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Abstract—State-of-the-art high-throughput DNA sequencers
output terabytes of short reads that typically need to be aligned
to a reference genome in order to perform downstream analyses.
Because alignment typically dominates the total run time of
bioinformatics pipelines, a number of recent work sought to
accelerate it in hardware. However, existing FPGA implemen-
tations did not fully optimize the alignment algorithms for the
FPGA hardware and mainly focused on a subset of alignment
problems, e.g., ungapped alignment with a limited number of
mismatches, which hinder their practical utility. In this work, we
analyze the existing alignment methods and identify and leverage
opportunities for FPGA acceleration. Our alignment framework,
SALIENT, first carries out an ultra-fast ungapped alignment,
which supports a flexible number of mismatches. Based on the
underlying bioinformatics pipeline and the information provided
by the ungapped aligner, SALIENT then identifies a fraction of
reads that need to go through its gapped aligner, thus improving
alignment throughput. We extensively evaluate SALIENT using
diverse datasets. Experimental results indicate that SALIENT,
running on a single Xilinx Alveo U280 device, delivers an average
throughput of 546 million bases/second, outperforming the state-
of-the-art minimap2 software by 40×, and Bowtie2 by up to
107×, with a similar or slightly better (∼0.1%–0.5%) alignment
and error (false negative/positive) rate. Compared to the existing
ungapped FPGA aligners [1]–[4], SALIENT has 9.4–18× higher
throughput/Watt, while compared to the gapped aligners [5], [6],
it is 28–35× better. SALIENT achieves 7.6× higher throughput
than Illumina DRAGEN Bio-IT Platform [7].

I. INTRODUCTION

Advances in high-throughput and low-cost sequencing tech-

nologies have dramatically accelerated the generation of ge-

nomics data. As a result, genomics data size now doubles

every seven months, outpacing Moore’s law. For instance,

the Illumina NovaSeq 6000 generates nearly 2.2 TB of data

within 44 hours [8]. By 2025, genomics data is predicted to

reach exabyte scale (1018) and surpass YouTube and Twitter,

requiring thousands of trillions of CPU hours for process-

ing [9]. The application space of genomics data is enormous,

from precision microbiome for personalized healthcare [10] to

phylogenetic inference of SARS-CoV-2 genomes that enables

global COVID-19 epidemiology [11].

Notwithstanding the diversity of applications, short read

alignment is a common and significant step of bioinformatics

pipelines, which finds the likely position of short DNA se-

quences of 25–200 base-pairs (bp) within a reference genome

of thousands to billions of bases. The alignment also finds

the edits (e.g., base change or insertion/deletion) between the

read and the aligned part of the reference genome. State-of-

the-art software such as minimap2 [12] have taken advantage

of novel algorithmic innovations and hardware advancement

to gain multiple times higher performance than previously

standard software [13], [14]. Nevertheless, aligning the alluded

massive data of a single sequencing run, even with recent soft-

ware (details in Section V), can take above 250 hours, which

is more than 5.7× slower than the sequencing throughput.

Recent work has also sought to accelerate read align-

ment in hardware [15]–[17]. However, the vast majority of

FPGA alignment acceleration have only targeted ungapped
alignment [1]–[4], [18]–[20] which, unlike commonly used

software such as Bowtie2 [13] and minimap2 [12], does not

support insertions or deletions (aka indels or gaps) in the

sequenced reads. Indels or gaps are extremely common in all

species [21] and have implications in the causes of a number

of Mendelian diseases, acute myeloid leukemia, and other

types of cancer [22]. Our experiments reveal that ungapped

alignment, on average, fails to align at least 11.5% of the

reads that could be aligned with gapped alignment. The few

FPGA accelerators that support gaps [5], [6], [23] achieve at

most 2× speedup over baseline software.

In this paper, based on our analysis of a comprehensive set

of datasets that reveals ungapped reads are significantly more

abundant than gapped reads (6.5× on average), we propose

a framework dubbed SALIENT to speed up the alignment

by decoupling it into two steps, ungapped and gapped align-

ment. It is beneficial since the ungapped alignment does not

require costly pairwise sequence alignment (Smith-Waterman

dynamic programming algorithm [24]) between the read and

candidate chunks of the reference genome, which based on

our experiments diminishes the throughput by ∼10×. The first

step of SALIENT performs an ultra-fast ungapped alignment

that supports a flexible number of mismatches (positions where

the read differs from the reference genome). This flexibility

is crucial, as we observed that 25% of the ungapped short

reads have more than two mismatches, and cannot be aligned

by previous ungapped FPGA aligners which support up to two

mismatches [1]–[4] due to performance limitations. After that,

SALIENT identifies the reads that require gapped alignment

and passes them through its gapped aligner. It includes (1)

reads that likely have gaps and could thus not be aligned

via ungapped alignment, and (2) reads that were aligned via

ungapped alignment but might obtain better alignment quality

with gapped alignment.

To deal with the mismatches and indels of the reads that

make the exact match of a read impossible, more recent

alignment algorithms break a given read into smaller pieces

called seeds, and look up the seeds on the reference. Our
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REF: TTGGCTCACGTGGGCATTCAGATCCAATTCGCAGC 
R1: GACTACACTGC 
R2: CACCTGTTCGC 
 
TTGGCT-CACGTGGGCATTCAGATCCAATT--CAGC 
  GACTACAC-TGC     CA---CCTGTTCGC 
 
 
 
CIGAR1: 4M,1I,3M,1D,3M 
CIGAR2: 2M,3D,6M,2I,1M 

Fig. 1. An example gapped alignment. Here, every match has a score of +2,
and mismatch and gap have a penalty of 1.

investigation discloses that memory access is the bottleneck

of seed lookup and dictates the overall performance. Thus,

in the proposed accelerator, we leverage a hash-based lookup

which lowers the number of memory accesses of seed lookup.

To make it practically possible, we prudently optimize the

hash-table by reducing its capacity and the required number

of accesses while avoiding alignment accuracy degradation. To

further improve the performance, we prioritize the candidate

alignment locations and early terminate to decrease the number

of pairwise alignments.

We implemented our design on a Xilinx Alveo U280

FPGA [25] and compared it with previous FPGA-based

aligners, including Illumina’s DRAGEN platform, as well as

commonly-used Bowtie2 and minimap2 software in terms of

performance and accuracy. We evaluated SALIENT using a

total of 16 datasets gathered from previous work (while most

of the previous works try on one dataset each) to have a

head-to-head comparison, especially since we observed that

the relative performance and accuracy vary based on the

dataset attributes. SALIENT yields an end-to-end alignment

throughput of 546M bases/second (845M ungapped, 81M

gapped stage) which is 40× higher than minimap2 [12], and

37–107× better than Bowtie2 [13], with a similar or slightly

better accuracy. SALIENT improves the performance/Watt by

9.4–18× over the existing ungapped FPGA-based aligners [1]–

[4], by 28–35× over the gapped FPGA platforms [5], [6].

SALIENT is 7.6× faster than the DRAGEN platform of

Illumina [7].

II. BACKGROUND AND ANALYSIS

A. Short Read Alignment

DNA is composed of paired strands of nucleotide bases

(A, T, G, C) which are identified through the sequencing

process, whereby the sequencing machine reads out the large

genome as smaller subsequences (aka reads) of ∼50–200

base-pairs (bp). Short read alignment process identifies the

locations wherein the short reads best align with the reference

DNA of thousands (e.g., bacteria) to billions of bases (e.g.,

human) and the type of the differences between the short

reads and the reference. Fig. 1 shows examples of gapped read

alignments of reads R1 and R2. Reads are prone to errors in

the form of insertions (indels), where an extra base is added,

or deletions (gaps), where a base is missing. These may occur

due to variants among species or sequencing errors. In Fig. 1,

mismatches between the read and reference are distinguished

by red, insertion with blue, and deletion by green.

 
 
REF:   TTGGCTACACGTGCGCAATGACACAATTG 
 
R1:    GACTACACTG 
Seed1: GACT 
Seed2:   CTAC 
Seed3:     ACAC 
Seed4:       ACTG 
 
TGGCTACACGTGC  CAATGAC-ACAATT 
 GACTACAC-TG      GACTACACTG 
 score=16       score=12 

Seed2 

Seed3 

Fig. 2. Example read alignment using seed-and-extend.

Once the candidate positions are identified, the Smith-

Waterman algorithm [24] performs pairwise alignment with

the candidate locations of the reference to find the alignment

score and edits (i.e., mismatches and indels). Fig. 1 shows

the pairwise alignment for R1. The edits are represented by

a so-called CIGAR string, in which M indicates a match or

mismatch, and I/D means insertion/deletion. Note that since

ungapped alignment does not deal with insertions/deletions,

it does not need to run the Smith-Waterman algorithm and

can use a more efficient base-to-base comparison (Hamming

distance) to determine the mismatches between the short read

and the reference.

Various algorithms have been proposed to find the candidate

positions on the reference genome where the read may align.

These algorithms differ in indexing, i.e., whether (1) they look

up a whole read or (2) split the read into pieces (aka seeds),

look up the seeds, and extend the reference near the position

that a seed is found. Also, looking up the seeds can be done

differently, e.g., by FM-index or Hash-table. We categorize

and review the previous work based on their table generation

(indexing) and seed lookup approach in the subsections below,

along with more details regarding the indexing algorithms.

B. Indexing with Suffix Arrays

Suffix array-based indexing is used in many alignment tools

such as Bowtie [26] and BWA [27]. It converts the reference

into suffix-tree and returns the match position stored in the leaf

if a matching path is found. A popular algorithm is FM-index

that uses Burrows-Wheeler Transform (BWT). FM-index is

used in most of the FPGA accelerators [1]–[4], [6], [19].

FM-index is space-efficient, but it cannot handle gaps/indels.

To handle mismatches, backtracking and bi-directional FM-

index [26] are used, which replace the failed base (mismatch)

with other alternatives and traverse the read from different

directions to reduce the search space. Several FPGA accel-

erators have adopted this strategy while supporting only two

mismatches due to the intractable growth of search space with

the mismatch count [1], [2], [4].

C. Indexing using Suffix Array with Seed-and-Extend

Seed-and-extend technique facilitates the alignment in the

presence of gaps and mismatches by finding sub-reads (seeds)

instead of the whole read, as seeds are shorter and have

a higher likelihood of being error-free. In suffix array with

seed-and-extend, the seeding step splits the reads into shorter

fragments and finds the perfectly matched locations of these
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REF:   TTGGCTACACGTGCGCAATGACACAATTG  
R1:    GACTACACTG  
Seed1: GACT 
Seed2:   CTAC 
Seed3:     ACAC  
Seed4:       ACTG  
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Fig. 3. Hash-based seed lookup. Each seed is split to seed ptr and seed cal
parts. The value in the PTR able refers to a row in the CAL table that stores
the positions of all seeds that begin with seed ptr. Starting from that row, the
CAL table is probed to find all seed cals.

seeds in the reference using FM-index. Fig. 2 shows examples

of seed-and-extend alignment. Read R1 is split into seeds

seed1 to seed4. Seed1 and seed4 (shown in red) are not

found on the reference. Seed2 (blue) is found in one position

of the reference, which is distinguished by the same color

(solid blue line). Seed3 (green) is found in two sites of the

reference (one of which is the same position pointed by seed2).

The dashed lines indicate extending near the obtained seed

positions on the reference. Finally, a pairwise alignment using

the Smith-Waterman algorithm between the read and each of

the candidate locations finds the best alignment and its edits.

Several FPGA accelerators use FM-index with seed-and-

extend [3], [6], [19], [23]. Of these, only [6], [23] support

gapped alignment. The work in [6] supports gaps by calling

Smith-Waterman pairwise alignment on the candidate loca-

tions. Using Xilinx UltraScale+ VU9P, [6] is 2× faster than

Bowtie2 software [13] at the cost of 2.8% accuracy loss.

However, if we match Bowtie2 and [6] accuracy, it turns out

that Bowtie2 can be faster ( [14] shows that using the fast

setting of Bowtie2 makes it 4× faster with an accuracy within

2% of the sensitive setting, which concurs with our findings

as well). The study in [23] integrates Bowtie2 with Xilinx

VU9P to offload the Smith-Waterman calls to FPGA, but the

end-to-end speedup is only 35% due to offloading overhead.

D. Indexing with Hash-based Seed-and-extend

The indexing step of hash-table techniques extracts length-

L seeds of the reference and stores their positions in a table.

Hash-table is used by software BLAT [28], BFAST [29], and

minimap2 [12], and also in an FPGA aligner [5] (we compare

SALIENT with [5] in Section V). To align a read, a subset

of its seeds are extracted, and their positions on the reference

are looked up using the prebuilt hash-table that reduces the

memory accesses compared to FM-index per-base accesses.

Fig. 3 shows the seed lookup using hash-table. A two-stage

table is adopted to handle seeds with multiple positions during

indexing the reference. When generating the table, each seed

of the reference is split into two parts, seed ptr (prefix) and

seed cal. The seed ptr is used as an address to point the row

in the CAL table where the positions of all reference seeds

starting with seed ptr prefix are stored successively. The rows

that correspond to a certain seed ptr are called a CAL bucket.
Note that not only a seed might appear on multiple positions

on the reference, but several seeds might also share the same

seed ptr; hence, a bucket stores the positions of all seeds that

start with the same seed ptr prefix.

Fig. 4. Throughput of accesses to a DDR4 bank, shared between up to eight
kernels instantiated in the host code using Xilinx Vitis software platform.
The 32b label shows random access to 32b data (used in FM-index and PTR
table), the others indicate searching the CAL table.

Items of the PTR table are unique, so access to it is

straightforward: to create and then access PTR[see ptr], we

can set A← 00, C← 01, G← 10, T← 11. Each seed is split

into seed ptr and seed cal parts. The value in the PTR table

refers to the row in the CAL table that stores the positions

of all seeds that begin with seed ptr. Starting from that row,

the CAL table is probed to find all seed cals. Fig. 3 shows an

example where seeds have a length of 4, split into seed ptr of

length three and seed cals of length one. To find the position

of the seed ACAC, it is likewise split to seed ptr =ACA and

seed cal =C. First, the ACAth cell in the PTR table is accessed

(i.e., PTR[see ptr]), which returns the proper row index of the

CAL table (bucket’s head) to search for seed cal =C.

E. Comparison of Indexing Techniques

Both the suffix-array and hash-based techniques heavily rely

on random memory accesses. To estimate and compare the

performance of these different indexing techniques, in Fig. 4

we benchmarked the random access throughput of Xilinx

Alveo U280 DDR4 bank by issuing 32b data random accesses

(black curve labeled as 32b) to a 4 GB table (representing

the FM-index and PTR tables). The latency of an access

includes the M-AXI adapter and AXI interconnect buffers,

and MIG to DDR latency [30]. When the number of kernels

is large enough, the throughput is saturated and a maximum

throughput of ∼96 M access/second is achieved. Since suffix-

array (FM-index) technique needs at least one access per each
read base, the throughput of these techniques is limited to

∼96 M base/second. In practice, the seeds can overlap, so more

than one access per base is needed (i.e., lower performance).

Using hash-table, however, we need fewer accesses per seed.

The seed length, L, is usually ∼20, and the sliding step of

seeds is at least 0.5
√|Q| (for Q denoting the read length) in

high-sensitivity (accuracy) alignment [13]. Accordingly, Fig. 5

shows the upper bound throughput of hash-based indexing. We

can see that a read length of 150 bp can achieve a throughput

of at least 758 M base/second. Accordingly, in SALIENT,

we leverage hash-based seed lookup. However, realizing such

a throughput in practice faces several challenges that we

elaborate on and address in the following section.

III. SALIENT ALGORITHM

A. SALIENT Alignment Flow

Overview: Fig. 6 depicts the alignment flow of SALIENT.

It takes advantage of a two-step alignment flow to decouple
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Fig. 5. Throughput bound of hash-based alignment. The throughput generally
improves with the read length as the number of seeds grows by ∝√|Q| while
number of the processed base improves by ∝|Q| (|Q| is the read length).

Fig. 6. Two-step flow of SALIENT to reduce gapped alignments.

the ungapped and gapped alignment to avoid costly Smith-

Waterman pairwise alignments needed in gapped alignment.

Both ungapped and gapped alignments require that at least

one seed of the read exist on the reference. Thus, if no seed

is found in the hash-table, the read is flagged as ‘not aligned’.

After that, an ungapped alignment is first performed. If the

read does not align, it can be possible that some insertion

or deletion has shifted some part of the read bases, so a

straight Hamming distance could not find the similarity. Such

as read is passed to our gapped alignment, which itself is

enhanced by prioritizing the candidate locations suggested by

seeds to lower the number of pairwise Smith-Waterman calls.

On the other hand, it is also possible that a read could be

aligned by the ungapped aligner but might also need to be

aligned with gapped alignment. It can happen, for example,

when an insertion or deletion has occurred in the tail of a

read. It causes a small part of the read tail to have a high

percentage of mismatches due to shifting versus the reference

chunk. Fig. 7(a) shows such an example, where the ungapped

alignment achieves good overall matching except in the last

four bases. Such a read is flagged as a potential read for gapped

alignment, depending on the application and requirements of

the downstream analysis. For instance, the host filtering step

of the microbiome pipeline [14] aligns the microbial reads to

the host (human genome) to discard the human reads for the

rest of the pipeline. In such cases, the exact/best alignment

of the reads and reference is not obligatory as a successful

alignment (that passes the threshold score) by the ungapped

stage provides enough information.

Algorithm 1 outlines the alignment (ungapped or gapped)

procedure of SALIENT. Length L seeds are extracted by

a moving step of S and split into seed ptr and seed cal

parts. For each seed S and its reverse complement Src, we

keep the smaller one (line 3) for the reason we explain in

subsection III-B. All seed ptrs are accessed in the PTR table

to obtain their bucket head in the CAL table. The bucket is

fetched by multiple wide memory accesses and is searched to

compare its seed cals with the query. The CAL table stores the

TTGGCTACACGTGCGCAATGATCCAATTG     TTGGCTACACGTGCGCAATGATCCAATTG 
   GCCACACGTGCGCAAGATC              GGCTACTACGTGCGCAATG 
 
TTGGCTACACGTGCGCAATGATCCAATTG     TTGGCTAC-ACGTGCGCAATGATCCAATTG 
   GCCACACGTGCGCAA-GATC             GGCTACTACGTGCGCAATG 
  (a)        (b) 

Fig. 7. (a) Successful ungapped alignment as a gap (deletion) is occurred in
the end-point of the read. (b) Unsuccessful alignment as a gap (insertion) is
occurred in the middle of the read, causing many mismatches.

Algorithm 1: SALIENT alignment algorithm

Inputs: read Q, ref R, seed length L, seed step S, hash tables PTR and
CAL, alignment score threshold ξ

Output: position pos, CIGAR cigar
1: pos count ← {}
2: for i from 0 to

|Q|−L
S

do
3: seed ← min

(
Q[i·S : i·S+L], rev cmp(Q[i·S : i·S+L])

)

4: seed ptr, seed cal ← seed[0:29], seed[30:2L]
5: row ← PTR[seed ptr]
6: if row �= −1 then
7: bucket ← CAL[row : row+3]
8: for j from 0 to 32 do
9: cal, pos ← bucket[j][0:16], bucket[j][16:48]

10: pos ← pos − i×S
11: if cal= seed cal then
12: pos count[pos]++
13: end if
14: end for
15: end if
16: end for
17: pos count = sort by value(pos count) // descending
18: for pos in pos count do
19: score, cigar ← Pairwise(Q, R[pos : pos+|Q|]) // or Hamming
20: if score ≥ ξ then
21: return pos, cigar
22: end if
23: end for
24: return −1

position of the reference seeds (not the read’s). To calculate the

mapped position of the read, we adjust the CAL value based

on the position of the queried seed on the read (line 10). The

pairwise alignment (line 19) carries out Hamming distance

for ungapped, and Smith-Waterman for gapped alignment.

Algorithm 1 returns the alignment position on the reference

and the edit information, which is used to decide whether a

read aligned by the ungapped stage needs gapped alignment.

Prioritizing: Multiple seeds may point to the same reference

position, e.g., when a read perfectly matches, all seeds return

the same position. Also, a seed might exist on different sites

and return various positions. Therefore, we first store the

frequency of each candidate position and carry out pairwise

alignment (or Hamming distance in the ungapped stage)

starting from the most-frequent position (lines 17–18). It is

because when k seeds of a read point to the same position

on the reference, at least L + (k−1)×S bases of the read

match with the reference (up to L×S when those seeds do

not overlap). Thus, a candidate position that is suggested with

more seeds has a higher likelihood of alignment. We observed
that prioritizing the candidate locations reduces the number of
Smith-Waterman calls by ∼2× until finding a valid alignment.

Efficacy: The two-stage alignment is critical for high per-

formance. We observed that we could integrate up to eight

Smith-Waterman units in the design (four parallel kernels,

two units per kernel), each takes 640 cycles for a pairwise
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Fig. 8. Alignment rate of different read datasets using Bowtie2 very-sensitive
option. The average alignment percentage is 85.32%, out of which 17.05%
contains gap (insertion, deletion, or both).

alignment of a read and the reference subsequence. The cycle

count could be reduced, but at a proportional cost of higher

resource utilization, so the overall Smith-Waterman throughput

would remain similar. Operating at 100 MHz and ignoring

memory and control stalls, the aggregate throughput of Smith-

Waterman modules is ∼187 M base/second, which nullifies the

seed lookup throughput premise of the hash-table seed lookup.

This throughput further deteriorates as a read can have multiple

candidate locations for pairwise alignment.

The efficacy of a two-stage alignment entails that the num-

ber of reads that require gapped alignment be non-dominant.

To investigate it, we gathered 16 short read datasets from

previous studies (11 of which are used in FPGA aligners,

detailed in Section V) and aligned using Bowtie2’s very sen-

sitive setting. As Fig. 8 shows, for the average alignment rate

of 85.3% among all datasets, only 17.1% of the reads ended

up in an alignment with gap (68.3% ungapped). Interestingly,

when we prevent gaps in aligning, the alignment rate becomes

73.9%, which is 5.6% higher than the expected 68.3%, leaving

only 11.4% of reads to need gapped alignment (i.e., ungapped

alignment dominates by 6.5×). Note that the reason that 5.6%

of gapped alignments could also be aligned despite preventing

gap is explained by the insertions/deletions in the head or tail

of a read that we discussed above. Recap that an alignment is

accepted if the penalty is higher less a threshold. For instance,

the default threshold of Bowtie2 for 150 bp reads is 90, and

the mismatch (indel) penalty is less than 6 (5 for indel). Hence,

alignment of a 150 bp read can tolerate at least 15 mismatches

(18 gaps). Thus, if a gap exists in the head or tail bases of a

read, it can still be aligned with ungapped alignment since the

penalties due to insertion/deletion do not exceed the threshold.

B. Indexing Optimizations

There are two main challenges with hash-based indexing.

First, for large genomes such as the human reference, the size

of the CAL table that stores the position of all seeds becomes

larger than the FPGA DRAM capacity. Second, the buckets

sizes of CAL table are different, and some buckets can have

hundreds of rows. Thus, while we can have high throughput

accesses to the PTR table, the CAL table becomes bottleneck.

In the following, we explain our optimizations of hash-based

indexing to address these challenges.

Storing numerically smaller seeds: For a reference genome

R, the CAL table consists of |R| rows, where each row stores

a seed cal with an integer indicating one position of the corre-

sponding seed on the reference, as shown in Fig. 3. Moreover,

in paired-end reads in which a genome is sequenced from both

ends, it is unknown whether a query read is in the forward or

reverse strand. Storing the seeds of both forward and reverse

strands increases the CAL table size to |R| rows. Accordingly,

the human genome CAL table needs 3.1 billion rows of eight

bytes (one int for seed cal and one for the position) for each

of the reference and its reverse complement, ending up in a

46.6 GB table. To avoid storing all the seeds of both reverse

and forward strands, during the reference indexing, instead of

storing both a seed S and its reverse complement Src, we only

store the numerically smaller one (by setting A← 00, C← 01,

G← 10, T← 11). Thereafter, for any extracted query seed S
of a read, we only look up min(S,Src) knowing that for that

position of the reference where the seed aligns to, we have also

stored only min(S,Src). Thus, without missing any seed, the

CAL table shrinks by half, i.e., 23.3 GB.

Limiting CAL row size: Each CAL row consists of a

seed cal cell that stores part of the seed bases, and another

cell that stores the seed position. The seed position needs to

be a 32 bit integer to store any value between 0 and 3.1 billion

for the large human genome. For the seed cal, we limit the

number of bases to eight, so that |seed cal| ≤ 16. Thus, each

row needs 48 bits and the CAL table size is further reduced

to 17.5 GB. |seed cal| ≤ 16 bits is a reasonable decision as

usually seed length L is 20–22 bases (40–44 bits). Specifically,

we use a seed length of 21 bases and set seed cal to six bases

(12 bits) which leaves 15 bases to seed ptr part of the seed

and keeps the PTR table size small (4 GB). Note that we could

use larger seed cal (up to eight bases) as well, but that makes

seed ptr length smaller and more seeds will share the same

seed ptr prefix. It increases the buckets size, and hence, the

CAL table search latency.

Bucket size reduction and seed discarding: To avoid

making the CAL table search performance bottleneck, we

limit the number of rows to be searched (i.e., the bucket

size). According to Fig. 4, with four parallel kernels, we

can have 3×512 b searches (three 512 bits accesses to con-

secutive addresses) of the CAL table and yet keep up with

the throughput of the requests from the PTR table. With

3×512 bits, we can search at least 21 (2×512
48 ) and up to 32

( 3×512
48 ) rows of a bucket, depending on the head of the target

bucket in 512 bit packed data (more fine-grained access such

as 64 bit could mitigate the aligning issue but its throughput

will be significantly smaller as shown in Fig. 4). Therefore,

we limit the bucket size to 32 rows. However, a fraction of

buckets can exceed the 32 rows capacity as alluded above.

Some software such as BFAST [29] that leverage hash-table

simply discard the highly-frequent seeds during the reference

indexing. Nevertheless, we observed such a solution results

in accuracy loss as certain reads do not find any seed after

discarding high-frequent reference seeds from the table. To

reduce the size of a bucket that exceeds the maximum limit, we

sort its seed cals by the number of positions they point to, and

randomly discard half of the positions (i.e., CAL rows) of the
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Fig. 9. Top-level diagram of the aligner design. The ungapped and gapped
implementations differ in the pairwise aligners and number of kernels. The
tables are stored in DRAM banks.

most frequent seed cal. We repetitively sort and discard until

the bucket size decreases to 32. With this strategy, we store as

many different seeds as possible, which not only precludes the

CAL table access bottleneck, but also shrinks it to 13.4 GB.

IV. SALIENT IMPLEMENTATION DETAILS

Fig. 9 shows the top-level diagram of SALIENT. Both the

ungapped and gapped stages have a similar architecture except

for the pairwise alignment unit, which is Hamming distance in

the ungapped and Smith-Waterman in the gapped alignment.

The number of kernels is also different as Smith-Waterman

engines consume more resources. Multiple copies of the

same kernel are instantiated (which, in our implementation, is

facilitated by leveraging the Xilinx Vitis software platform).

A memory access faces the M-AXI adapter, AXI inter-

connect, and MIG to DDR latency that adds up to ∼80

cycles according to our experiments, which concurs with [30]

as well. Such latency cannot be circumvented by simply

issuing simultaneous requests by a limited number of kernels.

Therefore, we opted to hide the memory pipeline latency by

streaming the accesses. Instead of accessing the PTR table for

a seed, using its result for CAL fetch, performing pairwise

alignment, and repeating for the next seed, we separate these

stages in a dataflow fashion. The seeding module fetches a read

from a 512 bit HBM channel, extracts its seeds (in parallel,

i.e., unrolled loop), and issues 32b accesses to the PTR table

(stored in the DDR4[0] bank) using the seed ptr part of all

the seeds successively in a loop. Note that on the host end, we

simply pack the ASCII characters into an int32 to avoid costly

preprocessing; converting the char to lower-bit nucleotides is

done in parallel over all bases in the same seeding function.

The result of each call to the PTR table is written to the output

dataflow buffer of the seeding module. Thus, the ∼80 cycle

latency is only observed once per a read (the first seed only).

It can be further improved by batching multiple reads together

to amortize the memory pipeline latency. However, we did not

find batching necessary since, by using dataflow and multiple

kernels, we could saturate the memory bandwidth.

The CAL module receives all the returned PTR values

(addresses to CAL buckets) along with the seed cal from the

dataflow buffer. This module stores all the received inputs in

a local temporary array using BRAMs and starts fetching the

CAL buckets from DDR4[1] bank after receiving all the PTR

values from the previous module. It fetches each bucket with

12705  8903  12705  179  12705   
417    711   417    179  417     

-1 179,1 12705,3

0 179 417

8903,1

711

-1

1023

417 711 179417 711 179

Fig. 10. Structure used for the candidate position frequency counter.

512b×3 accesses. Searching the buckets and comparing with

the seed cal cell of each bucket is done next. In case of a

match, it saves the candidate position (the second element in

a bucket’s row; lines 9–12 of Algorithm 1) to a counter-like

structure to keep track of the candidates’ frequencies.

Fig. 10 shows the structure we use to track the frequency of

candidate positions. We use a 1024-element array for position-

frequency pairs and call it a hash array. For a given candidate

position, we find the right hash index by using modulo 1024,

e.g., 12705mod 1024=417. If the hash entry is empty, we

write ′12705, 1′. Otherwise, we update the frequency by one,

i.e., ′12705, 1′ replaces with ′12705, 2′. Also, an auxiliary list,

namely index list, tracks the non-empty hash indexes. When

an index of the hash is empty (i.e., a new entry to that index),

the new index is added to the index list. Once all candidate

locations are processed, the index list is used to read the non-

empty hash entries and pass them through a bitonic sort that

sorts the pairs based on their frequency value. We limit the

candidate positions to 32, hence, the bitonic sort has a constant

size. In case there are less than 32 locations, the rest inputs of

the sort module are set to −1. On very rare occasions, when

a read has more than one candidate location mapping to the

same hash entry, we skip the new values.

Finally, the sorted candidate positions are written to the

inputs buffer of the pairwise alignment unit. Since the number

of unique candidates is limited, and usually the first candidates

have a higher chance of successful alignment, this module

fetches the reference chunk only when a candidate location

needs to be examined (aligned). The reference is stored in the

HBM banks, packed and fetched as 32 bit as we need fine-

grained (base-level) access to the reference. In the gapped

alignment, we fetch extra 16 bases from each end of the

reference chunk to account for indels in the read.

For the Hamming distance in the ungapped alignment, we

use a bitwise XOR between the read and reference chunk,

followed by a pipelined popcount to count the number of ‘1’s

(mismatches). For the gapped pairwise alignment, we imple-

ment the Smith-Waterman algorithm according to Fig. 11. The

value of a matrix cell depends only on its left, top, and top-

left cells. Thus, all the cells in the same anti-diagonal can be

computed simultaneously, given that the previous anti-diagonal

is computed before. At each cycle, the one-dimensional array

of processing engines (PEs) accomplishes one anti-diagonal

of the matrix. A PE only needs to store the cell values of the

same row (e.g., PE3 stores the third row’s values in successive

cycles). Thus, each PE has a simple stack (BRAM) and pushes

a new value in successive cycles. At cycle n, the left, top, and

top-left cells for a PEk are, respectively, PEk,n−1, PEk−1,n−1,

and PEk−1,n−2 where PEk,n denotes the value of PE k at

cycle n. Thus, in every cycle, each PE only needs the top
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Fig. 11. Smith-Waterman dynamic programming algorithm. σ is the score or
penalty of match, mismatch, insertion, and deletion.

Fig. 12. Resource utilization of SALIENT aligners.

stack values of itself or its adjacent PE.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We implemented SALIENT using Xilinx Vitis HLS 2021.2

on Alveo U280 accelerator card [25]. The FPGA has two

16 GB DDR4 banks and an 8 GB High-Bandwidth Memory

with 32 pseudo channels. The ungapped aligner comprises

eight kernels instantiated using the Xilinx Vitis software plat-

form and achieved a frequency of 150 MHz. The kernels share

the same PTR table (DDR4[0] bank), CAL table (DDR4[1]

bank), and reference genome (HBM). The reads of each kernel

are in a different HBM bank. The gapped aligner consists

of four kernels, wherein each kernel comprises two Smith-

Waterman engines and could achieve 100 MHz. Since there are

usually more than one candidate location per read, we decided

to have two Smith-Waterman units per kernel to parallelize

the pairwise alignments of a read. Resource utilization of the

aligners is reported in Fig. 12. Eight ungapped aligner kernels

can saturate the hash-table access throughput, so we did not

increase the number of kernels, particularly due to the routing

congestion, as well. While the gapped aligner could benefit

from more kernels as the memory is not its bottleneck, the

routing fails when further increasing the number of kernels or

the Smith-Waterman units. A major part of the BRAMs in the

ungapped aligner are used by the AXI interfaces and dataflow

FIFOs of the kernels. The gapped aligner has fewer kernels,

but each kernel consists of two Smith-Waterman units, where

each PE uses a BRAM to store the relevant matrix cells.

Table I summarizes the total 16 datasets we used to evaluate

SALIENT, most of them are compiled from the previous

FPGA aligners (distinguished in bold). The datasets provide

a wide range of short read sizes from 75 to 150 bases. Also,

as we showed in Fig. 8, the datasets present a wide range of

gaps from 0.02% up to 48.1%. It is crucial for a head-to-head

comparison as well as a thorough evaluation of SALIENT as

the gap percentage is a decisive factor in the performance.

TABLE I
SHORT READ DATASETS USED IN OUR EXPERIMENTS. DATASETS USED IN

PREVIOUS FPGA STUDIES ARE DISTINGUISHED IN BOLD.

Dataset Description
art illumina 100 bp synthetic human reads [6]
bisulfite 75 bp synthetic human chromosome 22 reads [2]
covid x (×3) 151 bp sequenced SARS-CoV-2 reads [31]
ERP001652 90 bp sequenced human reads [3]
ERRx (×3) 101 bp sequenced human reads [1]
human 0.2, 0.9 150 bp synthetic human reads contaminated with microbial [14]
human 300M 101 bp sequenced human reads [4]
human exome 76 bp sequenced human exome data [32] (as in [5])
rhodobac x (×2) 101 bp sequenced Rhodobacter sphaeroides reads [1]
staphy x 101 bp sequenced Staphylococcus aureus reads [1]

We compare the performance of SALIENT with Bowtie2
v2.4.5 and minimap2 v2.24-r1122, both running on Ubuntu

18.04 installed in a system with Intel Gen-11 Core i7-11700K

@4.8 GHz and 80 GB of physical memory. The Alveo U280

card is also installed on the same machine. We used all the

threads (16) for both software. For Bowtie2 we tried very-
fast (–VF), sensitive (–S), and very-sensitive (–VS) options.

In SALIENT, we use the same score/penalty of Bowtie2. We

also compare the performance with the previous FPGAs [1]–

[6] that report the absolute throughput numbers. We reviewed

the underlying alignment method of each study in Section II.

We also compare SALIENT with Illumina DRAGEN Bio-

IT Platform v3.5.7 [7]. DRAGEN has a standalone server

containing an Intel-Xeon-Gold-6226 CPU, 256 GB DDR4, and

embraces an Alveo-U200. We used the DRAGEN’s default

setting (user-guide v3.7 [7]) for table generation (excluded it

in the comparison) and alignment. We also disabled sorting

the output alignment data as it is a CPU-bound operation,

unnecessary in many applications. We used human 0.2 and

human 0.9 datasets for comparison with DRAGEN.

B. Performance Comparison

Comparison with CPU software: Fig. 13 compares the

performance of SALIENT and widely-used software aligners

in terms of million base/second. SALIENT on average,

achieves a throughput of 546 M base/second. Averaged over

all the benchmarks, SALIENT outperforms the minimap2 by

40×, and Bowtie2 by 37×, 56×, and 107× when Bowtie2
runs in very-fast, sensitive, and very-sensitive modes. The

ungapped stage of SALIENT uses a seeding step of 15 (like

Bowtie2 default) which, depending on the read length, can

achieve a seeding throughput of 1200–1750 M base/second as

we showed in Fig. 5. However, since usually more than one

candidate location per read is found, the effective throughput

diminishes. The gapped aligner of SALIENT uses a seeding

step of 7 (similar to Bowtie2-VS), so it can try more seeds

for the candidate unaligned reads. Considering only the human

datasets, SALIENT throughput ranges from 160 Mbp/sec up

to 683 Mbp/sec, on average 362 Mbp/sec (versus 6.7 Mbp/sec

of minimap2 and 4.5 Mbp/sec of Bowtie2-VS). SALIENT
can thus align 6000 Gbp of a 44 hours high-throughput se-

quencing run [8] in 4.6 hours versus 250 hours of minimap2
and 370 hours of Bowtie2-VS.

In certain datasets such as art illumina that the percentage

of the gapped alignments is very low, SALIENT’s speedup is

massive, e.g., 112× over minimap2 and 356× over Bowtie2-
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Fig. 13. Overall performance (million base-pair/second) comparison of SALIENT and software tools. –VF, –S, and –VS denote Bowtie2 in very-fast,
sensitive, and very-sensitive modes. The ungapped and gapped stages of SALIENT use a seeding step of 15 and 7, respectively.

VS, whereas in ERR231578 (another human dataset), the

speedup is 21× due to higher calls of the gapped aligner. Note

that datasets such as covid 43802 also have relatively high

gaps (12.8%, shown in Fig. 8), but SALIENT’s throughput

is very high (938 Mbp/second) as we observed that 10.8% out

of the 12.8% could be mapped with the fast ungapped aligner

since the gaps reside in the reads ends. Note that the indexing

tables of software tools for small genome is small and fits in

the cache, so software tools also achieve high performance.

Software scalability: For the CPU evaluations, we originally

used a more conventional 16 core Intel Core i7 11700K

processor. To evaluate the performance scaling, we also tried

Intel Xeon Scalable Processors (Cascade Lake) which is a 96

core processor (available on AWS as c5a.24xlarge instance).

For Bowtie2, we observed that the performance of 96 cores

Cascade Lake (which contains 6 times more cores) is only

1.9×–2.2× higher than the 16 cores Intel Core i7 11700K.

This improvement ratio is even smaller for minimap2; the

performance of Cascade Lake is only 1.54× better than the

original processor, which makes our FPGA design still 24×
faster than the 96 cores minimap2.

We also tried to compare with GPU-based aligners. Due to

the random memory access nature of short read alignment,

most GPU aligners have only targeted pairwise alignment of

long genomes which ends up in accelerating a huge GPU-

friendly Smith-Waterman matrix. A more prominent GPU

short read aligner is nvBowtie, which is a GPU-accelerated

re-engineering of Bowtie2 [33]. Our evaluation of nvBowtie
on COVID dataset shows it is 2.35× faster than Bowtie2, but

45% slower than minimap2. On human dataset, nvBowtie is

1.5×–7× faster than Bowtie2 (depending on the dataset and

sensitivity of Bowtie2), but it is only 1.8×–3.2× faster than

minimap2. These improvements achieved by nvBowtie are

significantly less than the 40×–107× of SALIENT.

SALIENT performance details: Table II reports the (1)

ratio of reads that call the gapped aligner, (2) our ungapped

aligner throughput (which depends on the read length), (3)

our gapped aligner throughput, and (4) throughput (Mbp)/Watt

for the ungapped and end-to-end flow. Note that calls to the

gapped aligner can be more or less than the gapped reads.

For instance, the majority of the COVID gapped reads could

be aligned using the ungapped aligner. On the other hand, a

dataset such as human 0.2 with only 0.07% gapped reads calls

the gapped aligner for 4.7% of the reads. The majority of such

TABLE II
DETAILED PERFORMANCE RESULTS OF SALIENT.

Dataset Gapped
calls %

Throughput (M bp/second) Throughput/Watt
Ungapped Gapped Overall Ungapped Overall

art illumina [6] 1.2% 750 92 683 19 18

bisulfite [2] 6.7% 563 69 363 14 10

covid 41819 0.9% 1073 72 941 28 25

covid 43802 1.0% 1073 72 938 28 25

covid 43853 0.6% 1073 72 978 28 25

ERP001652 [3] 19.7% 675 82 259 17 8

ERR231578 [1] 45.7% 758 93 160 19 5

ERR231579 43.4% 758 93 167 19 5

ERR231582 45.2% 758 93 161 19 5

human 0.2 [7] 4.7% 1066 71 625 27 17

human 0.9 [7] 3.3% 1066 71 716 27 20

human 300M [4] 6.5% 1066 71 539 27 15

human exome [5] 0.2% 570 70 562 15 14

rhodobac frag 4.8% 758 93 544 19 15

rhodobac jump 8.9% 758 93 437 19 12

staphy frag 1.6% 758 93 670 19 18

Fig. 14. Improvement of SALIENT over FPGA aligners [1]–[7].

reads contain at least one seed that (accidentally) overlap with

the reference genome, which, after an unsuccessful ungapped

alignment, examined with the gapped aligner. To obtain the

throughput/Watt, we measured the FPGA run time power using

the xbutil query utility. We observed an average power of

39 W and 32.5 W for the ungapped and gapped aligners.

Comparison with ungapped FPGA aligners: We compare

SALIENT with the FPGA-based aligners using the informa-

tion of Table II. Fig. 14 shows the performance improvement

of SALIENT over previous works. SALIENT achieves 4.3–

24.0× speedup over the previous ungapped FPGA acceler-

ators [1]–[4]. The main reason of SALIENT efficiency is

due to using hash-based seed lookup, which, as elaborated

on Section II-E, delivers significantly higher seed lookup

throughput over these FM-index-based techniques. To account

for the difference in power consumption, especially as several

of previous studies use multi-FPGA platforms, Fig. 14 also

compares throughput/Watt (note that [1] has not reported
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power consumption). Since SALIENT consumes less power

than these platforms, its throughput/Watt range improves to

9.4–18×. Note that these works support up to 2 mismatches,

while the default setting of ungapped SALIENT supports

6–9 mismatches depending on the read length. The relative

performance of SALIENT further improves if we limit the

number of mismatches (which reduces seed lookups).

Comparison with gapped FPGA aligners: According to

Fig. 14, SALIENT improves the throughput (throughput/Watt)

by 5.0–36× (28–35×) over gapped aligners, including DRA-

GEN [7]. Similar to SALIENT, [5] also uses hash-table

to lookup seeds, and achieves an overall throughput of

112 Mbp/second using a system of six Pico M-503 boards,

each equipped with a Virtex-6 LX240T. SALIENT improves

the throughput (throughput/Watt) by 5.0× (35×) over [5] on

a similar dataset. The main source of SALIENT’s advantage

stems from the ungapped aligner that achieves a throughput of

570 Mbp/second (see Table II), and since the gapped aligner

is only called for 0.2% of reads, the end-to-end throughput

is 562 Mbp/second. Even if we merely compare the gapped

stage of SALIENT on this dataset, it yields 70 Mbp/second on

a single device with two DIMMs, whereas [5] distributes the

reads over six boards with independent DIMMs with a total
throughput of 112 Mbp/sec (18.7 Mbp/sec per device). Even

with the same amount of total logic resources, having multiple

devices with separate DIMMs can alleviate per-device routing

congestion and allows having more Smith-Waterman units on

overall to further improve the pairwise alignment bottleneck.

Compared to [6] that uses a Xilinx UltraScale+ VU9P,

SALIENT improves the throughput (throughput/Watt) by 36×
(28×) on the same dataset. [6] uses FM-index for seed lookup

which, in Section II-E, we showed that has a limited through-

put. Especially, to reduce the size of FM-index table, [6]

uses bucketing that increases the number of accesses per

base and further degrades the effective throughput. Finally,

to compare with Illumina DRAGEN [7], we used the human

genome datasets human 0.2 and human 0.9 used in micro-

biome pipeline [14]. Thanks to its two-stage flow with an un-

gapped throughput of 1066 Mbp/second, SALIENT’s overall

throughput on the two datasets (average 670 Mbp/second) is

7.6× higher than DRAGEN’s. The gapped stage of SALIENT
alone achieves 71 Mbp/second in these datasets which is only

1.2× slower than DRAGEN. The Alveo U200 card of DRA-

GEN contains four DDR4 banks, which we can use to replicate

the PTR and CAL tables and place the Smith-Waterman units

within the adjacent SLRs (super logic regions) to alleviate the

routing congestion and/or increase the frequency and further

improve the SALIENT’s gapped stage throughput.

C. Accuracy

Fig. 15 compares the alignment rate of SALIENT frame-

work (ungapped alignment, followed by gapped on determined

reads) with minimap2 and Bowtie2. On average, SALIENT
obtains an alignment rate of 85.4%, whereas minimap2,

Bowtie2-VS, Bowtie2-S, and Bowtie2-VF achieve 85.4%,

85.3%, 84.9%, and 84.1%, respectively. Therefore, SALIENT

Fig. 15. Comparison of the SALIENT and software tools alignment rate.

TABLE III
FALSE NEGATIVE (FN) AND ERROR OF SALIENT VS SOFTWARE.

SALIENT minimap2 Bowtie2-VS

FN Error FN Error FN Error

human 0.2 0.07% 0.08% 0.10% 0.47% 0.13% 0.78%

human 0.9 0.26% 0.28% 0.40% 0.45% 0.70% 0.77%

achieves the same or slightly better accuracy than minimap2
and Bowtie2-VS. Recall that none of the previous ungapped
FPGA aligners can achieve such a high alignment rate. Indeed,

without gap, the average alignment rate became 73.9% (11.5%

drop, see Section III-A), while these works [1]–[4] support

only two mismatches, which further drops the accuracy by

an additional 25%. Among the existing gapped FPGA align-

ers, [5] does not compare the accuracy with gapped software

aligners, and [6] reports 2.8% lower accuracy versus Bowtie2.

Alignment rate does not explain the falsely aligned and

the failed reads. Thus, in Table III we compare the false

negative (failed to align) and error (total of FN and FP)

rate of SALIENT for the human 0.2 and human 0.9 datasets

for which the golden result is available [14]. Both the false

negative and error rate of SALIENT are lower than software

tools. E.g., for human 0.9, the error rate (false negative) of

SALIENT is 0.28% (0.26%), which is 0.17% (0.14%) lower

than minimap2 and 0.49% (0.44%) lower than Bowtie2-VS.

VI. CONCLUSION

In this paper, we proposed SALIENT, an FPGA-based short

read aligner that builds upon the fact a significant ratio of

reads do not contain gaps. Thus, SALIENT decouples the

flow into two stages of ungapped and gapped alignments to

identify and avoid the costly pairwise alignments of gapped

alignment. SALIENT employs a hash-based seed lookup

to combat the memory bottleneck of ungapped alignment.

SALIENT achieves an average end-to-end throughput of

546 M bases/second, and reduces the alignment time of the

human sequencing run from 250 hours of the state-of-the-art

software to 4.6 hours, and helps to take a major step towards

the grand challenge of real-time diagnostic and precision

medicine by substantially boosting the analysis pipeline.
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