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Abstract—Building a highly-efficient FPGA accelerator for
Hyperdimensional (HD) computing is tedious work that requires
Register Transfer Level (RTL) programming and verification. An
inexperienced designer might waste significant time finding the
best resource allocation scheme to achieve the target performance
under resource constraints, especially for edge applications. HD
computing is a novel computational paradigm that emulates
brain functionality in performing cognitive tasks. The underlying
computations of HD involve a substantial number of element-
wise operations (e.g., additions and multiplications) on ultra-
wide hypervectors (HVs), which can be effectively parallelized
and pipelined. Although different HD applications might vary in
terms of the number of input features and output classes (labels),
they generally follow the same computation flow. In this paper, we
propose HD2FPGA, an automated tool that generates fast and
highly efficient FPGA-based accelerators for HD classification
and clustering. HD2FPGA eliminates the arduous task of hand-
crafted design of hardware accelerators by leveraging a template
of optimized processing elements to automatically generate an
FPGA implementation as a function of application specifications
and user constraints. For HD classification HD2FPGA, on aver-
age, provides 1.5 (up to 2.5x ) speedup compared to the state-
of-the-art FPGA-based accelerator and 36.6x speedup with 5.4 x
higher energy efficiency compared to the GPU-based one. For HD
clustering, HD2FPGA is 2.2x faster than the GPU framework.

Index Terms—Hyperdimensional (HD) computing, Automa-
tion, FPGA

I. INTRODUCTION

Hyperdimensional (HD) computing imitates brain function-
alities when performing cognitive tasks with low-energy con-
sumption, making it popular in energy-bounded applications
[1]. Researchers explored implementing HD models on FPGAs
to obtain hardware-level energy savings [2], [3], [4], [5], but
designing FPGAs is a time-consuming process [6]. Besides,
most of those FPGA designs are customized by specific
tasks or datasets with lots of assumptions. The emerging
applications of HD motivate researchers to develop flexible
frameworks to lower the bar of deploying HD algorithms and
to accelerate the development cycle. The work in [7] proposed
a GPU-powered generic implementation of HD. However,
GPUs generally have high power consumption. The work
in [5] proposed an automated framework to accelerate HD
classification on FPGA aiming to accelerate FPGA develop-
ment cycle. However, it only supports classification and is
based on several assumptions which may not be applicable to
all applications. In this work, we develop a framework with

a user-friendly GUI that can automatically generate FPGA
designs both for HD clustering and classification problems,
and it requires a smaller number of dimensions to achieve
comparable accuracy with the state of the art [5].

HD computing is based on human brain operations where
the brain computes with patterns of neural activity, which can
be realized by encoding data into high-dimensional vectors,
called hypervectors (HVs) with thousands of bits. Many ma-
chine learning problems have been implemented using HD
computing, including classification and clustering [8], [3],
[9]. HD computing is able to match the accuracy of state-
of-the-art machine learning algorithms while learning from
only a small portion of training data [10], [11]. Besides, HD
computing is inherently robust against noise due to its large
vector dimensionality [1].

HD2FPGA automatically generates an FPGA-based accel-
erator for HD classification and clustering to abstract away the
implementation complexities and long design cycles associated
with hardware design from the user. It reduces the time of
implementing the HD models from weeks down to hours.
HD2FPGA generates a synthesizable Verilog implementation
of an HD accelerator while taking high-level user input and
target FPGA parameters into account. It is flexible and highly
optimized to deliver a fast and an energy-efficient accelerator
according to user-specified constraints (i.e., performance, and
power). HD2FPGA supports end-to-end training, retraining,
and inference for both HD classification and clustering prob-
lems. Specifically, HD2FPGA makes the following contribu-
tions, where it:

o Develops a user-friendly framework that generates
FPGA-based synthesizable architectures for accelerating
training, retraining, and inference for HD classification
and clustering problems.

o Utilizes random projection encoding to deliver high ac-
curacy for multiple problems while removing the depen-
dency of the encoding hardware on the number of input
features.

o Enables easy access for researchers and industry to imple-
ment classification and clustering on FPGAs with orders
of magnitude speed-up and energy reduction, compared
to CPU and GPU, with a push of a button by using
HD2FPGA’s Graphical User Interface.

o Evaluates the efficiency of HD2FPGA classification
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Fig. 1: Overview of hyperdimensional learning and inference.

and clustering using different benchmarks. Compared
to the state-of-the-art FPGA-based HD framework [5],
HD2FPGA provides 4.2x speedup in HD training
and 1.5x speedup in HD classification. Compared
to the state-of-the-art GPU-based HD framework [7],
HD2FPGA provides 36.6x speedup and 5.4x higher
energy efficiency in HD classification with comparable
accuracy, and 2.2x speedup in HD clustering. Compared
to running HD on a CPU, HD2FPGA accelerates training
HD classification by 30.5x and increases energy effi-
ciency by 73.9x. HD2FPGA shows 578x (57x) speed
up and 1503x (140x) higher energy efficiency in HD
classification (clustering), respectively.

II. BACKGROUND AND RELATED WORK

In this section, we first articulate the operations behind
HD computing, including encoding, training, inference, and
retraining for classification and clustering. Then, we review
the previous work on HD computing.

A. Hyperdimensional Computing

HD computing builds on the fact that the cognitive tasks of
the human brain can be explained by mathematical operations
on ultra-wide HVs [1]. In other words, the brain computes with
patterns of neural activity, which can be better represented by
HVs rather than scalar numbers. An HV comprises Dy, €.g.,
10,000 bits, independent components (dimensions) whereby
the enclosed information is distributed uniformly among all
Dy, dimensions. This makes HVs robust to failure as the sys-
tem remains functional under a certain number of component
failings, and as degradation of information does not depend
on the position of the failing components [2], [8].

Encoding: In HD2FPGA we utilize the random projection
encoding for classification and clustering. Suppose the input
data is vecV = {vy,v9,...,vp,, }, where D;, is the number
of input features in the input vector and each feature can be
quantized to L unique levels. In this encoding, the input vector
is multiplied by a projection matrix consisting of a set of D,
binary vectors P;. The P matrix consists of D;, columns
of projection HVs (P;). Each P; consists of Dy, randomly
generated binary values.

= {p; =", pj €{0,1} (1)

In the random projection encoding, the input bit-width only
affects the operations bit-width. The projection HVs should be
nearly orthogonal and it has been shown that applying circular
shift operations on base HVs generates nearly orthogonal
HVs needed to represent each input dimension [3], [5]. After
loading the projection HVs, the projection matrix is getting
multiplied by the input features to generate the encoded HV.
The encoded vector H = {h;}'=P"* can be represented as:

H=PxV 2

Training: After mapping each input Viy to HV H as
above, all HVs belonging to the same class (label) are simply
summed to form the final representative HVs. Thus, assuming

= (ho,h1,---,hg,,)! denotes a generated class HV for
an input data with label [, the final (representative) class HVs
are obtained as Equation 3, in which each dimension c¢; is
obtained through dimension-wise addition of all hés, and £ is
the number of input data with label I.

K
)= Hj (3)
k=0

Inference: The first steps of inference in HD computing
are similar to training; an input feature vector is encoded
to Dy, —dimension query HV, as explained in the encoding
step. This is followed by a similarity check between the query
HV H and all representative class HVs, C,. The similarity is
defined as calculating the cosine similarity, which is obtained
by multiplying each dimension in the query vector by the
corresponding dimension of the class HVs, and adding up the
partial products:

Cl = <007017 o '7Cd;w

Dhy

Z by - ek “4)

The class with the highest 51m11ar1ty with the query HV
indicates the classification result.

Retraining: Retraining might be used to enhance the model
accuracy by calibrating it either via new training data or by
multiple iterations on the same training data. Retraining is
basically done by removing the mispredicted query HVs from
the mispredicted class and adding it to the right class. Thus,
for a new input feature vector Vip with query HV H belonging
actually to class with HV Cy, if the current model predicts the
class C;; where C;; # C;, the model updates itself as follows:

Cl Cl—f—H
Cr=Cr—H

similarity 7—[ C) =

®)

This, indeed, reduces the similarity between 7—2 and mispre-
dicted class C;/, and adds H to the correct class C, to increase
their similarity and the model will be able to correctly classify
such query HVs.

Clustering: Similar to HD classification, in HD clustering
every input needs to be encoded first. In HD clustering,
the centroid HVs are initialized by the HV of randomly
selected inputs. HD clustering keeps 2 copies of the HD model
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(centroid HVs). It uses one for finding the closest centroid
to the current input, and uses the other model to update the
clustering centroids for the next iteration. During each iteration
of clustering, it finds the similarity between the encoded
HV and every centroid, and the cluster with the maximum
similarity is the result of clustering (similar to classification).
After finding the closest cluster, the input is used to update the
copy of HD model. The encoded input is added to the centroid
HV representing the cluster. After processing all the input in
the dataset, the HD model is replaced by the updated model
for the next iteration. The number of iterations is a parameter
defined by the user.

B. Related Work

HD computing is gaining traction as an alternative solu-
tion to perform cognitive tasks in a light-weight fashion. It
uses significantly simpler operations compared to conventional
machine learning techniques that deal with complex learning
procedures with a substantial number of costly operations. HD
computing has been used for a wide range of applications,
including classification [12], clustering [9], recommendation
systems [13], etc.

Several studies have attempted to propose application-
specific accelerators (ASIC [14], in-memory computing[15]),
and FPGA [2], [3], [4], [5] to enhance the efficacy of HD
computing.

The work in [15] presented a complete in-memory platform
for executing both encoding and associative steps of HD
computing on memristive devices. Thanks to the intrinsic
robustness of HD computing to noise, the work in [15] approx-
imates the mathematical operations to further accelerate HD
computing. However, those in-memory computing solutions
are not able to support flexible encoding bit-length, which
limits the application to specific datasets and encoding meth-
ods though shows astonishing energy efficiency. The FPGA
designs, in contrast, can provide more flexibility to designer in
making trade-offs between metrics. The study in [2] proposes
an approximate majority gate to compose the binary class HVs
without requiring to hold the summation on HV components
in a multi-bit format in the course of training. This is, however,
limited to low-accuracy binarized HD computing. The work
in [3] exploits computational reuse to reduce the computation
complexity of HD classification and is implemented on FPGA
for classification. It reuses the previously encoded HVs to
encode the current input to simplify the encoding step. It addi-
tionally, clusters class HVs dimensions to reduce the number
of multiplications in the associative search step. The work in
[4] proposes approximate encoding modules to accelerate the
encoding step. They approximate and optimize the encoding
operations based on the characteristics of FPGA resources.
However, these designs require lots of time to implement HD
models for different applications on FPGAs [6].

In FSHD [5], an automated framework to implement HD
classification on FPGA is implemented. FSHD only supports
inputs quantized to 8 values (3 bits) which damages the
accuracy in many applications. In this work, we develop a
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Fig. 2: Overview of the proposed framework, HD2FPGA.

framework that can automatically generate FPGA program
for both HD classification and HD clustering. Additionally,
HD2FPGA utilizes random projection encoding to provide
higher accuracy and bring more flexibility in supporting vari-
ous applications. HD2FPGA supports 32-bit input features to
provide higher applicability in supporting various applications.
HD2FPGA is also equipped with a GUI to facilitate the
implementation of HD classification and clustering on FPGA
for users.

III. HD2FPGA FRAMEWORK

HD2FPGA aims to abstract away the complexities behind
employing FPGAs for accelerating Al applications. HD2FPGA
is an automated tool to accelerate the design time of an
FPGA-based HD classification and clustering considering
the user-specified criteria, e.g., power budget, performance-
accuracy trade-off, and FPGA model (available resources). The
overview of HD2FPGA is illustrated in Figure 2. HD2FPGA
can be split into two parts: the host program and the HD
kernel. The host program runs on the host CPU and is
responsible for transferring data to the FPGA off-chip memory,
initiating the HD kernel, and reading the results from the
FPGA. HD2FPGA gets the application description and HD
parameters from the user and automatically generates an
FPGA-based accelerator, called HD kernel, for the user’s
application. The HD kernel runs on FPGA and supports end-
to-end HD execution, including encoding, training, retraining,
and inference of HD classification and clustering.

A. HD2FPGA Architecture

HD2FPGA automatically generates an FPGA-based ac-
celerator for HD classification and clustering applications.
HD2FPGA gets the HD parameters (e.g., HV lengths, number
of input features, number of classes/clusters) and generates an
accelerator based on user inputs. HD2FPGA consists of three
main modules (InputStream, EncodeUnit, and SearchUnit) to
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Fig. 3: The architecture of the InputStream module.

execute all the operations in both HD classification and clus-
tering. Details of each module are discussed in the following.
InputStream: It reads the inputs from the FPGA memory
through AXI bus interfaces and writes them into parallel
buffers as illustrated in Figure 3.The number of features for
each input is a parameter (D;,) set by the user, during the
synthesis. The InputStream module continuously reads the D,
input features and writes them into parallel stream buffers,
implemented as First-In-First-Out (FIFO) buffers, as shown in
Figure 3. Features belonging to an input vector can be read
in parallel as they are written in different stream buffers. F7,
in the figure, represents the it" feature of the j*" input. The
encoding module needs to read multiple input features in each
cycle, therefore, parallel buffers provide simultaneous access
to all input features.

EncodeUnit: It reads the input features from the stream
buffers and encodes the input to an HV with Dy, dimensions
(defined by the user during the runtime). HD2FPGA utilizes
random projection encoding following equation 2, as it is more
efficient for edge devices and provides higher accuracy in most
applications. The input vector ¥ shows a quantized feature
element, while P is the k' randomly generated projection
HV. Projection HVs are frequently used to generate the en-
coded HVs. Thus, they should be stored in FPGA on-chip
memory (BRAMs and/or URAMs) to maximize performance.
To make HD2FPGA compatible with more FPGA family types
and specifically smaller FPGAs used in edge devices with
limited BRAMs, the HD kernel only stores a single seed HV
(SeedHV), and by applying permutations, it doesn’t store the
projection HV and creates them on the fly. To permute the
seed HV, HD2FPGA uses hardware-friendly rotational shift
operation as shown in the following equation to generate the
projection HVs.The random projection encoding by using the
seed HV is shown in the equation below.

D, Dy
H = ZPk X U = Z(seedHV << k) X v (6)
k=1 k=1

Figure 4(a) shows the matrix multiplication operations for the
random projection encoding. B; is the i*" dimension of the
seed HV and column P; is the projection HV of the i feature.
Py directly uses the seed HV, and the other projection HVs
are conducted by permuting P;. HD2FPGA breaks down the

encoding operations to generate the encoded HV in multiple
cycles to be compatible with a wider range of FPGA devices
with different amounts of resources. HD2FPGA is able to
increase or decrease the parallelization based on the users’
desired performance and the available FPGA resources. It
accelerates HD operations by parallelizing the HD operations
at the dimension level. Each dimension of the encoded HV
can be generated independently of the others. The similarity
metrics between dimensions of the encoded HV and class HVs
can also be calculated independently of the other dimensions.

HD2FPGA uses two parameters to adjust the parallelization
of HD to make a trade-off between parallelization and resource
utilization. It breaks down the matrix multiplication computa-
tion using a sliding window that covers C elements of the input
features and generates R dimensions of the encoded HV in
% cycles in parallel. To be specific, at each cycle, HD2FPGA
multiplies the C' columns R rows of the projection binary
vectors with the corresponding C' elements of the features to
generate a portion of a dimension of the encoded HV. And
then, the window slides to the next portion of the same rows
to generate the remaining partials. As the window slides over
rows, it also slides on the features column so we are always
multiplying elements of column £ with the element & of the
feature column. This procedure accumulates the partial results
of the same encoding dimensions over several cycles, without
moving the partial accumulation results. Thus, we have a
fixed architecture consisting of several pipelined tree-adders
for vector-vector multiplications in which we just need to feed
the proper dimensions (bits) of the projection HVs and feature
values to tree-adders, in a deterministic sequence, as shown in
Figure 4(b).

The generated dimensions of the encoded HV are written
into a memory, which is used for the following HD steps,
including training and associative search. The HD kernel stores
the entire encoded HV for the retraining step in the off-chip
memory to avoid re-encoding. During the retraining steps, the
encoded HVs are fetched to adjust the HD model for any
misprediction. Thus, in the retraining steps, encoding is not
executed from scratch anymore.

SearchUnit: It executes HD training, inference, and retraining.
If the user loads a trained HD model, SearchUnit loads
the trained class HVs from the FPGA memory. Otherwise,
the class HVs are initialized with zeros, and the SearchUnit
updates the HD model during the training. To train the model,
it adds the encoded HVs to the class HV they belong to.
The number of retraining iterations is empirically set by the
user during the runtime such that the difference between the
accuracy of the HD model between two consecutive iterations
is less than the user’s desired threshold (the model converges).
In the retraining step, the predicted label is compared to the
original label of the data. In case of misprediction, SearchUnit
adds the encoded HV to the class HV it belongs to and
subtracts the encoded HV from the predicted class. At the
end of retraining, SearchUnit writes the trained HD model
into the FPGA memory. To perform HD inference, SearchUnit
calculates the cosine similarity between the encoded HV and
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random-projection encoding

the class HVs. It multiplies the generated dimensions of the
encoded HV by the corresponding elements of the class HVs
and accumulates the multiplied results. After processing all
the dimensions of the encoded HV, the class with the highest
similarity metric is the prediction result. During the inference
step, the predicted label is written into the FPGA off-chip
memory.

HD2FPGA classification and clustering kernels share the
same EncodeUnit and InputStream modules. The only dif-
ference is in the SearchUnit, as illustrated in Figure 5. In
retraining the classification model, the HD kernel performs
the associative search and finds the most similar class to the
encoded HV and compares the predicted label with the actual
label, and in case of misprediction, it adds the encoded HV to
the class HV of the actual label and subtracts the encoded
HV from the mispredicted class. However, in training the
clustering HD model, we do not use the actual labels. The HD
clustering kernel initializes each centroid HV with the encoded
HV of a randomly selected input. Thereafter, it calculates the
similarity between each encoded HV and all the centroid HVs
and finds the most similar cluster (predicted centroid). The
clustering SearchUnit also keeps a copy of the clustering HD
model (temp Centroids), and it adds the encoded HVs to the
predicted centroid of the temporary model. At the end of each
retraining iteration, the SearchUnit replaces the HD clustering
model with the temporary model. HD2FPGA clustering kernel,
similar to the classification kernel, encodes the input in the
first iteration of clustering and stores the encoded HVs into the
FPGA off-chip DRAM. In the next iterations, it only reads the
encoded HVs from FPGA DRAM to avoid the costly encoding
step.

B. HD2FPGA software

As shown in Figure 2, the execution of HD2FPGA is split
between a host program and the HD kernel with a communica-
tion channel between them. The host program, written in C++
and using OpenCL APIs, runs on the host processor, while
the HD kernel runs on the FPGA. The API calls, managed
by XRT, are used to process transactions between the host

program and the HD kernel through the PCle bus between
the host CPU and the FPGA. These communications include
transferring the control signals to/from the HD kernel as well
as transferring the dataset from the host CPU to the FPGA
global memory (DRAM). The host memory is only accessible
to the host CPU while the FPGA global memory is accessible
by both the host processor and FPGA kernels, therefore, the
host is responsible for transferring the dataset to the FPGA
DRAM and reading the results from the FPGA DRAM upon
kernel completion.

Since the host CPU is responsible for orchestrating the data
transfer and kernel initiation, HD2FPGA has no limitation in
the size of the dataset. For instance, if the dataset size is greater
than the available FPGA’s off-chip memory, the host splits the
data into the chunks that fit into the FPGA DRAM, sends
the commands to the FPGA to process the chunk of the data,
and then transfers the other chunks. This is possible since HD
training, retraining, and inference are independent of the other
chunks. Execution of HD2FPGA host program can be divided
into three steps:

Data setup: the host program reads the dataset in the com-
pressed format, quantizes the features if necessary, allocates
the corresponding space in the FPGA global memory, and
transfers the data to the FPGA global memory through the
PCle bus. A user can also load an already trained HD model,
for which the host program can read the trained class HVs
from a file specified by the user and execute the inference
with the loaded classes.

HD kernel setup: The host program sets up the kernel with
its input parameters as well as pointers to the data in the
FPGA memory. The input parameters to the HD kernel are
the number of data inputs, the length of the HVs, and the HD
task (training, retraining, and inference).

HD execution: The host program triggers the execution of
the HD kernel on the FPGA. The HD kernel performs the
required computations while reading the input data from the
FPGA memory and writes the prediction results and/or the
trained model back to the FPGA memory.

HD results: The HD kernel, upon compilation, notifies the
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host that it has completed the task. The host program measures
the execution time and reads the resulting data (e.g. prediction
results and/or trained class HVs) back from FPGA global
memory into the host memory.

IV. EXPERIMENTAL RESULTS

HD2FPGA is a flexible framework for efficient imple-
mentation of different HD computing applications in FPGA
hardware, based on application specifications and user require-
ments. HD2FPGA is equipped with a GUI written in Python
which gets the input parameters from the user and generates
the header files for both the host program and the HD kernel.
The host program has been implemented in OpenCL and
executes on the CPU. HD2FPGA GUI also synthesizes and
generates the FPGA bitstream for the HD kernel of the user
application. The HD kernel is written in C++ and optimized for
high performance. HD kernel is synthesized using the Vivado
High-Level Synthesis tool (HLS) and integrated with the host
code using Xilinx Vitis Accel 2019.2 and is running on U280
FPGA board. To measure the performance of the end-to-end
execution of HD classification and clustering on FPGA, we
used OpenCL event profiling. We report end-to-end execution
times, including reading the data from the FPGA DRAM,
executing HD on the FPGA, and writing the results back to the
FPGA DRAM. We measure the FPGA board power using the
xbutil query utility. The energy consumption is computed by
multiplying the power obtained using the above method and
the FPGA kernel time.

We compare the performance and energy efficiency of
HD2FPGA running on FPGA with Intel i7 7600 CPU with
16GB memory. Additionally, we compare the performance
of HD classification with FSHD [5] which is the state-of-
the-art FPGA-based implementation. We did not compare the
energy efficiency of HD2FPGA to FSHD [5] since it does not
consider the DRAM power consumption, while in HD2FPGA
we measure the exact power consumption of the FPGA board
including DRAM and other peripherals.

We evaluate HD on a wide range of benchmark datasets. The
HD model is implemented in PyTorch to get the accuracy.
These datasets cover a broad spectrum of signal classification
tasks commonly encountered in edge-sensing applications
ranging from human activity detection to text recognition. The
publicly available datasets we use are summarized in table L.

The accuracy results are also shown in table I. The
HD2FPGA adopts Dy, = 2K while F5-HD adopts Dy, =

10K. Since FSHD utilizes a simplified encoding method, it
has to use higher dimensionality for HVs D;, = 10K to
achieve comparable accuracy. FSHD with Dy, = 10K is
more accurate than HD2FPGA with Dj,, = 2K for the EMG
dataset. For clustering, we use the adjusted mutual information
score for accuracy. We observe that Dy, = 2K is sufficient
to achieve 1.0 on some datasets.

A. HD Classification

End-to-End Training: In Figure 6, we combine the encod-
ing, initial training step, and the retraining times of CPU and
FPGA to obtain the total training time (including the encoding
and 50 retraining epochs). The complexity is proportional
to the number of input features, the length of HVs (Dy,)
and the size of the dataset (number of samples). We show
results for Dy, = 2K and Dy, = 10K with C' = 32 and
two different parallelization levels (R = 32 and R = 256).
Accordingly, we observe that HD2FPGA provides 1.8 (with
R = 32) and 12.9x (with R = 256) speed-up for HVs with
Dy, = 2K dimensions. For Dy, = 10K, we achieve 4.2x
(R = 32) and 30.5x (R = 256) speed-up compared to the
CPU baseline. By moving from Dy, = 2K to Dy, = 10K,
the relative efficiency of FPGA in encoding increases but it
decreases for retraining. However, since the encoding time
dominates the retraining time of the CPU, in D, = 10K
HD2FPGA achieves higher improvement for the training time.
Compared to state-of-the-art classification accelerator, FSHD
[5], HD2FPGA with Dy, = 2K and R = 256 outperforms
F5HD by 4.2x while delivering better or equal accuracy. In
applications, where the bottleneck is the associative search
step, such as ISOLET, HD2FPGA shows higher performance
improvement (up to 8.2x) compared to FSHD.

To evaluate the energy efficiency of HD2FPGA compared
to the CPU baseline, we measure the power consumption of
HD2FPGA and CPU during the runtime. Regardless of the
benchmark, we observe a power of ~ 65W for CPU encoding,
and ~ 40W for its retraining. Figure 7 shows the training
energy for CPU and FPGA, comprising the sum of encoding
and 50 epochs of retraining energy. HD2FPGA achieves 4.3 x
(R = 32) and 25x (R = 256) training energy efficiency
for Dy, = 2K. With Dy, = 10K, the energy efficiency
increases to 12.8x (R = 32) and 73.9x (R = 256). In the
ISOLET dataset, HD2FPGA consumes ~ 20W for R = 32
configuration, and ~ 25W for R = 256. The difference
between the power consumption of these two configurations is
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TABLE I: Dataset Information

Dataset [ Type | # Classes | # Train | # Test | # Features | HD2FPGA Accuracy | F5-HD[5] Accuracy |
CARDIO [16] | Classification 3 1,913 213 21 84.5% 84.3%
EMGS [17] | Classification 5 1,473 490 4 72.3% 88.7%
FACE [18] | Classification 2 22,441 2,494 608 94.9% 95.6%
UCIHAR [19] | Classification 6 6,213 1,554 561 93.7% 93.6%
ISOLET [20] \ Classification 26 6,238 1,559 617 93.5% 94.2%
Hepta [21] \ Clustering 7 N/A 212 3 1.0 N/A
Tetra [21] \ Clustering 4 N/A 770 3 1.0 N/A
TwoDiamonds [21] \ Clustering 2 N/A 800 2 0.820 N/A
Wingnut [21] \ Clustering 2 N/A 1016 2 0.909 N/A
Iris [21] \ Clustering 3 N/A 150 3 0.915 N/A

1E+3

®Cardio3 BEMG5 ®FACE @ISOLET BUCIHAR

1E+2

Execution Time (Sec)
=
m
¥
s

1E+0

1E-1
F5HD
D=10k

CPU (D=2K) CPU (D=10K) HD2FPGA HD2FPGA HD2FPGA HD2FPGA
D=2kR=32 D=10kR=32 D=2kR=256 D=10kR=256

Fig. 6: Training (encoding + 50 epochs retraining) time.

1E+5

B Cardio3 BEMG5 BFACE BISOLET OUCIHAR

1E+4

JoN
m
¥

&

1E+2

Energy Consumption (Joule)

1E+1

1E+0
HD2FPGA

CPU (D=2K)  CPU (D=10K) HD2FPGA
D=10k R=256

D=2k R=32

HD2FPGA
D=10k R=32

HD2FPGA
D=2k R=256

Fig. 7: Training (encoding + 50 epochs retraining) energy
consumption.

not proportional to their resource utilization due to the power
consumption of the U280 platform.

Inference: Figure 8 compares the performance of HD infer-
ence in HD2FPGA compared to CPU. The inference includes
the encoding and search steps for HD classification. The
SearchUnit module of HD2FPGA is fully pipelined with The
EncodeUnit module, meaning that in HD2FPGA the execution
time is the maximum of the execution time of the encoding
and associative search as they are executing simultaneously in
a pipeline fashion. Depending on the application parameters
(number of features per input and number of classes), either
the encoding or associative search steps can become bottle-
neck. In Cardio and EMG the search module is the bottleneck,

as they have a relatively low number of input features and
consequently less complex encoding. In FACE, ISOLET, and
UCIHAR, the encoding is computationally more complex than
the associative search. For Dy, = 2K, HD2FPGA achieves
19.5x (with R = 32) and 140x (R = 256) speed-up over
the CPU baseline. For Dy, = 10K, HD2FPGA inference is
80.0x faster when R = 32 and the speed-up further increases
to 578 x when the matrix-vector multiplication is configured to
use 256 parallel rows (R = 256). Compared to state-of-the-art
F5HD classifier [5], HD2FPGA with D;,, = 2K and R = 256
provides 1.5x speedup with higher classification accuracy. If
the associative search step is the bottleneck, similar to training
results, HD2FPGA shows higher performance improvement
compared to FSHD [5]. In ISOLET, HD2FPGA provides 2.5 x
higher performance.

Figure 9 compares the energy consumption of HD2FPGA
compared to the CPU baseline. In inference, the encoding step
is usually the computational bottleneck and hence, it domi-
nates energy consumption. As HD2FPGA significantly outper-
formed the CPU baseline in encoding, we expect higher energy
efficiency for inference. According to Figure 9, HD2FPGA is
63.3x (R = 32) and 366x (R = 256) more energy efficient
than the CPU baseline for D, = 2K. When D;, = 10K
is used, the energy reduction increases to 260x and 1503 x
respectively.

Compared to the GPU-based OpenHD running on the
NVIDIA Jetson TX2 [7], HD2FPGA is 36.6(= %)x
faster and has 5.4(= 4831707;3])>< higher energy efficiency in
ISOLET, the largest dataset reported in [7], with comparable
accuracy(93.5% vs 93.7%[7]).

B. HD Clustering

HD clustering algorithm involves encoding the input data,
selecting a subset of the encoded HVs as centroids, assigning
the similar encoded HVs to the same centroids, and bundling
the assigned HVs to create new centroids. It is similar to
the HD encoding and retraining algorithms, where the re-
training step finds a similar class (centroid) and in case of
misprediction, performs vector-wise addition. The accuracy
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Fig. 9: Inference (encoding + associative search) energy con-
sumption.

(normalized mutual info score) result is shown in Table I.
The HD2FPGA adopts Dy, = 2K. Figure 10 shows the
execution time for one epoch of clustering. Since clustering
repeatedly performs encoding and search, the execution time
linearly increases with the number of training epochs. In all
datasets but ISOLET, the search step is the bottleneck of the
FPGA pipeline as the datasets contain a small number of
features per input, making the encoding comparatively faster
than search among the centroids. ISOLET has a significantly
higher number of input features and thus, the encoding step
in ISOLET is more complicated than the other datasets.
With Dy, = 2K, HD2FPGA performance outperforms the
CPU by 3.5x for R = 32, and 22.1x for R = 256.
With Dy, = 10K, HD2FPGA is 9x faster when R = 32,
and 57x faster when R = 256. Compared to openHD [7],
HD2FPGA (R = 32, Dy, = 2K) is 2.2(= 3197%)x faster in
TwoDiamonds. Figure 11 shows the energy consumption for
the CPU baseline and HD2FPGA clustering. The encoding
and search steps consume the same amount of power in the
classification step as the algorithm (hence the architecture) is
the same. With 2K dimensionality, the HD2FPGA has 10.2x
and 51.6x higher energy efficiency for R = 32 and R = 256,
respectively. For Dy, = 10K, HD2FPGA energy efficiency
increases to 27.7x (for R = 32) and 140x (for R = 256). As
mentioned earlier, the execution time of HD2FPGA increases
linearly with Dy, while in CPU we observe a larger increase
(e.g., the ISOLET encoding runtime increases by 29.7x when
moving from Dy, = 2K to Dy, = 10K). Thus, with larger
dimensions, HD2FPGA ’s energy efficiency further increases.
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V. CONCLUSION

In this paper, we propose HD2FPGA, an automated frame-
work for FPGA-based acceleration of HD classification and
clustering. HD2FPGA abstracts away the complexities of
designing hardware accelerators from an end user. Now it
depends on Xilinx’s Vivado HLS, but it will be easy to
extend to other HLS tools by only changing the pragma to
similar ones used in the specific tool. The proposed framework
enables a user to specify HD application parameters (e.g.,
the number of input features, classes, and training data) as
well as the application task (classification or clustering) and
it accordingly generates a customized FPGA implementation.
HD2FPGA supports end-to-end training and inference of HD
classification and end-to-end execution of HD clustering on
FPGAs. For HD classification, HD2FPGA provides 1.5x
(36.6x) speedup compared to state-of-the-art FPGA-based
(GPU-based) accelerator framework while providing the same
accuracy. For HD clustering, HD2FPGA provides 2.2x speed
up compared to the GPU-based accelerator. HD2FPGA can
also easily support other applications. For example, regression
can be implemented by only modifying the retraining stage by
multiplying the error between the actual output and predicted
result and learning rate query HV to update the class HV [22].
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