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ABSTRACT

Industrial Internet of Things (IIoT) is a collaboration of sensors,

networking equipment, and devices to collect data from industrial

operations. IIoT systems possess numerous security vulnerabilities

due to inter-connectivity and limited computational power. Ma-

chine learning based intrusion detection system (IDS) is one possible

security approach that continuously monitors network data and

detects cyberattacks in an automated manner. Hyper-dimensional

(HD) computing is a brain-inspired ML method that is sufficiently

accurate while being extremely robust, fast, and energy-efficient.

Based on these characteristics, HD can be a favorable ML-based IDS

solution for IIoT systems. However, its prediction performance is

impacted by small perturbations in the input data. To fully evaluate

the vulnerabilities of HD, we propose an effective HD-oriented ad-

versarial attack design. We first select the most diverse set of attacks

to minimize overhead, and eliminate adversarial redundancy. Then,

we perform a real-time attack selection which finds out the most

effective attack. Our experiments on a realistic IIoT intrusion data

set show the effectiveness of our attack design. Compared to the

most effective single attack, our design strategy can improve attack

success rate by up to 36%, and 𝐹1 score by up to 61%.

CCS CONCEPTS

• IoT security; • Industrial IoT; •Hyper-dimensional Comput-

ing; • Adversarial machine learning; • Intrusion detection;

ACM Reference Format:

Onat Gungor, Tajana Rosing, and Baris Aksanli. 2023. Adversarial-HD: Hy-

perdimensional Computing Adversarial Attack Design for Secure Industrial

Internet of Things. In Cyber-Physical Systems and Internet of Things Week

2023 (CPS-IoT Week Workshops ’23), May 09–12, 2023, San Antonio, TX, USA.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3576914.3587484

1 INTRODUCTION

The Industrial Internet of Things (IIoT) is a large network of devices,

systems, and applications communicating and sharing intelligence

with each other, the external environment, and with humans [8]. Its

value is increasing globally where IIoT could be worth 7.1 trillion

U.S. dollars to the United States and more than 1.2 trillion to Europe

by 2030 [8]. The IIoT is characterized by an increased degree of
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inter-connectivity, which not only creates opportunities for the

industries that adopt it, but also for cybercriminals [25]. Besides,

these systems are often designed without security in mind or use

communication protocols that are not sufficiently secure [28]. Wu

et al. [32] summarize the IIoT assets that are vulnerable to cyberat-

tacks under 4 categories: operating systems, application software,

communication protocols, and smart devices. Sophisticated attack-

ers can easily gain access to an entire IIoT system and damage its

functionality and production for a lengthy period [3]. The average

estimated losses were $10.7 million per breach of data among man-

ufacturing organizations in Asia Pacific in 2019 [1]. Without proper

security measures, IIoT will always be a target for cyberattacks,

costing additional funds to mitigate.

Although there are sophisticated security solutions in traditional

IT systems, these cannot be directly deployed for IIoT systems due

to IIoT’s constrained functionality, limited power, and lightweight

network protocols [10]. Intrusion Detection System (IDS) is one

of the security solutions that monitor the network data to detect

attacks and anomalies [5]. ML methods have been heavily used for

IDS due to their great performance in detecting attacks [12, 18, 26].

However, ML methods are quite vulnerable to small changes in the

input data. In an adversarial attack against ML, an adversary can

access the ML model to create slight but carefully-crafted perturbed

examples to deteriorate the model prediction performance [15].

These attacks could pose significant threats to ML-based IDS where

data collected from different devices can be perturbed to cause

malicious data to be classified as benign, consequently bypassing

the IDS. Hence, there is a need to evaluate ML-based IDS against

adversarial attacks and create realistic effective attacks that can

deteriorate IDS classification performance. By understanding the

adversarial robustness rigorously, we can develop better defense

mechanisms that can protect IIoT systems against these attacks.

Hyperdimensional (HD) computing was introduced as a brain-

inspired learning solution for robust and efficient learning. HD

encodes raw data into high-dimensional vectors and performs three

basic operations: addition, multiplication, and permutation. Com-

pared to deep neural networks, HD has shown advantages such

as smaller model size, less computation cost, one-shot learning

capability, and robustness to noise, making it a promising alter-

native in low-cost computing platforms such as IIoT [11]. To the

best of our knowledge, HD has not been used in an ML-based IDS

domain previously. HD can be a suitable IDS mechanism since it

provides high energy efficiency, low power consumption, and fast

training/inference while its prediction performance is on par with

well-known ML methods. Similar to ML methods, HD can also be

vulnerable to small perturbations on input data to produce wrong

classification [22, 27]. Previous studies on HD security [22, 24, 33]
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Figure 1: Our Proposed Attack Design Framework

mainly focused on simple perturbations which are easy to detect

and defend against, decreasing their effectiveness against stronger

attacks. Therefore, our goal is to develop an HD attack mechanism

that would consistently work better than individual simple attacks.

In this work, we propose a diversity-induced adversarial attack

framework to evaluate HD vulnerabilities thoroughly. We present

our high-level framework in Figure 1. Given test data, we first

apply 9 different perturbation methods ranging from transferable

adversarial attacks (e.g., momentum iterative method) to simple

perturbations (e.g., Gaussian noise injection). For transferable at-

tacks, we utilize a pre-trained convolutional neural network. Then,

we use perturbed test data to calculate diversity among attacks.

To introduce diversity, we measure pair-wise Manhattan distance

among attacks. By diversity inclusion, we eliminate possible over-

lap in adversarial subspaces, minimize HD encoding overhead, and

increase attack performance. Based on the calculated distances, we

first select the two most diverse attacks and provide these attacks to

the sample based (real-time) attack selection process. Here, among

the attacks leading to misclassification, we select the most effective

attack which gives the maximum distance between attack hyper-

vector and pre-trained HD class hyper-vector. We then check if the

attack performance is improved, i.e., lower 𝐹1 score. If this holds,
we expand the attack set until no further improvement is obtained.

The experimental results on the X-IIoTID dataset [4] show that our

attack design is able to fool HD model more compared to selecting

the same attack for all samples or random attack selection. We can

improve the attack success rate by up to 36%, and 𝐹1 score by up to

61% compared to the most effective single attack.

2 BACKGROUND AND RELATEDWORK

2.1 Hyperdimensional (HD) Computing

Hyperdimensional (HD) computing has been proposed as an alter-

native computing method that processes the cognitive tasks in a

more lightweight manner [17]. There are three key phases in HD

models: encoding, training and inference as illustrated in Figure 2:

Encoding aims to map input data to hypervectors (HVs). As-

sume that a feature vector in original space 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛} ∈ R
𝑛 .

Encoding stage maps this feature vector to a 𝐷-dimensional hyper-

vector 𝐻 = {ℎ1, ℎ2, ..., ℎ𝐷 } ∈ R𝐷 where 𝐷 � 𝑛. In this paper, we

use random projection encoding [16] which first creates 𝐷 dense

Figure 2: HD Learning Framework

bipolar vectors with the same dimensionality as original domain,

𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝐷 }, where 𝑝𝑖 ∈ {−1, 1}𝑛 . The inner product of

a feature vector with each randomly generated vector gives us a

single dimension of a hypervector in high-dimensional space. For

encoding, we perform a matrix vector multiplication between the

projection matrix and the feature vector: 𝐻 = 𝑠𝑖𝑔𝑛(𝑃𝐹 ) where 𝑠𝑖𝑔𝑛
is a function that maps the result to +1 or -1.

Training has two steps to generate HVs representing each class.

The first step, initial training, performs element-wise addition of

all encoded HVs in each class. Assume that 𝐻𝑖 is the the encoded

HV of input 𝑖 . We know that each input 𝑖 belongs to a class 𝑗 .

We further denote 𝐻
𝑗
𝑖 to show the class 𝑗 of input 𝑖 . HD simply

adds all HVs of the same class to generate the final model HV:

𝐶 𝑗 = 𝐻
𝑗
0 + 𝐻

𝑗
1 + · · · =

∑
𝑚 𝐻

𝑗
𝑚 . The second step of HD training,

retraining, performs model adjustment by iteratively going through

the training dataset. The encoded HV of each input is created again,

and its similarity with the existing class HVs is checked. If HD

misclassifies, say that H 𝑗 from class 𝐶 𝑗 is predicted as class 𝐶𝑘 , it

updates its model as follows: 𝐶 𝑗 = 𝐶 𝑗 + 𝐻 𝑗 and 𝐶𝑘 = 𝐶𝑘 − 𝐻 𝑗 .

Inference finds out the most similar class HV to the encoded

one. Cosine similarity is used commonly for the similarity check.

To calculate similarity between HV 𝐻 and class hyper-vector 𝐶 𝑗 :

𝑐𝑜𝑠 (𝐻,𝐶 𝑗 ) =
𝐻 ·𝐶 𝑗

‖𝐻 ‖ · ‖𝐶 𝑗 ‖
which is the dot product of the 𝐻 and𝐶 𝑗

divided by the product of these two vectors’ lengths.

2.2 1-D Convolutional Neural Network (CNN)

We utilize a 1-D CNN to create transferable adversarial attacks. 1D

convolutional layer slides kernels across a sequence, producing a

1D feature map per kernel and each kernel learns to detect a single

very short sequential pattern. We adopt the 1-D CNN network

proposed by Li et al. [21] which contains five consecutive CNN

layers, Flatten (Dropout) layer, and one fully-connected layer (with

100 nodes). We train HD and CNN models using our training data,

so we can use pre-trained HD and CNN for the adversarial attacks.

2.3 Related Work

Industrial Internet of Things (IIoT) is the interconnection of smart

devices, enabling full automation, remote monitoring, and predic-

tive maintenance. IIoT is susceptible to cyber attacks due to inade-

quate standardization and the lack of required skills to implement
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them [20]. An adversary can exploit these vulnerabilities to sabo-

tage communication, prevent asset availability, and corrupt moni-

toring data which may have serious financial consequences, e.g.,

average estimated loss of $10.7 million per breach of data among

manufacturing organizations in Asia Pacific in 2019 [1]. Serious

cyber attacks have been conducted in the past such as StuxNet or

Industroyer [25]. Tuptuk and Hailes [28] summarize common IIoT

attacks under 13 different classes: denial of service, eavesdropping,

man-in-the-middle, false data injection, time delay, data tampering,

replay, spoofing, side channel, covert channel, zero day, physical,

and attacks against machine learning. In this paper, we focus on

attacks against machine learning as these stealthy attacks can harm

IIoT systems significantly while bypassing attack detectors.

ML-based IDS is a security solution that utilizes historical IoT

network data to train ML models and detects attacks and anom-

alies. Different ML methods are proposed in the literature such as

logistic regression, support vector machine, random forest, deep

neural network, and recurrent neural network [6]. Although these

methods provide great prediction performance, they are quite sen-

sitive to small perturbations in the input data. An adversary can

tamper with the data inputted into the ML model to fool the learner,

exacerbating the classification performance. To generate adversar-

ial instances, attacker can use 3 different methods [30]: (i) white

box methods exploit complete knowledge of a model, i.e., model

parameters and architecture, (ii) limited black box methods refine

adversarial input based on an output generated from the model, and

(iii) score-based black box methods refine adversarial input based

on the raw predictions (class probabilities) returned from the model.

Other than attack generation methods, an adversary also needs to

determine how to conduct an adversarial attack for a real-world

system based on access level to the target model. We can categorize

real-world attack patterns under 3 classes [30]: (i) direct attacks

allow an adversary to submit inputs to the actual target and receive

corresponding results, (ii) replica attacks use an exact replica of the

target model to refine the adversarial input, (iii) transfer attacks

select a substitute model which is a good-enough approximation of

the target and use this model to craft adversarial examples.

HD can be used in ML-based intrusion detection systems due to

its lightweight and robust characteristics. Although HD has been

used in a range of applications, the security aspect of HD classifiers

has not been completely understood under strong attacks. There

are some studies in the literature aiming to test HD robustness

against adversarial attacks. Yang and Ren [33] showed that HD

can be vulnerable to adversarial samples. Their proposed adver-

sarial attack misled the HD classifier to a wrong prediction label.

To enhance HD security, they proposed adversarial (re)training.

Chen and Li [7] analyzed the impact of adversarial attacks on an

HD speech recognition classifier. Their proposed attack based on

differential evolution algorithm reached up to 85.7% attack success

rate. Moraliyage et al. [24] evaluated the adversarial robustness of

HD text classifiers. They observed that different adversarial attacks

lead to false prediction labels for language recognition and text clas-

sification tasks. Ma et al. [22] introduced distance-guided fuzzing

which iteratively mutates inputs. By using the distance between

query hypervector and reference hypervector, they generate new

inputs that can trigger incorrect behaviors of the HD model. Thapa

et al. [27] developed an automated black-box differential testing

Figure 3: Perturbation Framework

framework to fool an HDmodel. They were able to improve the HD

model accuracy using retraining. Wang and Jiao [29] designed HD-

specific poisoning attack framework based on confidence-based

label-flipping method. They also proposed data sanitization as a

defense to filter suspect samples before training. The main weak-

ness of these studies is that they proposed simple perturbation

methods against HD. Gungor et al. [14] proposed black-box trans-

ferable adversarial attacks and measured different DL methods and

HD robustness. They showed that HD leads to a more resilient

and lightweight learning solution than the state-of-the-art deep

learning methods. Different than the state-of-the-art, we develop

an attack mechanism that works significantly better than simple

and single attack scenarios.

3 ATTACK DESIGN FRAMEWORK

Figure 1 represents our diversity included real-time attack design

framework. Given pre-trained HD and CNN models (trained previ-

ously using the training data), the first step is to create perturbed

test data via 9 different perturbation methods. After we obtain the

perturbed test data, we introduce diversity to prevent possible over-

laps in adversarial subspaces, minimize HD encoding overhead, and

increase attack effectiveness. We start with 2 most diverse attacks

and increment number of attacks until no further improvement

(prediction performance under attacks) is observed. Given diverse

set of attacks, we then perform sample-wise (real-time) attack se-

lection to find the attack that can fool the HD model the most based

on distance between class hyper-vector and attack hyper-vector.

Here, we assume that attacker can access to the pre-trained HD

model to send a query. Overall, our attack design framework con-

sists of 3 main modules: perturbation creation, diversity inclusion,

and real-time attack selection.

3.1 Perturbation Creation

Figure 3 illustrates our perturbation framework which consists of

two groups of perturbation methods: (i) transferable adversarial

attack, and (ii) simple perturbation. Transferable attack starts with

the attacker accessing pre-trained CNN model (substitute model)

and test data. Attacker exploit loss gradient information in CNN

and adopt 5 different attack generation methods to create perturbed

test data: fast gradient sign method (FGSM) [13], randomized fast
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Figure 4: Diversity Calculation Framework

gradient sign method (RFGSM) [31], projected gradient descent

(PGD) [23], basic iterative method (BIM) [19], and momentum it-

erative method (MIM) [9]. The perturbed data is then transferred

to pre-trained HD (target model). Although these attacks are not

HD-specific, an attacker relies on transferability property which is

satisfied when an attack developed for a substitute model is also

effective against the target model. Other than adversarial attacks,

we also include 4 simple perturbation methods [22]: random row

perturbation (RRP), random column perturbation (RCP), random

noise injection (RNI), and Gaussian noise injection (GNI). Each

attack uses a parameter, called perturbation amount (𝜖), that de-
notes the amount of noise added to the normal data. Based on the

selected diverse set of attacks after diversity inclusion (refer to Sec-

tion 3.2), we encode the selected perturbed attack data and obtain

the encoded attack hyper-vectors as illustrated in Figure 3. These

are then given to the pre-trained HD model and we obtain class

predictions for the attack 𝑦𝑖
𝑎𝑡𝑡𝑎𝑐𝑘

and clean test data 𝑦𝑛𝑜𝑟𝑚𝑎𝑙 . We

will use encoded HVs and HD predictions in attack selection (refer

to Section 3.3).

3.2 Diversity Inclusion

We introduce diversity to select the most diversified set of attacks

due to 3 main reasons: (i) different attacks can lead to same predic-

tion labels due to overlap in adversarial subspaces, (ii) HD encoding

is computationally expensive [16], and (iii) attack performance

can be increased by considering a subset of attacks. Overall, our

goal is to minimize HD encoding overhead while keeping attack

performance at a maximum level. Figure 4 depicts our diversity

calculation process. Given 𝑛 samples and𝑚 attacks, we first cal-

culate sample-wise distance (𝛿) among attacks. To find 𝛿 , we use
Manhattan distance as a distance metric. Then, to find pair-wise

distance between attacks 𝑖 and 𝑗 (Δ𝑖 𝑗 ), we sum the distances over

all samples, i.e., Δ𝑖 𝑗 =
∑𝑛
𝑘=1 𝛿𝑘 . To construct the distance matrix

Δ (which is hollow symmetric), we place Δ𝑖 𝑗 appropriately. For
instance, second row and third column of Δ corresponds to the

Manhattan distance between second and third attacks. After we

Figure 5: Attack Selection Framework (𝛾 > 1)

generate this matrix, the next step is to select the largest value in

this matrix, providing us the set of the most diverse two attacks

𝐷 = {𝐴𝑖 , 𝐴 𝑗 }. After sample-wise attack selection (refer to Section

3.3), we revisit Δ to find the next most diverse attack (second largest

value in Δ) and add the corresponding attack to the existing attack

set. Let 𝐴𝑘 be the next most diverse attack, then we expand 𝐷 as

follows: 𝐷 = 𝐷 ∪ {𝐴𝑘 }. We expand the set 𝐷 until we no longer

improve the attack performance which we measure by 𝐹1 score.

3.3 Real-time Attack Selection

Given the prediction labels, we first compare attack predictions

with clean data prediction to test if an attack can fool the HD model

for each sample. Let 𝛾 denote the number of attacks that can fool

HD. We analyze 3 different scenarios based on the value of 𝛾 :

(1) 𝛾 = 0: This scenario represents the worst-case scenario

where both clean and attack data lead to same class predic-

tion. In this scenario, we need to tune attacks (e.g., increase

perturbation amount 𝜖) or generate a completely new attack.

(2) 𝛾 = 1: In this scenario, there is only one attack that can

mislead HD. We can simply select that single attack.

(3) 𝛾 > 1: This scenario occurs when there are multiple attacks

that can mislead HD. Here, there is a need to select the most

effective attack among a set of attacks. Figure 5 presents

our attack selection framework for this case. For each given

sample, our goal is to select the attack that is able to fool the

HD model the most. We measure this based on the Manhat-

tan distance among query hyper-vector (clean test sample

class hyper-vector from HD associative memory) and attack

hyper-vectors. We select Manhattan Distance metric since

it is the most preferable for high dimensional applications

[2]. For each attack 𝑖 , we calculate its Manhattan distance 𝛿𝑖
from the query hyper-vector. Then, we select the maximum

distanced attack for a given sample. We repeat this attack

selection process for all samples.

4 EXPERIMENTAL ANALYSIS

4.1 Dataset Description

To validate the proposed attack design against HD, we use a realis-

tic IIoT intrusion dataset, X-IIoTID [4]. This connectivity agnostic
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and device agnostic dataset reflects the changes and heterogeneity

of network traffic and systems’ activities generated from various

IIoT devices, connectivity protocols, and communication patterns.

To create the dataset, Brown-IIoTbed testbed is used which is a

holistic and end-to-end IIoT security testbed developed based on

an industrial Internet reference architecture (IIRA). This dataset

contains 18 different attacks: generic scanning, scanning vulnerabil-

ities, fuzzing, discovering resources, brute force attack, dictionary

attack, malicious insider, reverse shell, MitM attack, MQTT cloud

broker-subscription, Modbus-Register reading, TCP relay attack,

command and control, exfiltration, false data injection, fake notifica-

tion, crypto-ransomware, and ransom denial of service. The attack

details can be found in [4]. Overall, with the normal data, we have

a classification problem with 19 labels. The collected data is related

to the end-to-end network traffic (i.e., from physical field devices

to the edge gateway and from the edge gateway to the cloud and

enterprise devices), host device logs, and the host device’s resources,

physical properties, and alert logs. The period for capturing normal

data began on December 5, 2019, ran for many hours each day, and

ended on March 23, 2020 (not continuous). The experiments on the

collected attack data took place over different times and days from

January 7, 2020 to March 27, 2020, with each attack experiment

repeated multiple times to collect more data.

4.2 Experimental Setup

We run all experiments on a PC with 16 GB RAM and an 8-core 2.3

GHz Intel Core i9 processor. For CNN, we selected SGD optimizer

with learning rate 0.01, relu activation function, and batch size of

32. For HD, we set hypervector dimensionality, 𝐷 , to 1000 and used

random projection encoding. To measure attack performance, we

use 3 different metrics: (untargeted) attack success rate, accuracy,

and 𝐹1 score. Attack success rate is the ratio of misclassified num-

ber of samples to the total number of samples under any attack.

Accuracy is the ratio of number of correct predictions to the total

number of samples. 𝐹1 score is formulated as follows:

𝐹1 = 2 ·
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(1)

where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
and 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.

4.3 Experimental Results

We compare our diversity-induced attack design with two bench-

marks: (i) selecting the same attack for all samples (denoted by

the attack name, e.g., FGSM), (ii) random attack selection for a

given sample (denoted by Random). We experimented with differ-

ent perturbation amounts (𝜖) from {0.1, 0.2, 0.3, 0.4, 0.5}. Figure 6
demonstrates attack performance comparison where 𝜖 = 0.1. While

y-axis provides percentage values, we have our metrics on the x-

axis: attack success rate, accuracy, and 𝐹1 score. In this figure, green

denotes our attack design (leftmost bar), random selection is repre-

sented with orange, and selected single attacks (best performing 6

attacks) are represented with distinct colors. We can see that our

approach is far superior to the single attacks. Our attack design

can reach 77.2% attack success rate while the most effective single

attack (FGSM) can only achieve 49.3%. In terms of accuracy and 𝐹1
score, we observe the best attack performance under our approach.

Figure 6: Attack Performance Comparison (𝜖 = 0.1)

Figure 7: Our Attack Design Performance

We can decrease the prediction accuracy to 35.9% and 𝐹1 score to
30.5%. However, with FGSM, we obtain 51.6% and 39.9% accuracy

and 𝐹1 score respectively. Random selection approach is somewhere

in between different single attacks.

Figure 7 illustrates our attack design performance under selected

𝜖 values. We present attack success rate, accuracy, and 𝐹1 score

with blue, green, and orange colors respectively. We can observe

that as 𝜖 increases, our method became much more effective while

prediction performance (both accuracy and 𝐹1 score) decreases

significantly. We can reach up-to 97.6% attack success rate, 9.4%

accuracy, and 4.9% 𝐹1 score (when 𝜖 = 0.5). With chosen 𝜖 values,
the selected number of attacks are 6, 5, 5, 5, and 7 respectively. This

selection consistently gives us the lowest 𝐹1 scores. We also make

a comparison with the single best attack (FGSM) under different 𝜖
values. Table 1 presents the results for our method’s improvement

over FGSM. As 𝜖 increases, attack success rate improvement de-

creases while accuracy and 𝐹1 score improvement increases. We can

reach up-to 36.2% attack success rate improvement, 52.5% accuracy

improvement, and 61.1% 𝐹1 score improvement over.

Attack Selection Overhead: When we analyze our real-time

attack selection, we observe that it has a small computational over-

head while increasing attack effectiveness significantly. Table 2
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Table 1: Improvement over the best single attack (FGSM)

Perturbation Amount (𝜖) Attack Success Rate (%) Accuracy (%) F1 Score (%)

0.1 36.2 30.5 23.7

0.2 26.8 24.1 30.1

0.3 22.2 27.8 45.9

0.4 18.1 41.7 61.1

0.5 15.8 52.5 57.1

Average 23.8 35.3 43.6

Table 2: Attack Selection Overhead

Number of Attacks 2 3 4 5 6 7 8

Elapsed Time (ms) 0.91 1.47 1.49 1.52 1.75 2.08 2.12

shows attack selection overhead with respect to increasing number

of attacks. As the number of attacks increases, the attack selection

overhead also increases. In the worst case, the overhead of our

framework is limited by 2.12 ms, and on average 1.75 ms.

5 CONCLUSION

Industrial Internet of Things (IIoT) enables fully automated produc-

tion systems by continuously monitoring devices and analyzing

collected data. Its security is one of the major obstacles that pre-

vent the widespread adoption of IIoT technology [25]. Intrusion

Detection Systems (IDSs) dynamically monitor the behavior of a

system to detect and respond to malicious activity. Machine learn-

ing methods are quite popular in IDSs due to its accurate prediction

performance. However, ML methods are vulnerable to adversarial

attacks, leading to worse prediction performance. Hyperdimen-

sional (HD) computing is a brain-inspired learning solution for

robust and efficient learning which can be a beneficial ML solu-

tion for IDSs. However, HD is also sensitive to adversarial attacks,

hence increasing the need for investigating its security aspect. In

this work, we proposed a novel adversarial attack design targeting

HD. After we find out the most diverse set of attacks, we select the

most effective attack sample by sample. Our experimental results

show that we can improve attack success rate by up to 36%, and 𝐹1
score by up to 61% compared to the most effective single attack.
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