L))

Check for
updates

Async-HFL: Efficient and Robust Asynchronous Federated
Learning in Hierarchical loT Networks

Xiaofan Yu
xlyu@ucsd.edu
University of California San Diego
La Jolla, California, USA

Quanling Zhao
quzhao@ucsd.edu
University of California San Diego
La Jolla, California, USA

Arya Mazumdar
arya@ucsd.edu
University of California San Diego
La Jolla, California, USA

ABSTRACT

Federated Learning (FL) has gained increasing interest in recent
years as a distributed on-device learning paradigm. However, multi-
ple challenges remain to be addressed for deploying FL in real-world
Internet-of-Things (IoT) networks with hierarchies. Although ex-
isting works have proposed various approaches to account data
heterogeneity, system heterogeneity, unexpected stragglers and
scalibility, none of them provides a systematic solution to address
all of the challenges in a hierarchical and unreliable IoT network.
In this paper, we propose an asynchronous and hierarchical frame-
work (Async-HFL) for performing FL in a common three-tier IoT
network architecture. In response to the largely varied networking
and system processing delays, Async-HFL employs asynchronous
aggregations at both the gateway and cloud levels thus avoids long
waiting time. To fully unleash the potential of Async-HFL in con-
verging speed under system heterogeneities and stragglers, we
design device selection at the gateway level and device-gateway asso-
ciation at the cloud level. Device selection module chooses diverse
and fast edge devices to trigger local training in real-time while
device-gateway association module determines the efficient net-
work topology periodically after several cloud epochs, with both
modules satisfying bandwidth limitations. We evaluate Async-HFL’s
convergence speedup using large-scale simulations based on ns-3
and a network topology from NYCMesh. Our results show that
Async-HFL converges 1.08-1.31x faster in wall-clock time and saves
up to 21.6% total communication cost compared to state-of-the-art
asynchronous FL algorithms (with client selection). We further val-
idate Async-HFL on a physical deployment and observe its robust
convergence under unexpected stragglers.

This work is licensed under a Creative Commons Attribution International
4.0 License.

IoTDI °23, May 09-12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0037-8/23/05.
https://doi.org/10.1145/3576842.3582377

236

Ludmila Cherkasova
lucy.cherkasova@gmail.com
Arm Research
San Jose, California, USA

Emily Ekaireb
eekaireb@ucsd.edu
University of California San Diego
La Jolla, California, USA

Harsh Vardhan
hharshvardhan@ucsd.edu
University of California San Diego
La Jolla, California, USA

Xiyuan Zhang
xiyuanzh@ucsd.edu
University of California San Diego
La Jolla, California, USA

Tajana Simuni¢ Rosing
tajana@ucsd.edu
University of California San Diego
La Jolla, USA

CCS CONCEPTS

« Computer systems organization — Sensor networks; « Com-
puting methodologies — Machine learning,.

KEYWORDS

Federated Learning, Hierarchical Sensor and IoT Networks, Asyn-
chronous FL.

ACM Reference Format:

Xiaofan Yu, Ludmila Cherkasova, Harsh Vardhan, Quanling Zhao, Emily
Ekaireb, Xiyuan Zhang, Arya Mazumdar, and Tajana Simunié Rosing. 2023.
Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hier-
archical IoT Networks. In International Conference on Internet-of-Things De-
sign and Implementation (IoTDI "23), May 09-12, 2023, San Antonio, TX, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3576842.3582377

1 INTRODUCTION

Embedding intelligence into ubiquitous IoT devices can perform
more complex tasks, thus benefiting a wide range of applications
including personal healthcare [9], smart cities [28], and self-driving
vehicles [6]. To enable distributed learning in a large-scale network,
Federated Learning (FL) has appeared as a promising paradigm.
The learning procedure begins with the central server distribut-
ing the global model to selected devices. Then each device trains
with gradient descent on its local dataset and sends the updated
model back to the server. Finally, the central server aggregates the
received models to obtain a new global model. Edge devices do not
reveal the local dataset but only share the updated model. Hence
FL collaboratively learns from distributed devices while preserving
users’ privacy. The canonical baseline in FL is Federated Averaging
(FedAvg) [41] which employs synchronous global aggregation - the
central server performs aggregation after the slowest device returns,
thus is impeded by unacceptable long delays or stragglers. Recent
contributions on semi-asynchronous FL [12, 15, 43, 51, 58] alleviate
the issue by aggregating updates that arrive within a certain period
and dealing with late model updates asynchronously. However,
the semi-asynchronous scheme still suffers from untimely updates

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Cloud Server E
2/ #ls A\g
W @

/e %/ %%é\\@
[=

Edge Devices
a Localdata < Downlink transmission =~ <+—— Uplink transmission
X Faiedlink % Downlinkmodelsync & Uplink model update

Figure 1: System architecture for a common three-tier IoT networks
running FL applications with heterogeneous delays and unreliable
networks.

with hard-to-tune waiting periods on heterogeneous and unreliable
networks.

For real-world IoT networks, we recognize that the diverse nature
of the overall system prevents an efficient and robust FL deployment.
A large number of real deployments are organized in a hierarchical
manner, for example, NYCMesh [2], HPWREN [1]. All of these
architectures can be simplified to the three-tier structure of cloud
server, gateway aggregators, and edge devices as shown in Fig. 1.
The cloud layer offers powerful servers with abundant resources
and effective processing capabilities. The gateway layer includes
base stations and routers, acting as an intermediate hub connecting
the cloud and edge devices. The bottom layer of edge devices refers
to small mobile systems like sensors, smartphones, drones, etc.,
usually subject to limited resources and energy.

Deploying FL on heterogeneous and hierarchical IoT networks
faces the following challenges:

(C1) Heterogeneous data distribution: the distribution of local
data on edge devices can be largely different due to envi-
ronmental variations or users’ specifics. Non-independent
and identically distributed (non-iid) data has been shown to
slow down or prevent FL convergence without careful and
tailored management [29, 37, 48].

(C2) Heterogeneous system characteristics: The edge devices
are equipped with various CPU chips, memory storage and
communication technologies. As a result, in Fig. 1, the com-
putational delay on each layer and the communication delay
between two layers can be largely different. Applying syn-
chronous and semi-asynchronous FL are subject to longer
waiting time.

(C3) Unexpected stragglers (or device dropout): Stragglers
are common in every layer of IoT networks, due to energy
shortage, circuit shortage or wireless interference. Without
careful management, the learning procedure might be de-
layed or completely hang up due to stragglers.

(C4) Scalability: Naively extending a two-tier algorithm to hier-
archical networks (3 tiers and more) can lead to significant
performance degradation, e.g., unconverged model, signifi-
cant communication load [39]. How to preserve the positive

237

Yu et al.

gains while avoiding undesired degradation during scaling to
hierarchical architectures remains an active research topic.

While previous works have studied how to improve FL convergence
under one or two of data heterogeneity [29, 37, 48], system hetero-
geneity [11, 32, 36], unexpected stragglers [42], and hierarchical
FL for better scalability [20, 59], none of existing work provides a
systematic solution to address all challenges in a hierarchical and
unreliable 10T network. Our work is the first end-to-end framework
that uses (i) asynchronous and hierarchical FL algorithm and (ii)
system management design to enhance efficiency and robustness,
for handling all challenges (C1)-(C4).

In this paper, we propose Async-HFL, an asynchronous and hier-
archical framework for performing FL in three-tier and unreliable
ToT networks.
® On the algorithmic side, Async-HFL utilizes asynchronous aggre-
gations at both the gateway and the cloud, i.e., the aggregation is
performed immediately after receiving a new updated model. There-
fore, fast edge devices do not have to wait for the slower peers and
stragglers can easily catch up after downloading the latest global
model. Compared to naively extending existing two-tier asynchro-
nous FL to a three-tier hierarchy, Async-HFL stabilizes convergence
and saves communication cost by adding an intermediate gateway
aggregation layer.

e Moreover, on the system management side, we propose two mod-
ules to improve the performance of asynchronous algorithm under
system heterogeneities and stragglers. We design device selection
module at the gateway level and device-gateway association module
at the cloud level. Gateway-level device selection determines which
device to trigger local training in real-time, while cloud-level device-
gateway association manages network topology (i.e., which device
connects to which gateway) for longer-term performance. Both
modules formulate and solve Integer Linear Programs to jointly
consider data heterogeneity, system characteristics, and stragglers.
For data heterogeneity, we define the learning utility metric to quan-
tify gradient affinity and diversity of devices, inspired from online
coreset selection [56]. For system heterogeneity, we monitor the
latencies per gateway-device link and available connections.

o Async-HFL is different from previous works in that (i) Async-HFL
considers finer-grained information of gradient diversity instead of
just loss values (as in state-of-the-art asynchronous client selection
algorithms [60]), and (ii) Async-HFL incorporates device selection
and network topology management at various tiers, which collabo-
ratively optimize model convergence in hierarchical and unreliable
IoT networks. To minimize communication overhead, during warm
up, we collect the gradients of all devices, perform Principle Com-
ponent Analysis (PCA) and distribute the PCA parameters to all
devices. During training, only the principle components of gradi-
ents are exchanged.

In summary, the contributions of Async-HFL are listed as follows:

e Recognizing the unique challenges in hierarchical and un-
reliable IoT networks, Async-HFL uses asynchronous aggre-
gations at both the gateway and cloud levels. We formally
prove the convergence of Async-HFL under non-iid data dis-
tribution.

Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical lIoT Networks

e To quantify data heterogeneity in a finer manner, we propose
the learning utility metric based on gradient diversity to
guide decision making in Async-HFL.

e To collaboratively optimize model convergence under data
heterogeneity, system heterogeneity and stragglers, Async-
HFL incorporates distributed modules of the gateway-level
device selection and the cloud-level device-gateway associa-
tion. Communication overhead is reduced by exchanging
compressed gradients from PCA.

e We implement and evaluate Async-HFL’s convergence
speedup and communication saving under various network
characteristics using large-scale simulations based on ns-
3 [3] and NYCMesh [2]. Our results demonstrate a speedup
of 1.08-1.31x in terms of wall-clock convergence time and
total communication savings of up to 21.6% compared to
state-of-the-art asynchronous FL algorithms. We further val-
idate Async-HFL on a physical deployment with Raspberry
Pi 4s and CPU clusters and show robust convergence under
stragglers.

Relationship with other FL research: Async-HFL focuses on
addressing system variations and potential stragglers in hierar-
chical IoT networks, thus is orthogonal to other FL techniques of
personalization [46], pruning [34] and masking [35]. Combining
Async-HFL with the above-mentioned techniques is feasible but is
not the focus of this paper.

The rest of the paper is organized as follows: Section 2 reviews
related works. Section 3 introduces background and models. Sec-
tion 4 presents a motivating study. Section 5 expands on the details
of Async-HFL. Section 6 covers the experimental setups and results.
Finally, the whole paper is concluded in Section 7.

2 RELATED WORK

In this section, we review state-of-the-art works and summarize the
existing frameworks in Table 1 with regard to challenges (C1)-(C4).

Synchronous FL. Based on FedAvg, a large number of works
have studied synchronous FL under data and system heterogeneity
from both theoretical and practical perspectives [11, 29, 32, 37,
42, 48]. The client (or device) selection procedure can be carefully
designed to mitigate heterogeneity by leveraging various theoretical
tools [8, 30, 44, 47, 54, 55]. While most works only consider data
and computational delay heterogeneity, TiFL [11], Oort [32] and
PyramidFL [36] brought up the communication delay variation and
implemented smart client selection to balance statistical and system
utilities. Nevertheless, all above works consider FL performing in
data centers, while long delays and stragglers in unreliable IoT
networks can lead to unsatisfied performance with synchrony.

Asynchronous FL. In contrast to synchronous FL, the asyn-
chronous scheme leads to faster convergence under unstable net-
works especially with millions of devices [26]. An increasing num-
ber of asynchronous FL works have been published in recent
years, with focuses on client selection [16, 23, 27, 60, 61], weight
aggregation [50, 50, 57] and transmission scheduling [33]. Semi-
asynchronous mechanisms are developed to aggregate buffered
updates [12, 15, 43, 51, 58]. However, how to fully utilize the asyn-
chronous property in hierarchical and heterogeneous IoT systems
have not been addressed.

238

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Table 1: Comparing Async-HFL and existing works.

Method Challenges
(C1y) (C2) (C3) (C9
Sync FL (two tier) v v X X
Async FL (two tier) v v v X
Hier. FL (>two tier) v v X v
Async-HFL (three tier) v v v v

Hierarchical FL. In hierarchical FL, gateways perform interme-
diate aggregations before sending their local models to the cloud,
so that the backhaul communications between gateways and the
cloud are reduced [39]. Multiple works have formulated client asso-
ciation and resource allocation problems to jointly optimize compu-
tation and communication efficiency in synchronous hierarchical
FL [4, 5, 39, 40]. Recent efforts studied mobility-aware [20] and
dynamic hierarchical aggregations for new data [59]. SHARE [18]
separated the device selection and device-gateway association into
two subproblems, then jointly minimized communication cost and
shaped data distribution at aggregators for better global accuracy.
RFL-HA [49] adopts synchronous aggregation within each sub-
cluster and asynchronous aggregation between cluster heads (gate-
ways) and the central cloud. All above works employ synchronous
aggregation in the system, thus suffering from stragglers.

The only work that studies asynchronous and hierarchical FL
is [50]. In contrast, we provide a systematic framework with addi-
tional management modules to adaptively optimize convergence
under (C1)-(C4) in real-time.

3 BACKGROUND

In this section, we provide background on learning model (Sec-
tion 3.1), system model (Section 3.2) and common techniques in
existing two-tier asynchronous FL (Section 3.3). To help the readers
get familiar with the notations, we present the list of notations in
Table 2. We also depict an example deployment in Fig. 2 which will
be referred to as we introduce the models.

3.1 Learning Model

Suppose each sensor device i collects data points (x%,y") ~ D!
where D' indicates the underlying data distribution at i. We as-
sume all distributions are drawn from the same domain. Non-iid
data distribution happens when D’ # D/, Vi # j. In practice, the
underlying distribution D' is unknown and we only have access
to a finite number of n; samples at each device. Note, that n; can
be different on various devices and at various time while we omit
the time subscript for simplicity. We aim for the typical goal of FL:
to learn a uniform model @ € R¥ to be deployed on all distributed
devices. Combining with personalized models is also feasible but
exceeds the scope of this paper. The loss function £(w; x’, y*) is de-
fined as an error function of how well the model @ performs with
respect to sample (x/, y?). We settle for minimizing the empirical
risk minimization problem (ERM) over all devices as follows:

1Y 1Yo o
min Ly(w) = — » LNw)=—)Y — » L(o:x,yt), (1)
weRd N; N;ni,; 8

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Yu et al.

Table 2: List of important notations in problem formulation.

Symbol Meaning ‘ Symbol Meaning

C Central cloud G Set of G gateways

N Set of N sensor nodes Ji Feasible gateway-sensor links at time ¢

I; Connected gateway-sensor links at time ¢ riC Computational delay on device i

TjDi , Tg Downlink and uplink delays between j and i Tij Gateway round latency between j and i

Rij Average data rate on link i, j R; Data rate of all selected devices at gateway j

B; Bandwidth limitation at gateway j ¢(w;x,y) Loss function defined on w and (x, y)

L'(w) Empirical loss function at device i Ln(w) Empirical loss function at central cloud

Dl Data distribution at sensor node i n; Number of samples at sensor node i

wy, Global model weights after h cloud epochs Y Learning rate at sensor nodes

wﬁ,z Gateway model at gateway j downloaded from wi e Sensor model at sensor node i downloaded from
cloud at 7 and aggregated after z gateway gateway at {, which the gateway downloaded
epochs from the cloud at 7 and aggregated after e device

epochs

H,Z,E Number of cloud, gateway and device epochs | p Regularization weight in async FL algorithm

a,p Exponential decay factor at cloud and gateways | s(-) Staleness function

uj, ni,v; Learning utility, gradients affinity and diversity | x, ¢ Hyperparameter in device selection and associ-

metric for device i

ation

Here Ly (w) is the global loss function at the central cloud, and
L'(w) is the loss function at sensor device i.

3.2 System Model

Network topology. In a hierarchical IoT network, suppose C de-
notes the central cloud. Let [n] be a set of integers {1, ..., n}. We de-
fine G = [G] as a set of G gateways (or base stations) and N = [N]
as a large set of N static deployed sensor devices. While all gate-
ways should have feasible paths to the central cloud, there might
be multiple gateways that are reachable from one sensor device.
Reachability can be limited due to multiple reasons such as range
limitation of wireless technology, failed sensor device or network
backbones. We combine all above factors into one notation, matrix
J: € ZN*C, which indicates the feasible sensor-gateway pairs at
wall-clock time ¢:

i = 1 if sensor i and gateway j are connectable at time ¢
LU 71 0 otherwise.
@

During training, a sensor is associated with only one gateway at
one time. The gateway triggers local training on the device, and
the device needs to upload the returned model to the same gateway.
But sensors can switch to another gateway between aggregations.
We use another matrix notation I; € ZN*Y with the same shape as
J+ as decision variables for real-time sensor-gateway connections:

1
Lij = { 0

For example, in Fig. 2, sensor device 2 can reach both gateway 1
and 2, but communicates with gateway 1 in the current round. In
this case, Jz 21 = Jr22 = 1,121 = 1,122 = 0.

Computational and Communication Models. Computa-
tional and communication delays play the major role as system
heterogeneities. In this paper, we adopt general models while more
specific parameterized CPU or network models (such as [14, 40])

if sensor i is connected to gateway j at time t
otherwise.

®)

239

Downlink model
transmission
Uplink model
transmission

OO

(uln) (uln)

G}

83 @D @O
(o) (e)
@ O-

Figure 2: An example of hierarchical FL deployment.

< -- Reachable link

Local training

Bandwidth
limitation

Round latency:
D C U
Ts2 = T3 + T3 + T3

can be applied when more information is given. We are more in-
terested in the communication delays happened on the last-hop
links, where bandwidth is more limited and the transmitters (sensor
devices) enjoy lower transmission power. During runtime, we mea-
sure round latency 7;; as the time to complete one gateway round
between gateway j and sensor i, which has three segments: (i) eri ,
the downlink delay to transmit a model from gateway j to device i,
(ii) Tic , the computational delay of device i to perform local training
and (iii) Tg. , the uplink delay to transmit the updated model in a
reverse direction. In Fig. 2, the downlink and uplink transmissions
are represented with the red and blue arrows, while local training
uses green arrow. The round latency is simply the sum of red, green
and blue arrows: 7;; = Tle. + Tl.c + ‘[5 The computational delay at
gateways and cloud for aggregation are neglected since gateways
and cloud generally have more computational resource.
Bandwidth Limitation. Bandwidth limitation places an upper
bound on the throughput or data rate. Different from the synchro-
nous design, we cannot accurately model the throughput at ¢ with
asynchrony. Therefore, given round latency 7;; and a FL. model with
size M, we estimate the average data rate on link , j as R;j = M/t;;.

Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical lIoT Networks

g
=1

Round Delay (K s)
. .
=] wn

4
n

Edge Device ID

0 25 50 75 100 125 150 175

Accuracy

1oTDI °23, May 09-12, 2023, San Antonio, TX, USA

=4
©

0.81
—— FedAvg-Oort ‘:;
0.6 RPL-HA 2 08 i
—— Semi-async g —— Three-tier Async-Rdn
—— Two-tier Async ——— Three-tier Async-ST
0411 —— Three-tier Async-HFL 0.7 ——— Three-tier Async-HFL
0 20 40 0 2 4 6

Time (Hour) Time (Hour)

Figure 3: Left: NYCMesh topology. Second left: The round delay distribution of all edge devices. Right: Convergence performance under

wall-clock time in the NYCMesh motivating study.

The total data rate of all selected devices at gateway j can be com-
puted as R; = Zf\il I;jR;j. Bj is an upper bound of average data
rate on last-hop links at gateway j. In Fig. 2, devices 1 and 2 are
subject to By, which is depicted as a blue arc.

3.3 Two-Tier Asynchronous FL

In asynchronous FL, each device downloads the latest global model
from the cloud, runs local training, and uploads the model to the
cloud where asynchronous aggregation is performed immediately.
The latest asynchronous FL algorithms [16, 53] employ two com-
mon techniques as follows.

Firstly, in addition to the original loss term L! ('), a regularized
loss term penalizing the difference between current model weights
o' and the downloaded global model w; is appended on device i:

©)

¢ (@"0r) = 1'(@) + Ll - or.

Here p is the regularization weight.
Secondly, the algorithm performs staleness-aware weight ag-
gregation at the cloud:

ap —a-s(th—r1)

(5a)
op — (1= ap)wp_1 + ap@new, (5b)
where wpeqy is the newly received model weights, h is the current
cloud epoch and ¢, is the staleness-aware weight calculated by
multiplying a constant « with the staleness function s(h — 7). Stale-
ness refers to the difference in the number of epochs since its last
global update. For example, h is the current global aggregating
epoch while 7 is the global epoch when the model is downloaded.
Intuitively, larger staleness means the model is more outdated and
thus should be given less importance. Staleness-aware aggregation
simulates an averaging process without synchrony. The staleness
function s(h — 7) determines the exponential decay factor during
model aggregation. We adopt the polynomial staleness function
sq(h = 1) = (h— 7+ 1)~ 9 parameterized by g > 0 as in [53].

4 A MOTIVATING STUDY

In this section, we conduct a motivating study of existing FL frame-
works under hierarchical and unreliable networks, justifying the
design of Async-HFL on both algorithmic and management aspects.
While recent works have noticed the importance of accounting
the latency factor during client selection [11, 32, 36], they only
considered the delay distribution in a data-center setting which

240

Table 3: Total communicated data size ratio (to Async-HFL) before
reaching 95% test accuracy in the motivating study.

Sync-Oort RFL-HA Semi-async Two-tier Async

0.79x 1.42x 1.66x 1.30x

is significantly different from the ones in real-world wireless net-
works. Real-world measurements have shown that wireless net-
works follow the long-tail delay distribution and are highly un-
predictable [45]. We implement the FL frameworks based on ns3-
fl [19] and extract the three-tier topology from the installed node
locations in NYCMesh [2] as depicted in Fig. 3 (left). We assume
that edge devices are connected to the gateways via Wi-Fi, and
the gateways are connected to the server via Ethernet. For each
node, we retrieve its latitude, longitude, and height as input to the
HybridBuildingsPropagationLossModel in ns-3 to obtain the av-
erage point-to-point latency. To include network uncertainties, we
add a log-normal delay on top of the mean latency at each local
training round. The delay distribution of all edge devices (assuming
all devices are selected) in one training round is shown in Fig. 3 (sec-
ond left). The simulated network delays mimic the measurement
results in [45]. We use the human activity recognition dataset [7],
assigning the data collected from one individual to one device thus
presenting naturally non-iid data. The upper bound on the band-
width of the gateways is set to 20KB/s for all experiments.

In such setting, we experiment the performance of (i) FedAvg
under Oort, the state-of-the-art latency-aware client selection
algorithm [32], (ii) RFL-HA [49] with asynchronous cloud aggre-
gation and synchronous gateway aggregation, (iii) Semi-async,
with synchronous cloud aggregation and semi-asynchronous gate-
way aggregation as in [43], (iv) two-tier Async FL which naively
extends the two-tier asynchronous algorithm [16, 53] to three-tier
by letting the gateway just forward data, (v) three-tier Async-HFL
with intermediate gateway aggregation proposed in our paper.

We report the wall-clock time convergence in Fig. 3 (right) and
the total size of the data communicated in ratio to Async-HFL in
Table 3. The convergence of FedAvg and RFL-HA are significantly
slowed down even with the state-of-the-art client selection. For
Semi-async, we test the waiting period of 50, 100, 150 seconds and
select the best results. Semi-async accelerates convergence but still
takes 0.39x longer to reach the same 95% accuracy than the fully
asynchronous methods. Noticeably, compared to two-tier async,
our three-tier Async-HFL achieves more stable and slightly faster
convergence, while saving 0.3x communication load (equivalent to
426MB or 1498 multilayer perceptron models). This gain comes from
the intermediate gateway aggregation. Introducing an additional

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Warmup initialization

®
o de

o(Jo

o. Lo

(> Upload gateway model after Z epochs
((')) O @ ® Cloud async aggregation

@ Cloud-level device-gateway asso.
@ Distribute global model to gateway
@ Gateway-level device selection
@ Distribute model to selected devices
@ Train the local model on device

@ Upload local model after E epochs
@ Gateway async aggregation

\
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
i

Figure 4: The step-by-step procedure of Async-HFL in one branch
of the hierarchical network.

“averaging" step does not only smooth out the curve but avoids
unnecessary back-and-forth transmission.

Aside from algorithmic design, framework management is also
critical in hierarchical FL. We experiment with random (Async-
Random), short-latency-first (Async-ST) gateway-level device
selection and Async-HFL with full management. The convergence
results are shown in Fig. 3 (right). With carefully designed modules,
Async-HFL converges 1.24x faster than the random gateway-level
device selection. Yet, a poor device selection like Async-ST that
ignores data heterogeneity can lead to a 2.13x slower speed to reach
95% accuracy or even an unconverged model in the worst case.

5 ASYNC-HFL DESIGN

5.1 Overview

To address all challenges (C1)-(C4) systematically, we propose an
end-to-end framework Async-HFL for efficient and robust FL es-
pecially in hierarchical and unreliable IoT networks. The major
differences between Async-HFL and previous frameworks are the
following: (i) Async-HFL quantifies non-iid data distribution by
learning utility, which is a metric based on gradient diversity, (ii)
Async-HFL incorporates strategic management components, the
cloud-level device-gateway association ((D in Fig. 4) and the
gateway-level device selection (3) in Fig. 4), which are critical
in jointly speeding up practical convergence under heterogeneous
data and system characteristics.

Fig. 4 depicts the step-by-step procedure of Async-HFL in one
round of cloud aggregation. For simplicity, we only show one branch
of the hierarchical network. After the warmup initialization, we
start from the cloud determining the low-level network topology,
namely device-gateway association (D)), and then distributing the
latest global model to all gateways ((2)). Next, the gateway dis-
tributes the model to devices selected by the gateway (3-(@). On
the device, local training is performed for E epochs and an updated
model is returned to the gateway (®-(®). The gateway then inte-
grates the newly received model immediately using asynchronous
aggregation ((7)). After Z gateway updates, the current gateway
model is uploaded to the cloud for global asynchronous aggregation

(®-O).

241

Yu et al.

We provide more details on the design of Async-HFL in this sec-
tion. Section 5.2 presents the detailed asynchronous hierarchical
algorithm with convergence proof. Section 5.3 presents the defi-
nition of the learning utility metric to quantify gradient diversity.
Finally, Section 5.4 reveals the concrete design of device selection
and device-gateway association modules.

5.2 Asynchronous Hierarchical FL Algorithm

In Async-HFL, besides the asynchronous cloud aggregation, we
utilize an intermediate gateway layer and apply staleness-aware
asynchronous aggregation for Z epochs at the gateway. Compared
to having the gateways directly forwarding asynchronous model
updates to the cloud, adding intermediate gateway aggregations
reduces communication burden while making sure the convergence
guarantees still apply after adding minimal assumptions (as detailed
later). Steps ®-(7) correspond to the two-tier asynchronous FL in
Fig. 4, while our hierarchical algorithm includes steps), @-(9),
spanning all three tiers in the IoT network.

The concrete algorithm implementation on cloud, gateways and
devices is shown in Algorithm 1. The cloud and each gateway holds
a Cloud or Gateway process, which completes the initialization
and asynchronously triggers the Updater threads for aggregation.
The Updater thread performs aggregation until the predetermined
epoch number is reached. Each sensor device runs a Sensor pro-
cess that locally solves a regularized optimization problem using
stochastic gradient descent (SGD). While previous works have stud-
ied adaptively adjusting local epochs according to computational
resources [37], namely trading model quality for faster return, such
gain in Async-HFL might be trivial due to asynchronous aggregation
and longer as well as unexpected network delays. Hence Async-HFL
uses a fixed number of E and Z epochs on device and gateway-level.

Convergence Analysis. We now establish the theoretical con-
vergence of Async-HFL’s algorithm. We set the staleness function
s(+) = 1 throughout this section. We require certain regularity con-
ditions on the loss function, namely L-smoothness and p-weak con-
vexity and bounded gradients. Note that p-weak convexity allows
us to handle non-convex loss functions (1 > 0), convex functions
(4 = 0) and strongly convex functions (u < 0). We list the additional
assumptions and the convergence result below?.

ASSUMPTION 1 (BOUNDED GRADIENTS). The loss function at the
cloud, Ly, and the regularized loss function at each device g;, Vi € N,
have bounded gradients bounded by

IVLy(@)|> < Vi, Vo € R
Vg (w;0)]|> < Vo, Ve, €R%VieN.

ASsUMPTION 2 (BOUNDED DELAY). The delays h — T at the cloud
model, and z — { at the gateway model are bounded
h-7 <K, z-{ <Ky (6)

AssUMPTION 3 (REGULARIZATION p IS LARGE). p is large enough
such that for some fixed constant ¢ > 0,V7,{ > 0,h > 1,i € [N],

—(1+2p+0)V; + (p2 - g)E[nw;m_l —wi’gllz] >0 (7)

The complete proof is included in the supplementary material or can be found at
https://arxiv.org/abs/2301.06646

Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical lIoT Networks

Algorithm 1: Asynchronous Hierarchical FL

Input:C,G,N,H,Z,E, a, ,B,s(-),gi(~),a)0
1 Process Cloud()
2 Send (@, 0) to all gateways j € G
3 Run CloudUpdater () asynchronously in parallel

4 Thread CloudUpdater()
5 for cloud epoch h € [H] do

6 if receive (j,,.,, 7) from gateway j then
7 wp — (1 —ap)op_; +a X s(h—1)whe,
8 Send (wp, h) to all gateways j € G

9 Process Gateway(j)
if triggered by Cloud() then
Receive global model and timestamp (wy,, h)

10
11

12 Update 7 « h, wi’o — wy,

13 Send (wi,z, z) to selected sensors i connected to j

14 | Run GatewayUpdater (j) asynchronously in parallel

Thread GatewayUpdater(j)

for gateway epoch z € [Z] do

Receive (@},¢4y» {) from sensor node i
; — (1 - ﬁé)wi,z—l + ﬁ;wizew

a)T,Z
Send (wi,z, z) to all sensor i connected to j

15
16
17

18

19

20 Upload (wi > T) to cloud

21 Process Sensor (i)

22 if triggered by Gateway(j) then

23 Receive (w{.’z, z) from gateway j
; .

7,4,0

for device epoch e € [E] do

i i _ Qi N
L wr,g,e A wr,g,e—l)/V_l} (wr,g,e—l’wT,Z)

24 Update { « z, @ — “’4,2

25

26

27

Upload (w;g”E’ {) to gateway j

THEOREM 5.1. For L-smooth and p-weakly convex loss function
¢, under Assumptions 1-3, withy < L™\, a < KC_3/2 and f§ < Kg_S/z,
after running Algorithm 1 for H, Z and E cloud, gateway and device

epochs, we obtain

E[Ln(@wo) — Ly (wp)]

afycHZE ®)

+=

H-1 2
T’?_IEE[”VLN(wh)” I=

Theorem 5.1 extends the proof of the two-tier asynchronous
FL algorithm in [53] to three tiers, namely the device-gateway-
cloud architecture. Adding the extra gateway level only requires a
bounded delay assumption at the gateway and adds constant terms
in E due to the gateway, without sacrificing the convergence rate.
We are able to ensure convergence in spite of mild assumptions,
for instance, constant staleness s(-) = 1 and weak convexity, and
using stronger assumptions would enable even stronger results
both theoretically and empirically.

242

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

RENPRS
1 g < 1 ., .
i \?'/ Est. Gllgobali ! vglj#ii
: Gradient |1 :
! &

Figure 5: Visualization of the defined learning utility metric com-
bining gradient affinity and gradient diversity.

5.3 Learning Utility

To quantify the learning-wise contribution of aggregating each
device’s local model to the global model, we need a metric that ac-
counts for data heterogeneity. State-of-the-art asynchronous client
selection algorithms [25] use local loss values to indicate the learn-
ing contribution of a device. Here in Async-HFL, we propose the
learning utility metric which takes into account gradient diversity.
Compared to loss values, gradient diversity contains finer-grained
information about data heterogeneity.

We extract the latest gradient on device i: Vg’ (!

7,0,E’
global gradient as a sum of all latest gradients: VLy = % Zg\i 1 '
The learning utility metric u; is defined for each device i based on
the gradient affinity with the global gradient, 1;, and the gradient
diversity with the other devices, v;:

wiyz), and

ui =1+ vi, (9a)
ni = Vg' VL, (9b)
_, Nz
L iTyqJ
v,—N_l;Vg Vg’. (9¢)

To assist understanding, a visualization example is shown in Fig. 5.
The gradient affinity, 1;, evaluates the similarity between device i’s
gradients and the global gradients, taking the dot product of V¢’ and
VLy (Equation (9b)). On the other hand, the term v; sums up the
pairwise dissimilarity between i and all other devices to evaluate
the diversity of gradients (Equation (9c)). By combining 1; and
vi, the learning utility u; is a device-specific metric that favors the
devices with close-to-global or largely diverse data distribution. The
idea of learning utility is inspired from online coreset selection [56],
where the goal is to select a finite number of individual samples that
preserve the maximal knowledge about data distribution to store in
memory. We stress that our learning utility metric jointly considers
the norm and the distribution of gradients, thus integrating more
information than just the norm of gradients or loss value.

5.4 Device Selection and Device-Gateway
Association

After identifying the learning utility metric to model data hetero-
geneity, in this section, we present the design of gateway-level
device selection and cloud-level device-gateway association to en-
hance practical convergence of Async-HFL. Both modules are de-
signed to account diverse data distribution, heterogeneous latencies
and unexpected stragglers. Fig. 6 presents an overview of the design
and the necessary information to be collected and exchanged. As
shown, the gateway-level device selection module executes after

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Edge [“") Gateway

() Device Aggregators Q Cloud Server

@) c3D @,
> Gateway Async | — LA V
Local é) il éJ S—
Traini

raining % - sl %@ Cloud-Level

+————| Device Selection | «———— | Device-Gateway

% @ Association
—— Uplink and downlink

model transmission @’ Uplink model update % Compressed gradients

— gggi"ﬁ':):;’ldi:f‘;‘”“""k > Downlink model sync @ Estimated round latencies

Figure 6: The overview of the distributed design of gateway-level
device selection and cloud-level device-gateway association. The
thick arrows represent necessary communications for FL while the
thin arrows stand for communication overhead.

the previous gateway aggregation, and thus adjusts device partici-
pation in real time. The device-gateway association module is fired
less frequently, once after a certain number of cloud epochs, and
thus manages network topology for longer-term performance.

Gateway-Level Device Selection. Given the current set of
devices connected to gateway j at time t (I;;; = 1), we select a
subset to trigger asynchronous training. Suppose d; = 1 denotes
that device i is selected and the latest model is transmitted from the
gateway to the device, but the new updated model has not returned
from the device. Once returned, the gateway-level device selection
module records the compressed gradients information Vg' from
the device, from which the learning utility u; is updated. We also
keep track of the moving average of device’s round latency 7;; at
gateway j. In real-time selection, devices presenting large learning
utility and short round latency are preferred, as these devices are
able to contribute significantly to the convergence in a fast manner.
We model the selection problem as an Integer Linear Program with
variables of device selecting status d;:

(Device Selection atj) max Z diu; (1/75)" (10a)
It,ijzl

s.t. diRij <Bj, Vie {i|1t,ij = 1} (10b)
di €{0,1} Vie {ill;;; =1} (10¢)

Equation (10a) defines the objective combining learning utility and
round latency, with k as a hyperparameter that curves the contribu-
tion of round latency. Equation (10b) imposes the bandwidth upper
bound at gateway j. The problem has at most O(|N|) variables and
linear constraints.

Cloud-Level Device-Gateway Association. Given the feasible
links J; at time ¢, we need to determine the device-gateway associ-
ation I; used in the following cloud epochs. We remind the readers
that J; denotes the real-time link availability, so unexpected device
or link failures are reflected in J; and our association solver is able
to consider them timely. At the cloud, we retrieve the gradients and
round latency information from the corresponding gateways, and
send back the decided association I;. Previous works have shown
empirically that a stronger similarity of the gateway data distri-
bution to the global distribution leads to a faster method conver-
gence [18]. To “shape” the gateway distribution while fully utilizing

243

Yu et al.

bandwidth, we formulate a multi-objective optimization problem:

(Association at cloud) max ugjgcr — PRs1ack (11a)
N

s.t. th’ij Ui > Ugjgeks VJiEG (11b)
i=1
N

th,ij Rij/Bj < Rgjaeks Vj€G (11c)
-1

Itij <Juij» VieN,jegGg (11d)
G

th,ij <1, VieN (11e)
j=1

Itij € {0,1}, Vie N (11f)

The total objective in Equation (11a) balances the learning utility
and the throughput of all associated devices at each gateway. Using
slack variables, we are able to disassemble the max-min operation
thus keep the problem an Integer Linear Program. The first objective
Ugjqck 1s a slack variable defined as the minimal learning utility
among all gateways (Equation (11b)). The second objective Rgj4cr
is a slack variable for the maximal associated throughput ratio
(R;j/Bj) among all gateways (Equation (11c)). Our goal is to make
a balanced allocation of devices (considering both learning utility
and data rate) which are proportional to the gateways’ bandwidth
limitations. ¢ is used to tune the importance ratio between sub-
objectives. Equation (11d) limits I; to use feasible links defined by J;.
Equation (11e) forces each device to connect to at most one gateway.
The problem has O(|G||N|) variables and linear constraints.

The two Integer Linear Programs are in the form of 0-1 Knap-
sack problem [21] which can be approached by a large number of
algorithms ranging from optimal solver, greedy heuristics to meta-
heuristics. In this paper, we implement both problems in the Gurobi
solver [22] and show the computation overhead is negligible in a
200-node network compared to the savings in convergence time.

Minimizing Communication Overhead. The thin arrows in
Fig. 6 show the communication overhead, including latest gradients
Vg', round latencies 7;; and network topology J;, I;. Among these
meta information for management, gradients act as the major source
of overhead. To minimize the communication overhead of Async-
HFL, we first collect all devices’ gradients during warmup, then
perform Principle Component Analysis (PCA) on these gradients.
Afterwards, we distribute the PCA parameters to all local devices.
During the real training session, only the principle components of
gradients are exchanged with gateways and clouds. An overhead
analysis of Async-HFL is presented in Section 6.7.

6 EVALUATION
6.1 Datasets and Models

To simulate heterogeneous data distribution, we retrieve non-iid
datasets for four typical categories of IoT applications. The infor-
mation of the datasets from each category, the partition settings
and the models are summarized below.

Application #1: Image Classification. We select MNIST [17],
FashionMNIST [52], CIFAR-10 [31] datasets for evaluation. We
apply CNNs with two convolutional layers for MNIST and Fashion-
MNIST, and the canonical ResNet-18 [24] for CIFAR-10. All three

Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical lIoT Networks

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Table 4: Statistics of federated datasets. Model size refers to the size of the packet that contains all weights in the model.

Dataset Devices Avg. Samples/Device Data Partitions Models Size
MNIST 184 600 Synthetic (assign 2 classes to each device) CNN 1.6MB
FashionMNIST 184 600 Synthetic (assign 2 classes to each device) CNN 1.7MB
CIFAR-10 50 1000 Synthetic (assign 2 classes to each device) ResNet-18 43MB
Shakespeare 143 2892.5 Natural (each device is a speaking role) LSTM 208KB
HAR 30 308.5 Natural (each device is a human subject) MLP 285KB
HPWREN 26 6377.4 Natural (each device is a station) LSTM 292KB

image classification datasets are partitioned synthetically with 2
classes randomly assigned to each device, and the local samples are
dynamically updated from the same distribution.

Application #2: Next-Character Prediction. We adopt the
Shakespeare [10] dataset, where the goal is to correctly predict
the next character given a sequence of 80 characters. Local data is
partitioned by assigning the dialogue of one role to one device. We
apply a two-layer LSTM classifier containing 100 hidden units with
an 8D embedding layer, which is the base model for this application.

Application #3: Human Activity Recognition. We use the
HAR dataset [7] collected from 30 volunteers. We assign the data
from one individual to one device and apply a typical multilayer
perceptron (MLP) model with two fully-connected layers.

Application #4: Time-Series Prediction. We build a time-
series prediction task using the historical data collected by the High
Performance Wireless & Education Network (HPWREN) [1]. HP-
WREN is a large-scale environmental monitoring sensor network
spanning 20k sq. miles and collecting readings of temperature, hu-
midity, wind speed, etc., every half an hour. Each reading has 11
features and we combine the readings in the past 24 hours (in total
48 readings) to be one sample. Each device holds the data collected
at one station. The goal is to predict the next reading. We use the
mean squared error (MSE) loss and a one-layer LSTM with 128
hidden units.

6.2 System Implementation

As each trial of FL on a large physical deployment can take up
to days, we mainly use simulations to mimic practical system and
network heterogeneities. We further implement and validate Async-
HFL on a smaller physical deployment.

Large-Scale Simulation Setup?. We implement our discrete
event-based simulator based on ns3-fl [19], the state-of-the-art
FL simulator using PyTorch for FL experiments and ns-3 [3] for
network simulations. Note, that in contrast to most existing frame-
works that simulate communication rounds [29, 38, 48, 53], ns3-
fl simulates the wall-clock computation and communication time
based on models from realistic measurements. Approaches showing
superb convergence with regard to rounds might perform poorly
under wall-clock time if failing to consider system heterogeneities.
The network topology is configured based on NYCMesh as de-
scribed in Section 4 with 184 edge devices, 6 gateways, and 1 server.

“Implementation of the large-scale simulation is available at https://github.com/
Orienfish/Async-HFL.

244

Table 5: Important parameters setup on various datasets.

Dataset ‘ Target Acc./Err. Gateway y P
MNIST 95 M 0.01 0.1
FashionMNIST 75 1M 0.01 0.1
CIFAR-10 50 20M 0.001 1.0
Shakespeare 35 20k 0.01 0.2
HAR 95 20K 0.003 0.1
HPWREN 1.5e-5 (pred. err.) 20K 0.001 0.1

Physical Deployment Setup®. We implement Async-HFL on
Raspberry Pi (RPi) 4B and 400 based on the state-of-the-art frame-
work FedML [13]. The physical deployment consists of 7 RPi 4Bs
and 3 RPi 400s, distributing in 7 different houses and all connecting
to the home Wi-Fi router. We ensure the variances of networking
conditions by setting up some RPis in the farther end of the back-
yard, some in the bedroom in the vicinity of the router. We stress
that the networking conditions may also be affected by the Wi-Fi
traffic in real time. For example, the network delay could be longer
if the residents are streaming a movie in the meantime. Such setup
mimics the real-world scenarios where our application shares the
bandwidth with other traffic and the network latency enjoys high
diversity. In addition, during our experiment, we observe that RPis
may fail to connect from the beginning, or (with rare probabilities)
encounter unexpected suspension in the middle of one trial. Creat-
ing two virtual clients on each RPi, we are able to obtain a total of
20 clients on the RPi setup.

Apart from the RPis, we set up 20 more clients by requesting 1, 2
or 4 CPU cores from a CPU cluster and each accompanied by 4 GB
RAM. Different from the RPi clients, where networking conditions
vary largely, the CPU cluster has a stable internet connection but the
computational delay varies depending on the requested resource.
Since we do not have access to the home Wi-Fi router, we deploy
the implementation of gateways and the cloud on an Ethernet-
connected desktop, with an Intel Core i7-8700@3.2GHz, 16GB RAM
and a NVIDIA GeForce GTX 1060 6GB GPU.

6.3 Experimental Setup

Baselines. Given that the major design of Async-HFL is
around device selection and association, we adopt state-of-the-
art client-selection methods from the synchronous, hybrid, semi-
asynchronous, and asynchronous FL schemes to compare. We add
the prefix sync to the baselines using synchronous aggregations at
both gateway and cloud. Conversely, async indicates asynchronous

3Implementation of the physical deployment is available at https://github.com/
Orienfish/FedML.

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Yu et al.

Table 6: Convergence speedup on large-scale simulations and various datasets. Bolded numbers reflect the best baseline result on each dataset.

Dataset Convergence time speedup of Async-HFL with respect to baselines
Async-HL Async-Random Semi-async RFL-HA Sync-Oort Sync-TiFL Sync-DivFL Sync-Random
MNIST 1.11x 1.27x 6.2x 32.5x 40.0x 27.13x 63.4x 67.3x
FashionMNIST 1.08x 1.49x 8.3x 36.7x 20.5x 32.8x 73.4x 96.8x
CIFAR-10 1.09x 1.40x 2.3x 12.3x 44.3x 59.0x 62.0x 61.7x
Shakespeare 1.19x 1.79x 0.59x 0.71x 0.31x 2.39x 5.87x 5.46x
HAR 1.31x 1.22x 2.7x 7.4x 10.3x 21.6x 22.5x 24.1x
HPWREN 1.11x 1.48x 2.4x 12.8x 19.5x 26.5x 27.7x 31.4x
o 6 R 1.75
N H I Async-HFL [Semi-async o . H I Async-HFL I Only Association
LE o4 [0 Async-HL [RFH-LA E o 1.50 I Only Device Selection [0 Pure Random
£% mm Async-Random - | ‘ |
EE P2 125 W M
S£2 e | ‘ |
& =
° g Loo

MNIST FashionMNIST CIFAR-10 Shakespeare HPWREN HAR

HPWREN

MNIST FashionMNIST CIFAR-10 Shakespeare HAR

Figure 7: Left: Total communicated data size in ratio compared to Async-HFL on large-scale simulations and various datasets. Right: Convergence
time in ratio compared to Async-HFL using various combinations of device selection and device-gateway association.

aggregations at both gateway and cloud. The only two baselines not
following this naming rule are RFL-HA and Semi-async as follows.

e Sync-Random/TiFL/Oort/DivFL makes random device-
gateway association while device selections are made via
random selection, TiFL [11], Oort [32] and DivFL [8] respec-
tively. TiFL groups devices with similar delays to one tier and
greedily selects high-loss devices in one tier until reaching
the throughput limit. Oort uses a multi-arm bandits based
algorithm to balance loss and latency. DivFL utilizes a greedy
method to maximize a submodular function which takes the
diversity of gradients into account.

o RFL-HA [49] uses synchronous aggregation at gateways
and asynchronous aggregation at cloud. While applying a
random device selection at the gateway level, RFL-HA util-
lizes a re-clustering heuristic to adjust device-gateway asso-
ciations.

e Semi-async performs semi-asynchronous aggregations at
gateways as in [43] and synchronous aggregations at cloud.
Random choices are applied for device selection and device-
gateway association. We experiment with the semi-period
of 50, 100, 150 seconds and pick the best results.

e Async-Random/HL uses random device-gateway associ-
ation and random or high-loss first device selection under
the asynchronous scheme. Prioritizing the nodes with high
loss or large gradients’ norm is the state-of-the-art approach
for asynchronous FL [25]. We did not compare with [61] as
their algorithm depends on completely different metrics.

Evaluation Metrics. For the simulation, we compare the con-
vergence time, i.e., the wall-clock time to reach a predetermined
accuracy or test loss (i.e., loss on the test dataset). Detailed parame-
ters setup are listed in Table 5. The target accuracy or loss is close
to the optimal value that is reached by FedAvg. We also compare
the total communicated data size to account communication ef-
ficiency. For the physical deployment, we quantify convergence
using the accuracy or test loss at the same wall-clock elapsed time.
We also study the execution time, which is indicative of energy
consumption on real platforms.

245

6.4 Results on Large-Scale Simulations

Convergence Results. We first report the simulated convergence
time on all datasets using NYCMesh topology. We set device epochs
E = 5 and gateway epochs Z = 20 for asynchronous, Z = 5 for
semi-asynchronous and synchronous gateway aggregations. Each
method is tested with three random trials and we report the aver-
age convergence time and the corresponding speedup in Table 6.
On all three image classification datasets, Async-HFL achieves a
minimum 1.11x, 1.08x, 1.09x speedup over the best baseline. On
HAR and HPWREN datasets (with smaller number of devices, see
Table 4) Async-HFL surpasses the best baseline by 0.22x and 0.11x
respectively. Hence the design of Async-HFL to balance learning
utility and system characteristics works under both synthetic and
nature data partition. The only exception is Shakespeare, where
Sync-Oort, RFL-HA and semi-async reach the target accuracy faster
than Async-HFL. Nevertheless, we emphasize that Async-HFL still
has 1.19x speedup compared to the state-of-the-art asynchronous
FL. We speculate that the relative slower convergence of all asyn-
chronous methods on Shakespeare roots in the essential converging
difficulty of two-tier asynchronous FL algorithms. In the conver-
gence curve of Shakespeare, we observe the first test accuracy in-
crease with asynchronous methods after around 100 cloud epochs,
while the synchronous baseline improves test accuracy at the first
cloud epoch. We will refine the algorithmic design of Async-HFL
for efficient convergence on Shakespeare in our future work. In
general, synchronous methods take much longer to reach the tar-
get accuracy due to the long waiting time, even with delay-aware
client selection methods such as Oort and TiFL. Both RFL-HA and
Semi-async leverage hybrid aggregation scheme, thus converge
slower than the fully asynchronous methods while faster than the
synchronous approaches, except on Shakespeare. The convergence
speedup of Async-HFL over state-of-the-art asynchronous methods
is 1.08-1.31x on all datasets.

The total communicated data size of non-synchronous methods
compared to Async-HFL is shown in Fig. 7 (left). We are only in-
terested in comparing non-synchronous methods as synchronous
aggregation trades long waiting time for less cloud epochs and com-
munication savings. Therefore, synchronous methods take much

Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical lIoT Networks

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

I Sync-Random W Async-HL W Async-HFL
MNIST FashionMNIST . HAR HPWREN
1 0.18
60 50 -
751 1
o) 3 40 oy 2 0.16
£ a0 £ 72 :
S S 30 S %014
" 2] Iy) [| A ¢
20
' 20 7 67 0.12 \\
2 a 6 2 4 6 2 a 6 2 4 6 8

Time (k sec) Time (k sec)

Time (k sec) Time (k sec)

Figure 8: Convergence results under wall-clock time on the physical deployment.

less communication to converge but the slowdown is usually unac-
ceptable as shown in Table 6. Async-HFL saves total communicated
data size by 2.6%-21.6% and 14.5%-66.8% compared to Async-HL and
Async-Random on all datasets. The total transmitted data size of
semi-async and RFL-HA on Shakespeare is significantly lower than
asynchronous approaches due to their fast convergence. Note, that
on CIFAR-10, although RFL-HA consumes only 0.65x exchanged
data compared to Async-HFL, it takes 11.3x longer to reach the
same accuracy. The hybrid schemes of RFL-HA and Semi-async do
not end up with faster convergence nor communication savings on
MNIST, FashionMNIST, HPWREN and HAR.

Performance Breakdown. Async-HFL includes two modules to
boost the FL performance: gateway-level device selection and cloud-
level device-gateway association. To evaluate the contribution of
each component separately, we compare the convergence time on
all datasets using (i) pure random selections, (ii) only the device
selection, (iii) only the device-gateway association, and (iv) the
complete Async-HFL as shown in Fig. 7 (right). The target accuracy
and bandwidth are set to the same as in Table 5. Each module
contributes various extents on different datasets. On MNIST, CIFAR-
10 and HAR, the device-gateway association improves convergence
more significantly by balancing the network topology, achieving
1.71x, 1.23x and 1.17x speedup by itself. On FashionMNIST, using
one module does not change much, but applying both modules
leads to a 1.23x speedup. On Shakespeare, the speedup is mainly
supported by our coreset device selection with a 1.12x speedup by
itself. On HPWREN, applying a single device selection or device-
gateway association module leads to a 1.45x or 1.17x speedup, while
using both modules contributes to a 1.64x total speedup. Hence
both device selection and association components are necessary in
Async-HFL to deal with various data and system heterogeneities.

6.5 Results on Physical Deployment

Convergence Results. We validate Async-HFL on the physical
deployment running MNIST, FashionMNIST, HAR and HPWREN
datasets. The accuracy or test loss under wall-clock time are sum-
marized in Fig. 8. We run Async-HFL and Async-HL for 30 cloud
rounds, Sync-Random for 3 cloud rounds, unless the system is sus-
pended due to stragglers. Note, that Async-HL is the state-of-the-art
asynchronous baseline and presents the second best result in simu-
lations. Async-HFL ends up with 70%, 56% and 75% accuracies on
MNIST, FashionMNIST and HAR, while Async-HL only reaches
62%, 36% and 73% at similar time (after 7.6K, 3.4K and 2K seconds).

246

5 10001 B Comp. delay = E Comp. delay

2 mmm Comm. delay 2 s Comm. delay

2 Y 5001

g 500 A g

Y U YN (RN | DS
01234567809 20212223242526272829

Device id Device id

Figure 9: Round latency results on the physical deployment running
MNIST. Left: Time breakups on RPis. Right: Time breakups on CPUs.

For the synchronous baseline, we are only able to obtain very lim-
ited traces due to straggler effects. After setting a timeout limit for
synchronous aggregations, we acquire the curves in Fig. 8 with very
slow convergence. The HPWREN dataset is very computational
challenging for all methods and a lot of devices drop off due to no
communication for a long time. Async-HFL strives for convergence
within 2K seconds, while Async-HL and Sync-Random reach simi-
lar test loss after 3K and 7.7K seconds. While a small-scale physical
deployment can be largely affected by uncertainties, we are able
to observe consistently better convergence using Async-HFL over
the baselines on all four datasets. The results demonstrate the ro-
bustness of Async-HFL under delay heterogeneities and stragglers.
This is because the Async-HFL performance is dynamically guided
by its two modules: (i) the gateway-level device selection module,
which timely adjusts device participation, and (ii) the cloud-level
device-gateway association, which considers device dropouts via
taking J; as input.

Round Latency. Fig. 9 displays the round latency measurements
of our practical setup, which demonstrates how challenging our
physical deployment is. To remind the reader, round latency is the
time to complete one gateway round of downloading the model
to device, training the model on device, then returning the up-
dated model back to the gateway. The measurement supports our
argument that IoT networks present heterogeneous system and net-
work characteristics. In more details, Fig. 9 left and right show the
round latency breakup on ten representatives of RPis and CPU clus-
ters respectively. The missing columns indicate failed devices. Our
physical deployment setup covers two typical scenarios with very
different breakups. For RPis, the major heterogeneity comes from
the network side, as we setup the RPis at various places with dif-
ferent distances to the router. For CPU clusters, the computational
delay rather than communication delay presents more variations
due to varying number of requested CPU cores. For FL, both het-
erogeneities cause the largely varied and unstable round latency
distribution that Async-HFL targets to address.

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

[Async-HFL Async-Random I Sync-Random

o 40)

£ £
=2 10 ":940
[L
oF 2 10
=R =
5 5 2
g 1 S

0.5 1 2 085 09 095
Bandwidth Limit (MB/s) Target Accuracy
Figure 10: Convergence time in ratio compared to Async-HFL run-

ning MNIST under various bandwidth limits at gateways (left) and
target accuracy (right) at cloud.

o

(=1

o
~
v

Converge Time
(Hour)
oo«
]

(9
Converge Time
(Hour)

o
[0
o

o

N

«

o o o
N
[<)

5.50

Converge Time
(Hour)

02 05 10 0.0 0.1 02 03
K [

Figure 11: Sensitivity experiments of Async-HFL on HAR dataset.

10 20 30 Full
PCA dim

6.6 Sensitivity Analysis.

Bandwidth Limitation. Fig. 10 (left) shows the convergence time
to reach 95% on MNIST when altering bandwidth limits at all gate-
ways. The speedup over Async-Random is more significant under
more restricted bandwidth (3.47x under 0.5MB/s vs. 0.56x under
2MB/s), as the benefit of intelligently selecting subset of devices
reveals more with limited resource. Compared to the Sync-Random
baseline, the speedup gap closes under 0.5MB/s bandwidth. When
only a limited number of devices can be selected, FedAvg (Sync-
Random) gets a stable convergence via averaging the models from
multiple devices.

Target Accuracy. Fig. 10 (right) shows the convergence time to
reach various target accuracies on MNIST with the same set of
other settings. The speedup over Async-Random is 1.99x, 1.50x
and 1.34x for reaching 85%, 90% and 95%. Under the same settings,
the speedup over Sync-Random is 106x, 78x and 51x. The results
demonstrate Async-HFL's fast convergence in the early stage, which
can be attributed to prioritizing diverse and fast devices in Async-
HFL’s management design.

Hyperparameters « and ¢. We experiment the impact of k (Equa-
tion (10a)) and ¢ (Equation (11a)) on the final convergence time, as
both parameters determine the balance between data heterogeneity
(learning utility) and system heterogeneity (round latency). We use
the HAR dataset with configurations in Table 5. Fig. 11 (left) shows
the wall-clock time to reach the same accuracy using k¥ = 0.2, 0.5, 1.0.
A larger k increases the weight of delays during gateway-level de-
vice selection thus results in faster convergence. Fig. 11 (middle)
depicts the wall-clock convergence time using ¢ = 0,0.1,0.2,0.3.
¢ = 0 means only data heterogeneity is considered, while a larger
¢ increases the contribution of bandwidth limitation during cloud-
level device-gateway association. A proper ¢ (in this case, ¢ = 0.1)
leads to the best convergence performance by jointly considering
data and system aspects.

247

Yu et al.

6.7 Overhead Analysis

As shown in Fig. 6, the major communication overhead of Async-
HFL comes from exchanging the gradients. Using PCA to compress
the gradients, the effect of various PCA dimensions on convergence
time while processing the HAR dataset is shown in Fig. 11 (right).
A PCA compression of 30 dimensions introduces a communication
overhead of <0.5%, while the increase on convergence time (com-
pared to using the full gradients) is less than 6%. Hence, the PCA
compression strategy effectively reduces communication overhead
while preserving convergence speed. On the computational side,
the device selection algorithm consumes 1.6, 1.4, 4.3, 0.1 seconds per
selection on the MNIST, FashionMNIST, CIFAR-10 and Shakespeare
datasets. The time consumption of cloud-level association is 1.1,
0.9, 8.7 and 0.3 seconds per selection on the server for the above
datasets. These additional computational times are negligible on
the physical deployment with an average 120.26 seconds of round
latency.

7 CONCLUSION

In this paper, we propose Async-HFL, the first end-to-end asyn-
chronous hierarchical Federated Learning framework which jointly
considers data, system heterogeneities, stragglers and scalability
in IoT networks. Async-HFL performs asynchronous aggregations
on both gateways and cloud, thus achieving faster convergence
with heterogeneous delays and being robust to stragglers. With
the learning utility metric to quantify gradient diversity, we de-
sign the device selection and device-gateway association modules
to balance learning utility, round latencies and unexpected strag-
glers, collaboratively optimizing practical model convergence. We
conduct comprehensive simulations based on ns-3 and NYCMesh
to evaluate the Async-HFL under various network characteristics.
Our results show a 1.08-1.31x speedup in terms of wall-clock con-
vergence time and 2.6-21.6% communication savings compared to
state-of-the-art asynchronous FL algorithms. Our physical deploy-
ment proves robust convergence under unexpected stragglers.

ACKNOWLEDGMENTS

This work was initiated during Xiaofan Yu’s internship at Arm
Research in summer of 2021. The research was supported in part
by National Science Foundation under Grants #2112665 (TILOS
Al Research Institute), #2003279, #1911095, #1826967, #2100237,
#2112167.

REFERENCES

[1] 2022. High Performance Wireless Research & Education Network (HPWREN).
http://hpwren.ucsd.edu/ [Online].

[2] 2022. New York City (NYC) Mesh. https://www.nycmesh.net/map/ [Online].

[3] 2022. ns-3: a discrete-event network simulator for internet systems. https:
//www.nsnam.org/ [Online].

[4] Mehdi Salehi Heydar Abad, Emre Ozfatura, Deniz Gunduz, and Ozgur Ercetin.
2020. Hierarchical federated learning across heterogeneous cellular networks. In
ICASSP. IEEE, 8866-8870.

[5] Alaa Awad Abdellatif, Naram Mhaisen, Amr Mohamed, Aiman Erbad, Mohsen
Guizani, Zaher Dawy, and Wassim Nasreddine. 2022. Communication-efficient
hierarchical federated learning for IoT heterogeneous systems with imbalanced
data. Future Generation Computer Systems 128 (2022), 406—419.

[6] Irfan Ahmad and Karunakar Pothuganti. 2020. Design & implementation of real
time autonomous car by using image processing & IoT. In ICSSIT. IEEE, 107-113.

[7] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and Jorge Luis
Reyes Ortiz. 2013. A public domain dataset for human activity recognition using
smartphones. In ESANN. 437-442.

Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical lIoT Networks

=

=

[10]

[11

=
&

[13]

[14

[15]

[16

[17

[18]

[19

[20

[21]

[22

[23]

[24

[25]

[26

[27

[28

[29

[30]

w
—

[32]

[33

[34

Ravikumar Balakrishnan, Tian Li, Tianyi Zhou, Nageen Himayat, Virginia Smith,
and Jeff Bilmes. 2021. Diverse Client Selection for Federated Learning via Sub-
modular Maximization. In ICLR.

Sandor Beniczky, Philippa Karoly, Ewan Nurse, Philippe Ryvlin, and Mark Cook.
2021. Machine learning and wearable devices of the future. Epilepsia 62 (2021),
S$116-S124.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Koneény,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A
benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).
Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo,
Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. 2020. Tifl: A tier-based
federated learning system. In HPDC. 125-136.

Zheng Chai, Yujing Chen, Liang Zhao, Yue Cheng, and Huzefa Rangwala. 2020.
Fedat: A communication-efficient federated learning method with asynchronous
tiers under non-iid data. arXiv preprin arxiv:2010.05958 (2020).

et al. Chaoyang He. 2020. Fedml: A research library and benchmark for federated
machine learning. arXiv preprint arXiv:2007.13518 (2020).

Mingzhe Chen, H Vincent Poor, Walid Saad, and Shuguang Cui. 2020. Conver-
gence time minimization of federated learning over wireless networks. In ICC.
IEEE, 1-6.

Shuai Chen, Xiumin Wang, Pan Zhou, Weiwei Wu, Weiwei Lin, and Zhenyu
Wang. 2022. Heterogeneous Semi-Asynchronous Federated Learning in Internet
of Things: A Multi-Armed Bandit Approach. IEEE Transactions on Emerging
Topics in Computational Intelligence 6, 5 (2022), 1113-1124.

Zheyi Chen, Weixian Liao, Kun Hua, Chao Lu, and Wei Yu. 2021. Towards
asynchronous federated learning for heterogeneous edge-powered internet of
things. Digital Communications and Networks 7, 3 (2021), 317-326.

Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine (2012).

Yongheng Deng, Feng Lyu, Ju Ren, Yongmin Zhang, Yuezhi Zhou, Yaoxue Zhang,
and Yuanyuan Yang. 2021. SHARE: Shaping Data Distribution at Edge for
Communication-Efficient Hierarchical Federated Learning. In ICDCS. IEEE, 24—
34.

Emily Ekaireb, Xiaofan Yu, Kazim Ergun, Quanling Zhao, Kai Lee, Muhammad
Huzaifa, and Tajana Rosing. 2022. ns3-fl: Simulating Federated Learning with
ns-3. In WNS-3. 97-104.

Chenyuan Feng, Howard H Yang, Deshun Hu, Zhiwei Zhao, Tony QS Quek, and
Geyong Min. 2022. Mobility-aware cluster federated learning in hierarchical
wireless networks. IEEE Transactions on Wireless Communications 21, 10 (2022),
8441-8458.

Arnaud Fréville. 2004. The multidimensional 0-1 knapsack problem: An overview.
European Journal of Operational Research 155 (2004).

Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

Jiangshan Hao, Yanchao Zhao, and Jiale Zhang. 2020. Time efficient federated
learning with semi-asynchronous communication. In ICPADS. IEEE.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770-778.

Chung-Hsuan Hu, Zheng Chen, and Erik G Larsson. 2021. Device scheduling
and update aggregation policies for asynchronous federated learning. In SPAWC.
IEEE, 281-285.

Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan
Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,
et al. 2022. Papaya: Practical, private, and scalable federated learning. Proceedings
of Machine Learning and Systems 4 (2022), 814-832.

Ahmed Imteaj and M Hadi Amini. 2020. Fedar: Activity and resource-aware
federated learning model for distributed mobile robots. In ICMLA. IEEE.

Nabaa Ali Jasim, Haider TH, and Salim AL Rikabi. 2021. Design and implemen-
tation of smart city applications based on the internet of things. iJIM 15, 13
(2021).

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled
averaging for federated learning. In ICML. PMLR, 5132-5143.

Latif U Khan, Shashi Raj Pandey, Nguyen H Tran, Walid Saad, Zhu Han, Minh NH
Nguyen, and Choong Seon Hong. 2020. Federated learning for edge networks:
Resource optimization and incentive mechanism. IEEE Communications Magazine
58, 10 (2020), 88-93.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury. 2021.
Oort: Efficient federated learning via guided participant selection. In OSDI. 19-35.
Hyun-Suk Lee and Jang-Won Lee. 2021. Adaptive transmission scheduling in
wireless networks for asynchronous federated learning. IEEE Journal on Selected
Areas in Communications 39, 12 (2021), 3673-3687.

Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. 2021. Hermes:
an efficient federated learning framework for heterogeneous mobile clients. In
MobiCom. 420-437.

248

1oTDI °23, May 09-12, 2023, San Antonio, TX, USA

[35] AngLi, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. 2021. Fedmask:

Joint computation and communication-efficient personalized federated learning
via heterogeneous masking. In SenSys. 42-55.

Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. 2022. PyramidFL: A fine-
grained client selection framework for efficient federated learning. In MobiCom.
158-171.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems 2 (2020), 429-450.

Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2019. Fair resource
allocation in federated learning. arXiv preprint arXiv:1905.10497 (2019).

Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. 2020. Client-edge-cloud
hierarchical federated learning. In ICC. IEEE, 1-6.

Siqi Luo, Xu Chen, Qiong Wu, Zhi Zhou, and Shuai Yu. 2020. Hfel: Joint edge
association and resource allocation for cost-efficient hierarchical federated edge
learning. IEEE Transactions on Wireless Communications 19, 10 (2020), 6535-6548.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In AISTATS. PMLR, 1273-1282.

Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. 2021. Linear
convergence in federated learning: Tackling client heterogeneity and sparse
gradients. Advances in Neural Information Processing Systems 34 (2021), 14606—
14619.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rab-
bat, Mani Malek, and Dzmitry Huba. 2022. Federated learning with buffered
asynchronous aggregation. In AISTATS. PMLR, 3581-3607.

Monica Ribero and Haris Vikalo. 2020. Communication-efficient federated learn-
ing via optimal client sampling. arXiv preprint arXiv:2007.15197 (2020).

Kaixin Sui, Mengyu Zhou, Dapeng Liu, Minghua Ma, Dan Pei, Youjian Zhao,
Zimu Li, and Thomas Moscibroda. 2016. Characterizing and improving wifi
latency in large-scale operational networks. In MobiSys. 347-360.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2022. Towards personal-
ized federated learning. IEEE Trans. Neural Netw. Learn. Syst. (2022).

Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. 2020. Optimizing federated
learning on non-iid data with reinforcement learning. In INFOCOM. IEEE, 1698—
1707.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. 2020.
Tackling the objective inconsistency problem in heterogeneous federated opti-
mization. Adv Neural Inf Process Syst 33 (2020), 7611-7623.

Zhiyuan Wang, Hongli Xu, Jianchun Liu, He Huang, Chunming Qiao, and Yang-
ming Zhao. 2021. Resource-efficient federated learning with hierarchical aggre-
gation in edge computing. In INFOCOM. IEEE, 1-10.

Zhongyu Wang, Zhaoyang Zhang, Yuqing Tian, Qianqian Yang, Hangguan Shan,
Wei Wang, and Tony QS Quek. 2022. Asynchronous federated learning over
wireless communication networks. IEEE Transactions on Wireless Communications
21,9 (2022), 6961-6978.

Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen Jarvis.
2020. Safa: a semi-asynchronous protocol for fast federated learning with low
overhead. IEEE Trans. Comput. 70, 5 (2020), 655-668.

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934 (2019).

Bo Xu, Wenchao Xia, Jun Zhang, Tony QS Quek, and Hongbo Zhu. 2021. Online
client scheduling for fast federated learning. IEEE Wirel. Commun. Lett. 10, 7
(2021), 1434-1438.

Bo Xu, Wenchao Xia, Jun Zhang, Xinghua Sun, and Hongbo Zhu. 2021. Dynamic
client association for energy-aware hierarchical federated learning. In WCNC.
IEEE, 1-6.

Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. 2021. On-
line coreset selection for rehearsal-based continual learning. arXiv preprint
arXiv:2106.01085 (2021).

Linlin You, Sheng Liu, Yi Chang, and Chau Yuen. 2022. A triple-step asynchronous
federated learning mechanism for client activation, interaction optimization, and
aggregation enhancement. IEEE Internet of Things Journal (2022).

Yu Zhang, Morning Duan, Duo Liu, Li Li, Ao Ren, Xianzhang Chen, Yujuan Tan,
and Chengliang Wang. 2021. CSAFL: A clustered semi-asynchronous federated
learning framework. In IJCNN. IEEE, 1-10.

Zhengyi Zhong, Weidong Bao, Ji Wang, Xiaomin Zhu, and Xiongtao Zhang. 2022.
FLEE: A hierarchical federated learning framework for distributed deep neural
network over cloud, edge and end device. ACM TIST (2022).

Chendi Zhou, Hao Tian, Hong Zhang, Jin Zhang, Mianxiong Dong, and Juncheng
Jia. 2021. TEA-fed: time-efficient asynchronous federated learning for edge
computing. In ACM CF. 30-37.

Hongbin Zhu, Yong Zhou, Hua Qian, Yuanming Shi, Xu Chen, and Yang Yang.
2022. Online client selection for asynchronous federated learning with fairness
consideration. IEEE Transactions on Wireless Communications (2022).

