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Abstract—Few-shot learning (FSL) is a promising meta-learning
paradigm that trains classification models on the fly with a few
training samples. However, existing FSL classifiers are either
computationally expensive, or are not accurate enough. In this
work, we propose an efficient in-memory FSL classifier, FSL-
HD, based on hyperdimensional computing (HDC) that achieves
state-of-the-art FSL accuracy and efficiency. We devise an HDC-
based FSL framework with efficient HDC encoding and search
to reduce high complexity caused by the large dimensionality.
Also, we design a scalable in-memory architecture to accelerate
FSL-HD on ReRAM with distributed dataflow and organization
that maximizes the data parallelism and hardware utilization. The
evaluation shows that FSL-HD achieves 4.2% higher accuracy
compared to other FSL classifiers. FSL-HD achieves 100 — 1000 x
better energy efficiency and 9 — 66x speedup over the CPU and
GPU baselines. Moreover, FSL-HD is more accurate, scalable and
2.5x faster than the state-of-the-art ReRAM-based FSL design,
SAPIENS, while requiring 85% less area.

Index Terms—In-memory processing, Few-shot learning, Hy-
perdimensional computing

I. INTRODUCTION

Few-shot learning (FSL) is a data-efficient learning paradigm
that relies on memory-augmented neural networks [1-3] to
quickly adapt to unseen data by using a few labeled samples.
Compared to deep learning models trained on a million-scale
dataset, the FSL model only needs < 10 training samples per
class. State-of-the-art FSL models consist of a front-end CNN
feature extractor and a back-end classifier that retrieves the
associated class (Fig. 1). Existing works [4—-6] demonstrated
that fixing the front-end CNN and just training the back-end
classifier can provide fast and accurate learning capability. In
this sense, the FSL boils down to designing the back-end
classifier. Given a new learning episode with n classes and &
labeled samples per class, the back-end classifier first learns
from the image embeddings of support (training) set S that
contains the nk samples. Then it performs classification on
the query (test) set Q. The learning episode with a balanced
support set is defined as the n-way k-shot FSL problem.

In reality, since FSL is normally applied to on-device
continuous learning with a limited hardware budget, designing
an efficient and accurate FSL classifier imposes challenges on
both algorithm and hardware. Existing FSL algorithms [1-5]
fails to leverage both high accuracy and low complexity. The
approaches based on k-nearest neighbor (kNN)- [1, 5, 7] with
L1 distance are less complex but not very accurate. MAML
[3] has a linear layer as a classifier while MLP [4] uses a two-
layer perceptron to obtain excellent accuracy. However, the
complicated gradient-based training incurs 10-100x complexity
compared to L1-based kNN. Although [2] uses a weighted
linear combination of cosine distance to reduce the training
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Fig. 1: Few-shot image classification using FSL-HD.
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overhead as compared to MAML and MLP, the cosine distance
is still &~ 5x more complex than L1.

On the hardware side, existing studies [7-9] show that FSL
classifiers are memory-intensive, becoming a bottleneck during
the inference of FSL. To cope with the memory-intensive
nature, recent works accelerate the classifiers using processing
in-memory (PIM). SAPIENS [7] implements L1-based kNN
classifier in 2T2R ReRAM and achieves sub-mW power
consumption. Robust-MANN [8] and AiM [9] are attention-
based FSL accelerators on nonvolatile devices that exhibit
superior efficiency. These designs choose PIM-friendly but
inaccurate FSL classifiers, thus having huge accuracy gap vs.
gradient-based classifiers [3, 4]. It is challenging to implement
these classifiers using PIM [10] since the gradient computation
needs costly computing and memory resources. Moreover,
existing PIM-based FSL accelerators [7, 8] are constrained
by their classification algorithms and limited memory space,
thereby lacking flexibility to support more FSL settings.

In this paper, we propose FSL-HD, a PIM accelerator for
FSL back-end classifier with enhanced accuracy and efficiency
over previous PIM designs [7, 8]. The aforementioned issues
are addressed via exploiting hyperdimensional computing
(HDC) [11] that encodes data into high-dimensional binary
vectors (called hypervectors (HVs)), thus replacing complex
fixed-point arithmetic with lightweight binary operations. We
also dramatically improve latency and energy efficiency of
HDC'’s encoding in ultra-high vector dimensions compared to
the state of the art [11] by designing a novel method called
tensorized encoding, with a progressive search scheme for
low-latency inference. It reduces the encoding complexity by
22-31x and search latency by 1.9-2.8x compared to existing
HDC baseline [11]. As a result, our FSL-HD runs at much
lower cost than the existing low-cost FSL algorithms [4]. Also,
FSL-HD achieves 4.2% higher accuracy than [1]. Compared
to the state-of-the-art FSL solution [4], FSL-HD has 10-100x
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lower inference complexity and memory consumption with only
1.5% accuracy gap. Our FSL-HD accelerator on ReRAM with
optimized data organization and dataflow yields 2.5x speedup
and consumes 85% less chip area while providing more flexible
FSL support compared to existing PIM design [7].

II. PROPOSED FSL-HD ALGORITHM

Fig. 1 illustrates the pipeline of FSL-HD algorithm, composed
of the front-end feature extractor and the back-end FSL-HD
classifier. The feature extractor uses a pre-trained CNN model,
and its weight parameters are fixed for the whole process
as other FSL algorithms [7]. The front-end extracts image
embeddings, which are a few hundred-dimensional vectors
(e.g., 512 dimensions for ResNet-34). The back-end module
performs classification given the extracted image embeddings.

FSL-HD classifier exploits HDC [11] to improve the accuracy
and efficiency. FSL-HD classifier consists of encoding, training,
and inference stage. The encoding step converts image embed-
dings into HVs (binary high-dimensional vectors). During the
training phase, we generate the class HVs for support set. In
turn, the inference phase predicts the class given the query HV.
A. Tensorized Encoding of Image Embeddings
FSL-HD processes FSL on HV, i.e., image embeddings from
the feature extractor need to be encoded to binary HV. One
representative encoding method is signed random projection
(RP) due to its good accuracy [11]. The signed RP is a
linear projection of the input vector x € R’ expressed as:
h = Encode(x) = sign(RTx), where R € {-1,1}f"™*P
represents the binary projection matrix that transforms x into
the corresponding HV h € {—1,1}”. sign(:) denotes the
sign operation, and the projection matrix R is generated from
the uniform distribution. Nevertheless, the RP-based encoding
consumes excessive complexity. The RP encoding is a vector-
matrix multiplication with O(DF') computation and memory
complexity, where D is the HV dimension while F' is the
image embedding size. D normally ranges from 1K to 10K to
get sufficient accuracy. Hence, the RP encoding step takes 95%
or more of the total run time [11]. Fig. 2(a) shows that the
complexity (number of binary operations) of RP encoding is
50-200x higher than Hamming search. Besides, the memory
size to store RP matrix R is 25-100x than the space to store
the class HVs for Hamming search. For example, storing the
projection matrix R requires IMb for D = 2048, F' = 512, far
exceeding the existing 64kb ReRAM [7].

We propose the tensorized encoding that significantly
reduces the encoding overhead. We decompose the large projec-
tion matrix R into multiple small sub-matrices, thus improving
performance, lowering the total memory size and encoding
complexity. The original RP is an orthogonal projection. Instead
of directly generating R, we use the Kronecker product [12] to
construct the projection matrix that preserves the orthogonality.
Specifically, the projection matrix R is decomposed into the
Kronecker product of M sub-matrices (i.e., order) as:

h = (@rll)"x = (©L,r;) mat(x, F/ f1, fi)r], (1)
where ® denotes the Kronecker product and R = ®@r . r; €
R % satisfies [[, f; = F and [[), d; = D. mat(A, B, C)
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Fig. 2: (a) Computation complexity and memory size ratios
between RP encoding and Hamming search. (b) Average
Hamming margin of correct and incorrect predictions on five
datasets for 20-way 5-shot problem.

denotes the reshape operation to convert the vector (or matrix)
A to a B x C matrix. This is to align the shape of intermediate
matrices with the projection sub-matrices.

Consider an example of 2-order tensorized encoding with
F = 256,D = 1024. To align with RP matrix dimension
based on [[, fi = F and [[,d; = D, the dimensions
of sub-matrices are f; = fo = 16,d; = dy = 32. Instead
of directly computing R”x with O(DF) complexity, our
encoding method first reshapes the image embedding into
a 16 x 16 matrix and sequentially computes M = 2 small
matrix multiplications with ry and rs. The tensorized encoding
speeds up the encoding by over 20x and uses 100x less
memory space compared to RP encoding [11] (see Sec. IV-A).
Furthermore, our encoding can easily scale to support different
image embedding sizes F' and HDC dimensions D by changing
the sub-matrices dimensions f; and d;.

B. Single-pass FSL Training
The training stage generates the representative HV for each
class. For the n-way k-shot FSL, the generation of the j-th
class HV, C7, is given as:

k

C7 = sign (Zi_l hf) , )

where hg is the i-th support HV of the j-th class. The
summation is a point-wise addition operation and the class HV
has the same dimension as h} (i.e., C/ € {—1,+1}?). Our
HDC training is simple and does not require back-propagation.
Also, the training is performed in a single pass so that FSL-HD
sees the training data only once. These two benefits greatly
reduce the complexity of training and the amount of dataflow
since no additional memory is required to store the training
samples and intermediate data.
C. Inference: Progressive Search
HDC inference aims to find the class HV C most similar
to the query HV Q. Hamming similarity is used to measure
the similarity. The class HV with the largest similarity is
regarded as the prediction result. The naive Hamming search
is conducted in an exhaustive manner, where the pairwise
Hamming similarity between the query and n class HVs is
computed, requiring O(ND) computation complexity. The
search overhead is costly when the HV dimension D and the
number of ways n are large.

FSL-HD inference tries to make correct predictions at the
minimal computation cost. Fig. 2(b) shows that the correct
predictions have a larger average Hamming similarity margin
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Fig. 3: Diagram of FSL-HD’s 64kb in-memory architecture.
N = 16 processing units (PUs) are implemented.

than the incorrect ones. Hamming similarity margin is defined
as the distance difference between the 1st and 2nd matched
class HVs. A large margin value suggests that exhaustively
computing the Hamming similarity for all bits is not always
necessary to get correct predictions. Instead, we can use partial
comparisons to obtain sufficiently accurate results, which
reduces the search complexity and latency. Based on the
observation, we propose progressive search that computes
the minimum bits of Hamming similarity for the prediction.
These minimum bits are defined using the Hamming margin.
At each time step, the Hamming similarity for each segment
is computed and added to the partial Hamming similarity.
Then the Hamming margin is computed and compared to the
threshold. Once the threshold is exceeded, the search process
terminates and the class with the largest partial Hamming
similarity is returned as the result.
ITI. FSL-HD PIM ACCELERATOR

We accelerate FSL-HD on the single-level cell (SLC) 1TIR
ReRAM device [13] that has fast wake-up, high-density, non-
volatile and low-power to overcome data movement overhead.
It has been physically verified to realize highly parallel and
stable computing for various inference tasks [13, 14].

Fig. 3 depicts the high-level diagram of ReRAM-based
FSL-HD, composed of No = 4 cores and one Hamming
margin checker. The core is used for receiving query image
embeddings, encoding into HVs, and doing the progressive
search. The Hamming margin checker compares the Hamming
margin metrics and decides the termination of progressive
search. Each FSL-HD core contains Npy = 4 processing units
(PUs), where each PU has a 64 x 64 ITIR ReRAM sub-array.
The total size of N = Ng x Npy = 16 PUs is 64kb. The
PU performs either HDC encoding or Hamming search with
the aid of peripheral circuits. The peripheral circuits include
the WL driver, 32b buffer, zero counter (CNT), 8:1 column
MUXSs, current sense amplifier (CSA), accumulator (ACC),
and comparator (CMP). Each pair of cascaded CSA, ACC,
and CMP is multiplexed by one column MUX. In this case,
Npr = 8 bit lines (BLs) are activated simultaneously. We set
the number of simultaneously activated world lines (WLs) to
Ny = 8 as the previous works [13, 14] have verified that up
to 9 activated WLs can provide accurate computation.
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Fig. 4: (a) FSL-HD dataflow and partial encoding scheme, (b)
data organization in PU.

A. FSL-HD Dataflow

Storing or moving HVs between PUs incurs a large buffer
and bandwidth overhead. As such, we design the efficient and
distributed dataflow (Fig. 4).

Query distribution and progressive search. In FSL-HD,
the image embedding query with F' dimension is divided
into multiple segments, where each segment has a size of
F,. Rather than process the entire query in a single PU,
FSL-HD distributes the query to all N PUs in a round-
robin manner. Step @ in Fig. 4(a) gives an example of
F =64, F, =8, N = 4. For each round, N x F}, = 32 points
of the query embedding are distributed and computed. Each
PU receives a short query segment with dimension Fj, = 8.
Each query segment is processed locally within the PU as Step
@. Each PU first computes the tensorized encoding for the
received query segment and then returns the obtained partial
Hamming similarity to the Hamming margin checker as shown
in 9 During Step @, the Hamming margin checker performs
the progressive search. It first receives n partial Hamming
similarity values from each PU, where n denotes the number
of class HVs. It updates the collected partial similarities and
checks whether the Hamming margin condition (the largest
similarity exceeds the 2nd largest similarity by the threshold
value) is satisfied and whether terminates the inference.

Partial encoding. As described above, each PU only receives
and encodes a query segment with dimension Fj,. The right
side of the Fig. 4(a) shows the partial encoding scheme of
the query segment with a M = 2 order tensorized encoding
with sub-matrices dimension of f; = fo = 8,d; = dy = 16.
The partial encoding scheme resolves the imbalances between
projection matrix dimension and the BL parallelism. The second
dimension of projection sub-matrices d; is normally larger than
the activated BL number Np; = 8. If we directly multiply the
query segment with entire r;, the intermediate data need to
be cached in additional buffers. To reduce the need for extra
buffering, we divide the two projection sub-matrices into four
blocks of size F}, x Npr. The query segment each time is
only multiplied with one block of each sub-matrix. Each block
multiplication is realized using the in-memory in Sec. III-C.
In this way, partial HV can be generated in four steps (Fig.
4(a)). The PU loads each F),-b partial HV output and searches
against the stored class HVs immediately as it is generated.
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B. FSL-HD Data Organization

Fig. 4(b) shows FSL-HD’s data organization in ReRAM array.

Two types of data need to be stored: projection sub-matrices r;
for encoding and class HVs C’ for search. For the weights of
projection sub-matrices, each PU needs to access the projection
weights in their ReRAM array, respectively, since the query
segment is distributed and the encoding is processed in every
PU. The projection weights are duplicated for each ReRAM
array and stored in the 16 x 64 cells. In this way, each PU
can encode using its local projection weights. The duplication
of projection weights incurs storage overhead. Storing the
M projection sub-matrices needs at least 2 - Zﬁl d; X f;
cells for each ReRAM. However, thanks to the significant
weight reduction of tensorized encoding method, the 1kb
preserved space can support various sub-matrices sizes as well
as encoding for different embedding sizes.

Each PU stores the bits of all class HVs corresponding
to the partially encoded query. A segment of HVs for all
n classes is stored in each PU’s ReRAM (Fig. 4(b)). These
segments of all n class HVs are stored in the remaining 48 x 64
cell area. The consecutive bits of each segment are organized
horizontally along the BLs to maximize the parallelism for
similarity computation.

C. In-memory Tensorized Encoding

Tensorized encoding requires M small matrix multiplications.

FSL-HD uses PU’s ReRAM array to realize the in-situ matrix
multiplication. As shown in Fig. 5(a), each binary {—1,+1}
weight from the projection sub-matrices r;, (i = 1,..., M) is
stored in 2-bit 2’s complement form within the two consecutive

columns in the ReRAM array (i.e., 10 for -1 and 01 for +1).

The input of encoding is quantized with 4b and cached in the
near-memory 32b buffer. The input data are loaded into the
WL driver in a bit-serial manner. The encoding computation

is separated into two parts: positive sum and negative sum.

When computing the negative sum, the BL columns storing the
first bit of weights are continuously activated for 4 cycles to
compute the 4b input data. The CSA senses the signal from BL
current and accumulates the results in ACC. After the negative
sum is obtained, the positive sum is computed similarly using
the BL columns that store the second bit of weights. CMP

generates the binary encoded output by comparing the values
of positive sum and negative sum. Note that the output is not
binarized when generating the intermediate results between
two projection sub-matrices. In this case, the CMP is bypassed
and the output is 4b data.

D. In-memory Progressive Search

We propose a two-step Hamming similarity computation
scheme. Fig. 5(b) gives an example of two-step Hamming
similarity computation to compute the query HV (100111)
against 4 class HVs. First, it counts the number of matched 1s
in query and class HV. The query HV is loaded into the WL
driver and the number of Os in query HV is stored in the zero
counter. The multiplication results (number of matched 1s) are
measured by the CSAs from the BL current. The second step
counts the number of matched Os through loading the flipped
bits of query HV into the WL driver to multiply with class
HVs. The output of CSA equals to the number of unmatched Os
in query and Is in class HVs. Hence, the matched Os for query
and class HVs can be calculated by subtracting the digitalized
CSA results from the stored zero counting value. Note that the
hardware modification cost is low because only one additional
zero counter is required for each PU.

E. In-memory FSL-HD Training

The in-memory training process (Eq. 2) is realized via reusing
the in-memory tensorized encoding scheme without additional
circuits. The encoded query HV bits are stored in the 32b buffer
and then written into the ReRAM array. The query HV from
the same class is written to the same ReRAM row. The number
of rows to aggregate equals to the FSL shot, k. Considering
k is normally < 5, the aggregation and binarization can be
performed using the same circuits in the encoding.

IV. RESULTS

Hardware modeling. We use the 40nm ITIR cell [13] to
construct ReRAM array. The peripheral circuits of PU and
Hamming margin checker are implemented using Verilog HDL
and synthesized by TSMC 40nm CMOS library. The CSA is
from [15] and scaled to 40nm. We input the component charac-
teristics obtained from synthesis into an in-house simulator that
emulates the execution behavior at the cell-level granularity.
Benchmarks. We use ResNet-34 [16] (output embedding size
F = 512) as a front-end feature extractor with ImageNet pre-
trained weights. Five popular meta-datasets [17] are used to
evaluate the FSL algorithms: Traffic Sign [18], CUB-200 Birds
[19], FC100 [20], Texture [21], and Omniglot [22].

FSL baselines. We compare FSL-HD with three baselines:
MLP [4], kNN [17] with L1 distance (kNN-L1) [1] and Cosine
similarity (kNN-Cosine) [5]. The MLP with two fully connected
layers and 512 hidden nodes following the original paper [4].
The k value for kNN is set to 1 [17]. We use six different
combinations of FSL parameters: the number of ways is set to
5, 10, 20 and the number of shots is 1 and 5. The test query size
is 15 per class and accuracy is calculated using the average of
300 randomly generated FSL tasks. MLP[4], kNN-L1 and kNN-
Cosine [17], and FSL-HD algorithms are implemented using
PyTorch on a system with Intel i7-8700K with 64GB RAM
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TABLE I: Average accuracy gap and ranking

Algorithm | 5-way I-shot | 5-way S-shot | 10-way I-shot
MLP [4] —1.11% (2.0) | 0.00% (1.0) | —0.98% (2.0)
KNN-LI [1] —5.94% (4.8) | —6.92% (4.4) | —5.94% (5.0)
KNN-Cosine [5] | —1.56% (2.6) | —3.63% (3.2) | —0.55% (2.0)
HDC-RP —2.45% (3.0) | —3.47% (3.2) | —1.73% (2.8)
FSL-HD —1.80% (2.6) | —2.95% (3.2) | —2.00% (3.2)
Algorithm | 10-way 5-shot | 20-way l-shot | 20-way 5-shot
MLP [4] 0.00% (1.0) | —1.74% (2.8) | —0.33% (1.8)
KNN-LI [1] —8.09% (4.6) | —4.83% (4.2) | —7.07% (4.0)
KNN-Cosine [5] | —4.84% (3.0) | —0.41% (1.6) | —3.65% (3.0)
HDC-RP —3.40% (3.4) | —1.83% (3.4) | —2.44% (2.8)
FSL-HD —3.03% (3.0) | —1.56% (3.0) | —2.18% (3.4)
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Fig. 6: (a) Inference complexity and memory size comparison
of MLP[4], kNN-Cosine[5], kKNN-L1[1], and FSL-HD. (b)
Complexity and memory size of RP and Tensorized encoding.

and NVIDIA Geforce GTX 1080Ti. The energy consumption
of CPU and GPU are measured using Intel Power Gadget and
nvidia-smi command, respectively.
HDC configurations. We evaluated our design using HV di-
mensionality, D € [512,4096]. The tested orders of tensorized
encoding are M = 2, 3,4. According to Eq. 1, the dimension
of sub-matrices should satisfy Hf\il fi = F and Hf\il d; = D.
We fix the first dimension of sub-matrix to f; = fo = f3 =38
for ' = 512. The second dimension of sub-matrix is
dl :d2:d3:8fOI‘D:512,d1 :d2:8,d3:16
for D = 1024, and d; = 8,dy = d3 = 16 for D = 2048,
respectively. These f; and d; dimension sizes align with the
activated word line numbers in the ReRAM version of FSL-HD.
A. FSL-HD Algorithm Evaluation
Comparison to FSL algorithms. Table I compares the
accuracy gaps of our proposed FSL-HD, original RP-based
HDC (HDC-RP) and three FSL baselines (MLP [4], kNN-
L1 [1], kNN-Cosine [5]). The accuracy is quantified using
the average accuracy gap between the best accuracy and the
average ranking among the five algorithms. FSL-HD yields
practically usable accuracy at D = 2048. MLP achieves the
lowest average accuracy gap on the six FSL problems, while
FSL-HD shows the second lowest accuracy gap: 1.5% lower
than MLP and 4.2% higher than kNN-L1. Our algorithm offers
better accuracy than HDC-RP with significantly lower overhead.
We compare the inference complexity and memory con-
sumption for three FSL baselines and FSL-HD in Fig. 6(a).
The inference complexity is defined as the number of binary
operations needed for inference. Although MLP [4] achieves
the highest average accuracy, MLP consistently requires 10x
to 100x higher inference complexity and memory size as
compared to the other algorithms. This is due to the compli-

cated matrix multiplications during inference. For 1-shot FSL
problems, the complexity of the proposed FSL-HD is higher
than of kNN-LI1, but in all other settings FSL-HD’s complexity
and memory requirements are lower since the complexity and
memory size of KNN methods grow linearly with the number
of the way and the shot. As a result, our algorithm scales well
with memory size as the problem sizes scale up.

Effectiveness of tensorized encoding. We evaluate the HDC-
based FSL algorithms with and without proposed tensorized
encoding. Fig. 6b shows the normalized encoding complexity in
terms of the number of binary operations needed and memory
size requirements for tensorized encoding with different orders
of projection sub-matrices under D from 512 to 2048. As
the order M increases, the required complexity and memory
size needed for encoding both decrease. Our encoding lowers
complexity by 22 — 31x and reduces memory size by 100x
compared to the random projection (RP) encoding. For D =
2048, we choose order-3 tensorized encoding since it yields
the lowest encoding complexity with good accuracy.

Effectiveness of progressive search. We study the impact
of the Hamming margin threshold values (from progressive
search) on the accuracy and latency reduction for 20-way 5-
shot problem (see Fig. 7). The Hamming margin threshold
ranges from 20 to 60 based on the observation in Fig. 2(b).
The accuracy is compared with the exhaustive search method
across five datasets. Smaller margin threshold leads to more
significant latency reduction with lower accuracy. The margin
threshold = 30 yields 39.8% to 51.3% latency reduction with
negligible accuracy loss. The trend is similar on other FSL
problem settings. The progressive search provides a valuable
tradeoff between searching latency and accuracy.

B. Performance and Energy Evaluation

Fig. 7 shows the performance and energy comparison of
MLP [4], kNN [1, 5] and FSL-HD algorithms on CPU, GPU,
and ReRAM with six FSL settings. FSL-HD-ReRAM and
FSL-HD-ReRAM-Prog. denote the proposed PIM accelerator
without and with progressive search enabled, respectively. The
speedup and energy efficiency improvement are computed by
normalizing the worst latency and energy consumption of each
FSL setting to 1. FSL-HD-ReRAM is 32—66x faster than FSL-
HD running on CPU and GPU and achieves 10 —66x speedup
over kNN-CPU and 7 —9x speedup over KNN-GPU. Although
MLP’s has over 10x complexity than kNN and FSL-HD, the
optimized matrix multiplication on CPU and GPU make the
speedup of kNN and FSL-HD over MLP less significant.

FSL-HD-ReRAM is over 100x and 1000x more energy
efficient as compared to kNN-CPU and FSL-HD-GPU, respec-
tively. As the FSL problem size grows, the energy efficiency
gain of FSL-HD-ReRAM over CPU and GPU baselines is more
significant thanks to the efficient in-situ ReRAM computing
that reduces the data movement overhead. Moreover, enabling
the progressive search for FSL-HD-ReRAM-Prog. generates
additional 1.9x to 2.8 x speedup and energy efficiency improve-
ments over FSL-HD-ReRAM due to reduced computations.
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Fig. 7: Left: Classification accuracy and latency reduction (% over each bar) using progressive search with different Hamming
margin thresholds for the 20-way 5-shot problem. Right: Performance and energy comparison.
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Fig. 8: Area breakdown of FSL-HD-ReRAM.

C. Comparison with PIM-based FSL Classifiers

Scalability comparison. Our proposed accelerator has better
scalability compared to the PIM accelerator, SAPIENS [7].
SAPIENS only supports image embedding size F 32,
maximum n = 32 ways, and only one-shot learning. Due
to the linearly growing memory consumption of kNN (see
Fig. 1), it is difficult to fit into the limited memory space
when F' and FSL problem sizes increase. In comparison, the
memory requirement of FSL-HD is independent of F' and the
number of FSL shots. It is a function of HV dimensionality D
and the number of FSL way n. FSL-HD-ReRAM can support
various image embedding sizes that range up to F' = 1024
through changing the sub-matrices dimension f; of tensorized
encoding. For example, for 48 x 64 x 16 = 48kb memory, the
supported class number is from n = % = 24 for D = 2048
ton = % = 96 for D = 512. It implies that our design
scales well with other CNN-based feature extractors that have
output feature dimensions from 512 to 1000.

Latency comparison. FSL-HD-ReRAM without progressive
search has shorter processing latency under the same image
embedding size compared to SAPIENS [7]. The latency of
SAPIENS is linearly scaled with the embedding size F'. To
process the image embedding with size I’ = 512, SAPIENS
needs 10,240 ns for inference while FSL-HD-ReRAM only
needs 4,160 ns, which is 2.5x faster.

FSL-HD area and overhead. The hardware area breakdown of
40nm FSL-HD-ReRAM is shown in Fig. 8. FSL-HD-ReRAM
with total of 16 PUs requires 30,944.5 um? area. The peripheral

circuitry accounts for over 70% of the FSL-HD PU area.

Compared to the standard 1TIR ReRAM computing macro
[13], the 32b buffer, zero CNT, and the top-level Hamming

checker are the three additional modules in FSL-HD-ReRAM.

These modules incur 18.6% area overhead. We compare 64kb
FSL-HD-ReRAM with the state-of-the-art kNN-L1-based FSL
design (64kb), SAPIENS [7]. FSL-HD-ReRAM has 84% less
area while yielding higher accuracy. This is because SAPIENS

constructs the ReRAM for multi-bit L1 distance search using
2T2R, which decreases the memory density.
V. CONCLUSION

This paper presents FSL-HD, an in-memory acceleration
framework for FSL based on HDC. Our algorithm provides
comparable accuracy to the state-of-the-art MLP, but runs faster
speed, with less memory and complexity. We also design novel
tensorized encoding, and progressive search during inference.
We use the physically-verified 40nm 1T1R ReRAM [13] to
accelerate FSL-HD. Our in-memory dataflow, organization,
and energy reduction schemes improve FSL-HD’s efficiency
in PIM. The experiments demonstrate that FSL-HD-ReRAM
achieves 4.2% accuracy improvement over kNN classifier [1].
Also, it is 2.5x faster than state-of-the-art ReRAM design,
SAPIENS [7], while requiring 84% less area.
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