most (2�Cr

d 
 + 1)2 other
nodes including the sink. We denote this constant as C. The
number of edges in the graph should satisfy |E| < C |N |.
Constructing a graph with |N | vertices and |E| edges takes
O(|N |+|E|) = O(|N |). Applying Dijkstra’s algorithm to find
the shortest path takes O(|E|+|N | log |N |) = O(|N | log |N |)
time. Therefore, the overall time complexity of R-TSH ends
up with O(K |N ||O|+ |N | log |N |).

V. POST-DEPLOYMENT OPTIMIZATION VIA ROUTING

While R-TSH jointly optimizes sensor deployment and
routing paths considering temperature and solar irradiance dis-
tributions, we recognize that practical conditions can affect the
performance after deployment. The deployed sensors might
experience unexpected heat waves resulting in more severe
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Fig. 4. Post-deployment changes that motivate adaptive routing.

reliability degradation than R-TSH’s estimates. Lower than
expected solar energy availability may cause service out-
ages. Unreliable communication and random node failures
are typical of sensor network deployments. To combat these
post-deployment changes (as shown in Figure 4), we propose
an adaptive routing algorithm based on Ad-hoc On-demand
Distance Vector (AODV) [38] as the second component of
our reliability-driven framework. The goal is to balance relia-
bility degradation due to varying conditions and alleviate the
negative impacts of potential failures after deployment.

A. Adaptive Routing Algorithm: AODV-Rel

AODV routing protocol is a decentralized and reactive
protocol for ad-hoc networks, which has been shown to con-
sume less energy than its counterparts [39]. AODV detects
and adapts to changes in the network in a timely manner
by exchanging Route Requests (RREQ) and Route Replys
(RREP) between nodes. Our adaptive routing algorithm,
AODV-Rel is based on AODV to leverage the adaptive mech-
anism of AODV to address post-deployment changes during
runtime.
With AODV, each node maintains a routing table obtained

from request-response cycles among the network. The routing
table records the next hop with its latest routing cost. All pack-
ets are forwarded to the next hop with minimal routing cost.
In the original AODV, the routing cost is simply the number
of hops to transmit from one node to the other. AODV-Rel
instead relies on reliability-aware cost metric to balance relia-
bility degradation. Suppose that the routing cost from node u
to the sink (node 0) is Qu . The routing table at node u docu-
ments the aggregated routing cost collected from its neighbors
and selects the next destination as the node with the minimal
routing cost:

arg minv∈Γu
Qv + exp

(−Mu,v ,t
)
, (18)

where exp(−Mu,v ,t ) is a reliability-aware cost metric between
nodes u and v that distinguishes our design from the original
AODV. Mu,v ,t denotes the power margin to choose a hop u
to v at time t.
The power margin metric should accurately capture the

reliability degradation due to environmental stresses and link
failures. We propose to compute the power margin as follows:

Mu,v ,t = Pbd ,u,t − Pcur ,u,t − (Ptx (duv ) + Prx )ηG/BW .

(19)

The power bound Pbd ,u,t = min{Ru,t ,PSoH ,u,t ,
PMTTFe ,u,t} is similar as we used in R-TSH, which reflects
the maximal allowed power to meet (i) energy-harvesting,

Fig. 5. Reliability framework in RelIoT.

(ii) SoH, and (iii) electronics MTTF constraints under
real-time environmental conditions. Notice, that different
from the pre-deployment optimization, the power bound
metric here records the real-time status rather than long-term
expectation. The second term Pcur ,u,t is the current power
measurement under real-time link conditions. We assume that
retransmissions are initiated until the packets are successfully
received or a maximum number of retransmissions is reached.
Poor link quality causes more retransmissions and increases
the average power. The third term in Eq. (19) denotes the
increased power if link u to v is selected, which also appears
in Eq. (17).
The proposed reliability-aware power margin metric

includes all potential reliability degradation sources as
depicted in Figure 4. Environmental changes of temperature
and solar irradiance push the real-time power bound Pbd ,u,t ,
while poor link qualities increase the current power Pcur ,u,t ,
both closing the power margin Mu,v ,t . In addition, the power
cost of transmitting from u to v due to distance is also
integrated in Mu,v ,t . We use the exponential form of neg-
ative power margin to favor large margins and impose an
exponential penalty on negative margins.

B. Implementation

We implement AODV-Rel in RelIoT [14], an open-source
reliability simulation framework based on ns-3 [16]. While
ns-3 provides discrete event-based simulations for networking,
RelIoT further provides power, temperature, and reliability
modules for analysis, as shown in Figure 5. In contrast to
the model-based MATLAB simulations, RelIoT offers more
dynamism as it simulates the protocol-based packet deliv-
ery and reliability degradation under real-time temperature
and solar radiation traces. Specifically, the simulator has a
state-based module that alternates between communication
states, TX, RX, IDLE, SLEEP with varying durations, which
results in different amounts of power and energy consumption
throughout the simulation.
In RelIoT, we configure the power and temperature mod-

ules according to the models described in Section III and
Section IV. We also utilize the energy harvesting and battery
modules of ns-3 to monitor battery capacities over the simula-
tion horizon and validate energy-neutral operation. To account
for environmental conditions, we download the hourly ambi-
ent temperature and solar radiation traces from NSRDB [13],
and input them to the temperature module and the energy
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TABLE II
PARAMETER SETTINGS IN EVALUATION

harvesting module, respectively. Finally, we introduce two
functions to RelIoT for computing electronics MTTF and SoH
using the core temperature traces obtained from the temper-
ature module. The simulator estimates electronics reliability
using the Time-Dependent Dielectric Breakdown (TDDB)
model [9], [28].
With the above configuration, we are able to estimate the

time-wise reliability per deployed node. AODV-Rel is then
implemented based on the AODV module in ns-3, using the
routing cost defined in Eq. (18).

VI. EVALUATION

In this section, we first present the simulation setup
(Section VI-A). The numerical results in MATLAB on sensor
placement are listed in Section VI-B. Then Section VI-C
provides the ns-3 based RelIoT [14], [15] simulation results
including both sensor placement and adaptive routing. Finally,
we explicitly discuss the impact of parameters on reliability
trade-offs in Section VI-D.

A. Simulation Setup

We solve the MILP with CPLEX 12.10 [36] and then com-
pare to our heuristic in MATLAB R2020b. The source code
for our algorithms is available online.2 Simulation experiments
are performed on a Linux desktop with Intel Core i7-8700
CPU at 3.2 GHz and 16 GB RAM. We use a dataset covering
100 km × 100 km region in Southern California, downloaded
from NSRDB [13]. The dataset contains half-hourly solar irra-
diance and ambient temperature measurements across multiple
years. We project the spatial temperature distribution to the
candidate grid space over a variety of field sizes. The posi-
tions of PoIs and the gateway are randomly initialized. We
set the reliability bounds MTTFsp,ref = 1.33,SoHref =
0.9,MTTFe,ref = 0.9 and elapsed time Time = 5 years.
Table II reports the detailed parameter settings.
The communication-related parameters used in RelIoT are

summarized in Table III. We set multicast routing between
nodes with Constant Bit Rate (CBR) traffic, conforming to
the flow rates and routes described by the deployment.
The performance of the following methods are evaluated:
• OPT: The optimal solution to the proposed problem.
• OPTnoRel: The optimal solution to the proposed problem
without the reliability constraints.

• R-TSH: Our proposed heuristic.
We select two baselines from [7] to compare with: (1) TSH,

the original two-stage heuristic, and (2) SRIGH, the sensing-

2The source code is available at https://github.com/Orienfish/EH-deploy.

TABLE III
NS-3 SIMULATION PARAMETERS

and routing- integrated greedy heuristic in [7]. SRIGH greedily
selects a sensing node and its communication route within each
iteration, thus fails to balance routing from a global view. Both
TSH and SRIGH are devised to cover PoIs with minimum
deployment cost while ensuring energy-neutral operation.

B. Numerical Results on Sensor Placement

1) Small-Scale Problem Simulations: We perform small-
scale problem simulations on a grid space of 500 m × 500 m
and set the desired coverage probability to pth = 0.6.

Various number of PoIs: First, we set the number of candi-
date grid sites to 100 and choose the number of PoIs from 5
to 25. Since the positions of PoIs are initialized randomly, we
run all methods with 40 different initializations and calculate
the average result with 90% confidence interval. Figure 6a dis-
plays the number of deployed nodes and reliability violations
(i.e., the portion of deployed nodes that violate at least one of
the reliability bounds) of each method in our simulation. OPT
deploys 49% more nodes than OPTnoRel to satisfy the reliabil-
ity constraints. However, if optimizing without the reliability,
OPTnoRel will have more than 53% of nodes violating the reli-
ability bounds. Our heuristic R-TSH deploys around 28% more
nodes than OPT but it is more than 2000x faster while keep-
ing reliability violation below 4%. Note, that R-TSH adjusts
trade-off between the number of deployed nodes and reliability
violations by ω1 and ω2, which is discussed in Section VI-D.
R-TSH picks 13% and 63% more nodes than TSH and SRIGH
but TSH and SRIGH have 14% and 24% violations on average
respectively.

Various number of candidate sites: In the second experi-
ment,set PoIs to 20 and select the number of candidate grid
sites from {100, 110, 120, 130, 140}. Figure 6b presents the
average number of nodes and reliability violations after 40
random trials. Similar improvements can be observed in all
three sets of comparisons. Additionally, comparing Figure 6a
and Figure 6b, we see that the number of deployed nodes
is driven sublinearly by PoIs. Creating finer-grained candi-
date sites can improve the quality of solutions by satisfying
the same constraints with fewer nodes at the cost of longer
execution time.

2) Large-Scale Problem Simulation: We next evaluate a
grid space of 5 km × 5 km to compare the performance of
R-TSH and two heuristic baselines in a larger setting. The
coverage level is pth = 0.9. We report the performances
of R-TSH, TSH, and SRIGH, with varying the number of
PoIs and grid locations in the field. The average results of
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Fig. 6. Numerical results with 90% confidence interval on a small-scale
problem.

Fig. 7. Numerical results on a large-scale problem.

40 randomly initialized cases are shown in Figure 7a and
Figure 7b.

Various number of PoIs: We place 10K candidate sites in
the field while varying the number of PoIs from 50 to 150.
Figure 7a (left) scatters the number of deployed nodes and
reliability violations of all heuristics while altering the number

of PoIs to be covered. It can be seen that R-TSH places 6%
and 16% more nodes on average than TSH and SRIGH respec-
tively, but both baselines result in 17% or more reliability
violations.

Various number of candidate locations: We next set the
number of PoIs to 100 and change the candidate grid size.
Figure 7a (right) shows the results as the number of candi-
date locations changes from 6K to 14K. Reliability violations
of TSH and SRIGH fluctuate from 15% to 55% when the
size of the grid space changes. At the same time, R-TSH
consistently keeps the violation rates below 3% while having
10% and 16% more nodes than TSH and SRIGH respec-
tively. Interestingly, R-TSH returns much better solutions
than TSH on both metrics, the number of deployed nodes
and reliability, when the number of candidate sites is more
than 12K.

Execution Time: Figure 7b displays the execution time of all
heuristics in the above two experiments. R-TSH and TSH con-
sume similar time as they adopt the same mechanism, which
is different from SRIGH. The runtime of R-TSH and TSH
increases as more PoIs or candidate sites are considered, which
agrees with our complexity analysis in Section IV-B. SRIGH
runs much longer than R-TSH and TSH, especially with more
candidate sites. This can be attributed to the fact that SRIGH
calls the Dijkstra’s algorithm multiple times to update rout-
ing path along with the node selection, while the two-stage
mechanisms only trigger it once.

C. RelIoT (ns-3) Results

1) Sensor Placement in Pre-Deployment Stage: For more
realistic validation, we evaluate the same networks with the
same setup as shown in the previous section by using state-
of-the-art reliability, power, and performance simulator RelIoT.
We input the temperature and solar irradiance traces from
NSRDB into the simulator, bringing more realistic dynamism
to the simulation.
Similar as the small-scale deployment, we randomly initial-

ize PoIs over a grid of 500 m × 500 m, generate deployment
plans with all methods, and simulate the established networks.
The number of nodes deployed, the minimum SoH, and the
minimum electronics MTTF of the nodes for the 5-year simu-
lation time and each deployment method are given in Table IV.
SoH and MTTF values are represented as percentages with
respect to their standard values at temperature Tref = 25°C.
The minimum SoH and MTTF usually occur on the same
node which acts as a root in the routing topology. This node
degrades faster as it does a lot of the routing of traffic. We
refer to it as the bottleneck node.
As shown in Table IV, OPTnoRel deploys fewer nodes

than the other methods, but causes unbalanced reliability
in the network. The bottleneck node in OPTnoRel violates
the SoH and electronics MTTF bounds, i.e., SoHref =
0.9,MTTFe,ref = 0.9. Only reliability-driven methods, OPT
and R-TSH, are able to meet the reliability bounds. R-TSH
deploys 13% more nodes than OPT. Compared with the
baseline heuristics, R-TSH deploys approximately 25% more
nodes.
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TABLE IV
COMPARISON OF THE DEPLOYMENTS GENERATED BY

VARIOUS METHODS IN RelIoT

Fig. 8. Time-wise simulation results in RelIoT.

TDDB reliability degradation: To examine the reliability
degradation mechanism in more details, we plot the reliability
of electronics computed internally by RelIoT for the bottleneck
node in each deployment in Figure 8a. RelIoT leverages the
TDDB model [9], [28], which defines reliability as the prob-
ability of not having failures before a given time t and takes
the values in the range [0, 1]. Figure 8a shows that initially
the reliability for all methods is similar but the difference is
exacerbated over time due to the exponential dependency. By
the end of the 5-year duration, the bottleneck node in OPT has
12% higher reliability than the bottleneck node in OPTnoRel.
Furthermore, R-TSH achieves the best reliability among all
methods, improving reliability by 11% compared to SRIGH
at bottleneck nodes after 5 years.

Battery State of Charge (SoC): We also observe the time-
wise changes in battery SoC using RelIoT to assess how solar
panels affect network operation. In Figure 8b, we show the

battery SoC in percentages of the bottleneck node for each
method. For all methods except OPTnoRel, nodes can recover
the depleted battery charge very quickly using energy har-
vesting. For the bottleneck node in OPTnoRel deployment,
energy-neutral operation is still satisfied, although the bat-
tery SoC is recovered over a much longer time frame. During
cloudy times, there is not much solar energy generation so
the battery capacity decreases drastically, but in summer it
balances out and goes back to full charge for energy neutral
operation.
Figure 8c visualizes the distribution of battery SoC among

all nodes for each season. Most nodes maintain a high bat-
tery SoC of more than 98%, while OPTnoRel has dramatic
variations between minimum and maximum SoC, primarily
due to bottleneck nodes whose SoC drops close to zero. Due
to season-wise variations in available solar radiation, such
bottleneck nodes have higher SoC during summer, but are
prone to energy drain during winter. All deployments gen-
erated by heuristics preserve high and balanced SoC on all
nodes. In summary, the simulation results in RelIoT show that
OPTnoRel sacrifices reliability, while reliability-driven methods
better balance reliability with routing workloads.

2) Adaptive Routing in Post-Deployment Stage: While
R-TSH is highly optimized for the historical temperature/solar
data in long-term deployment, it is not able to react to real-time
variations after the deployment. Our adaptive routing algo-
rithm is designed to address post-deployment adjustments. In
addition to the normal case that exactly follows the estimated
temperature distributions and has no packet loss, we simu-
late two different scenarios that are representative of potential
variations after the deployment:
(1) Temperature deviation: To simulate the unexpected tem-

perature and solar irradiance deviation, we download
the NSRDB data of year 2010 for sensor placement
optimization, and input the traces of year 2020 into
RelIoT to simulate reliability degradation. For reference,
the annual average temperature in the region is increased
by 2.4°C between 2010 and 2020.

(2) Wireless interference: We assume that there is wireless
interference from nearby communicating devices that
results in packet losses. We manually place interfering
devices near each node in the network. These devices
randomly generate interference at irregular intervals. IoT
devices operate on unlicensed wireless bands and are
therefore susceptible to interference from unrecognized
devices using the same band. The interference is usu-
ally random and unknown in advance, which cannot be
taken into account in optimization.

For each scenario, we use the same placement generated by
R-TSH and apply the fixed routing, the original AODV and our
AODV-Rel. The fixed routing paths are generated by R-TSH
assuming that there is no post-deployment variation. The orig-
inal AODV purely optimizes for the number of hops without
considering the reliability.
We simulate a 23-node deployment generated by R-TSH,

which is optimal for the assumed ambient temperature dis-
tribution and no packet loss. The results for the minimal
reliability and operational lifetime of all nodes are presented
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TABLE V
COMPARISON OF VARIOUS ROUTING ALGORITHMS ON THE MINIMAL

SOH AND ELECTRONICS MTTF (IN PERCENTAGE TO THEIR
STANDARD VALUES UNDER TEMPERATURE Tref = 25°C)
AND THE MINIMAL OPERATIONAL LIFETIME IN MONTHS

TABLE VI
THROUGHPUT IN KBPS OF THE BOTTLENECK NODE

UNDER VARIOUS SCENARIOS

in Table V. We evaluate the operational lifetime which refers
to the time when reliability degrades below 0.5, that is, the
node has 50% probability to fail before that moment. It can
be seen that fixed R-TSH routing is the best method under
“normal” conditions. This is expected as the R-TSH solu-
tion, including both deployment and routing, is optimized for
undeviating post-deployment environments. However, adaptive
routing improves the R-TSH solution when there is temper-
ature deviation or wireless interference. By using adaptive
routing, the bottleneck node (i.e., the node presents minimal
reliability) can stay above the specified reliability level for
1.5 and 2.8 months longer at deviated ambient temperature
and wireless interference respectively, compared to fixed rout-
ing. There is a trade-off for employing either approach: if
the environment estimations are perfect and communication is
reliable, then fixed routing of R-TSH is optimal. Otherwise,
adaptive routing is preferred as it can adapt to changing condi-
tions. The default AODV performs the worst because it always
routes through the same nodes for the least number of hops.
Therefore, it is not adaptive to temperature or interference
variations in the network.
The discrepancy in the results of the compared approaches

can be explained by the amount of data routed through the
bottleneck node as shown in Table VI. We should note that
the bottleneck node is not the same for all approaches. The
fixed routing and the default AODV approaches have the same
throughput for all scenarios, so we present them with a single
entry on the table. AODV routing decisions are purely based
on the number of hops, hence there is no change in the amount
of data forwarded through the bottleneck node. The through-
put, and hence the communication load is lowered by adaptive
routing in temperature deviation and wireless interference sce-
narios. Packet losses cause retransmissions which increase the
average power consumption. Adaptive routing avoids sending
packets through the bottleneck node because its power margin
is low as a result of retransmissions and higher temperature.
Therefore, adaptive routing in the temperature variation sce-
nario and in the packet loss scenario have lower throughput

Fig. 9. Impact of reliability bounds on each model.

than the default scenario (AODV-Rel), which are 12.24 kBps
and 11.77 kBps, respectively.

D. Discussion

In this section, we provide more insights by discussing the
impact of several key issues.

1) Impact of Reliability Bounds: As explained in
Section III, our framework includes reliability models
for three hardware components: solar panels, electronics and
rechargeable batteries. Every deployed node is designed to
meet the reliability bounds. Depending on the temperature
distribution and reliability bounds, one of the components’
reliability plays a dominant role among the three. We
experiment with the reliability bounds to evaluate the impact
of each model using real-world dataset from NSRDB [13].
We convert the solar panel reliability model to a binary

indicator showing the reliability of solar panel installation.
If high temperature accelerates failures on a solar panel so
that its MTTF drops below a predetermined bound, i.e.,
MTTFsp < MTTFsp,ref , we “disable” the node from can-
didate grid which increases sparsity. Figure 9(a) depicts the
sparsity level of candidate grid when varying MTTFsp,ref .
Recall that MTTFsp is expressed as a ratio to its standard
value under 25 °C. Therefore, Figure 9a indicates that all can-
didate sites ensure the local MTTFsp is longer than 1.3x of
the standard value, under the temperature distribution from
NSRDB. In practice, the solar panel model usually provides
the weakest reliability bound compared to the rest.
Unlike the solar panel model, both electronics and battery

reliability models are calculated from devices’ temperature
which depends on power consumption and ambient tempera-
ture. Suppose that the ambient temperature is 35 °C, which
is common in the summer. Figure 9b plots the equivalent
power bound to satisfy various SoH and electronics MTTF
requirements (i.e., SoHref and MTTFe,ref ) as in Eq. (15).
The electronics MTTF bound offers the harshest reliability
requirement when SoHref and MTTFe,ref are greater than
0.64, while battery SoH dominates the deployment otherwise.

2) Temperature Sensitivity Analysis: We perform temper-
ature sensitivity test to observe the impact of increased
temperature on deployment. Using the same setting as in the
large-scale simulation, we add up to 6 °C to all sites and
observe the number of nodes and reliability violations returned
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Fig. 10. Sensitivity analysis results.

by R-TSH. We set 10K candidate sites and 100 PoIs randomly
distributed over the field. We present the average values after
20 trials in Figure 10a. With a temperature increase less than
3 °C, R-TSH keeps reliability constant while more nodes are
placed. Once the temperature increase is greater than 3 °C,
deploying additional nodes cannot hold back reliability vio-
lations. This analysis is based on the weight parameters of
R-TSH, which is discussed in the following paragraph.

3) Weight Parameter Sensitivity Analysis: The weight
parameters w1,w2 in R-TSH adjust the trade-off between
deployment cost and reliability. To study the impact of weight
parameters, we use the same setting as the temperature sen-
sitivity test and vary w2/w1 in R-TSH between 0.9 and 2.1.
Figure 10b shows the average deployed nodes and reliabil-
ity violations after 20 trials. If w2/w1 is small, the first term
in Eq. (17) gains more weight, and thus the deployment cost
becomes more critical.

VII. CONCLUSION

In this paper, we propose a complete framework for
reliability-aware deployment and routing in energy-harvesting
IoT networks, including pre-deployment sensor placement and
post-deployment adaptive routing. For sensor placement, we
formulate a MILP which minimizes the number of nodes
while ensuring reliability, then propose a polynomial heuristic
named R-TSH to solve large problems efficiently. For adaptive
routing, we design a new reliability-aware routing algorithm
based on AODV. Comprehensive simulations using real-world
solar irradiance and ambient temperature datasets show R-TSH
avoids 15 - 55% of reliability violations with a comparable
number of nodes and execution time compared with base-
lines, while the adaptive routing algorithm further extends
the minimal operational lifetime by 1.5 and 2.8 months under
temperature deviation and wireless interference.
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