
FSL-HD: Accelerating Few-Shot Learning on
ReRAM using Hyperdimensional Computing

Weihong Xu, Jaeyoung Kang, and Tajana Rosing
University of California San Diego, La Jolla, CA 92093, USA

Email: {wexu, j5kang, tajana}@ucsd.edu

Abstract—Few-shot learning (FSL) is a promising meta-learning
paradigm that trains classification models on the fly with a few
training samples. However, existing FSL classifiers are either
computationally expensive, or are not accurate enough. In this
work, we propose an efficient in-memory FSL classifier, FSL-
HD, based on hyperdimensional computing (HDC) that achieves
state-of-the-art FSL accuracy and efficiency. We devise an HDC-
based FSL framework with efficient HDC encoding and search
to reduce high complexity caused by the large dimensionality.
Also, we design a scalable in-memory architecture to accelerate
FSL-HD on ReRAM with distributed dataflow and organization
that maximizes the data parallelism and hardware utilization. The
evaluation shows that FSL-HD achieves 4.2% higher accuracy
compared to other FSL classifiers. FSL-HD achieves 100−1000×
better energy efficiency and 9− 66× speedup over the CPU and
GPU baselines. Moreover, FSL-HD is more accurate, scalable and
2.5× faster than the state-of-the-art ReRAM-based FSL design,
SAPIENS, while requiring 85% less area.

Index Terms—In-memory processing, Few-shot learning, Hy-
perdimensional computing

I. INTRODUCTION

Few-shot learning (FSL) is a data-efficient learning paradigm

that relies on memory-augmented neural networks [1–3] to

quickly adapt to unseen data by using a few labeled samples.

Compared to deep learning models trained on a million-scale

dataset, the FSL model only needs < 10 training samples per

class. State-of-the-art FSL models consist of a front-end CNN

feature extractor and a back-end classifier that retrieves the

associated class (Fig. 1). Existing works [4–6] demonstrated

that fixing the front-end CNN and just training the back-end

classifier can provide fast and accurate learning capability. In

this sense, the FSL boils down to designing the back-end

classifier. Given a new learning episode with n classes and k
labeled samples per class, the back-end classifier first learns

from the image embeddings of support (training) set S that

contains the nk samples. Then it performs classification on

the query (test) set Q. The learning episode with a balanced

support set is defined as the n-way k-shot FSL problem.

In reality, since FSL is normally applied to on-device

continuous learning with a limited hardware budget, designing

an efficient and accurate FSL classifier imposes challenges on

both algorithm and hardware. Existing FSL algorithms [1–5]

fails to leverage both high accuracy and low complexity. The

approaches based on k-nearest neighbor (kNN)- [1, 5, 7] with

L1 distance are less complex but not very accurate. MAML

[3] has a linear layer as a classifier while MLP [4] uses a two-

layer perceptron to obtain excellent accuracy. However, the

complicated gradient-based training incurs 10-100× complexity

compared to L1-based kNN. Although [2] uses a weighted

linear combination of cosine distance to reduce the training

Fig. 1: Few-shot image classification using FSL-HD.

overhead as compared to MAML and MLP, the cosine distance

is still ≈ 5× more complex than L1.
On the hardware side, existing studies [7–9] show that FSL

classifiers are memory-intensive, becoming a bottleneck during

the inference of FSL. To cope with the memory-intensive

nature, recent works accelerate the classifiers using processing

in-memory (PIM). SAPIENS [7] implements L1-based kNN

classifier in 2T2R ReRAM and achieves sub-mW power

consumption. Robust-MANN [8] and AiM [9] are attention-

based FSL accelerators on nonvolatile devices that exhibit

superior efficiency. These designs choose PIM-friendly but

inaccurate FSL classifiers, thus having huge accuracy gap vs.

gradient-based classifiers [3, 4]. It is challenging to implement

these classifiers using PIM [10] since the gradient computation

needs costly computing and memory resources. Moreover,

existing PIM-based FSL accelerators [7, 8] are constrained

by their classification algorithms and limited memory space,

thereby lacking flexibility to support more FSL settings.
In this paper, we propose FSL-HD, a PIM accelerator for

FSL back-end classifier with enhanced accuracy and efficiency

over previous PIM designs [7, 8]. The aforementioned issues

are addressed via exploiting hyperdimensional computing

(HDC) [11] that encodes data into high-dimensional binary

vectors (called hypervectors (HVs)), thus replacing complex

fixed-point arithmetic with lightweight binary operations. We

also dramatically improve latency and energy efficiency of

HDC’s encoding in ultra-high vector dimensions compared to

the state of the art [11] by designing a novel method called

tensorized encoding, with a progressive search scheme for

low-latency inference. It reduces the encoding complexity by

22-31× and search latency by 1.9-2.8× compared to existing

HDC baseline [11]. As a result, our FSL-HD runs at much

lower cost than the existing low-cost FSL algorithms [4]. Also,

FSL-HD achieves 4.2% higher accuracy than [1]. Compared

to the state-of-the-art FSL solution [4], FSL-HD has 10-100×

2023 Design, Automation & Test in Europe Conference (DATE 2023)

 978-3-9819263-7-8/DATE23/© 2023 EDAA
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:22:38 UTC from IEEE Xplore. Restrictions apply.

lower inference complexity and memory consumption with only

1.5% accuracy gap. Our FSL-HD accelerator on ReRAM with

optimized data organization and dataflow yields 2.5× speedup

and consumes 85% less chip area while providing more flexible

FSL support compared to existing PIM design [7].

II. PROPOSED FSL-HD ALGORITHM

Fig. 1 illustrates the pipeline of FSL-HD algorithm, composed

of the front-end feature extractor and the back-end FSL-HD

classifier. The feature extractor uses a pre-trained CNN model,

and its weight parameters are fixed for the whole process

as other FSL algorithms [7]. The front-end extracts image

embeddings, which are a few hundred-dimensional vectors

(e.g., 512 dimensions for ResNet-34). The back-end module

performs classification given the extracted image embeddings.

FSL-HD classifier exploits HDC [11] to improve the accuracy

and efficiency. FSL-HD classifier consists of encoding, training,

and inference stage. The encoding step converts image embed-

dings into HVs (binary high-dimensional vectors). During the

training phase, we generate the class HVs for support set. In

turn, the inference phase predicts the class given the query HV.

A. Tensorized Encoding of Image Embeddings
FSL-HD processes FSL on HV, i.e., image embeddings from

the feature extractor need to be encoded to binary HV. One

representative encoding method is signed random projection

(RP) due to its good accuracy [11]. The signed RP is a

linear projection of the input vector x ∈ RF expressed as:

h = Encode(x) = sign(RTx), where R ∈ {−1, 1}F×D

represents the binary projection matrix that transforms x into

the corresponding HV h ∈ {−1, 1}D. sign(·) denotes the

sign operation, and the projection matrix R is generated from

the uniform distribution. Nevertheless, the RP-based encoding

consumes excessive complexity. The RP encoding is a vector-

matrix multiplication with O(DF) computation and memory

complexity, where D is the HV dimension while F is the

image embedding size. D normally ranges from 1K to 10K to

get sufficient accuracy. Hence, the RP encoding step takes 95%

or more of the total run time [11]. Fig. 2(a) shows that the

complexity (number of binary operations) of RP encoding is

50-200× higher than Hamming search. Besides, the memory

size to store RP matrix R is 25-100× than the space to store

the class HVs for Hamming search. For example, storing the

projection matrix R requires 1Mb for D = 2048, F = 512, far

exceeding the existing 64kb ReRAM [7].

We propose the tensorized encoding that significantly

reduces the encoding overhead. We decompose the large projec-

tion matrix R into multiple small sub-matrices, thus improving

performance, lowering the total memory size and encoding

complexity. The original RP is an orthogonal projection. Instead

of directly generating R, we use the Kronecker product [12] to

construct the projection matrix that preserves the orthogonality.

Specifically, the projection matrix R is decomposed into the

Kronecker product of M sub-matrices (i.e., order) as:

h = (⊗rMi=1)
Tx = (⊗M

i=2ri)
T mat(x, F/f1, f1)r

T
1 , (1)

where ⊗ denotes the Kronecker product and R = ⊗rMi=1. ri ∈
Rfi×di satisfies

∏M
i=1 fi = F and

∏M
i=1 di = D. mat(A, B, C)

(a) (b)

Fig. 2: (a) Computation complexity and memory size ratios

between RP encoding and Hamming search. (b) Average

Hamming margin of correct and incorrect predictions on five

datasets for 20-way 5-shot problem.

denotes the reshape operation to convert the vector (or matrix)

A to a B×C matrix. This is to align the shape of intermediate

matrices with the projection sub-matrices.

Consider an example of 2-order tensorized encoding with

F = 256, D = 1024. To align with RP matrix dimension

based on
∏M

i=1 fi = F and
∏M

i=1 di = D, the dimensions

of sub-matrices are f1 = f2 = 16, d1 = d2 = 32. Instead

of directly computing RTx with O(DF) complexity, our

encoding method first reshapes the image embedding into

a 16 × 16 matrix and sequentially computes M = 2 small

matrix multiplications with r1 and r2. The tensorized encoding

speeds up the encoding by over 20× and uses 100× less

memory space compared to RP encoding [11] (see Sec. IV-A).

Furthermore, our encoding can easily scale to support different

image embedding sizes F and HDC dimensions D by changing

the sub-matrices dimensions fi and di.

B. Single-pass FSL Training
The training stage generates the representative HV for each

class. For the n-way k-shot FSL, the generation of the j-th

class HV, Cj , is given as:

Cj = sign

(∑k

i=1
hj
i

)
, (2)

where hj
i is the i-th support HV of the j-th class. The

summation is a point-wise addition operation and the class HV

has the same dimension as hj
i (i.e., Cj ∈ {−1,+1}D). Our

HDC training is simple and does not require back-propagation.

Also, the training is performed in a single pass so that FSL-HD

sees the training data only once. These two benefits greatly

reduce the complexity of training and the amount of dataflow

since no additional memory is required to store the training

samples and intermediate data.

C. Inference: Progressive Search
HDC inference aims to find the class HV C most similar

to the query HV Q. Hamming similarity is used to measure

the similarity. The class HV with the largest similarity is

regarded as the prediction result. The naive Hamming search

is conducted in an exhaustive manner, where the pairwise

Hamming similarity between the query and n class HVs is

computed, requiring O(ND) computation complexity. The

search overhead is costly when the HV dimension D and the

number of ways n are large.

FSL-HD inference tries to make correct predictions at the

minimal computation cost. Fig. 2(b) shows that the correct

predictions have a larger average Hamming similarity margin

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:22:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Diagram of FSL-HD’s 64kb in-memory architecture.

N = 16 processing units (PUs) are implemented.

than the incorrect ones. Hamming similarity margin is defined

as the distance difference between the 1st and 2nd matched

class HVs. A large margin value suggests that exhaustively

computing the Hamming similarity for all bits is not always

necessary to get correct predictions. Instead, we can use partial

comparisons to obtain sufficiently accurate results, which

reduces the search complexity and latency. Based on the

observation, we propose progressive search that computes

the minimum bits of Hamming similarity for the prediction.

These minimum bits are defined using the Hamming margin.

At each time step, the Hamming similarity for each segment

is computed and added to the partial Hamming similarity.

Then the Hamming margin is computed and compared to the

threshold. Once the threshold is exceeded, the search process

terminates and the class with the largest partial Hamming

similarity is returned as the result.

III. FSL-HD PIM ACCELERATOR

We accelerate FSL-HD on the single-level cell (SLC) 1T1R

ReRAM device [13] that has fast wake-up, high-density, non-

volatile and low-power to overcome data movement overhead.

It has been physically verified to realize highly parallel and

stable computing for various inference tasks [13, 14].

Fig. 3 depicts the high-level diagram of ReRAM-based

FSL-HD, composed of NC = 4 cores and one Hamming

margin checker. The core is used for receiving query image

embeddings, encoding into HVs, and doing the progressive

search. The Hamming margin checker compares the Hamming

margin metrics and decides the termination of progressive

search. Each FSL-HD core contains NPU = 4 processing units

(PUs), where each PU has a 64× 64 1T1R ReRAM sub-array.

The total size of N = NC × NPU = 16 PUs is 64kb. The

PU performs either HDC encoding or Hamming search with

the aid of peripheral circuits. The peripheral circuits include

the WL driver, 32b buffer, zero counter (CNT), 8:1 column

MUXs, current sense amplifier (CSA), accumulator (ACC),

and comparator (CMP). Each pair of cascaded CSA, ACC,

and CMP is multiplexed by one column MUX. In this case,

NBL = 8 bit lines (BLs) are activated simultaneously. We set

the number of simultaneously activated world lines (WLs) to

NWL = 8 as the previous works [13, 14] have verified that up

to 9 activated WLs can provide accurate computation.

S
eg-k of C

lass 1
Projection Matrices

16×64 cells

Class HVs
48×64 cells

S
eg-k of C

lass 2

S
eg-k of C

lass n

f1=8

d1=16

(a) Dataflow and partial encoding (b) Data organization in ReRAM

2

1

f2=8

d2=16

r1:

r2:

a

c

b

d

Partial HV: 4×Fp=32b

a c a d b c b d
P

artial
encoded H

V
Im

age
em

bedding

Fp=8

PU0

F=64

PU3···

··· Fp=8

Hamming margin
checker

···

Hamming
sim.

1

2

3

4 Readout Circuitsif stop

Fig. 4: (a) FSL-HD dataflow and partial encoding scheme, (b)

data organization in PU.

A. FSL-HD Dataflow

Storing or moving HVs between PUs incurs a large buffer

and bandwidth overhead. As such, we design the efficient and

distributed dataflow (Fig. 4).

Query distribution and progressive search. In FSL-HD,

the image embedding query with F dimension is divided

into multiple segments, where each segment has a size of

Fp. Rather than process the entire query in a single PU,

FSL-HD distributes the query to all N PUs in a round-

robin manner. Step 1 in Fig. 4(a) gives an example of

F = 64, Fp = 8, N = 4. For each round, N × Fp = 32 points

of the query embedding are distributed and computed. Each

PU receives a short query segment with dimension Fp = 8.

Each query segment is processed locally within the PU as Step

2 . Each PU first computes the tensorized encoding for the

received query segment and then returns the obtained partial

Hamming similarity to the Hamming margin checker as shown

in 3 . During Step 4 , the Hamming margin checker performs

the progressive search. It first receives n partial Hamming

similarity values from each PU, where n denotes the number

of class HVs. It updates the collected partial similarities and

checks whether the Hamming margin condition (the largest

similarity exceeds the 2nd largest similarity by the threshold

value) is satisfied and whether terminates the inference.

Partial encoding. As described above, each PU only receives

and encodes a query segment with dimension Fp. The right

side of the Fig. 4(a) shows the partial encoding scheme of

the query segment with a M = 2 order tensorized encoding

with sub-matrices dimension of f1 = f2 = 8, d1 = d2 = 16.

The partial encoding scheme resolves the imbalances between

projection matrix dimension and the BL parallelism. The second

dimension of projection sub-matrices di is normally larger than

the activated BL number NBL = 8. If we directly multiply the

query segment with entire ri, the intermediate data need to

be cached in additional buffers. To reduce the need for extra

buffering, we divide the two projection sub-matrices into four

blocks of size Fp × NBL. The query segment each time is

only multiplied with one block of each sub-matrix. Each block

multiplication is realized using the in-memory in Sec. III-C.

In this way, partial HV can be generated in four steps (Fig.

4(a)). The PU loads each Fp-b partial HV output and searches

against the stored class HVs immediately as it is generated.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:22:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: In-memory (a) Tensorized encoding scheme and (b)

two-step Hamming similarity computation.

B. FSL-HD Data Organization
Fig. 4(b) shows FSL-HD’s data organization in ReRAM array.

Two types of data need to be stored: projection sub-matrices ri
for encoding and class HVs Cj for search. For the weights of

projection sub-matrices, each PU needs to access the projection

weights in their ReRAM array, respectively, since the query

segment is distributed and the encoding is processed in every

PU. The projection weights are duplicated for each ReRAM

array and stored in the 16 × 64 cells. In this way, each PU

can encode using its local projection weights. The duplication

of projection weights incurs storage overhead. Storing the

M projection sub-matrices needs at least 2 · ∑M
i=1 di × fi

cells for each ReRAM. However, thanks to the significant

weight reduction of tensorized encoding method, the 1kb

preserved space can support various sub-matrices sizes as well

as encoding for different embedding sizes.

Each PU stores the bits of all class HVs corresponding

to the partially encoded query. A segment of HVs for all

n classes is stored in each PU’s ReRAM (Fig. 4(b)). These

segments of all n class HVs are stored in the remaining 48×64
cell area. The consecutive bits of each segment are organized

horizontally along the BLs to maximize the parallelism for

similarity computation.

C. In-memory Tensorized Encoding
Tensorized encoding requires M small matrix multiplications.

FSL-HD uses PU’s ReRAM array to realize the in-situ matrix

multiplication. As shown in Fig. 5(a), each binary {−1,+1}
weight from the projection sub-matrices ri, (i = 1, . . . ,M) is

stored in 2-bit 2’s complement form within the two consecutive

columns in the ReRAM array (i.e., 10 for -1 and 01 for +1).

The input of encoding is quantized with 4b and cached in the

near-memory 32b buffer. The input data are loaded into the

WL driver in a bit-serial manner. The encoding computation

is separated into two parts: positive sum and negative sum.

When computing the negative sum, the BL columns storing the

first bit of weights are continuously activated for 4 cycles to

compute the 4b input data. The CSA senses the signal from BL

current and accumulates the results in ACC. After the negative

sum is obtained, the positive sum is computed similarly using

the BL columns that store the second bit of weights. CMP

generates the binary encoded output by comparing the values

of positive sum and negative sum. Note that the output is not

binarized when generating the intermediate results between

two projection sub-matrices. In this case, the CMP is bypassed

and the output is 4b data.

D. In-memory Progressive Search
We propose a two-step Hamming similarity computation

scheme. Fig. 5(b) gives an example of two-step Hamming

similarity computation to compute the query HV (100111)

against 4 class HVs. First, it counts the number of matched 1s

in query and class HV. The query HV is loaded into the WL

driver and the number of 0s in query HV is stored in the zero

counter. The multiplication results (number of matched 1s) are

measured by the CSAs from the BL current. The second step

counts the number of matched 0s through loading the flipped

bits of query HV into the WL driver to multiply with class

HVs. The output of CSA equals to the number of unmatched 0s

in query and 1s in class HVs. Hence, the matched 0s for query

and class HVs can be calculated by subtracting the digitalized

CSA results from the stored zero counting value. Note that the

hardware modification cost is low because only one additional

zero counter is required for each PU.

E. In-memory FSL-HD Training
The in-memory training process (Eq. 2) is realized via reusing

the in-memory tensorized encoding scheme without additional

circuits. The encoded query HV bits are stored in the 32b buffer

and then written into the ReRAM array. The query HV from

the same class is written to the same ReRAM row. The number

of rows to aggregate equals to the FSL shot, k. Considering

k is normally ≤ 5, the aggregation and binarization can be

performed using the same circuits in the encoding.

IV. RESULTS

Hardware modeling. We use the 40nm 1T1R cell [13] to

construct ReRAM array. The peripheral circuits of PU and

Hamming margin checker are implemented using Verilog HDL

and synthesized by TSMC 40nm CMOS library. The CSA is

from [15] and scaled to 40nm. We input the component charac-

teristics obtained from synthesis into an in-house simulator that

emulates the execution behavior at the cell-level granularity.

Benchmarks. We use ResNet-34 [16] (output embedding size

F = 512) as a front-end feature extractor with ImageNet pre-

trained weights. Five popular meta-datasets [17] are used to

evaluate the FSL algorithms: Traffic Sign [18], CUB-200 Birds

[19], FC100 [20], Texture [21], and Omniglot [22].

FSL baselines. We compare FSL-HD with three baselines:

MLP [4], kNN [17] with L1 distance (kNN-L1) [1] and Cosine

similarity (kNN-Cosine) [5]. The MLP with two fully connected

layers and 512 hidden nodes following the original paper [4].

The k value for kNN is set to 1 [17]. We use six different

combinations of FSL parameters: the number of ways is set to

5, 10, 20 and the number of shots is 1 and 5. The test query size

is 15 per class and accuracy is calculated using the average of

300 randomly generated FSL tasks. MLP[4], kNN-L1 and kNN-

Cosine [17], and FSL-HD algorithms are implemented using

PyTorch on a system with Intel i7-8700K with 64GB RAM

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:22:38 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Average accuracy gap and ranking

Algorithm 5-way 1-shot 5-way 5-shot 10-way 1-shot

MLP [4] −1.11% (2.0) 0.00% (1.0) −0.98% (2.0)
kNN-L1 [1] −5.94% (4.8) −6.92% (4.4) −5.94% (5.0)
kNN-Cosine [5] −1.56% (2.6) −3.63% (3.2) −0.55% (2.0)
HDC-RP −2.45% (3.0) −3.47% (3.2) −1.73% (2.8)
FSL-HD −1.80% (2.6) −2.95% (3.2) −2.00% (3.2)

Algorithm 10-way 5-shot 20-way 1-shot 20-way 5-shot

MLP [4] 0.00% (1.0) −1.74% (2.8) −0.33% (1.8)
kNN-L1 [1] −8.09% (4.6) −4.83% (4.2) −7.07% (4.0)
kNN-Cosine [5] −4.84% (3.0) −0.41% (1.6) −3.65% (3.0)
HDC-RP −3.40% (3.4) −1.83% (3.4) −2.44% (2.8)
FSL-HD −3.03% (3.0) −1.56% (3.0) −2.18% (3.4)

(a) (b)

Fig. 6: (a) Inference complexity and memory size comparison

of MLP[4], kNN-Cosine[5], kNN-L1[1], and FSL-HD. (b)

Complexity and memory size of RP and Tensorized encoding.

and NVIDIA Geforce GTX 1080Ti. The energy consumption

of CPU and GPU are measured using Intel Power Gadget and

nvidia-smi command, respectively.

HDC configurations. We evaluated our design using HV di-

mensionality, D ∈ [512, 4096]. The tested orders of tensorized

encoding are M = 2, 3, 4. According to Eq. 1, the dimension

of sub-matrices should satisfy
∏M

i=1 fi = F and
∏M

i=1 di = D.

We fix the first dimension of sub-matrix to f1 = f2 = f3 = 8
for F = 512. The second dimension of sub-matrix is

d1 = d2 = d3 = 8 for D = 512, d1 = d2 = 8, d3 = 16
for D = 1024, and d1 = 8, d2 = d3 = 16 for D = 2048,

respectively. These fi and di dimension sizes align with the

activated word line numbers in the ReRAM version of FSL-HD.

A. FSL-HD Algorithm Evaluation
Comparison to FSL algorithms. Table I compares the

accuracy gaps of our proposed FSL-HD, original RP-based

HDC (HDC-RP) and three FSL baselines (MLP [4], kNN-

L1 [1], kNN-Cosine [5]). The accuracy is quantified using

the average accuracy gap between the best accuracy and the

average ranking among the five algorithms. FSL-HD yields

practically usable accuracy at D = 2048. MLP achieves the

lowest average accuracy gap on the six FSL problems, while

FSL-HD shows the second lowest accuracy gap: 1.5% lower

than MLP and 4.2% higher than kNN-L1. Our algorithm offers

better accuracy than HDC-RP with significantly lower overhead.

We compare the inference complexity and memory con-

sumption for three FSL baselines and FSL-HD in Fig. 6(a).

The inference complexity is defined as the number of binary

operations needed for inference. Although MLP [4] achieves

the highest average accuracy, MLP consistently requires 10×
to 100× higher inference complexity and memory size as

compared to the other algorithms. This is due to the compli-

cated matrix multiplications during inference. For 1-shot FSL

problems, the complexity of the proposed FSL-HD is higher

than of kNN-L1, but in all other settings FSL-HD’s complexity

and memory requirements are lower since the complexity and

memory size of kNN methods grow linearly with the number

of the way and the shot. As a result, our algorithm scales well

with memory size as the problem sizes scale up.

Effectiveness of tensorized encoding. We evaluate the HDC-

based FSL algorithms with and without proposed tensorized

encoding. Fig. 6b shows the normalized encoding complexity in

terms of the number of binary operations needed and memory

size requirements for tensorized encoding with different orders

of projection sub-matrices under D from 512 to 2048. As

the order M increases, the required complexity and memory

size needed for encoding both decrease. Our encoding lowers

complexity by 22− 31× and reduces memory size by 100×
compared to the random projection (RP) encoding. For D =
2048, we choose order-3 tensorized encoding since it yields

the lowest encoding complexity with good accuracy.

Effectiveness of progressive search. We study the impact

of the Hamming margin threshold values (from progressive

search) on the accuracy and latency reduction for 20-way 5-

shot problem (see Fig. 7). The Hamming margin threshold

ranges from 20 to 60 based on the observation in Fig. 2(b).

The accuracy is compared with the exhaustive search method

across five datasets. Smaller margin threshold leads to more

significant latency reduction with lower accuracy. The margin

threshold = 30 yields 39.8% to 51.3% latency reduction with

negligible accuracy loss. The trend is similar on other FSL

problem settings. The progressive search provides a valuable

tradeoff between searching latency and accuracy.

B. Performance and Energy Evaluation

Fig. 7 shows the performance and energy comparison of

MLP [4], kNN [1, 5] and FSL-HD algorithms on CPU, GPU,

and ReRAM with six FSL settings. FSL-HD-ReRAM and

FSL-HD-ReRAM-Prog. denote the proposed PIM accelerator

without and with progressive search enabled, respectively. The

speedup and energy efficiency improvement are computed by

normalizing the worst latency and energy consumption of each

FSL setting to 1. FSL-HD-ReRAM is 32−66× faster than FSL-

HD running on CPU and GPU and achieves 10−66× speedup

over kNN-CPU and 7−9× speedup over kNN-GPU. Although

MLP’s has over 10× complexity than kNN and FSL-HD, the

optimized matrix multiplication on CPU and GPU make the

speedup of kNN and FSL-HD over MLP less significant.

FSL-HD-ReRAM is over 100× and 1000× more energy

efficient as compared to kNN-CPU and FSL-HD-GPU, respec-

tively. As the FSL problem size grows, the energy efficiency

gain of FSL-HD-ReRAM over CPU and GPU baselines is more

significant thanks to the efficient in-situ ReRAM computing

that reduces the data movement overhead. Moreover, enabling

the progressive search for FSL-HD-ReRAM-Prog. generates

additional 1.9× to 2.8× speedup and energy efficiency improve-

ments over FSL-HD-ReRAM due to reduced computations.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:22:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Left: Classification accuracy and latency reduction (% over each bar) using progressive search with different Hamming

margin thresholds for the 20-way 5-shot problem. Right: Performance and energy comparison.

FSL-HD-ReRAM PU
96% (×16)

Hamming
Checker
4% (×1) ReRAM Array

26% (×1)

WL Driver
11% (×1)ACC and CMP

33% (×8)
32b buffer

9% (×1)

Zero CNT
3% (×1)

Column MUX
5% (×8)

CSA
13% (×8)

Total Area: 30944.5㎛2 FSL-HD-ReRAM PU (×1): 1852.5㎛2

Fig. 8: Area breakdown of FSL-HD-ReRAM.

C. Comparison with PIM-based FSL Classifiers
Scalability comparison. Our proposed accelerator has better

scalability compared to the PIM accelerator, SAPIENS [7].

SAPIENS only supports image embedding size F = 32,

maximum n = 32 ways, and only one-shot learning. Due

to the linearly growing memory consumption of kNN (see

Fig. 1), it is difficult to fit into the limited memory space

when F and FSL problem sizes increase. In comparison, the

memory requirement of FSL-HD is independent of F and the

number of FSL shots. It is a function of HV dimensionality D
and the number of FSL way n. FSL-HD-ReRAM can support

various image embedding sizes that range up to F = 1024
through changing the sub-matrices dimension fi of tensorized

encoding. For example, for 48× 64× 16 = 48kb memory, the

supported class number is from n = 48k
2k = 24 for D = 2048

to n = 48k
512 = 96 for D = 512. It implies that our design

scales well with other CNN-based feature extractors that have

output feature dimensions from 512 to 1000.
Latency comparison. FSL-HD-ReRAM without progressive

search has shorter processing latency under the same image

embedding size compared to SAPIENS [7]. The latency of

SAPIENS is linearly scaled with the embedding size F . To

process the image embedding with size F = 512, SAPIENS

needs 10,240 ns for inference while FSL-HD-ReRAM only

needs 4,160 ns, which is 2.5× faster.
FSL-HD area and overhead. The hardware area breakdown of

40nm FSL-HD-ReRAM is shown in Fig. 8. FSL-HD-ReRAM

with total of 16 PUs requires 30,944.5 μm2 area. The peripheral

circuitry accounts for over 70% of the FSL-HD PU area.

Compared to the standard 1T1R ReRAM computing macro

[13], the 32b buffer, zero CNT, and the top-level Hamming

checker are the three additional modules in FSL-HD-ReRAM.

These modules incur 18.6% area overhead. We compare 64kb

FSL-HD-ReRAM with the state-of-the-art kNN-L1-based FSL

design (64kb), SAPIENS [7]. FSL-HD-ReRAM has 84% less

area while yielding higher accuracy. This is because SAPIENS

constructs the ReRAM for multi-bit L1 distance search using

2T2R, which decreases the memory density.

V. CONCLUSION

This paper presents FSL-HD, an in-memory acceleration

framework for FSL based on HDC. Our algorithm provides

comparable accuracy to the state-of-the-art MLP, but runs faster

speed, with less memory and complexity. We also design novel

tensorized encoding, and progressive search during inference.

We use the physically-verified 40nm 1T1R ReRAM [13] to

accelerate FSL-HD. Our in-memory dataflow, organization,

and energy reduction schemes improve FSL-HD’s efficiency

in PIM. The experiments demonstrate that FSL-HD-ReRAM

achieves 4.2% accuracy improvement over kNN classifier [1].

Also, it is 2.5× faster than state-of-the-art ReRAM design,

SAPIENS [7], while requiring 84% less area.

ACKNOWLEDGEMENTS

This work was supported in part by CRISP, one of six centers in

JUMP (an SRC program sponsored by DARPA), SRC Global

Research Collaboration (GRC) grant, and NSF grants #1826967,

#1911095, #2003279, #2112665, #2112167, and #2100237.
REFERENCES

[1] J. Snell et al., “Prototypical networks for few-shot learning,” NeurIPS, 2017.
[2] O. Vinyals et al., “Matching networks for one shot learning,” NeurIPS, 2016.
[3] C. Finn et al., “Model-agnostic meta-learning for fast adaptation of deep networks,”

in ICML, 2017.
[4] A. Chowdhury et al., “Few-shot image classification: Just use a library of pre-trained

feature extractors and a simple classifier,” in ICCV, 2021.
[5] W.-Y. Chen et al., “A closer look at few-shot classification,” in ICLR, 2019.
[6] Y. Tian et al., “Rethinking few-shot image classification: a good embedding is all

you need?” in ECCV. Springer, 2020.
[7] H. Li et al., “Sapiens: A 64-kb rram-based non-volatile associative memory for

one-shot learning and inference at the edge,” TED, 2021.
[8] G. Karunaratne et al., “Robust high-dimensional memory-augmented neural

networks,” Nature communications, vol. 12, no. 1, pp. 1–12, 2021.
[9] D. Reis et al., “Attention-in-memory for few-shot learning with configurable

ferroelectric fet arrays,” in ASP-DAC, 2021.
[10] M. Imani et al., “Floatpim: In-memory acceleration of deep neural network training

with high precision,” in ISCA. IEEE, 2019.
[11] J. Morris et al., “Locality-based encoder and model quantization for efficient

hyper-dimensional computing,” TCAD, 2021.
[12] X. Zhang et al., “Fast orthogonal projection based on kronecker product,” in ICCV,

2015.
[13] S. D. Spetalnick et al., “A 40nm 64kb 26.56 tops/w 2.37 mb/mm 2 rram

binary/compute-in-memory macro with 4.23 x improvement in density and¿ 75%
use of sensing dynamic range,” in ISSCC, vol. 65. IEEE, 2022, pp. 1–3.

[14] C.-X. Xue et al., “A 22nm 4mb 8b-precision reram computing-in-memory macro
with 11.91 to 195.7 tops/w for tiny ai edge devices,” in ISSCC, 2021.

[15] T. Na et al., “Offset-canceling current-sampling sense amplifier for resistive
nonvolatile memory in 65 nm cmos,” JSSC, vol. 52, no. 2, pp. 496–504, 2016.

[16] K. He et al., “Deep residual learning for image recognition,” in CVPR, 2016.
[17] E. Triantafillou et al., “Meta-dataset: A dataset of datasets for learning to learn

from few examples,” arXiv preprint arXiv:1903.03096, 2019.
[18] S. Houben et al., “Detection of traffic signs in real-world images: The german

traffic sign detection benchmark,” in IJCNN, 2013.
[19] P. Welinder et al., “Caltech-UCSD Birds 200,” Caltech, Tech. Rep., 2010.
[20] B. Oreshkin et al., “Tadam: Task dependent adaptive metric for improved few-shot

learning,” NeurIPS, 2018.
[21] M. Cimpoi et al., “Describing textures in the wild,” in CVPR, 2014.
[22] B. M. Lake et al., “Human-level concept learning through probabilistic program

induction,” Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:22:38 UTC from IEEE Xplore. Restrictions apply.

