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ABSTRACT

Industrial Internet of Things (IIoT) is a collaboration of sensors,
networking equipment, and devices to collect data from industrial
operations. IIoT systems possess numerous security vulnerabilities
due to inter-connectivity and limited computational power. Ma-
chine learning based intrusion detection system (IDS) is one possible
security approach that continuously monitors network data and
detects cyberattacks in an automated manner. Hyper-dimensional
(HD) computing is a brain-inspired ML method that is sufficiently
accurate while being extremely robust, fast, and energy-efficient.
Based on these characteristics, HD can be a favorable ML-based IDS
solution for IIoT systems. However, its prediction performance is
impacted by small perturbations in the input data. To fully evaluate
the vulnerabilities of HD, we propose an effective HD-oriented ad-
versarial attack design. We first select the most diverse set of attacks
to minimize overhead, and eliminate adversarial redundancy. Then,
we perform a real-time attack selection which finds out the most
effective attack. Our experiments on a realistic IIoT intrusion data
set show the effectiveness of our attack design. Compared to the
most effective single attack, our design strategy can improve attack
success rate by up to 36%, and F; score by up to 61%.
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1 INTRODUCTION

The Industrial Internet of Things (IIoT) is a large network of devices,
systems, and applications communicating and sharing intelligence
with each other, the external environment, and with humans [8]. Its
value is increasing globally where IIoT could be worth 7.1 trillion
U.S. dollars to the United States and more than 1.2 trillion to Europe
by 2030 [8]. The IIoT is characterized by an increased degree of
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inter-connectivity, which not only creates opportunities for the
industries that adopt it, but also for cybercriminals [25]. Besides,
these systems are often designed without security in mind or use
communication protocols that are not sufficiently secure [28]. Wu
et al. [32] summarize the IIoT assets that are vulnerable to cyberat-
tacks under 4 categories: operating systems, application software,
communication protocols, and smart devices. Sophisticated attack-
ers can easily gain access to an entire IIoT system and damage its
functionality and production for a lengthy period [3]. The average
estimated losses were $10.7 million per breach of data among man-
ufacturing organizations in Asia Pacific in 2019 [1]. Without proper
security measures, IIoT will always be a target for cyberattacks,
costing additional funds to mitigate.

Although there are sophisticated security solutions in traditional
IT systems, these cannot be directly deployed for IloT systems due
to IIoT’s constrained functionality, limited power, and lightweight
network protocols [10]. Intrusion Detection System (IDS) is one
of the security solutions that monitor the network data to detect
attacks and anomalies [5]. ML methods have been heavily used for
IDS due to their great performance in detecting attacks [12, 18, 26].
However, ML methods are quite vulnerable to small changes in the
input data. In an adversarial attack against ML, an adversary can
access the ML model to create slight but carefully-crafted perturbed
examples to deteriorate the model prediction performance [15].
These attacks could pose significant threats to ML-based IDS where
data collected from different devices can be perturbed to cause
malicious data to be classified as benign, consequently bypassing
the IDS. Hence, there is a need to evaluate ML-based IDS against
adversarial attacks and create realistic effective attacks that can
deteriorate IDS classification performance. By understanding the
adversarial robustness rigorously, we can develop better defense
mechanisms that can protect IIoT systems against these attacks.

Hyperdimensional (HD) computing was introduced as a brain-
inspired learning solution for robust and efficient learning. HD
encodes raw data into high-dimensional vectors and performs three
basic operations: addition, multiplication, and permutation. Com-
pared to deep neural networks, HD has shown advantages such
as smaller model size, less computation cost, one-shot learning
capability, and robustness to noise, making it a promising alter-
native in low-cost computing platforms such as IIoT [11]. To the
best of our knowledge, HD has not been used in an ML-based IDS
domain previously. HD can be a suitable IDS mechanism since it
provides high energy efficiency, low power consumption, and fast
training/inference while its prediction performance is on par with
well-known ML methods. Similar to ML methods, HD can also be
vulnerable to small perturbations on input data to produce wrong
classification [22, 27]. Previous studies on HD security [22, 24, 33]
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Figure 1: Our Proposed Attack Design Framework

mainly focused on simple perturbations which are easy to detect
and defend against, decreasing their effectiveness against stronger
attacks. Therefore, our goal is to develop an HD attack mechanism
that would consistently work better than individual simple attacks.

In this work, we propose a diversity-induced adversarial attack
framework to evaluate HD vulnerabilities thoroughly. We present
our high-level framework in Figure 1. Given test data, we first
apply 9 different perturbation methods ranging from transferable
adversarial attacks (e.g., momentum iterative method) to simple
perturbations (e.g., Gaussian noise injection). For transferable at-
tacks, we utilize a pre-trained convolutional neural network. Then,
we use perturbed test data to calculate diversity among attacks.
To introduce diversity, we measure pair-wise Manhattan distance
among attacks. By diversity inclusion, we eliminate possible over-
lap in adversarial subspaces, minimize HD encoding overhead, and
increase attack performance. Based on the calculated distances, we
first select the two most diverse attacks and provide these attacks to
the sample based (real-time) attack selection process. Here, among
the attacks leading to misclassification, we select the most effective
attack which gives the maximum distance between attack hyper-
vector and pre-trained HD class hyper-vector. We then check if the
attack performance is improved, i.e., lower F; score. If this holds,
we expand the attack set until no further improvement is obtained.
The experimental results on the X-IIoTID dataset [4] show that our
attack design is able to fool HD model more compared to selecting
the same attack for all samples or random attack selection. We can
improve the attack success rate by up to 36%, and F; score by up to
61% compared to the most effective single attack.

2 BACKGROUND AND RELATED WORK
2.1 Hyperdimensional (HD) Computing

Hyperdimensional (HD) computing has been proposed as an alter-
native computing method that processes the cognitive tasks in a
more lightweight manner [17]. There are three key phases in HD
models: encoding, training and inference as illustrated in Figure 2:

Encoding aims to map input data to hypervectors (HVs). As-
sume that a feature vector in original space F = {fi, f2, ..., fn} € R™.
Encoding stage maps this feature vector to a D-dimensional hyper-
vector H = {hy,hy,...,hp} € RD where D > n. In this paper, we
use random projection encoding [16] which first creates D dense
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bipolar vectors with the same dimensionality as original domain,
P = {p1.p2,....pp}, where p; € {—1,1}". The inner product of
a feature vector with each randomly generated vector gives us a
single dimension of a hypervector in high-dimensional space. For
encoding, we perform a matrix vector multiplication between the
projection matrix and the feature vector: H = sign(PF) where sign
is a function that maps the result to +1 or -1.

Training has two steps to generate HVs representing each class.
The first step, initial training, performs element-wise addition of
all encoded HVs in each class. Assume that H; is the the encoded
HV of input i. We know that each input i belongs to a class j.
We further denote Hlj to show the class j of input i. HD simply
adds all HVs of the same class to generate the final model HV:
cl = Hé + H{ +--- = Y. H’. The second step of HD training,
retraining, performs model adjustment by iteratively going through
the training dataset. The encoded HV of each input is created again,
and its similarity with the existing class HVs is checked. If HD
misclassifies, say that {7 from class C/ is predicted as class ck, it
updates its model as follows: ¢/ = C/ + H/ and Ck = ¢k — HJ.

Inference finds out the most similar class HV to the encoded
one. Cosine similarity is used commonly for the similarity check.
To calculate similarity between HV H and class hyper-vector CJ:

H-CJ
JE - JIC7]
divided by the product of these two vectors’ lengths.

cos(H,C/) = which is the dot product of the H and ¢/

2.2 1-D Convolutional Neural Network (CNN)

We utilize a 1-D CNN to create transferable adversarial attacks. 1D
convolutional layer slides kernels across a sequence, producing a
1D feature map per kernel and each kernel learns to detect a single
very short sequential pattern. We adopt the 1-D CNN network
proposed by Li et al. [21] which contains five consecutive CNN
layers, Flatten (Dropout) layer, and one fully-connected layer (with
100 nodes). We train HD and CNN models using our training data,
so we can use pre-trained HD and CNN for the adversarial attacks.

2.3 Related Work

Industrial Internet of Things (IIoT) is the interconnection of smart
devices, enabling full automation, remote monitoring, and predic-
tive maintenance. IIoT is susceptible to cyber attacks due to inade-
quate standardization and the lack of required skills to implement
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them [20]. An adversary can exploit these vulnerabilities to sabo-
tage communication, prevent asset availability, and corrupt moni-
toring data which may have serious financial consequences, e.g.,
average estimated loss of $10.7 million per breach of data among
manufacturing organizations in Asia Pacific in 2019 [1]. Serious
cyber attacks have been conducted in the past such as StuxNet or
Industroyer [25]. Tuptuk and Hailes [28] summarize common IIoT
attacks under 13 different classes: denial of service, eavesdropping,
man-in-the-middle, false data injection, time delay, data tampering,
replay, spoofing, side channel, covert channel, zero day, physical,
and attacks against machine learning. In this paper, we focus on
attacks against machine learning as these stealthy attacks can harm
IIoT systems significantly while bypassing attack detectors.

ML-based IDS is a security solution that utilizes historical IoT
network data to train ML models and detects attacks and anom-
alies. Different ML methods are proposed in the literature such as
logistic regression, support vector machine, random forest, deep
neural network, and recurrent neural network [6]. Although these
methods provide great prediction performance, they are quite sen-
sitive to small perturbations in the input data. An adversary can
tamper with the data inputted into the ML model to fool the learner,
exacerbating the classification performance. To generate adversar-
ial instances, attacker can use 3 different methods [30]: (i) white
box methods exploit complete knowledge of a model, i.e., model
parameters and architecture, (ii) limited black box methods refine
adversarial input based on an output generated from the model, and
(iii) score-based black box methods refine adversarial input based
on the raw predictions (class probabilities) returned from the model.
Other than attack generation methods, an adversary also needs to
determine how to conduct an adversarial attack for a real-world
system based on access level to the target model. We can categorize
real-world attack patterns under 3 classes [30]: (i) direct attacks
allow an adversary to submit inputs to the actual target and receive
corresponding results, (ii) replica attacks use an exact replica of the
target model to refine the adversarial input, (iii) transfer attacks
select a substitute model which is a good-enough approximation of
the target and use this model to craft adversarial examples.

HD can be used in ML-based intrusion detection systems due to
its lightweight and robust characteristics. Although HD has been
used in a range of applications, the security aspect of HD classifiers
has not been completely understood under strong attacks. There
are some studies in the literature aiming to test HD robustness
against adversarial attacks. Yang and Ren [33] showed that HD
can be vulnerable to adversarial samples. Their proposed adver-
sarial attack misled the HD classifier to a wrong prediction label.
To enhance HD security, they proposed adversarial (re)training.
Chen and Li [7] analyzed the impact of adversarial attacks on an
HD speech recognition classifier. Their proposed attack based on
differential evolution algorithm reached up to 85.7% attack success
rate. Moraliyage et al. [24] evaluated the adversarial robustness of
HD text classifiers. They observed that different adversarial attacks
lead to false prediction labels for language recognition and text clas-
sification tasks. Ma et al. [22] introduced distance-guided fuzzing
which iteratively mutates inputs. By using the distance between
query hypervector and reference hypervector, they generate new
inputs that can trigger incorrect behaviors of the HD model. Thapa
et al. [27] developed an automated black-box differential testing
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Figure 3: Perturbation Framework

framework to fool an HD model. They were able to improve the HD
model accuracy using retraining. Wang and Jiao [29] designed HD-
specific poisoning attack framework based on confidence-based
label-flipping method. They also proposed data sanitization as a
defense to filter suspect samples before training. The main weak-
ness of these studies is that they proposed simple perturbation
methods against HD. Gungor et al. [14] proposed black-box trans-
ferable adversarial attacks and measured different DL methods and
HD robustness. They showed that HD leads to a more resilient
and lightweight learning solution than the state-of-the-art deep
learning methods. Different than the state-of-the-art, we develop
an attack mechanism that works significantly better than simple
and single attack scenarios.

3 ATTACK DESIGN FRAMEWORK

Figure 1 represents our diversity included real-time attack design
framework. Given pre-trained HD and CNN models (trained previ-
ously using the training data), the first step is to create perturbed
test data via 9 different perturbation methods. After we obtain the
perturbed test data, we introduce diversity to prevent possible over-
laps in adversarial subspaces, minimize HD encoding overhead, and
increase attack effectiveness. We start with 2 most diverse attacks
and increment number of attacks until no further improvement
(prediction performance under attacks) is observed. Given diverse
set of attacks, we then perform sample-wise (real-time) attack se-
lection to find the attack that can fool the HD model the most based
on distance between class hyper-vector and attack hyper-vector.
Here, we assume that attacker can access to the pre-trained HD
model to send a query. Overall, our attack design framework con-
sists of 3 main modules: perturbation creation, diversity inclusion,
and real-time attack selection.

3.1 Perturbation Creation

Figure 3 illustrates our perturbation framework which consists of
two groups of perturbation methods: (i) transferable adversarial
attack, and (ii) simple perturbation. Transferable attack starts with
the attacker accessing pre-trained CNN model (substitute model)
and test data. Attacker exploit loss gradient information in CNN
and adopt 5 different attack generation methods to create perturbed
test data: fast gradient sign method (FGSM) [13], randomized fast
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Figure 4: Diversity Calculation Framework

gradient sign method (RFGSM) [31], projected gradient descent
(PGD) [23], basic iterative method (BIM) [19], and momentum it-
erative method (MIM) [9]. The perturbed data is then transferred
to pre-trained HD (target model). Although these attacks are not
HD-specific, an attacker relies on transferability property which is
satisfied when an attack developed for a substitute model is also
effective against the target model. Other than adversarial attacks,
we also include 4 simple perturbation methods [22]: random row
perturbation (RRP), random column perturbation (RCP), random
noise injection (RNI), and Gaussian noise injection (GNI). Each
attack uses a parameter, called perturbation amount (¢), that de-
notes the amount of noise added to the normal data. Based on the
selected diverse set of attacks after diversity inclusion (refer to Sec-
tion 3.2), we encode the selected perturbed attack data and obtain
the encoded attack hyper-vectors as illustrated in Figure 3. These
are then given to the pre-trained HD model and we obtain class
predictions for the attack g; ttack and clean test data Jpormqr- We
will use encoded HVs and HD predictions in attack selection (refer
to Section 3.3).

3.2 Diversity Inclusion

We introduce diversity to select the most diversified set of attacks
due to 3 main reasons: (i) different attacks can lead to same predic-
tion labels due to overlap in adversarial subspaces, (ii) HD encoding
is computationally expensive [16], and (iii) attack performance
can be increased by considering a subset of attacks. Overall, our
goal is to minimize HD encoding overhead while keeping attack
performance at a maximum level. Figure 4 depicts our diversity
calculation process. Given n samples and m attacks, we first cal-
culate sample-wise distance (§) among attacks. To find §, we use
Manhattan distance as a distance metric. Then, to find pair-wise
distance between attacks i and j (A;;), we sum the distances over
all samples, ie., A;; = Zzzl Sk To construct the distance matrix
A (which is hollow symmetric), we place A;; appropriately. For
instance, second row and third column of A corresponds to the
Manhattan distance between second and third attacks. After we
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generate this matrix, the next step is to select the largest value in
this matrix, providing us the set of the most diverse two attacks
D = {A;, Aj}. After sample-wise attack selection (refer to Section
3.3), we revisit A to find the next most diverse attack (second largest
value in A) and add the corresponding attack to the existing attack
set. Let Ay be the next most diverse attack, then we expand D as
follows: D = D U {Aj}. We expand the set D until we no longer
improve the attack performance which we measure by F; score.

3.3 Real-time Attack Selection

Given the prediction labels, we first compare attack predictions
with clean data prediction to test if an attack can fool the HD model
for each sample. Let y denote the number of attacks that can fool
HD. We analyze 3 different scenarios based on the value of y:

(1) y = 0: This scenario represents the worst-case scenario
where both clean and attack data lead to same class predic-
tion. In this scenario, we need to tune attacks (e.g., increase
perturbation amount €) or generate a completely new attack.

(2) y = 1: In this scenario, there is only one attack that can
mislead HD. We can simply select that single attack.

(3) y > 1: This scenario occurs when there are multiple attacks
that can mislead HD. Here, there is a need to select the most
effective attack among a set of attacks. Figure 5 presents
our attack selection framework for this case. For each given
sample, our goal is to select the attack that is able to fool the
HD model the most. We measure this based on the Manhat-
tan distance among query hyper-vector (clean test sample
class hyper-vector from HD associative memory) and attack
hyper-vectors. We select Manhattan Distance metric since
it is the most preferable for high dimensional applications
[2]. For each attack i, we calculate its Manhattan distance J;
from the query hyper-vector. Then, we select the maximum
distanced attack for a given sample. We repeat this attack
selection process for all samples.

4 EXPERIMENTAL ANALYSIS
4.1 Dataset Description

To validate the proposed attack design against HD, we use a realis-
tic IToT intrusion dataset, X-IIoTID [4]. This connectivity agnostic
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and device agnostic dataset reflects the changes and heterogeneity
of network traffic and systems’ activities generated from various
IIoT devices, connectivity protocols, and communication patterns.
To create the dataset, Brown-IloTbed testbed is used which is a
holistic and end-to-end IIoT security testbed developed based on
an industrial Internet reference architecture (IIRA). This dataset
contains 18 different attacks: generic scanning, scanning vulnerabil-
ities, fuzzing, discovering resources, brute force attack, dictionary
attack, malicious insider, reverse shell, MitM attack, MQTT cloud
broker-subscription, Modbus-Register reading, TCP relay attack,
command and control, exfiltration, false data injection, fake notifica-
tion, crypto-ransomware, and ransom denial of service. The attack
details can be found in [4]. Overall, with the normal data, we have
a classification problem with 19 labels. The collected data is related
to the end-to-end network traffic (i.e., from physical field devices
to the edge gateway and from the edge gateway to the cloud and
enterprise devices), host device logs, and the host device’s resources,
physical properties, and alert logs. The period for capturing normal
data began on December 5, 2019, ran for many hours each day, and
ended on March 23, 2020 (not continuous). The experiments on the
collected attack data took place over different times and days from
January 7, 2020 to March 27, 2020, with each attack experiment
repeated multiple times to collect more data.

4.2 Experimental Setup

We run all experiments on a PC with 16 GB RAM and an 8-core 2.3
GHz Intel Core i9 processor. For CNN, we selected SGD optimizer
with learning rate 0.01, relu activation function, and batch size of
32. For HD, we set hypervector dimensionality, D, to 1000 and used
random projection encoding. To measure attack performance, we
use 3 different metrics: (untargeted) attack success rate, accuracy,
and F; score. Attack success rate is the ratio of misclassified num-
ber of samples to the total number of samples under any attack.
Accuracy is the ratio of number of correct predictions to the total
number of samples. F; score is formulated as follows:

precision - recall

=2 — 1
! precision + recall )
P TP
where precision = TP+ FP and recall = TP+ FN'

4.3 Experimental Results

We compare our diversity-induced attack design with two bench-
marks: (i) selecting the same attack for all samples (denoted by
the attack name, e.g., FGSM), (ii) random attack selection for a
given sample (denoted by Random). We experimented with differ-
ent perturbation amounts (¢) from {0.1,0.2,0.3,0.4,0.5}. Figure 6
demonstrates attack performance comparison where ¢ = 0.1. While
y-axis provides percentage values, we have our metrics on the x-
axis: attack success rate, accuracy, and F; score. In this figure, green
denotes our attack design (leftmost bar), random selection is repre-
sented with orange, and selected single attacks (best performing 6
attacks) are represented with distinct colors. We can see that our
approach is far superior to the single attacks. Our attack design
can reach 77.2% attack success rate while the most effective single
attack (FGSM) can only achieve 49.3%. In terms of accuracy and F;
score, we observe the best attack performance under our approach.
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Figure 6: Attack Performance Comparison (¢ = 0.1)
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Figure 7: Our Attack Design Performance

We can decrease the prediction accuracy to 35.9% and F; score to
30.5%. However, with FGSM, we obtain 51.6% and 39.9% accuracy
and F; score respectively. Random selection approach is somewhere
in between different single attacks.

Figure 7 illustrates our attack design performance under selected
€ values. We present attack success rate, accuracy, and F; score
with blue, green, and orange colors respectively. We can observe
that as € increases, our method became much more effective while
prediction performance (both accuracy and F; score) decreases
significantly. We can reach up-to 97.6% attack success rate, 9.4%
accuracy, and 4.9% F; score (when € = 0.5). With chosen e values,
the selected number of attacks are 6, 5, 5, 5, and 7 respectively. This
selection consistently gives us the lowest F; scores. We also make
a comparison with the single best attack (FGSM) under different e
values. Table 1 presents the results for our method’s improvement
over FGSM. As € increases, attack success rate improvement de-
creases while accuracy and F score improvement increases. We can
reach up-to 36.2% attack success rate improvement, 52.5% accuracy
improvement, and 61.1% F; score improvement over.

Attack Selection Overhead: When we analyze our real-time
attack selection, we observe that it has a small computational over-
head while increasing attack effectiveness significantly. Table 2
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Table 1: Improvement over the best single attack (FGSM)

Perturbation Amount (¢) | Attack Success Rate (%) | Accuracy (%) | F1 Score (%)
0.1 36.2 30.5 23.7
0.2 26.8 24.1 30.1
0.3 22.2 27.8 45.9
0.4 18.1 41.7 61.1
0.5 15.8 52.5 57.1
Average 23.8 35.3 43.6

Table 2: Attack Selection Overhead

Number of Attacks 2 3 4 5 6 7 8
Elapsed Time (ms) 091 | 1.47 | 1.49 | 1.52 | 1.75 | 2.08 | 2.12

shows attack selection overhead with respect to increasing number
of attacks. As the number of attacks increases, the attack selection
overhead also increases. In the worst case, the overhead of our
framework is limited by 2.12 ms, and on average 1.75 ms.

5 CONCLUSION

Industrial Internet of Things (IIoT) enables fully automated produc-
tion systems by continuously monitoring devices and analyzing
collected data. Its security is one of the major obstacles that pre-
vent the widespread adoption of IIoT technology [25]. Intrusion
Detection Systems (IDSs) dynamically monitor the behavior of a
system to detect and respond to malicious activity. Machine learn-
ing methods are quite popular in IDSs due to its accurate prediction
performance. However, ML methods are vulnerable to adversarial
attacks, leading to worse prediction performance. Hyperdimen-
sional (HD) computing is a brain-inspired learning solution for
robust and efficient learning which can be a beneficial ML solu-
tion for IDSs. However, HD is also sensitive to adversarial attacks,
hence increasing the need for investigating its security aspect. In
this work, we proposed a novel adversarial attack design targeting
HD. After we find out the most diverse set of attacks, we select the
most effective attack sample by sample. Our experimental results
show that we can improve attack success rate by up to 36%, and F;
score by up to 61% compared to the most effective single attack.

ACKNOWLEDGMENTS

This work has been funded in part by NSF, with award numbers
#1911095, #2003277, and #2003279.

REFERENCES

[1] 2019. Understanding the Cybersecurity Threat Landscape in Asia Pacific. https:

//mews.microsoft.com/apac/features/cybersecurity-in-asia/.

Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. 2001. On the

surprising behavior of distance metrics in high dimensional space. In International

conference on database theory. Springer, 420-434.

[3] Muna Al-Hawawreh et al. 2019. An efficient intrusion detection model for edge
system in brownfield industrial Internet of Things. In Proceedings of the 3rd
International Conference on Big Data and Internet of Things. 83-87.

[4] Muna Al-Hawawreh, Elena Sitnikova, and Neda Aboutorab. 2021. X-IIoTID:
A connectivity-agnostic and device-agnostic intrusion data set for industrial
Internet of Things. IEEE Internet of Things Journal 9, 5 (2021), 3962-3977.

[5] Eirini Anthi et al. 2021. Adversarial attacks on machine learning cybersecu-
rity defences in industrial control systems. Journal of Information Security and
Applications 58 (2021), 102717.

[6] Pallavi Arora et al. 2021. Evaluation of machine learning algorithms used on
attacks detection in industrial control systems. Journal of The Institution of
Engineers (India): Series B 102, 3 (2021), 605-616.

[2

=

7

8

—
o)

=
)

=
&

=
&

(17

(18]

[19

[20]

[
-

[22

[23

[24

[26]

[27

(28]

[29]

(30]

[31

[32

[33

Onat Gungor, Tajana Rosing, and Baris Aksanli

Wencheng Chen and Hongyu Li. 2021. Adversarial Attacks on Voice Recognition
Based on Hyper Dimensional Computing. Journal of Signal Processing Systems
93,7 (2021), 709-718.

Paul Daugherty and Bruno Berthon. 2015. Winning with the industrial internet
of things: How to accelerate the journey to productivity and growth. Dublin:
Accenture (2015).

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting adversarial attacks with momentum. In IEEE conference
on computer vision and pattern recognition. 9185-9193.

Mohamed Amine Ferrag et al. 2022. Edge-IloTset: A new comprehensive realistic
cyber security dataset of IoT and IIoT applications for centralized and federated
learning. IEEE Access 10 (2022), 40281-40306.

Lulu Ge and Keshab K Parhi. 2020. Classification using hyperdimensional com-
puting: A review. IEEE Circuits and Systems Magazine 20, 2 (2020), 30-47.
Jonathan Goh et al. 2017. Anomaly detection in cyber physical systems using
recurrent neural networks. In 2017 IEEE 18th International Symposium on High
Assurance Systems Engineering. IEEE, 140-145.

Ian ] Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

Onat Gungor, Tajana Rosing, and Baris Aksanli. 2022. RES-HD: Resilient Intel-
ligent Fault Diagnosis Against Adversarial Attacks Using Hyper-Dimensional
Computing. arXiv preprint arXiv:2203.08148 (2022).

Onat Gungor, Tajana Rosing, and Baris Aksanli. 2022. STEWART: STacking
Ensemble for White-Box AdversaRial Attacks Towards more resilient data-driven
predictive maintenance. Computers in Industry 140 (2022), 103660.

Mohsen Imani et al. 2019. Bric: Locality-based encoding for energy-efficient
brain-inspired hyperdimensional computing. In Proceedings of the 56th Annual
Design Automation Conference 2019. 1-6.

Pentti Kanerva. 2009. Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random vectors.
Cognitive computation 1, 2 (2009), 139-159.

Moshe Kravchik and Asaf Shabtai. 2018. Detecting cyber attacks in industrial
control systems using convolutional neural networks. In Proceedings of the 2018
workshop on cyber-physical systems security and privacy. 72-83.

Alexey Kurakin, Ian ] Goodfellow, and Samy Bengio. 2018. Adversarial examples
in the physical world. In Artificial intelligence safety and security. Chapman and
Hall/CRC, 99-112.

Marianna Lezzi, Mariangela Lazoi, and Angelo Corallo. 2018. Cybersecurity
for Industry 4.0 in the current literature: A reference framework. Computers in
Industry 103 (2018), 97-110.

Xiang Li, Qian Ding, and Jian-Qiao Sun. 2018. Remaining useful life estimation
in prognostics using deep convolution neural networks. Reliability Engineering
& System Safety 172 (2018), 1-11.

Dongning Ma, Jianmin Guo, Yu Jiang, and Xun Jiao. 2021. Hdtest: Differential fuzz
testing of brain-inspired hyperdimensional computing. In 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 391-396.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

Harsha Moraliyage, Sachin Kahawala, Daswin De Silva, and Damminda Ala-
hakoon. 2022. Evaluating the Adversarial Robustness of Text Classifiers in
Hyperdimensional Computing. In 2022 15th International Conference on Human
System Interaction (HSI). IEEE, 1-8.

Koen Tange et al. 2020. A systematic survey of industrial Internet of Things
security: Requirements and fog computing opportunities. IEEE Communications
Surveys & Tutorials 22, 4 (2020), 2489-2520.

Marcio Andrey Teixeira et al. 2018. SCADA system testbed for cybersecurity
research using machine learning approach. Future Internet 10, 8 (2018), 76.
Rahul Thapa, Dongning Ma, and Xun Jiao. 2021. HDXplore: Automated Blackbox
Testing of Brain-Inspired Hyperdimensional Computing. In 2021 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). IEEE, 90-95.

Nilufer Tuptuk and Stephen Hailes. 2018. Security of smart manufacturing
systems. Journal of manufacturing systems 47 (2018), 93-106.

Ruixuan Wang and Xun Jiao. 2022. PoisonHD: poison attack on brain-inspired
hyperdimensional computing. In 2022 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). IEEE, 298-303.

Katy Warr. 2019. Strengthening deep neural networks: Making Al less susceptible
to adversarial trickery. O’Reilly Media.

Eric Wong, Leslie Rice, and J Zico Kolter. 2020. Fast is better than free: Revisiting
adversarial training. arXiv preprint arXiv:2001.03994 (2020).

Dazhong Wu, Anqi Ren, Wenhui Zhang, Feifei Fan, Peng Liu, Xinwen Fu, and
Janis Terpenny. 2018. Cybersecurity for digital manufacturing. Journal of manu-
facturing systems 48 (2018), 3-12.

Fangfang Yang and Shaolei Ren. 2020. Adversarial attacks on brain-inspired
hyperdimensional computing-based classifiers. arXiv preprint arXiv:2006.05594
(2020).



