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Abstract—Building a highly-efficient FPGA accelerator for
Hyperdimensional (HD) computing is tedious work that requires
Register Transfer Level (RTL) programming and verification. An
inexperienced designer might waste significant time finding the
best resource allocation scheme to achieve the target performance
under resource constraints, especially for edge applications. HD
computing is a novel computational paradigm that emulates
brain functionality in performing cognitive tasks. The underlying
computations of HD involve a substantial number of element-
wise operations (e.g., additions and multiplications) on ultra-
wide hypervectors (HVs), which can be effectively parallelized
and pipelined. Although different HD applications might vary in
terms of the number of input features and output classes (labels),
they generally follow the same computation flow. In this paper, we
propose HD2FPGA, an automated tool that generates fast and
highly efficient FPGA-based accelerators for HD classification
and clustering. HD2FPGA eliminates the arduous task of hand-
crafted design of hardware accelerators by leveraging a template
of optimized processing elements to automatically generate an
FPGA implementation as a function of application specifications
and user constraints. For HD classification HD2FPGA, on aver-
age, provides 1.5× (up to 2.5× ) speedup compared to the state-
of-the-art FPGA-based accelerator and 36.6× speedup with 5.4×
higher energy efficiency compared to the GPU-based one. For HD
clustering, HD2FPGA is 2.2× faster than the GPU framework.

Index Terms—Hyperdimensional (HD) computing, Automa-
tion, FPGA

I. INTRODUCTION

Hyperdimensional (HD) computing imitates brain function-

alities when performing cognitive tasks with low-energy con-

sumption, making it popular in energy-bounded applications

[1]. Researchers explored implementing HD models on FPGAs

to obtain hardware-level energy savings [2], [3], [4], [5], but

designing FPGAs is a time-consuming process [6]. Besides,

most of those FPGA designs are customized by specific

tasks or datasets with lots of assumptions. The emerging

applications of HD motivate researchers to develop flexible

frameworks to lower the bar of deploying HD algorithms and

to accelerate the development cycle. The work in [7] proposed

a GPU-powered generic implementation of HD. However,

GPUs generally have high power consumption. The work

in [5] proposed an automated framework to accelerate HD

classification on FPGA aiming to accelerate FPGA develop-

ment cycle. However, it only supports classification and is

based on several assumptions which may not be applicable to

all applications. In this work, we develop a framework with

a user-friendly GUI that can automatically generate FPGA

designs both for HD clustering and classification problems,

and it requires a smaller number of dimensions to achieve

comparable accuracy with the state of the art [5].
HD computing is based on human brain operations where

the brain computes with patterns of neural activity, which can

be realized by encoding data into high-dimensional vectors,

called hypervectors (HVs) with thousands of bits. Many ma-

chine learning problems have been implemented using HD

computing, including classification and clustering [8], [3],

[9]. HD computing is able to match the accuracy of state-

of-the-art machine learning algorithms while learning from

only a small portion of training data [10], [11]. Besides, HD

computing is inherently robust against noise due to its large

vector dimensionality [1].
HD2FPGA automatically generates an FPGA-based accel-

erator for HD classification and clustering to abstract away the

implementation complexities and long design cycles associated

with hardware design from the user. It reduces the time of

implementing the HD models from weeks down to hours.

HD2FPGA generates a synthesizable Verilog implementation

of an HD accelerator while taking high-level user input and

target FPGA parameters into account. It is flexible and highly

optimized to deliver a fast and an energy-efficient accelerator

according to user-specified constraints (i.e., performance, and

power). HD2FPGA supports end-to-end training, retraining,

and inference for both HD classification and clustering prob-

lems. Specifically, HD2FPGA makes the following contribu-

tions, where it:

• Develops a user-friendly framework that generates

FPGA-based synthesizable architectures for accelerating

training, retraining, and inference for HD classification

and clustering problems.

• Utilizes random projection encoding to deliver high ac-

curacy for multiple problems while removing the depen-

dency of the encoding hardware on the number of input

features.

• Enables easy access for researchers and industry to imple-

ment classification and clustering on FPGAs with orders

of magnitude speed-up and energy reduction, compared

to CPU and GPU, with a push of a button by using

HD2FPGA’s Graphical User Interface.

• Evaluates the efficiency of HD2FPGA classification
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Fig. 1: Overview of hyperdimensional learning and inference.

and clustering using different benchmarks. Compared

to the state-of-the-art FPGA-based HD framework [5],

HD2FPGA provides 4.2× speedup in HD training

and 1.5× speedup in HD classification. Compared

to the state-of-the-art GPU-based HD framework [7],

HD2FPGA provides 36.6× speedup and 5.4× higher

energy efficiency in HD classification with comparable

accuracy, and 2.2× speedup in HD clustering. Compared

to running HD on a CPU, HD2FPGA accelerates training

HD classification by 30.5× and increases energy effi-

ciency by 73.9×. HD2FPGA shows 578× (57×) speed

up and 1503× (140×) higher energy efficiency in HD

classification (clustering), respectively.

II. BACKGROUND AND RELATED WORK

In this section, we first articulate the operations behind

HD computing, including encoding, training, inference, and

retraining for classification and clustering. Then, we review

the previous work on HD computing.

A. Hyperdimensional Computing

HD computing builds on the fact that the cognitive tasks of

the human brain can be explained by mathematical operations

on ultra-wide HVs [1]. In other words, the brain computes with

patterns of neural activity, which can be better represented by

HVs rather than scalar numbers. An HV comprises Dhv , e.g.,

10,000 bits, independent components (dimensions) whereby

the enclosed information is distributed uniformly among all

Dhv dimensions. This makes HVs robust to failure as the sys-

tem remains functional under a certain number of component

failings, and as degradation of information does not depend

on the position of the failing components [2], [8].

Encoding: In HD2FPGA we utilize the random projection

encoding for classification and clustering. Suppose the input

data is vecV = {v1, v2, . . . , vDiv
}, where Div is the number

of input features in the input vector and each feature can be

quantized to L unique levels. In this encoding, the input vector

is multiplied by a projection matrix consisting of a set of Div

binary vectors Pi. The P matrix consists of Div columns

of projection HVs (Pi). Each Pi consists of Dhv randomly

generated binary values.

Pi = {pj}j=Dhv

j=1 , pj ∈ {0, 1} (1)

In the random projection encoding, the input bit-width only

affects the operations bit-width. The projection HVs should be

nearly orthogonal and it has been shown that applying circular

shift operations on base HVs generates nearly orthogonal

HVs needed to represent each input dimension [3], [5]. After

loading the projection HVs, the projection matrix is getting

multiplied by the input features to generate the encoded HV.

The encoded vector �H = {hi}i=Dhv
i=1 can be represented as:

�H = P × �V (2)

Training: After mapping each input �Viv to HV �H as

above, all HVs belonging to the same class (label) are simply

summed to form the final representative HVs. Thus, assuming
�H l = 〈h0, h1, · · · , hdhv

〉l denotes a generated class HV for

an input data with label l, the final (representative) class HVs

are obtained as Equation 3, in which each dimension cj is

obtained through dimension-wise addition of all hl
js, and K is

the number of input data with label l.

�Cl = 〈c0, c1, · · · , cdhv
〉 =

K∑

k=0

�H l
k (3)

Inference: The first steps of inference in HD computing

are similar to training; an input feature vector is encoded

to Dhv−dimension query HV, as explained in the encoding

step. This is followed by a similarity check between the query

HV �H and all representative class HVs, �Cl. The similarity is

defined as calculating the cosine similarity, which is obtained

by multiplying each dimension in the query vector by the

corresponding dimension of the class HVs, and adding up the

partial products:

similarity( �H, �Cl) =
Dhv∑

j=0

hk · ck (4)

The class with the highest similarity with the query HV

indicates the classification result.

Retraining: Retraining might be used to enhance the model

accuracy by calibrating it either via new training data or by

multiple iterations on the same training data. Retraining is

basically done by removing the mispredicted query HVs from

the mispredicted class and adding it to the right class. Thus,

for a new input feature vector �Vin with query HV �H belonging

actually to class with HV �Cl, if the current model predicts the

class Cl′ where Cl′ �= Cl, the model updates itself as follows:

�Cl = �Cl + �H
�Cl′ = �Cl′ − �H (5)

This, indeed, reduces the similarity between �H and mispre-

dicted class Cl′ , and adds �H to the correct class Cl to increase

their similarity and the model will be able to correctly classify

such query HVs.

Clustering: Similar to HD classification, in HD clustering

every input needs to be encoded first. In HD clustering,

the centroid HVs are initialized by the HV of randomly

selected inputs. HD clustering keeps 2 copies of the HD model
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(centroid HVs). It uses one for finding the closest centroid

to the current input, and uses the other model to update the

clustering centroids for the next iteration. During each iteration

of clustering, it finds the similarity between the encoded

HV and every centroid, and the cluster with the maximum

similarity is the result of clustering (similar to classification).

After finding the closest cluster, the input is used to update the

copy of HD model. The encoded input is added to the centroid

HV representing the cluster. After processing all the input in

the dataset, the HD model is replaced by the updated model

for the next iteration. The number of iterations is a parameter

defined by the user.

B. Related Work

HD computing is gaining traction as an alternative solu-

tion to perform cognitive tasks in a light-weight fashion. It

uses significantly simpler operations compared to conventional

machine learning techniques that deal with complex learning

procedures with a substantial number of costly operations. HD

computing has been used for a wide range of applications,

including classification [12], clustering [9], recommendation

systems [13], etc.

Several studies have attempted to propose application-

specific accelerators (ASIC [14], in-memory computing[15]),

and FPGA [2], [3], [4], [5] to enhance the efficacy of HD

computing.

The work in [15] presented a complete in-memory platform

for executing both encoding and associative steps of HD

computing on memristive devices. Thanks to the intrinsic

robustness of HD computing to noise, the work in [15] approx-

imates the mathematical operations to further accelerate HD

computing. However, those in-memory computing solutions

are not able to support flexible encoding bit-length, which

limits the application to specific datasets and encoding meth-

ods though shows astonishing energy efficiency. The FPGA

designs, in contrast, can provide more flexibility to designer in

making trade-offs between metrics. The study in [2] proposes

an approximate majority gate to compose the binary class HVs

without requiring to hold the summation on HV components

in a multi-bit format in the course of training. This is, however,

limited to low-accuracy binarized HD computing. The work

in [3] exploits computational reuse to reduce the computation

complexity of HD classification and is implemented on FPGA

for classification. It reuses the previously encoded HVs to

encode the current input to simplify the encoding step. It addi-

tionally, clusters class HVs dimensions to reduce the number

of multiplications in the associative search step. The work in

[4] proposes approximate encoding modules to accelerate the

encoding step. They approximate and optimize the encoding

operations based on the characteristics of FPGA resources.

However, these designs require lots of time to implement HD

models for different applications on FPGAs [6].

In F5HD [5], an automated framework to implement HD

classification on FPGA is implemented. F5HD only supports

inputs quantized to 8 values (3 bits) which damages the

accuracy in many applications. In this work, we develop a

Fig. 2: Overview of the proposed framework, HD2FPGA.

framework that can automatically generate FPGA program

for both HD classification and HD clustering. Additionally,

HD2FPGA utilizes random projection encoding to provide

higher accuracy and bring more flexibility in supporting vari-

ous applications. HD2FPGA supports 32-bit input features to

provide higher applicability in supporting various applications.

HD2FPGA is also equipped with a GUI to facilitate the

implementation of HD classification and clustering on FPGA

for users.

III. HD2FPGA FRAMEWORK

HD2FPGA aims to abstract away the complexities behind

employing FPGAs for accelerating AI applications. HD2FPGA
is an automated tool to accelerate the design time of an

FPGA-based HD classification and clustering considering

the user-specified criteria, e.g., power budget, performance-

accuracy trade-off, and FPGA model (available resources). The

overview of HD2FPGA is illustrated in Figure 2. HD2FPGA
can be split into two parts: the host program and the HD

kernel. The host program runs on the host CPU and is

responsible for transferring data to the FPGA off-chip memory,

initiating the HD kernel, and reading the results from the

FPGA. HD2FPGA gets the application description and HD

parameters from the user and automatically generates an

FPGA-based accelerator, called HD kernel, for the user’s

application. The HD kernel runs on FPGA and supports end-

to-end HD execution, including encoding, training, retraining,

and inference of HD classification and clustering.

A. HD2FPGA Architecture

HD2FPGA automatically generates an FPGA-based ac-

celerator for HD classification and clustering applications.

HD2FPGA gets the HD parameters (e.g., HV lengths, number

of input features, number of classes/clusters) and generates an

accelerator based on user inputs. HD2FPGA consists of three

main modules (InputStream, EncodeUnit, and SearchUnit) to
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Fig. 3: The architecture of the InputStream module.

execute all the operations in both HD classification and clus-

tering. Details of each module are discussed in the following.

InputStream: It reads the inputs from the FPGA memory

through AXI bus interfaces and writes them into parallel

buffers as illustrated in Figure 3.The number of features for

each input is a parameter (Div) set by the user, during the

synthesis. The InputStream module continuously reads the Div

input features and writes them into parallel stream buffers,

implemented as First-In-First-Out (FIFO) buffers, as shown in

Figure 3. Features belonging to an input vector can be read

in parallel as they are written in different stream buffers. F j
i ,

in the figure, represents the ith feature of the jth input. The

encoding module needs to read multiple input features in each

cycle, therefore, parallel buffers provide simultaneous access

to all input features.

EncodeUnit: It reads the input features from the stream

buffers and encodes the input to an HV with Dhv dimensions

(defined by the user during the runtime). HD2FPGA utilizes

random projection encoding following equation 2, as it is more

efficient for edge devices and provides higher accuracy in most

applications. The input vector �v shows a quantized feature

element, while Pk is the kth randomly generated projection

HV. Projection HVs are frequently used to generate the en-

coded HVs. Thus, they should be stored in FPGA on-chip

memory (BRAMs and/or URAMs) to maximize performance.

To make HD2FPGA compatible with more FPGA family types

and specifically smaller FPGAs used in edge devices with

limited BRAMs, the HD kernel only stores a single seed HV

(SeedHV), and by applying permutations, it doesn’t store the

projection HV and creates them on the fly. To permute the

seed HV, HD2FPGA uses hardware-friendly rotational shift

operation as shown in the following equation to generate the

projection HVs.The random projection encoding by using the

seed HV is shown in the equation below.

H =

Div∑

k=1

Pk × vk =

Div∑

k=1

(seedHV << k)× vk (6)

Figure 4(a) shows the matrix multiplication operations for the

random projection encoding. Bi is the ith dimension of the

seed HV and column Pi is the projection HV of the ith feature.

P1 directly uses the seed HV, and the other projection HVs

are conducted by permuting P1. HD2FPGA breaks down the

encoding operations to generate the encoded HV in multiple

cycles to be compatible with a wider range of FPGA devices

with different amounts of resources. HD2FPGA is able to

increase or decrease the parallelization based on the users’

desired performance and the available FPGA resources. It

accelerates HD operations by parallelizing the HD operations

at the dimension level. Each dimension of the encoded HV

can be generated independently of the others. The similarity

metrics between dimensions of the encoded HV and class HVs

can also be calculated independently of the other dimensions.

HD2FPGA uses two parameters to adjust the parallelization

of HD to make a trade-off between parallelization and resource

utilization. It breaks down the matrix multiplication computa-

tion using a sliding window that covers C elements of the input

features and generates R dimensions of the encoded HV in
Div

C cycles in parallel. To be specific, at each cycle, HD2FPGA
multiplies the C columns R rows of the projection binary

vectors with the corresponding C elements of the features to

generate a portion of a dimension of the encoded HV. And

then, the window slides to the next portion of the same rows

to generate the remaining partials. As the window slides over

rows, it also slides on the features column so we are always

multiplying elements of column k with the element k of the

feature column. This procedure accumulates the partial results

of the same encoding dimensions over several cycles, without

moving the partial accumulation results. Thus, we have a

fixed architecture consisting of several pipelined tree-adders

for vector-vector multiplications in which we just need to feed

the proper dimensions (bits) of the projection HVs and feature

values to tree-adders, in a deterministic sequence, as shown in

Figure 4(b).

The generated dimensions of the encoded HV are written

into a memory, which is used for the following HD steps,

including training and associative search. The HD kernel stores

the entire encoded HV for the retraining step in the off-chip

memory to avoid re-encoding. During the retraining steps, the

encoded HVs are fetched to adjust the HD model for any

misprediction. Thus, in the retraining steps, encoding is not

executed from scratch anymore.

SearchUnit: It executes HD training, inference, and retraining.

If the user loads a trained HD model, SearchUnit loads

the trained class HVs from the FPGA memory. Otherwise,

the class HVs are initialized with zeros, and the SearchUnit

updates the HD model during the training. To train the model,

it adds the encoded HVs to the class HV they belong to.

The number of retraining iterations is empirically set by the

user during the runtime such that the difference between the

accuracy of the HD model between two consecutive iterations

is less than the user’s desired threshold (the model converges).

In the retraining step, the predicted label is compared to the

original label of the data. In case of misprediction, SearchUnit

adds the encoded HV to the class HV it belongs to and

subtracts the encoded HV from the predicted class. At the

end of retraining, SearchUnit writes the trained HD model

into the FPGA memory. To perform HD inference, SearchUnit

calculates the cosine similarity between the encoded HV and
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the class HVs. It multiplies the generated dimensions of the

encoded HV by the corresponding elements of the class HVs

and accumulates the multiplied results. After processing all

the dimensions of the encoded HV, the class with the highest

similarity metric is the prediction result. During the inference

step, the predicted label is written into the FPGA off-chip

memory.

HD2FPGA classification and clustering kernels share the

same EncodeUnit and InputStream modules. The only dif-

ference is in the SearchUnit, as illustrated in Figure 5. In

retraining the classification model, the HD kernel performs

the associative search and finds the most similar class to the

encoded HV and compares the predicted label with the actual

label, and in case of misprediction, it adds the encoded HV to

the class HV of the actual label and subtracts the encoded

HV from the mispredicted class. However, in training the

clustering HD model, we do not use the actual labels. The HD

clustering kernel initializes each centroid HV with the encoded

HV of a randomly selected input. Thereafter, it calculates the

similarity between each encoded HV and all the centroid HVs

and finds the most similar cluster (predicted centroid). The

clustering SearchUnit also keeps a copy of the clustering HD

model (temp Centroids), and it adds the encoded HVs to the

predicted centroid of the temporary model. At the end of each

retraining iteration, the SearchUnit replaces the HD clustering

model with the temporary model. HD2FPGA clustering kernel,

similar to the classification kernel, encodes the input in the

first iteration of clustering and stores the encoded HVs into the

FPGA off-chip DRAM. In the next iterations, it only reads the

encoded HVs from FPGA DRAM to avoid the costly encoding

step.

B. HD2FPGA software

As shown in Figure 2, the execution of HD2FPGA is split

between a host program and the HD kernel with a communica-

tion channel between them. The host program, written in C++

and using OpenCL APIs, runs on the host processor, while

the HD kernel runs on the FPGA. The API calls, managed

by XRT, are used to process transactions between the host

program and the HD kernel through the PCIe bus between

the host CPU and the FPGA. These communications include

transferring the control signals to/from the HD kernel as well

as transferring the dataset from the host CPU to the FPGA

global memory (DRAM). The host memory is only accessible

to the host CPU while the FPGA global memory is accessible

by both the host processor and FPGA kernels, therefore, the

host is responsible for transferring the dataset to the FPGA

DRAM and reading the results from the FPGA DRAM upon

kernel completion.

Since the host CPU is responsible for orchestrating the data

transfer and kernel initiation, HD2FPGA has no limitation in

the size of the dataset. For instance, if the dataset size is greater

than the available FPGA’s off-chip memory, the host splits the

data into the chunks that fit into the FPGA DRAM, sends

the commands to the FPGA to process the chunk of the data,

and then transfers the other chunks. This is possible since HD

training, retraining, and inference are independent of the other

chunks. Execution of HD2FPGA host program can be divided

into three steps:

Data setup: the host program reads the dataset in the com-

pressed format, quantizes the features if necessary, allocates

the corresponding space in the FPGA global memory, and

transfers the data to the FPGA global memory through the

PCIe bus. A user can also load an already trained HD model,

for which the host program can read the trained class HVs

from a file specified by the user and execute the inference

with the loaded classes.

HD kernel setup: The host program sets up the kernel with

its input parameters as well as pointers to the data in the

FPGA memory. The input parameters to the HD kernel are

the number of data inputs, the length of the HVs, and the HD

task (training, retraining, and inference).

HD execution: The host program triggers the execution of

the HD kernel on the FPGA. The HD kernel performs the

required computations while reading the input data from the

FPGA memory and writes the prediction results and/or the

trained model back to the FPGA memory.

HD results: The HD kernel, upon compilation, notifies the
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host that it has completed the task. The host program measures

the execution time and reads the resulting data (e.g. prediction

results and/or trained class HVs) back from FPGA global

memory into the host memory.

IV. EXPERIMENTAL RESULTS

HD2FPGA is a flexible framework for efficient imple-

mentation of different HD computing applications in FPGA

hardware, based on application specifications and user require-

ments. HD2FPGA is equipped with a GUI written in Python
which gets the input parameters from the user and generates

the header files for both the host program and the HD kernel.

The host program has been implemented in OpenCL and

executes on the CPU. HD2FPGA GUI also synthesizes and

generates the FPGA bitstream for the HD kernel of the user

application. The HD kernel is written in C++ and optimized for

high performance. HD kernel is synthesized using the Vivado

High-Level Synthesis tool (HLS) and integrated with the host

code using Xilinx Vitis Accel 2019.2 and is running on U280

FPGA board. To measure the performance of the end-to-end

execution of HD classification and clustering on FPGA, we

used OpenCL event profiling. We report end-to-end execution

times, including reading the data from the FPGA DRAM,

executing HD on the FPGA, and writing the results back to the

FPGA DRAM. We measure the FPGA board power using the

xbutil query utility. The energy consumption is computed by

multiplying the power obtained using the above method and

the FPGA kernel time.

We compare the performance and energy efficiency of

HD2FPGA running on FPGA with Intel i7 7600 CPU with

16GB memory. Additionally, we compare the performance

of HD classification with F5HD [5] which is the state-of-

the-art FPGA-based implementation. We did not compare the

energy efficiency of HD2FPGA to F5HD [5] since it does not

consider the DRAM power consumption, while in HD2FPGA
we measure the exact power consumption of the FPGA board

including DRAM and other peripherals.

We evaluate HD on a wide range of benchmark datasets. The

HD model is implemented in PyTorch to get the accuracy.

These datasets cover a broad spectrum of signal classification

tasks commonly encountered in edge-sensing applications

ranging from human activity detection to text recognition. The

publicly available datasets we use are summarized in table I.

The accuracy results are also shown in table I. The

HD2FPGA adopts Dhv = 2K while F5-HD adopts Dhv =

10K. Since F5HD utilizes a simplified encoding method, it

has to use higher dimensionality for HVs Dhv = 10K to

achieve comparable accuracy. F5HD with Dhv = 10K is

more accurate than HD2FPGA with Dhv = 2K for the EMG

dataset. For clustering, we use the adjusted mutual information

score for accuracy. We observe that Dhv = 2K is sufficient

to achieve 1.0 on some datasets.

A. HD Classification

End-to-End Training: In Figure 6, we combine the encod-

ing, initial training step, and the retraining times of CPU and

FPGA to obtain the total training time (including the encoding

and 50 retraining epochs). The complexity is proportional

to the number of input features, the length of HVs (Dhv)

and the size of the dataset (number of samples). We show

results for Dhv = 2K and Dhv = 10K with C = 32 and

two different parallelization levels (R = 32 and R = 256).

Accordingly, we observe that HD2FPGA provides 1.8× (with

R = 32) and 12.9× (with R = 256) speed-up for HVs with

Dhv = 2K dimensions. For Dhv = 10K, we achieve 4.2×
(R = 32) and 30.5× (R = 256) speed-up compared to the

CPU baseline. By moving from Dhv = 2K to Dhv = 10K,

the relative efficiency of FPGA in encoding increases but it

decreases for retraining. However, since the encoding time

dominates the retraining time of the CPU, in Dhv = 10K
HD2FPGA achieves higher improvement for the training time.

Compared to state-of-the-art classification accelerator, F5HD

[5], HD2FPGA with Dhv = 2K and R = 256 outperforms

F5HD by 4.2× while delivering better or equal accuracy. In

applications, where the bottleneck is the associative search

step, such as ISOLET, HD2FPGA shows higher performance

improvement (up to 8.2×) compared to F5HD.

To evaluate the energy efficiency of HD2FPGA compared

to the CPU baseline, we measure the power consumption of

HD2FPGA and CPU during the runtime. Regardless of the

benchmark, we observe a power of ∼ 65W for CPU encoding,

and ∼ 40W for its retraining. Figure 7 shows the training

energy for CPU and FPGA, comprising the sum of encoding

and 50 epochs of retraining energy. HD2FPGA achieves 4.3×
(R = 32) and 25× (R = 256) training energy efficiency

for Dhv = 2K. With Dhv = 10K, the energy efficiency

increases to 12.8× (R = 32) and 73.9× (R = 256). In the

ISOLET dataset, HD2FPGA consumes ∼ 20W for R = 32
configuration, and ∼ 25W for R = 256. The difference

between the power consumption of these two configurations is
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TABLE I: Dataset Information

Dataset Type # Classes # Train # Test # Features HD2FPGA Accuracy F5-HD[5] Accuracy
CARDIO [16] Classification 3 1,913 213 21 84.5% 84.3%

EMG5 [17] Classification 5 1,473 490 4 72.3% 88.7%

FACE [18] Classification 2 22,441 2,494 608 94.9% 95.6%

UCIHAR [19] Classification 6 6,213 1,554 561 93.7% 93.6%

ISOLET [20] Classification 26 6,238 1,559 617 93.5% 94.2%

Hepta [21] Clustering 7 N/A 212 3 1.0 N/A

Tetra [21] Clustering 4 N/A 770 3 1.0 N/A

TwoDiamonds [21] Clustering 2 N/A 800 2 0.820 N/A

Wingnut [21] Clustering 2 N/A 1016 2 0.909 N/A

Iris [21] Clustering 3 N/A 150 3 0.915 N/A

Fig. 6: Training (encoding + 50 epochs retraining) time.
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Fig. 7: Training (encoding + 50 epochs retraining) energy

consumption.

not proportional to their resource utilization due to the power

consumption of the U280 platform.

Inference: Figure 8 compares the performance of HD infer-

ence in HD2FPGA compared to CPU. The inference includes

the encoding and search steps for HD classification. The

SearchUnit module of HD2FPGA is fully pipelined with The

EncodeUnit module, meaning that in HD2FPGA the execution

time is the maximum of the execution time of the encoding

and associative search as they are executing simultaneously in

a pipeline fashion. Depending on the application parameters

(number of features per input and number of classes), either

the encoding or associative search steps can become bottle-

neck. In Cardio and EMG the search module is the bottleneck,

as they have a relatively low number of input features and

consequently less complex encoding. In FACE, ISOLET, and

UCIHAR, the encoding is computationally more complex than

the associative search. For Dhv = 2K, HD2FPGA achieves

19.5× (with R = 32) and 140× (R = 256) speed-up over

the CPU baseline. For Dhv = 10K, HD2FPGA inference is

80.0× faster when R = 32 and the speed-up further increases

to 578× when the matrix-vector multiplication is configured to

use 256 parallel rows (R = 256). Compared to state-of-the-art

F5HD classifier [5], HD2FPGA with Dhv = 2K and R = 256
provides 1.5× speedup with higher classification accuracy. If

the associative search step is the bottleneck, similar to training

results, HD2FPGA shows higher performance improvement

compared to F5HD [5]. In ISOLET, HD2FPGA provides 2.5×
higher performance.

Figure 9 compares the energy consumption of HD2FPGA
compared to the CPU baseline. In inference, the encoding step

is usually the computational bottleneck and hence, it domi-

nates energy consumption. As HD2FPGA significantly outper-

formed the CPU baseline in encoding, we expect higher energy

efficiency for inference. According to Figure 9, HD2FPGA is

63.3× (R = 32) and 366× (R = 256) more energy efficient

than the CPU baseline for Dhv = 2K. When Dhv = 10K
is used, the energy reduction increases to 260× and 1503×
respectively.

Compared to the GPU-based OpenHD running on the

NVIDIA Jetson TX2 [7], HD2FPGA is 36.6(= 1172us
32us )×

faster and has 5.4(= 4377uJ
810uJ )× higher energy efficiency in

ISOLET, the largest dataset reported in [7], with comparable

accuracy(93.5% vs 93.7%[7]).

B. HD Clustering

HD clustering algorithm involves encoding the input data,

selecting a subset of the encoded HVs as centroids, assigning

the similar encoded HVs to the same centroids, and bundling

the assigned HVs to create new centroids. It is similar to

the HD encoding and retraining algorithms, where the re-

training step finds a similar class (centroid) and in case of

misprediction, performs vector-wise addition. The accuracy
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Fig. 8: Inference (encoding + associative search) time.
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Fig. 9: Inference (encoding + associative search) energy con-

sumption.

(normalized mutual info score) result is shown in Table I.

The HD2FPGA adopts Dhv = 2K. Figure 10 shows the

execution time for one epoch of clustering. Since clustering

repeatedly performs encoding and search, the execution time

linearly increases with the number of training epochs. In all

datasets but ISOLET, the search step is the bottleneck of the

FPGA pipeline as the datasets contain a small number of

features per input, making the encoding comparatively faster

than search among the centroids. ISOLET has a significantly

higher number of input features and thus, the encoding step

in ISOLET is more complicated than the other datasets.

With Dhv = 2K, HD2FPGA performance outperforms the

CPU by 3.5× for R = 32, and 22.1× for R = 256.

With Dhv = 10K, HD2FPGA is 9× faster when R = 32,

and 57× faster when R = 256. Compared to openHD [7],

HD2FPGA (R = 32, Dhv = 2K) is 2.2(= 249ms
112ms )× faster in

TwoDiamonds. Figure 11 shows the energy consumption for

the CPU baseline and HD2FPGA clustering. The encoding

and search steps consume the same amount of power in the

classification step as the algorithm (hence the architecture) is

the same. With 2K dimensionality, the HD2FPGA has 10.2×
and 51.6× higher energy efficiency for R = 32 and R = 256,

respectively. For Dhv = 10K, HD2FPGA energy efficiency

increases to 27.7× (for R = 32) and 140× (for R = 256). As

mentioned earlier, the execution time of HD2FPGA increases

linearly with Dhv , while in CPU we observe a larger increase

(e.g., the ISOLET encoding runtime increases by 29.7× when

moving from Dhv = 2K to Dhv = 10K). Thus, with larger

dimensions, HD2FPGA ’s energy efficiency further increases.
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Fig. 10: Clustering (encoding + associative search) time.
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Fig. 11: Clustering (encoding + associative search) energy

consumption.

V. CONCLUSION

In this paper, we propose HD2FPGA, an automated frame-

work for FPGA-based acceleration of HD classification and

clustering. HD2FPGA abstracts away the complexities of

designing hardware accelerators from an end user. Now it

depends on Xilinx’s Vivado HLS, but it will be easy to

extend to other HLS tools by only changing the pragma to

similar ones used in the specific tool. The proposed framework

enables a user to specify HD application parameters (e.g.,

the number of input features, classes, and training data) as

well as the application task (classification or clustering) and

it accordingly generates a customized FPGA implementation.

HD2FPGA supports end-to-end training and inference of HD

classification and end-to-end execution of HD clustering on

FPGAs. For HD classification, HD2FPGA provides 1.5×
(36.6×) speedup compared to state-of-the-art FPGA-based

(GPU-based) accelerator framework while providing the same

accuracy. For HD clustering, HD2FPGA provides 2.2× speed

up compared to the GPU-based accelerator. HD2FPGA can

also easily support other applications. For example, regression

can be implemented by only modifying the retraining stage by

multiplying the error between the actual output and predicted

result and learning rate query HV to update the class HV [22].
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