
OverlaPIM: Overlap Optimization for Processing
In-Memory Neural Network Acceleration

Minxuan Zhou§

University of California, San Diego
La Jolla, USA

miz087@ucsd.edu

Xuan Wang§

University of California, San Diego
La Jolla, USA

xuw009@ucsd.edu

Tajana Rosing
University of California, San Diego

La Jolla, USA

tajana@ucsd.edu

Abstract—Processing in-memory (PIM) can accelerate neural
networks (NNs) for its extensive parallelism and data movement
minimization. The performance of NN acceleration on PIM heav-
ily depends on software-to-hardware mapping, which indicates
the order and distribution of operations across the hardware
resources. Previous works optimize the mapping problem by
exploring the design space of per-layer and cross-layer data layout,
achieving speedup over manually designed mappings. However,
previous works do not consider computation overlapping across
consecutive layers. By overlapping computation, we can process
a layer before its preceding layer fully completes, decreasing the
execution latency of the whole network. The mapping optimization
without overlap analysis can result in sub-optimal performance.
In this work, we propose OverlaPIM, a new framework that in-
tegrates the overlap analysis with the DNN mapping optimization
on PIM architectures. OverlaPIM adopts several techniques to
enable efficient overlap analysis and optimization for the whole
network mapping on PIM architectures. We test OverlaPIM
on popular DNN networks and compare the results to non-
overlap optimization. Our experiments show that OverlaPIM can
efficiently produce mappings that are 2.10× to 4.11× faster than
the state-of-the-art mapping optimization framework.

I. INTRODUCTION

Processing in-memory (PIM) has emerged as a promising

computing solution to boost the performance of many critical

applications, like deep neural networks. Compared to conven-

tional architectures, PIM provides extensive parallelism with-

out off-chip data movements, leading into higher throughput,

energy efficiency, and scalability. PIM can exploit the abun-

dant memory resources to realize high compute and memory

throughput at the same time. The large capacity of memory

brings other benefits for workloads which we can allocate

exclusive memory resources for different parts of the applica-

tion, significantly reducing the data loading overhead [7], [14],

[15]. Neural network inference is a good candidate that can

exploit these benefits where we can allocate exclusive memory

for different layers. Therefore, most previous large-scale PIM

accelerators adopt the spatially distributed acceleration for

neural network inference [7], [14].

The performance of DNN acceleration depends on not only

the hardware architecture of the accelerator but also the ap-

plication mapping which determines the execution order and

distribution of DNN operations on the hardware. Figure 1(a)

shows an example of two mappings for a 2D convolution

§Equal contribution

Mapping 1
parallel_for o = 0 to 3:

for f = 0 to 3
Output[o]
+= Filter[f]

* Input[o+f]

Mapping 2
for o1 = 0 to 1:

parallel_for o2 = 0 to 1:
for f = 0 to 3:
Output[o1*2+o2]
+= Filter[f]

* Input[o1*2+o2+f]

0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
0 1 2 3

Sense. Amp.
W

or
dl

in
e

D
riv

er

Input

Filter

Output

0 2
1 3
2 4
3 5
4 6
0 0
1 1
2 2
3 3
0 1
2 3

Sense. Amp.

W
or

dl
in

e
D

riv
er

4 output in parallel (1 step) 2 output in parallel (2 steps)

Layer 1 Memory Layer 2 Memory

Out0 Out1

Out2 Out3

In0 Inp2
Inp1 Inp3

time0

time1

time2

Out0
Out1

Out2
Out3

Inp0
Inp1

Inp2
Inp3

Compute

Out0

Out1

Out0 Out1

Move

(a) Data layout of mappings of a 2D convolution. (b) Overlap of consecutive layers.

Fig. 1. The mapping problem of DNN on PIM accelerator.

on a PIM-enabled memory block. This example uses the in-

memory bit-serial row-parallel processing as the PIM technol-

ogy [3], [4] which provides state-of-the-art performance due to

the extremely parallel in-memory computations. We describe

each mapping using the syntax of Timeloop [10]. Mapping 1

parallelizes computations of all 4 outputs by spreading data in

different memory columns; mapping 2 parallelizes two output

tiles where each tile sequentially processes 2 outputs. As

shown, different mappings vary in latency, data layout, and

the order of producing outputs. Considering the more complex

operations (e.g., 3D convolution can be represented as a 7-level

nested loop) used in DNNs, the design space of mapping DNNs

onto the hardware accelerator is extremely large.

DNN mapping is critical to the performance of hardware

accelerators so that existing accelerators optimize the mapping

based on hardware configurations (e.g., row-stationary mapping

of Eyeriss [2]). Recent works recognize large design space for

DNN mapping by proposing optimization frameworks to find

the optimized mapping through either exhaustive search [10],

[12], [13] or solving an optimization problem [6]. However,

the ASIC-based framework, which assumes the accelerator

processes one layer at a time, is not applicable to spatially

distributed acceleration on PIM architecture. PIM-based frame-

work [13] considers the scheduling of all DNN layers on

PIM architecture by integrating a global optimization with the

per-layer optimization. Although such a PIM-based framework

takes the whole-network mapping into account for optimiza-

tion, it misses the computation overlap enabled by spatially

distributed DNN acceleration, which is a critical optimization.

2023 Design, Automation & Test in Europe Conference (DATE 2023)

 978-3-9819263-7-8/DATE23/© 2023 EDAA
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:24:32 UTC from IEEE Xplore. Restrictions apply.

Specifically, the existing PIM-based framework assumes

DNN layers are executed sequentially in the spatially dis-

tributed PIM memory, where each layer should wait for the

full completion of its preceding layer(s) to start the execution.

In practice, the execution of a layer can start earlier when part

of its input has been computed from the preceding layer(s). In

other words, we can overlap the execution of different layers

to improve the performance. Figure 1(b) shows an example

of executing two consecutive layers in two memory blocks.

We divide the computation of each layer into multiple time

steps, where each time step processes several operation spaces

in parallel (spatially processed in different memory blocks). In

the example, Layer 2 can overlap the computation of its output

0 with Layer 1 at the time step 1, where Layer 1 completes the

computation of data space output0/1 (input0/1 in Layer 2). In

real DNNs, such overlapping can bring significant performance

benefits. When considering the overlapping, the existing PIM-

based framework, which only considers the end-to-end sequen-

tial latency, may generate the sub-optimal mapping.

In this work, we propose and implement a novel PIM-

based DNN mapping framework, OverlaPIM, that integrates

overlap analysis into mapping optimization. There exist several

challenges in implementing overlap optimization. First, we can

only generate the overlap information based on fine-grained

data analysis which compares data spaces between two layers.

However, the size of fine-grained data spaces can be extremely

large so previous mapping frameworks avoid the full analysis

for all operation spaces. To tackle this challenge, we propose a

lightweight algorithm that can efficiently generate fine-grained

data spaces for overlap analysis. The second challenge is the

search for mapping becomes slow with overlap analysis. In

order to speed up the search for good mappings, we propose

a transformation mechanism that transforms a searched map-

ping into overlap-friendly mappings with a trivial overhead

for analysis. In this case, we effectively increase the search

space of the framework in a similar amount of time. We

implement the proposed framework in an open-source DNN

mapping framework and compare the result against state-of-the-

art mapping optimization without the consideration of overlap.

Our evaluation of popular DNNs shows OverlaPIM can produce

mappings that are 2.10× to 4.11× faster than the mappings

optimized by existing methods [10], [13].

II. BACKGROUND AND MOTIVATION

A. DNN Mapping and Optimization

DNN mapping determines the operation scheduling and data

allocation of a specific DNN for a computing platform. For

example, Timeloop [10] parameterizes the 7-D loop and near-

exhaustively searches through possible mappings considering

loop decomposition (i.e., temporal tiling and spatial tiling) and

permutation. Each mapping has a direct relation to a specific

data allocation and operation schedule on given hardware,

which has hierarchical storage. The mapping optimization for

customized accelerators only optimizes a DNN layer because

such accelerators process one layer at a time. The per-layer

optimization may lead to sub-optimal performance for PIM ar-

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 O
ve

rl
ap

pe
d

L
at

en
cy

Fig. 2. The normalized overlapped latency for all layers in ResNet-18 opti-
mized by existing framework [10] - higher means better overall performance.

chitectures with sufficient resources to process many (even all)

layers simultaneously. The cross-layer optimization is solved in

a recent work [13] by applying a 2-level optimization algorithm

to find the efficient data layout of all layers in the memory.

B. PIM Acceleration for DNN

In this work, we focus on the bit-serial row-parallel PIM

architectures based on DRAM which exploit special memory

commands (e.g., activate-activate-precharge [4]) to implement

universal bit-wise operations (e.g., majority-based addition [1]).

Figure 1 shows the architecture for a PIM-based memory block

supporting bit-serial row-parallel in-memory computations. The

PIM block contains an array of memory cells and peripheral

that controls bit-lines (rows) and word-lines (columns). We

allocate memory rows to different bits of operand and result

vectors to support an in-memory computation. The example

only shows single-bit values for input, filter, and output. In

practice, each data may take multiple rows. Once aligning

operand and result vectors, the memory issues a sequence of

universal bit-wise operations to generate the result vector. Such

bit-serial operations achieve extensive parallelism because we

can simultaneously process all columns in memory rows in

different memory blocks.

Furthermore, considering the large memory size, the PIM-

based accelerators can accommodate the whole DNN network,

different from ASIC-based accelerators that usually process one

layer at a time. The whole network execution avoids costly

off-chip data communication. PIM DNN accelerators [7], [14]

achieve state-of-the-art performance due to these benefits.

C. Overlap-based Optimization for PIM DNN Acceleration

Although previous work [13] proposed an optimization

framework that can generate efficient mappings for the whole

DNN in a PIM architecture, it still misses a key feature for the

PIM DNN acceleration - computation overlapping. In practice,

the memory of the preceding layer cannot generate all its

outputs at the same time, making outputs ready at different

times. In this case, the following layer can consume some

inputs (outputs from the preceding layer) earlier than others,

overlapping the corresponding computations with the preceding

layer. Such overlapping can bring better performance than the

performance considered by the existing framework.

Figure 2 shows an experiment of PIM acceleration for

ResNet-18 where we use the state-of-the-art framework,

Timeloop [10], to search for the best mapping (the lowest

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:24:32 UTC from IEEE Xplore. Restrictions apply.

Per-layer
Mapping constraints

Whole-network
Description

Global Mapper for
Whole-network

PIM Performance ModelFine-grained Data Space
Generation

Overlap Analysis
+Transformation

Architecture
Configuration

Network
Optimization

Fig. 3. The overview of OverlaPIM.

latency) layer by layer. We modified Timeloop to analyze the

computation overlap of consecutive layers and reduce the over-

lapped computations from the original latency. We reduce the

latency only if the input for all operation spaces of the following

layer becomes ready in a specific time step. Therefore, not

all overlapped data spaces lead to a latency reduction. We

calculate the normalized latency of the overlapped computation

in the experiment, where a higher value indicates a better

performance with more overlapped computations. As shown

in the results, the overlapped latency varies significantly from

layer to layer if we naively search for the best non-overlap

performance mapping for each layer. Specifically, 13 out of

20 layers only have trivial overlapping (< 20%) while other

layers can overlap a significant portion of their computations

(29% to 78%). Therefore, it is great potential to optimize the

performance by optimizing the DNN mapping on PIM based

on overlaps of computations between consecutive layers.

III. OVERLAP-BASED MAPPING OPTIMIZATION

In this work, we propose OverlaPIM, a PIM mapping frame-

work for DNN with the consideration of overlapping between

different layers. We implement our framework in an open-

source mapping framework, Timeloop [10], which uses near-

exhaustive search to find efficient mappings. Figure 3 shows key

components of OverlaPIM to enable the new functionalities re-

lated to overlap-based optimization. First, we add the interface

to support the whole network mapping including the combined

description of mapping constraints and layer information for

the whole network. The new interface enables us to configure

the whole network in the optimization for the overlap analysis

between consecutive layers. Second, we add a new PIM per-

formance model to enable the accurate evaluation of mapping

on PIM architectures because the original Timeloop [10] per-

formance model only considers the compute, read, and write

latency. These are insufficient for PIM performance evaluation

which requires data movement. Third, we implement a fine-

grained data space generation that produces detailed data spaces

over time on different memory components for overlap analysis

and optimization. Furthermore, we propose a transformation

algorithm that can significantly increase the search capability

of whole DNN optimization with trivial overhead.

During the execution, the optimization mapper generates

mappings based on the configuration, including architecture

configuration and mapping constraints. For each mapping, it

generates the fine-grained temporal and spatial data spaces,

as well as the PIM performance evaluation. Then, the frame-

work calculates the overlap of consecutive layers based on

their fine-grained data spaces and recalculates the performance

considering the overlapped computations. The framework also

transforms the current mapping into overlap-friendly mappings

to increase the search space. The framework continues to

update the best mapping based on the overlap-based perfor-

mance until meeting the termination requirements (similar to

Timeloop [10]). The following subsections illustrate details for

each component of OverlaPIM.

A. PIM Performance Model

In this work, we focus on spatially distributed PIM accel-

eration for the whole DNN based on bit-serial row-parallel

processing [3], as introduced in Section II-B. We allocate a

fixed amount of memory (e.g., 2 channels) for each DNN layer,

for which we place the filter data as well as the input data

for the first layer in the memory based on the DNN mapping.

After each layer execution, we move its output to the memory

locations of the input for the next layer.

We cannot simply change the latency of operation in the

Timeloop’s original performance model, which only evaluates

the number of read/write operations, to evaluate PIM architec-

tures. Read/write operations of PIM acceleration are replaced

by the data movements, including the output-input data transfer

and the data movements for reductions of partial sums located

in different columns. Thus, we implement a new performance

evaluation model in Timeloop to support PIM architectures.

B. Fine-grained Data Space Generation

Analysis of the output/input overlapping between layers

requires the comparison of the detailed output/input data spaces

for each memory hierarchy level across DNN layers. However,

only a small portion of data spaces are collected for size

measurement in Timeloop [10] due to runtime limitation. Since

Timeloop [10] generate data spaces from recursive function

calls, collecting all data spaces is unacceptably expensive for

both runtime efficiency and memory consumption and makes

overlap analysis impossible. To reduce the complexity, we

propose a lightweight algorithm to infer all spatial and temporal

data spaces through analytical observation and formulation.

First, OverlaPIM exploits the same 7D-loop representation of

Timeloop for DNN layer. We use convolution as the example,

where R and S are the height and width of weight, P and

Q are the height and weight of output, C is the number of

input channels, K is the number of output channels, and the

number of inputs or batch size is represented by N . With this

parameterized representation, we define the output data space as

a 4-D tensor [N,K,P,Q] and the input data space as [N,C, P+
R−1, Q+S−1] for further input/output overlapping analysis on

different mappings. Figure 4 shows an example of data spaces

for a mapping on a two-level memory. For simplicity, we ignore

the dimension of N in later discussion.

Each mapping, with a specific loop decomposition and

permutation, can be translated into data spaces that are spatially

and temporarily distributed. Specifically, the spatial distribution

(i.e., parallel for) means data spaces are split and allocated

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:24:32 UTC from IEEE Xplore. Restrictions apply.

Spatial decomposition (channel)
parallel_for k1 = 0 to 1:
Temporal decomposition (channel)
for k2 = 0 to 1:

Spatial decomposition (bank)
parallel_for k3 = 0 to 1:
Temporal decomposition (bank)
for p = 0 to P:

for q = 0 to Q:
k = k1*2*2+k2*2+k3
output[k, p, q] = …

[0,0,0:K/2,P,Q] [K/2,0,0:K,P,Q]

[0,0,0:K/4,P,Q]

[K/4,0,0:K/2,P,Q]

[0,0,0:K/8,P,Q] [K/8,0,0:K/4,P,Q]

Channel0 Space

Ch0 Bank0 T0 Ch0 Bank1 T0

[K/4,0,0:3K/8,P,Q] [3K/8,0,0:K/2,P,Q]
Ch0 Bank0 T1 Ch0 Bank1 T1

[0,0,0:K/8,0,0]

[0,0,0:K/8,0,1]

[0,0,0:K/8,P,Q]

…

Ch0 Bank0 T0-0

Bank0-0 T0-1

Bank0-0 T0-PQ

[0,0,0:K/8,0,0]

[0,0,0:K/8,0,1]

[0,0,0:K/8,P,Q]

…

Ch0 Bank1 T0-0

Bank0-1 T0-1

Bank0-0 T0-PQ

[0,0,0:K/8,0,0]

[0,0,0:K/8,0,1]

[0,0,0:K/8,P,Q]

…

Ch0 Bank0 T1-0

Bank0-0 T1-1

Bank0-0 T1-PQ

[0,0,0:K/8,0,0]

[0,0,0:K/8,0,1]

[0,0,0:K/8,P,Q]

…

Ch0 Bank0 T1-0

Bank0-0 T1-1

Bank0-0 T1-PQ

[0,0,0:K,P,Q]

Channel1 Space

Total Space

Spatial decomposition (channel)

T0

T1

[K/2,0,0:3K/4,P,Q]

[3K/4,0,0:K,P,Q]

Temporal decomposition (channel)

[0,0,0:K/4,P,Q]Channel0 T0 [K/4,0,0:K/2,P,Q]Channel0 T1

Temporal decomposition (bank)

Spatial decomposition (bank)

(a) Example mapping. (b) Channel-level data spaces and execution.

(c) Bank-level data spaces and execution (channel 0).

Sequential Sequential

Fig. 4. Fine-grained Data Space Generation

to different hardware instances (e.g., banks). The temporal

distribution (i.e., for) happens when a data space of a hard-

ware instance is further decomposed into smaller data spaces.

These smaller data spaces are sequentially processed by the

corresponding hardware component in multiple temporal steps,

where the instance process a temporal data space in each step.

As shown in Figure 4, the whole output data space is spatially

decomposed into two channel-level spaces, each of which is

further decomposed into two temporal steps. Similarly, each

channel-level temporal step is decomposed into 2 bank-level

spaces, where each consists of P ∗Q temporal steps. In total,

each bank in this example consists of 2∗P ∗Q temporal steps.

We propose a lightweight data space analysis based on

the observation that the size of data spaces maintains the

same at each hardware level. The dimension value of data

spaces changes periodically corresponding to the inner loop

iteration, where each loop level increments one data space

dimension. Therefore, our analysis algorithm runs in two steps.

First, we analyze the nested loop of the mapping to split

the whole data space (input or output) into small data spaces

until the target level (e.g., bank-level). The loop analysis runs

in an up-down loop order to generate small data spaces by

splitting data spaces from the upper loop level. Second, we

map the generated data spaces into the correct temporal and

spatial locations. The spatial index for each data space can be

computed straightforwardly by tracking all spatial loops (i.e.,

parallel for). For the temporal index, we deduce a formula to

translate the indices of loop iterations into the temporal steps

at each hardware level. Assuming k is the index of the nth

temporal loop iteration and i is the global index of 0-(n-1)

temporal loops, the temporal index of a data space in the nth

loop can be found by:

Si
k(n) = Si−1

numn
(n) + (

n−1∏

j=q

numj) ∗ k

where numj is the number of iterations in the jth temporal

Bank0 Bank1 Bank2 Bank3 End Time
Out0
()

Out1
()

Out2
()

Out3
() 1

Out0
()

Out1
()

Out2
()

Out3
() 2

Out0
()

Out1
()

Out2
()

Out3
() 3

Te
m

po
ra

ril
y

se
qu

en
tia

l
fo

r l
ay

er
 2

Bank0 Bank1 Bank2 Bank3 End Time
Out0
()

Out0
()

Out0
()

Out1
()

Out1
()

Out1
()

Out2
()

Out2
()

Out2
()

Out3
()

Out3
()

Out3
()

(a) Original mapping (no overlap available) (b) Transformed mapping

Fig. 5. Overlap-based transformation.

loop, and q is the lower bound of loops in the target hardware

level where the current loop iteration belongs.

As compared to Timeloop’s original logic, which depends

on recursive function calls, our method can more efficiently

compute all data spaces in O(n) time complexity, where n
is the total number of data spaces. If we implement the data

space generation in the Timeloop’s recursive function calls,

the analysis for one mapping takes around 600 seconds. Our

proposed analytical calculation only takes less than 60 seconds.

C. Overlap-based Performance Analysis

With the fine-grained data spaces for two consecutive layers,

Layer n and n + 1, we analyze the overlap and estimate the

overlapped performance. We denote Oi
t and Iit as the whole

output and input operation spaces in tth temporal step of all

hardware instances for Layer i. We first find the ready time of

In+1
t , which is the time when all data in In+1

t are finished by

the previous layer (Layer n). For each In+1
ti , we need to check

all On
t and find the latest time step to that On

to has an overlap

with In+1
ti . If to is earlier than the end time of Layer n, we can

compute On+1
ti right after to because the whole In+1

ti has been

calculated. In this case, the computation of On+1
ti is overlapped

with computations in Layer n after to.

Our new evaluation considers the overlapped data spaces

(computations) based on the hardware constraints to calculate

the overlapped performance as the new metric for optimization.

In our framework, we traverse through all data spaces at a

target storage level to find the ready timestamps. In the PIM

architecture, we conduct the overlap analysis at the bank level

because the analysis at an upper (e.g., channel) produces too

coarse-grained data spaces while a lower level (e.g., column)

has too many instances that will make the analysis intractable.

D. Overlap-based Mapping Transformation

One way to search for the best mapping, considering the

overlap, is to simply add overlap analysis in the normal search

process (e.g., Timeloop’s search algorithms). However, the

search time of this method can be extremely long. The most

time-consuming part of the search process is overlap analysis

which generates evaluation statistics. Based on our experiments,

the overlap analysis increases the evaluation time for a mapping

by 2.06× - 41.49 × as compared to the original Timeloop,

depending on the number of data spaces. Therefore, it is critical

to find a new method to search for more mappings in each

overlap analysis. If we can generate the analysis statistics for

different mappings in trivial time, we can significantly enlarge

the search space, hence improving the search result.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:24:32 UTC from IEEE Xplore. Restrictions apply.

We propose an overlap-based mapping transformation that

can directly generate the evaluation results for different map-

pings based on the mapping that is analyzed in detail. Figure 5

shows an example of mapping transformation, where we mark

the ready time for the input of each data space (tx in each

parenthesis). The left part shows the original mapping, where

no overlap is available because the latest ready time of all data

spaces in a time step is the end time of the previous layer

(i.e., t3). For transformation, we reorganize the data spaces and

reschedule data spaces at the same ready time, as shown in the

right part, significantly decreasing the end time of the layer.

The transformation runs in two steps. First, it sorts the data

spaces in the ascending order of ready time of input. After the

sorting, the algorithm allocates the memory resources for each

data space based on the ready time. In practice, the number of

data spaces that have the same ready time can be larger than the

number of memory resources. Therefore, the memory allocation

algorithm needs an optimization process. We should note that

the transformation is not overhead-free because it might change

the locations of partial sums that require data movements for

reduction. Therefore, the algorithm uses a round-robin manner

to schedule the data space with the same partial sum to the same

memory location. Since the transformation does not require re-

analysis of the data space and the complexity of the algorithm

is O(logN) bounded by the search, the transformation only

introduces trivial overhead during the search process.

E. Overlap Optimization for the Whole DNN

OverlaPIM supports the mapping search for all layers in the

entire DNN model. To evaluate the whole network, we require

descriptions of all layers and their corresponding mapping

constraints and architecture configurations as inputs. These

inputs can be generated automatically through our self-designed

toolkit by providing information of architecture design and

constraints. Since DNNs are Directed Acyclic Graphs (DAG) of

various layers, the workload parameters for each layer will be

auto-generated according to the topological order for analysis.

Given that overlapping performance depends on both Layer

n and Layer n+1, finding the best performance mappings for

all layers through searching and comparing mappings would

be prohibitively expensive. For example, if we search for k
mappings in each layer, the total possible combination of

mappings for all N layers would be kN . The exhaustive

search for optimal mappings would be unacceptably expensive

in this case. Thus, for each Layer n + 1, the overlapping

optimization search is done based on the best mapping found

for Layer n. Our evaluation shows that such a linear method

can produce high-performance mappings. We leave a more in-

depth investigation of global optimization for future work.

IV. EXPERIMENTS

A. Experimental Setup

1) Implementation: We implement the proposed framework

in Timeloop [10] as illustrated in Section III.

2) Baseline: We compare OverlaPIM to several baselines

based on state-of-the-art PIM mapping optimization [13], im-

plemented in Timeloop [10]. Specifically, the “Best Original”

0

1

2

3

4

5

ResNet VGG

Sp
ee

du
p

(X
)

Best Original Best Original Overlap Best Overlap Best Transform

Fig. 6. Overall performance comparison over different algorithms.

indicates the mapping optimized by the original framework

and does not consider overlap; “Best Original Overlap” means

the same mapping as the “Best Original” but the performance

considers the overlapped computation, which is analyzed by

OverlaPIM; “Best Overlap” is the mapping optimized based

on the execution time considering overlap in the search process

(no transformation); “Best Transform” indicates the optimized

mapping generated by considering the transformation during

the overlap-based optimization. The searches explore the same

number of valid mappings for all methods in the main loop.

Note that “Best Transform” effectively checks more mappings

with the light-weight transformations for each valid mapping.

3) Architecture Configuration: We use the HBM [8] with

the support of majority-based bit-serial computation [1] as

the base technology for the PIM architecture. We allocate

the fixed number of HBM channels (8 banks/channel, 32MB

bank) for each layer, ranging from 1 channel to 4 channels.

The whole system has 4 8GB HBM2 stack, with a total of

128 channels. We assume all 4 HBM2 stacks are connected

through a host machine with a 256GB/s bus. We extract the

timing of HBM from previous work [9] including the detailed

latency for memory commands (e.g., activate, precharge, etc.)

and internal/external bandwidth of HBM.

4) Workloads and Mapping Constraints: We evaluate the ef-

ficiency of OverlaPIM on two popular DNN networks, ResNet-

18 [5] and VGG-16 [11]. Because certain groups of mapping

may be preferred for a specific architecture configuration, we

carefully construct mapping constraints (natively supported by

the original Timeloop) for different layers to reduce the overall

search time. We note that OverlaPIM is general to all workloads

and architectures supported by the original Timeloop [10].

B. Overall Comparison

Figure 6 shows the overall results of different mapping

optimization algorithms. For ResNet-18, the overlapped latency

of the original best mapping (Best Original Overlap) is 1.51×
faster than the end-to-end latency without overlapping (Best

Original). The mapping optimized by the overlapped latency

(Best Overlap) can provide another 1.22× speedup over “Best

Original Overlap”. If we adopt the transformation in the search

process, the best mapping (Best Transform) further improves

the performance of “Best Overlap” by 1.14×. OverlaPIM

behaves differently in VGG-16 where “Best Original Overlap”

and “Best Overlap” have similar performance (1.36× faster

than “Best Original”). However, the overlap-based optimization

with transformation produces significantly better mappings than

other algorithms, which is 4.11× faster than “Best Original”.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:24:32 UTC from IEEE Xplore. Restrictions apply.

0

1

2

3

4

5

6
Sp

ee
du

p
(X

)
Best Original Best Original Overlap Best Overlap Best Transform

16.016.0

0
1
2
3
4
5
6
7
8

Sp
ee

du
p

(X
)

Best Original Best Original Overlap Best Overlap Best Transform
14.2 18.9

(a) ResNet-18

(b) VGG-16

Fig. 7. The per-layer performance comparison on ResNet-18 and VGG-16.
All results are normalized to “Best Original” for each layer.

0

2

4

6

8

10

12

1-Channel 2-Channel 4-Channel 1-Channel 2-Channel 4-Channel

ResNet VGG

Sp
ee

du
p

(X
)

Best Original Best Original Overlap Best Overlap Best Transform

Fig. 8. Efficiency of OverlaPIM on different memory capacity. All results are
normalized to the “Best Original” time for the 1-channel setting.

C. Per-layer Breakdown
Figure 7(a) shows the per-layer performance comparison

over different mapping optimization algorithms on ResNet-18.

As shown in the figure, the overlap-based algorithms, “Best

Overlap” and “Best Transform”, find better mappings than

the existing method (Best Overlap) for 15 out of 20 layers.

Among these layers, “Best Transform” is 2.30× better than

“Best Original Overlap”. The proposed optimization achieves

small performance improvements when the existing mapping

algorithm (without overlap consideration) coincidentally pro-

duces mappings with a high overlap ratio, as shown in Figure 2.

Figure 7(b) is the per-layer performance comparison on VGG-

16, showing a more significant benefit of transformation, which

improves the performance for 10 out of 13 layers. As a com-

parison, the normal overlap-based optimization (Best Overlap)

is not faster than “Best Original Overlap” in any layer.

D. Sensitivity Analysis of Memory Capacity

We adopt OverlaPIM on various architecture settings where

we allocate different amounts of memory resources for each

layer. We compare the performance of different optimization

algorithms in various architecture settings, as shown in Fig-

ure 8. The results show that, in ResNet-18, “Best Transform”

is 2.63×, 1.54×, and 1.21× faster than “Best Original”, “Best

Original Overlap”, and “Best Overlap” for 4-channel setting

(2× larger than the default 2-channel). Such performance

improvements are slightly better than the results shown in Fig-

ure 6. The performance improvements on the 1-channel setting

are similar to the 2-channel setting, which achieves 1.94×,

1.36×, and 1.21× speedup over three baseline algorithms.

We observe a similar result in VGG-16 where the relative

performance of the algorithm is similar across different settings.

Such results prove that OverlaPIM is a scalable and general

optimization for DNN mapping on PIM architectures.

V. CONCLUSION

This work proposes a novel DNN mapping framework,

OverlaPIM, on PIM architectures that consider the computation

overlapping. OverlaPIM integrates the overlap-based analysis in

the DNN mapping optimization that searches for the best DNN

mapping based on the overlapped latency, instead of sequential

latency considered by existing methods. We propose several

techniques to improve the effectiveness and efficiency of Over-

laPIM, including a fine-grained operation space generation,

an overlap-based performance analysis, and a transformation

algorithm to quickly find overlap-friendly mappings. Over-

laPIM can find mappings that achieve 2.10× to 4.11× better

performance than mappings optimized by existing methods.

ACKNOWLEDGMENT

This work was funded by CRISP, one of six centers in JUMP

(an SRC program sponsored by DARPA), SRC Global Re-

search Collaboration (GRC) grant, and NSF grants #2112167,

#2003279, #2100237, #2112665, and #2120019.

REFERENCES

[1] M. F. Ali et al., “In-memory low-cost bit-serial addition using commodity
dram technology,” IEEE TCAS I: Regular Papers, 2019.

[2] Y.-H. Chen et al., “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” ACM SIGARCH computer
architecture news, 2016.

[3] F. Gao et al., “Computedram: In-memory compute using off-the-shelf
drams,” in IEEE/ACM MICRO, 2019.

[4] N. Hajinazar et al., “Simdram: A framework for bit-serial simd processing
using dram,” in ACM ASPLOS, 2021.

[5] K. He et al., “Deep residual learning for image recognition,” in IEEE
CVPR, 2016.

[6] Q. Huang et al., “Cosa: Scheduling by constrained optimization for spatial
accelerators,” in ACM/IEEE ISCA, 2021.

[7] M. Imani et al., “Floatpim: In-memory acceleration of deep neural
network training with high precision,” in ACM/IEEE ISCA, 2019.

[8] C. Oh et al., “22.1 a 1.1v 16gb 640gb/s hbm2e dram with a data-bus
window-extension technique and a synergetic on-die ecc scheme,” in
IEEE ISSCC, 2020.

[9] M. O’Connor et al., “Fine-grained dram: Energy-efficient dram for
extreme bandwidth systems,” in IEEE/ACM MICRO, 2017.

[10] A. Parashar et al., “Timeloop: A systematic approach to dnn accelerator
evaluation,” in IEEE ISPASS, 2019.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[12] X. Yang et al., “Interstellar: Using halide’s scheduling language to analyze
dnn accelerators,” in ACM ASPLOS, 2020.

[13] M. Zhou et al., “Pim-dl: Boosting dnn inference on digital processing
in-memory architectures via data layout optimizations,” in PACT, 2021.

[14] M. Zhou, W. Xu et al., “Transpim: A memory-based acceleration via
software-hardware co-design for transformer,” in IEEE HPCA, 2022.

[15] M. Zhou et al., “Gram: Graph processing in a reram-based computational
memory,” in ACM ASPDAC, 2019.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:24:32 UTC from IEEE Xplore. Restrictions apply.

