2022 International Conference on Field-Programmable Technology (ICFPT) | 978-1-6654-5336-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICFPT56656.2022.9974548

SALIENT: Ultra-Fast FPGA-based Short Read Alignment

Behnam Khaleghi, Tiangi Zhang, Cameron Martino, George Armstrong, Ameen Akel*, Ken Curewitz*,
Justin Eno*, Sean Eilert*, Rob Knight, Niema Moshiri, Tajana Rosing
Computer Science and Engineering Department, UC San Diego, La Jolla, CA 92093, USA
*Micron Technology, Inc.
Email: {bkhaleghi, tiz014, cmartino, garmstro, robknight, almoshir, tajana} @ucsd.edu

Abstract—State-of-the-art high-throughput DNA sequencers
output terabytes of short reads that typically need to be aligned
to a reference genome in order to perform downstream analyses.
Because alignment typically dominates the total run time of
bioinformatics pipelines, a number of recent work sought to
accelerate it in hardware. However, existing FPGA implemen-
tations did not fully optimize the alignment algorithms for the
FPGA hardware and mainly focused on a subset of alignment
problems, e.g., ungapped alignment with a limited number of
mismatches, which hinder their practical utility. In this work, we
analyze the existing alignment methods and identify and leverage
opportunities for FPGA acceleration. Our alignment framework,
SALIENT, first carries out an ultra-fast ungapped alignment,
which supports a flexible number of mismatches. Based on the
underlying bioinformatics pipeline and the information provided
by the ungapped aligner, SALIENT then identifies a fraction of
reads that need to go through its gapped aligner, thus improving
alignment throughput. We extensively evaluate SALIENT using
diverse datasets. Experimental results indicate that SALIENT,
running on a single Xilinx Alveo U280 device, delivers an average
throughput of 546 million bases/second, outperforming the state-
of-the-art minimap2 software by 40x, and Bowtie2 by up to
107 x, with a similar or slightly better (~0.1%-0.5%) alignment
and error (false negative/positive) rate. Compared to the existing
ungapped FPGA aligners [1]-[4], SALIENT has 9.4-18x higher
throughput/Watt, while compared to the gapped aligners [5], [6],
it is 28-35x better. SALIENT achieves 7.6 x higher throughput
than Illumina DRAGEN Bio-IT Platform [7].

I. INTRODUCTION

Advances in high-throughput and low-cost sequencing tech-
nologies have dramatically accelerated the generation of ge-
nomics data. As a result, genomics data size now doubles
every seven months, outpacing Moore’s law. For instance,
the Illumina NovaSeq 6000 generates nearly 2.2 TB of data
within 44 hours [8]. By 2025, genomics data is predicted to
reach exabyte scale (10'®) and surpass YouTube and Twitter,
requiring thousands of trillions of CPU hours for process-
ing [9]. The application space of genomics data is enormous,
from precision microbiome for personalized healthcare [10] to
phylogenetic inference of SARS-CoV-2 genomes that enables
global COVID-19 epidemiology [11].

Notwithstanding the diversity of applications, short read
alignment is a common and significant step of bioinformatics
pipelines, which finds the likely position of short DNA se-
quences of 25-200 base-pairs (bp) within a reference genome
of thousands to billions of bases. The alignment also finds
the edits (e.g., base change or insertion/deletion) between the
read and the aligned part of the reference genome. State-of-
the-art software such as minimap2 [12] have taken advantage
of novel algorithmic innovations and hardware advancement

to gain multiple times higher performance than previously
standard software [13], [14]. Nevertheless, aligning the alluded
massive data of a single sequencing run, even with recent soft-
ware (details in Section V), can take above 250 hours, which
is more than 5.7x slower than the sequencing throughput.

Recent work has also sought to accelerate read align-
ment in hardware [15]-[17]. However, the vast majority of
FPGA alignment acceleration have only targeted ungapped
alignment [1]-[4], [18]-[20] which, unlike commonly used
software such as Bowtie2 [13] and minimap2 [12], does not
support insertions or deletions (aka indels or gaps) in the
sequenced reads. Indels or gaps are extremely common in all
species [21] and have implications in the causes of a number
of Mendelian diseases, acute myeloid leukemia, and other
types of cancer [22]. Our experiments reveal that ungapped
alignment, on average, fails to align at least 11.5% of the
reads that could be aligned with gapped alignment. The few
FPGA accelerators that support gaps [5], [6], [23] achieve at
most 2x speedup over baseline software.

In this paper, based on our analysis of a comprehensive set
of datasets that reveals ungapped reads are significantly more
abundant than gapped reads (6.5x on average), we propose
a framework dubbed SALIENT to speed up the alignment
by decoupling it into two steps, ungapped and gapped align-
ment. It is beneficial since the ungapped alignment does not
require costly pairwise sequence alignment (Smith-Waterman
dynamic programming algorithm [24]) between the read and
candidate chunks of the reference genome, which based on
our experiments diminishes the throughput by ~10x. The first
step of SALIENT performs an ultra-fast ungapped alignment
that supports a flexible number of mismatches (positions where
the read differs from the reference genome). This flexibility
is crucial, as we observed that 25% of the ungapped short
reads have more than two mismatches, and cannot be aligned
by previous ungapped FPGA aligners which support up to two
mismatches [1]-[4] due to performance limitations. After that,
SALIENT identifies the reads that require gapped alignment
and passes them through its gapped aligner. It includes (1)
reads that likely have gaps and could thus not be aligned
via ungapped alignment, and (2) reads that were aligned via
ungapped alignment but might obtain better alignment quality
with gapped alignment.

To deal with the mismatches and indels of the reads that
make the exact match of a read impossible, more recent
alignment algorithms break a given read into smaller pieces
called seeds, and look up the seeds on the reference. Our

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:26:00 UTC from IEEE Xplore. Restrictions apply.



GGCTCACG
REF: TTGGCTCACGTGGGCATTCAGATCCAATTCGCAGC 0/0/0]0]0]0]0]0}0
R1:  GACTACACTGC Glo|2]|2[1]o]0]o]0]2
R2:  CACCTGTTCGC alol1]z[1]olo]z][1]1
clolofol3]2]2]1]4][3
TTGGCT-CACGTGGGCATTCAGATCCAATT- - CAGC

GACTACAC-TGC CA---CCTGTTCGC T]0j0j0]2]5/4]3]3/3
Alofolof1]4]4]6]5]2
Mismatc Deletion Insertion €loj0j0|2]3]|6(5|8]7
Alofolo]1]2]s]8]7]7

CIGAR1: 4M,1I,3M,1D,3M : sl el e )]

CIGAR2: 2M,3D,6M,2I,1M

Fig. 1. An example gapped alignment. Here, every match has a score of 42,
and mismatch and gap have a penalty of 1.

investigation discloses that memory access is the bottleneck
of seed lookup and dictates the overall performance. Thus,
in the proposed accelerator, we leverage a hash-based lookup
which lowers the number of memory accesses of seed lookup.
To make it practically possible, we prudently optimize the
hash-table by reducing its capacity and the required number
of accesses while avoiding alignment accuracy degradation. To
further improve the performance, we prioritize the candidate
alignment locations and early terminate to decrease the number
of pairwise alignments.

We implemented our design on a Xilinx Alveo U280
FPGA [25] and compared it with previous FPGA-based
aligners, including Illumina’s DRAGEN platform, as well as
commonly-used Bowtie2 and minimap?2 software in terms of
performance and accuracy. We evaluated SALIENT using a
total of 16 datasets gathered from previous work (while most
of the previous works try on one dataset each) to have a
head-to-head comparison, especially since we observed that
the relative performance and accuracy vary based on the
dataset attributes. SALIENT yields an end-to-end alignment
throughput of 546M bases/second (845M ungapped, 81M
gapped stage) which is 40x higher than minimap2 [12], and
37-107x better than Bowtie2 [13], with a similar or slightly
better accuracy. SALIENT improves the performance/Watt by
9.4—-18x over the existing ungapped FPGA-based aligners [1]-
[4], by 28-35x over the gapped FPGA platforms [5], [6].
SALIENT is 7.6x faster than the DRAGEN platform of
[lumina [7].

II. BACKGROUND AND ANALYSIS
A. Short Read Alignment

DNA is composed of paired strands of nucleotide bases
(A, T, G, C) which are identified through the sequencing
process, whereby the sequencing machine reads out the large
genome as smaller subsequences (aka reads) of ~50-200
base-pairs (bp). Short read alignment process identifies the
locations wherein the short reads best align with the reference
DNA of thousands (e.g., bacteria) to billions of bases (e.g.,
human) and the type of the differences between the short
reads and the reference. Fig. 1 shows examples of gapped read
alignments of reads R1 and R2. Reads are prone to errors in
the form of insertions (indels), where an extra base is added,
or deletions (gaps), where a base is missing. These may occur
due to variants among species or sequencing errors. In Fig. 1,
mismatches between the read and reference are distinguished
by red, insertion with blue, and deletion by green.

Seed2
v

REF: TTGGCTACACGTGCGCAATGACACAATTG

R1:  GACTACACTG — —u 1

Seedl: GACT seed3

Seed2: CTAC

Seed3: ACAC

Seed4: ACTG

TGGCTACACGTGC CAATGAC-ACAATT
GACTACAC-TG GACTACACTG
score=16 score=12

Fig. 2. Example read alignment using seed-and-extend.

Once the candidate positions are identified, the Smith-
Waterman algorithm [24] performs pairwise alignment with
the candidate locations of the reference to find the alignment
score and edits (i.e., mismatches and indels). Fig. 1 shows
the pairwise alignment for R1. The edits are represented by
a so-called CIGAR string, in which M indicates a match or
mismatch, and I/D means insertion/deletion. Note that since
ungapped alignment does not deal with insertions/deletions,
it does not need to run the Smith-Waterman algorithm and
can use a more efficient base-to-base comparison (Hamming
distance) to determine the mismatches between the short read
and the reference.

Various algorithms have been proposed to find the candidate
positions on the reference genome where the read may align.
These algorithms differ in indexing, i.e., whether (1) they look
up a whole read or (2) split the read into pieces (aka seeds),
look up the seeds, and extend the reference near the position
that a seed is found. Also, looking up the seeds can be done
differently, e.g., by FM-index or Hash-table. We categorize
and review the previous work based on their table generation
(indexing) and seed lookup approach in the subsections below,
along with more details regarding the indexing algorithms.

B. Indexing with Suffix Arrays

Suffix array-based indexing is used in many alignment tools
such as Bowtie [26] and BWA [27]. It converts the reference
into suffix-tree and returns the match position stored in the leaf
if a matching path is found. A popular algorithm is FM-index
that uses Burrows-Wheeler Transform (BWT). FM-index is
used in most of the FPGA accelerators [1]-[4], [6], [19].
FM-index is space-efficient, but it cannot handle gaps/indels.
To handle mismatches, backtracking and bi-directional FM-
index [26] are used, which replace the failed base (mismatch)
with other alternatives and traverse the read from different
directions to reduce the search space. Several FPGA accel-
erators have adopted this strategy while supporting only two
mismatches due to the intractable growth of search space with
the mismatch count [1], [2], [4].

C. Indexing using Suffix Array with Seed-and-Extend

Seed-and-extend technique facilitates the alignment in the
presence of gaps and mismatches by finding sub-reads (seeds)
instead of the whole read, as seeds are shorter and have
a higher likelihood of being error-free. In suffix array with
seed-and-extend, the seeding step splits the reads into shorter
fragments and finds the perfectly matched locations of these

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:26:00 UTC from IEEE Xplore. Restrictions apply.



PTR CAL

REF:
R1: GACTACACTG

TTGGCTACACGTGCGCAATGACACAATTG

ACA| ——»| C 6

Seedl: GACT c| 21
Seed2: CTAC ACT | -1
Seed3: ACAC A | 20
Seed4: ACTG CTA

GAC

Fig. 3. Hash-based seed lookup. Each seed is split to seed_ptr and seed_cal
parts. The value in the PTR able refers to a row in the CAL table that stores
the positions of all seeds that begin with seed ptr. Starting from that row, the
CAL table is probed to find all seed cals.

seeds in the reference using FM-index. Fig. 2 shows examples
of seed-and-extend alignment. Read R1 is split into seeds
seedl to seed4. Seedl and seed4 (shown in red) are not
found on the reference. Seed2 (blue) is found in one position
of the reference, which is distinguished by the same color
(solid blue line). Seed3 (green) is found in two sites of the
reference (one of which is the same position pointed by seed?2).
The dashed lines indicate extending near the obtained seed
positions on the reference. Finally, a pairwise alignment using
the Smith-Waterman algorithm between the read and each of
the candidate locations finds the best alignment and its edits.

Several FPGA accelerators use FM-index with seed-and-
extend [3], [6], [19], [23]. Of these, only [6], [23] support
gapped alignment. The work in [6] supports gaps by calling
Smith-Waterman pairwise alignment on the candidate loca-
tions. Using Xilinx UltraScale+ VUO9P, [6] is 2x faster than
Bowtie2 software [13] at the cost of 2.8% accuracy loss.
However, if we match Bowtie2 and [6] accuracy, it turns out
that Bowtie2 can be faster ( [14] shows that using the fast
setting of Bowtie2 makes it 4 x faster with an accuracy within
2% of the sensitive setting, which concurs with our findings
as well). The study in [23] integrates Bowtie2 with Xilinx
VUO9P to offload the Smith-Waterman calls to FPGA, but the
end-to-end speedup is only 35% due to offloading overhead.

D. Indexing with Hash-based Seed-and-extend

The indexing step of hash-table techniques extracts length-
L seeds of the reference and stores their positions in a table.
Hash-table is used by software BLAT [28], BFAST [29], and
minimap2 [12], and also in an FPGA aligner [5] (we compare
SALIENT with [5] in Section V). To align a read, a subset
of its seeds are extracted, and their positions on the reference
are looked up using the prebuilt hash-table that reduces the
memory accesses compared to FM-index per-base accesses.

Fig. 3 shows the seed lookup using hash-table. A two-stage
table is adopted to handle seeds with multiple positions during
indexing the reference. When generating the table, each seed
of the reference is split into two parts, seed_ptr (prefix) and
seed_cal. The seed_ptr is used as an address to point the row
in the CAL table where the positions of all reference seeds
starting with seed_ptr prefix are stored successively. The rows
that correspond to a certain seed_ptr are called a CAL bucket.
Note that not only a seed might appear on multiple positions
on the reference, but several seeds might also share the same
seed_ptr; hence, a bucket stores the positions of all seeds that
start with the same seed_ptr prefix.

——32b ——512bx2
100

512bx3 64bx8 ——64bx16

80 A

60 -

40 4

Million access/sec

20 A

0
1 2 3 4 5 6 7 8
Number of kernels

Fig. 4. Throughput of accesses to a DDR4 bank, shared between up to eight
kernels instantiated in the host code using Xilinx Vitis software platform.
The 32b label shows random access to 32b data (used in FM-index and PTR
table), the others indicate searching the CAL table.

Items of the PTR table are unique, so access to it is
straightforward: to create and then access PTR[see_ptr], we
can set A<+ 00, C<+01, G+ 10, T+ 11. Each seed is split
into seed_ptr and seed_cal parts. The value in the PTR table
refers to the row in the CAL table that stores the positions
of all seeds that begin with seed_ptr. Starting from that row,
the CAL table is probed to find all seed_cals. Fig. 3 shows an
example where seeds have a length of 4, split into seed_ptr of
length three and seed_cals of length one. To find the position
of the seed ACAC, it is likewise split to seed_ptr=ACA and
seed_cal = C. First, the ACA™ cell in the PTR table is accessed
(i.e., PTR[see_ptr]), which returns the proper row index of the
CAL table (bucket’s head) to search for seed_cal=C.

E. Comparison of Indexing Techniques

Both the suffix-array and hash-based techniques heavily rely
on random memory accesses. To estimate and compare the
performance of these different indexing techniques, in Fig. 4
we benchmarked the random access throughput of Xilinx
Alveo U280 DDR4 bank by issuing 32b data random accesses
(black curve labeled as 32b) to a 4GB table (representing
the FM-index and PTR tables). The latency of an access
includes the M-AXI adapter and AXI interconnect buffers,
and MIG to DDR latency [30]. When the number of kernels
is large enough, the throughput is saturated and a maximum
throughput of ~96 M access/second is achieved. Since suffix-
array (FM-index) technique needs at least one access per each
read base, the throughput of these techniques is limited to
~96 M base/second. In practice, the seeds can overlap, so more
than one access per base is needed (i.e., lower performance).

Using hash-table, however, we need fewer accesses per seed.
The seed length, L, is usually ~20, and the sliding step of
seeds is at least 0.5\/@ (for Q denoting the read length) in
high-sensitivity (accuracy) alignment [13]. Accordingly, Fig. 5
shows the upper bound throughput of hash-based indexing. We
can see that a read length of 150bp can achieve a throughput
of at least 758 M base/second. Accordingly, in SALIENT,
we leverage hash-based seed lookup. However, realizing such
a throughput in practice faces several challenges that we
elaborate on and address in the following section.

III. SALIENT ALGORITHM
A. SALIENT Alignment Flow

Overview: Fig. 6 depicts the alignment flow of SALIENT.
It takes advantage of a two-step alignment flow to decouple

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:26:00 UTC from IEEE Xplore. Restrictions apply.



——sensitive ——very sensitive

;_/\//

:_—__—————______——’_________,——

1800
o 1500
1200

Million base/se
(o2} o
o o
o o

w
o
]

o

50 75 100 125 150 175 200
Read length

Fig. 5. Throughput bound of hash-based alignment. The throughput generally
improves with the read length as the number of seeds grows by ocy/|Q| while
number of the processed base improves by o|Q| (|Q] is the read length).

not aligned

gapped
alignment

N
‘erroneous’ heed precise A
head/tail2 CIGAR2,

Fig. 6. Two-step flow of SALIENT to reduce gapped alignments.

the ungapped and gapped alignment to avoid costly Smith-
Waterman pairwise alignments needed in gapped alignment.
Both ungapped and gapped alignments require that at least
one seed of the read exist on the reference. Thus, if no seed
is found in the hash-table, the read is flagged as ‘not aligned’.
After that, an ungapped alignment is first performed. If the
read does not align, it can be possible that some insertion
or deletion has shifted some part of the read bases, so a
straight Hamming distance could not find the similarity. Such
as read is passed to our gapped alignment, which itself is
enhanced by prioritizing the candidate locations suggested by
seeds to lower the number of pairwise Smith-Waterman calls.
On the other hand, it is also possible that a read could be
aligned by the ungapped aligner but might also need to be
aligned with gapped alignment. It can happen, for example,
when an insertion or deletion has occurred in the tail of a
read. It causes a small part of the read tail to have a high
percentage of mismatches due to shifting versus the reference
chunk. Fig. 7(a) shows such an example, where the ungapped
alignment achieves good overall matching except in the last
four bases. Such a read is flagged as a potential read for gapped
alignment, depending on the application and requirements of
the downstream analysis. For instance, the host filtering step
of the microbiome pipeline [14] aligns the microbial reads to
the host (human genome) to discard the human reads for the
rest of the pipeline. In such cases, the exact/best alignment
of the reads and reference is not obligatory as a successful
alignment (that passes the threshold score) by the ungapped
stage provides enough information.

Algorithm 1 outlines the alignment (ungapped or gapped)
procedure of SALIENT. Length L seeds are extracted by
a moving step of S and split into seed_ptr and seed_cal
parts. For each seed S and its reverse complement S,., we
keep the smaller one (line 3) for the reason we explain in
subsection III-B. All seed_ptrs are accessed in the PTR table
to obtain their bucket head in the CAL table. The bucket is
fetched by multiple wide memory accesses and is searched to
compare its seed_cals with the query. The CAL table stores the

TTGGCTACACGTGCGCAATGATCCAATTG
GCCACACGTGCGCAAGATC

TTGGCTACACGTGCGCAATGATCCAATTG
GGCTACTACGTGCGCAATG

TTGGCTACACGTGCGCAATGATCCAATTG TTGGCTAC-ACGTGCGCAATGATCCAATTG
GCCACACGTGCGCAA-GATC GGCTACTACGTGCGCAATG

(a) (b)

Fig. 7. (a) Successful ungapped alignment as a gap (deletion) is occurred in
the end-point of the read. (b) Unsuccessful alignment as a gap (insertion) is
occurred in the middle of the read, causing many mismatches.

Algorithm 1: SALIENT alignment algorithm

Inputs: read Q, ref R, seed length L, seed step S, hash tables PTR and
CAL, alignment score threshold &
Output: position pos, CIGAR cigar
1: pos_count < {}
2: for i from O to ‘QlT*L do
seed — min (Q[i-S:i-S+L], rev_cmp(Qli-S :i-S+LJ))
seed_ptr, seed_cal < seed[0:29], seed[30:2L)]
row <— PTR[seed_ptr]
if row # —1 then
bucket <— CAL[row : row +3]
for j from O to 32 do
cal, pos <— bucket[5][0:16], bucket[5][16:48]
pos <— pos — XS
if cal = seed_cal then
pos_count[pos]++
end if
end for
end if
. end for
: pos_count = sort_by_value(pos_count)
: for pos in pos_count do
score, cigar <— Pairwise(Q, R[pos: pos +|Q|]) // or Hamming
if score > £ then

/I descending

O I e T S e S USRS
SoxIauELR-SYeIUEY

21: return pos, cigar
22: end if
23: end for

24: return —1

position of the reference seeds (not the read’s). To calculate the
mapped position of the read, we adjust the CAL value based
on the position of the queried seed on the read (line 10). The
pairwise alignment (line 19) carries out Hamming distance
for ungapped, and Smith-Waterman for gapped alignment.
Algorithm 1 returns the alignment position on the reference
and the edit information, which is used to decide whether a
read aligned by the ungapped stage needs gapped alignment.

Prioritizing: Multiple seeds may point to the same reference
position, e.g., when a read perfectly matches, all seeds return
the same position. Also, a seed might exist on different sites
and return various positions. Therefore, we first store the
frequency of each candidate position and carry out pairwise
alignment (or Hamming distance in the ungapped stage)
starting from the most-frequent position (lines 17-18). It is
because when k seeds of a read point to the same position
on the reference, at least L + (k—1)xS bases of the read
match with the reference (up to L xS when those seeds do
not overlap). Thus, a candidate position that is suggested with
more seeds has a higher likelihood of alignment. We observed
that prioritizing the candidate locations reduces the number of
Smith-Waterman calls by ~2x until finding a valid alignment.

Efficacy: The two-stage alignment is critical for high per-
formance. We observed that we could integrate up to eight
Smith-Waterman units in the design (four parallel kernels,
two units per kernel), each takes 640 cycles for a pairwise

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:26:00 UTC from IEEE Xplore. Restrictions apply.



@ no-gap Wgap

100%

5 @
Q 9 9
X X X

Aligned Reads

nN
Q
X

Fig. 8. Alignment rate of different read datasets using Bowtie2 very-sensitive
option. The average alignment percentage is 85.32%, out of which 17.05%
contains gap (insertion, deletion, or both).

alignment of a read and the reference subsequence. The cycle
count could be reduced, but at a proportional cost of higher
resource utilization, so the overall Smith-Waterman throughput
would remain similar. Operating at 100 MHz and ignoring
memory and control stalls, the aggregate throughput of Smith-
Waterman modules is ~187 M base/second, which nullifies the
seed lookup throughput premise of the hash-table seed lookup.
This throughput further deteriorates as a read can have multiple
candidate locations for pairwise alignment.

The efficacy of a two-stage alignment entails that the num-
ber of reads that require gapped alignment be non-dominant.
To investigate it, we gathered 16 short read datasets from
previous studies (11 of which are used in FPGA aligners,
detailed in Section V) and aligned using Bowtie2’s very sen-
sitive setting. As Fig. 8 shows, for the average alignment rate
of 85.3% among all datasets, only 17.1% of the reads ended
up in an alignment with gap (68.3% ungapped). Interestingly,
when we prevent gaps in aligning, the alignment rate becomes
73.9%, which is 5.6% higher than the expected 68.3%, leaving
only 11.4% of reads to need gapped alignment (i.e., ungapped
alignment dominates by 6.5x). Note that the reason that 5.6%
of gapped alignments could also be aligned despite preventing
gap is explained by the insertions/deletions in the head or tail
of a read that we discussed above. Recap that an alignment is
accepted if the penalty is higher less a threshold. For instance,
the default threshold of Bowtie2 for 150 bp reads is 90, and
the mismatch (indel) penalty is less than 6 (5 for indel). Hence,
alignment of a 150 bp read can tolerate at least 15 mismatches
(18 gaps). Thus, if a gap exists in the head or tail bases of a
read, it can still be aligned with ungapped alignment since the
penalties due to insertion/deletion do not exceed the threshold.

B. Indexing Optimizations

There are two main challenges with hash-based indexing.
First, for large genomes such as the human reference, the size
of the CAL table that stores the position of all seeds becomes
larger than the FPGA DRAM capacity. Second, the buckets
sizes of CAL table are different, and some buckets can have
hundreds of rows. Thus, while we can have high throughput
accesses to the PTR table, the CAL table becomes bottleneck.
In the following, we explain our optimizations of hash-based
indexing to address these challenges.

Storing numerically smaller seeds: For a reference genome
R, the CAL table consists of |R| rows, where each row stores

a seed_cal with an integer indicating one position of the corre-
sponding seed on the reference, as shown in Fig. 3. Moreover,
in paired-end reads in which a genome is sequenced from both
ends, it is unknown whether a query read is in the forward or
reverse strand. Storing the seeds of both forward and reverse
strands increases the CAL table size to |R| rows. Accordingly,
the human genome CAL table needs 3.1 billion rows of eight
bytes (one int for seed_cal and one for the position) for each
of the reference and its reverse complement, ending up in a
46.6 GB table. To avoid storing all the seeds of both reverse
and forward strands, during the reference indexing, instead of
storing both a seed S and its reverse complement S,.., we only
store the numerically smaller one (by setting A <— 00, C <01,
G <10, T <+ 11). Thereafter, for any extracted query seed S
of a read, we only look up min(S, S,.) knowing that for that
position of the reference where the seed aligns to, we have also
stored only min(S, S,..). Thus, without missing any seed, the
CAL table shrinks by half, i.e., 23.3 GB.

Limiting CAL row size: Each CAL row consists of a
seed_cal cell that stores part of the seed bases, and another
cell that stores the seed position. The seed position needs to
be a 32 bit integer to store any value between 0 and 3.1 billion
for the large human genome. For the seed_cal, we limit the
number of bases to eight, so that |seed_cal| < 16. Thus, each
row needs 48 bits and the CAL table size is further reduced
to 17.5GB. |seed_cal| < 16bits is a reasonable decision as
usually seed length L is 20-22 bases (40—44 bits). Specifically,
we use a seed length of 21 bases and set seed_cal to six bases
(12bits) which leaves 15 bases to seed_ptr part of the seed
and keeps the PTR table size small (4 GB). Note that we could
use larger seed_cal (up to eight bases) as well, but that makes
seed_ptr length smaller and more seeds will share the same
seed_ptr prefix. It increases the buckets size, and hence, the
CAL table search latency.

Bucket size reduction and seed discarding: To avoid
making the CAL table search performance bottleneck, we
limit the number of rows to be searched (i.e., the bucket
size). According to Fig. 4, with four parallel kernels, we
can have 3x512b searches (three 512 bits accesses to con-
secutive addresses) of the CAL table and yet keep up with
the throughput of the requests from the PTR table. With
3x512bits, we can search at least 21 (2X4‘212) and up to 32
(31—5812) rows of a bucket, depending on the head of the target
bucket in 512 bit packed data (more fine-grained access such
as 64 bit could mitigate the aligning issue but its throughput
will be significantly smaller as shown in Fig. 4). Therefore,
we limit the bucket size to 32 rows. However, a fraction of
buckets can exceed the 32 rows capacity as alluded above.
Some software such as BFAST [29] that leverage hash-table
simply discard the highly-frequent seeds during the reference
indexing. Nevertheless, we observed such a solution results
in accuracy loss as certain reads do not find any seed after
discarding high-frequent reference seeds from the table. To
reduce the size of a bucket that exceeds the maximum limit, we
sort its seed_cals by the number of positions they point to, and
randomly discard half of the positions (i.e., CAL rows) of the

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:26:00 UTC from IEEE Xplore. Restrictions apply.



PTRtable | | CALtable | [ Reference
enome
Seeding and CAL lookup Pairwise
I PTR access I and filter I alignment I
E : U . U ‘U 2
o . . . om
I . . . T
Seeding and CAL lookup Pairwise
I PTR access I and filter I alignment I
— — —>
read row, seed_cal candidate alignment
positions metadata

Fig. 9. Top-level diagram of the aligner design. The ungapped and gapped
implementations differ in the pairwise aligners and number of kernels. The
tables are stored in DRAM banks.

most frequent seed_cal. We repetitively sort and discard until
the bucket size decreases to 32. With this strategy, we store as
many different seeds as possible, which not only precludes the
CAL table access bottleneck, but also shrinks it to 13.4 GB.

IV. SALIENT IMPLEMENTATION DETAILS

Fig. 9 shows the top-level diagram of SALIENT. Both the
ungapped and gapped stages have a similar architecture except
for the pairwise alignment unit, which is Hamming distance in
the ungapped and Smith-Waterman in the gapped alignment.
The number of kernels is also different as Smith-Waterman
engines consume more resources. Multiple copies of the
same kernel are instantiated (which, in our implementation, is
facilitated by leveraging the Xilinx Vitis software platform).

A memory access faces the M-AXI adapter, AXI inter-
connect, and MIG to DDR latency that adds up to ~80
cycles according to our experiments, which concurs with [30]
as well. Such latency cannot be circumvented by simply
issuing simultaneous requests by a limited number of kernels.
Therefore, we opted to hide the memory pipeline latency by
streaming the accesses. Instead of accessing the PTR table for
a seed, using its result for CAL fetch, performing pairwise
alignment, and repeating for the next seed, we separate these
stages in a dataflow fashion. The seeding module fetches a read
from a 512bit HBM channel, extracts its seeds (in parallel,
i.e., unrolled loop), and issues 32b accesses to the PTR table
(stored in the DDR4[0] bank) using the seed_ptr part of all
the seeds successively in a loop. Note that on the host end, we
simply pack the ASCII characters into an int32 to avoid costly
preprocessing; converting the char to lower-bit nucleotides is
done in parallel over all bases in the same seeding function.
The result of each call to the PTR table is written to the output
dataflow buffer of the seeding module. Thus, the ~80 cycle
latency is only observed once per a read (the first seed only).
It can be further improved by batching multiple reads together
to amortize the memory pipeline latency. However, we did not
find batching necessary since, by using dataflow and multiple
kernels, we could saturate the memory bandwidth.

The CAL module receives all the returned PTR values
(addresses to CAL buckets) along with the seed_cal from the
dataflow buffer. This module stores all the received inputs in
a local temporary array using BRAMs and starts fetching the
CAL buckets from DDR4[1] bank after receiving all the PTR
values from the previous module. It fetches each bucket with

12705 8903 12705 179 12705
417 417 179 417 modulo 1024
179 711 1023

417

417 | 711 list of non-empty entries (index list)

candidate positions

~
Py
[y

'
.I@

Fig. 10. Structure used for the candidate position frequency counter.

512bx3 accesses. Searching the buckets and comparing with
the seed_cal cell of each bucket is done next. In case of a
match, it saves the candidate position (the second element in
a bucket’s row; lines 9—12 of Algorithm 1) to a counter-like
structure to keep track of the candidates’ frequencies.

Fig. 10 shows the structure we use to track the frequency of
candidate positions. We use a 1024-element array for position-
frequency pairs and call it a hash array. For a given candidate
position, we find the right hash index by using modulo 1024,
e.g., 12705 mod 1024 =417. If the hash entry is empty, we
write ‘12705, 1. Otherwise, we update the frequency by one,
i.e., '12705, 1’ replaces with 12705, 2’. Also, an auxiliary list,
namely index list, tracks the non-empty hash indexes. When
an index of the hash is empty (i.e., a new entry to that index),
the new index is added to the index list. Once all candidate
locations are processed, the index list is used to read the non-
empty hash entries and pass them through a bitonic sort that
sorts the pairs based on their frequency value. We limit the
candidate positions to 32, hence, the bitonic sort has a constant
size. In case there are less than 32 locations, the rest inputs of
the sort module are set to —1. On very rare occasions, when
a read has more than one candidate location mapping to the
same hash entry, we skip the new values.

Finally, the sorted candidate positions are written to the
inputs buffer of the pairwise alignment unit. Since the number
of unique candidates is limited, and usually the first candidates
have a higher chance of successful alignment, this module
fetches the reference chunk only when a candidate location
needs to be examined (aligned). The reference is stored in the
HBM banks, packed and fetched as 32bit as we need fine-
grained (base-level) access to the reference. In the gapped
alignment, we fetch extra 16 bases from each end of the
reference chunk to account for indels in the read.

For the Hamming distance in the ungapped alignment, we
use a bitwise XOR between the read and reference chunk,
followed by a pipelined popcount to count the number of ‘1’s
(mismatches). For the gapped pairwise alignment, we imple-
ment the Smith-Waterman algorithm according to Fig. 11. The
value of a matrix cell depends only on its left, top, and top-
left cells. Thus, all the cells in the same anti-diagonal can be
computed simultaneously, given that the previous anti-diagonal
is computed before. At each cycle, the one-dimensional array
of processing engines (PEs) accomplishes one anti-diagonal
of the matrix. A PE only needs to store the cell values of the
same row (e.g., PE3 stores the third row’s values in successive
cycles). Thus, each PE has a simple stack (BRAM) and pushes
a new value in successive cycles. At cycle n, the left, top, and
top-left cells for a PEy; are, respectively, PEy ,—1, PEx—1,n—1,
and PEj_q ,—2 where PEj, denotes the value of PE k at
cycle n. Thus, in every cycle, each PE only needs the top

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:26:00 UTC from IEEE Xplore. Restrictions apply.



Sub-Reference
G|T|T|C|A|T|G

PE1|Cycle n-2

PE2|PE2|Cycle n-1

PE3IPE3|PE3| Cycle n

PE4|PE4|PEA|

M@i-1j)+a(Qr-) deletion
M(i,j) = max{M(i,j— 1) +0(—Q)) insertion
M(@i—1,j—1) +0(QyR;) (mis)match

Query Read
[N Nal Hal Bl Bal B K2l

PE7|PE7|PE7

Fig. 11. Smith-Waterman dynamic programming algorithm. o is the score or
penalty of match, mismatch, insertion, and deletion.

W ungapped aligner W gapped aligner

60%
50%

woos
S o
X R

Utilization

20%
10%
0%

LuT FF

BRAM DspP

Fig. 12. Resource utilization of SALIENT aligners.

stack values of itself or its adjacent PE.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We implemented SALIENT using Xilinx Vitis HLS 2021.2
on Alveo U280 accelerator card [25]. The FPGA has two
16 GB DDR4 banks and an 8 GB High-Bandwidth Memory
with 32 pseudo channels. The ungapped aligner comprises
eight kernels instantiated using the Xilinx Vitis software plat-
form and achieved a frequency of 150 MHz. The kernels share
the same PTR table (DDR4[0] bank), CAL table (DDR4[1]
bank), and reference genome (HBM). The reads of each kernel
are in a different HBM bank. The gapped aligner consists
of four kernels, wherein each kernel comprises two Smith-
Waterman engines and could achieve 100 MHz. Since there are
usually more than one candidate location per read, we decided
to have two Smith-Waterman units per kernel to parallelize
the pairwise alignments of a read. Resource utilization of the
aligners is reported in Fig. 12. Eight ungapped aligner kernels
can saturate the hash-table access throughput, so we did not
increase the number of kernels, particularly due to the routing
congestion, as well. While the gapped aligner could benefit
from more kernels as the memory is not its bottleneck, the
routing fails when further increasing the number of kernels or
the Smith-Waterman units. A major part of the BRAMs in the
ungapped aligner are used by the AXI interfaces and dataflow
FIFOs of the kernels. The gapped aligner has fewer kernels,
but each kernel consists of two Smith-Waterman units, where
each PE uses a BRAM to store the relevant matrix cells.

Table I summarizes the total 16 datasets we used to evaluate
SALIENT, most of them are compiled from the previous
FPGA aligners (distinguished in bold). The datasets provide
a wide range of short read sizes from 75 to 150 bases. Also,
as we showed in Fig. 8, the datasets present a wide range of
gaps from 0.02% up to 48.1%. It is crucial for a head-to-head
comparison as well as a thorough evaluation of SALIENT as
the gap percentage is a decisive factor in the performance.

TABLE I
SHORT READ DATASETS USED IN OUR EXPERIMENTS. DATASETS USED IN
PREVIOUS FPGA STUDIES ARE DISTINGUISHED IN BOLD.

Dataset Description

art_illumina 100 bp synthetic human reads [6]

bisulfite 75 bp synthetic human chromosome 22 reads [2]

covid_x (x3) 151 bp sequenced SARS-CoV-2 reads [31]

ERP001652 90 bp sequenced human reads [3]

ERRXx (x3) 101 bp sequenced human reads [1]

human_0.2, 0.9 150 bp synthetic human reads contaminated with microbial [14]
human_300M 101 bp sequenced human reads [4]

human_exome 76 bp sequenced human exome data [32] (as in [5])
rhodobac_x (x2) 101bp sequenced Rhodobacter sphaeroides reads [1]
staphy_x 101 bp sequenced Staphylococcus aureus reads [1]

We compare the performance of SALIENT with Bowtie2
v2.4.5 and minimap2 v2.24-r1122, both running on Ubuntu
18.04 installed in a system with Intel Gen-11 Core i7-11700K
@4.8 GHz and 80 GB of physical memory. The Alveo U280
card is also installed on the same machine. We used all the
threads (16) for both software. For Bowtie2 we tried very-
fast (—-VF), sensitive (-S), and very-sensitive (—VS) options.
In SALIENT, we use the same score/penalty of Bowtie2. We
also compare the performance with the previous FPGAs [1]-
[6] that report the absolute throughput numbers. We reviewed
the underlying alignment method of each study in Section II.
We also compare SALIENT with Illumina DRAGEN Bio-
IT Platform v3.5.7 [7]. DRAGEN has a standalone server
containing an Intel-Xeon-Gold-6226 CPU, 256 GB DDR4, and
embraces an Alveo-U200. We used the DRAGEN’s default
setting (user-guide v3.7 [7]) for table generation (excluded it
in the comparison) and alignment. We also disabled sorting
the output alignment data as it is a CPU-bound operation,
unnecessary in many applications. We used human_0.2 and
human_0.9 datasets for comparison with DRAGEN.

B. Performance Comparison

Comparison with CPU software: Fig. 13 compares the
performance of SALIENT and widely-used software aligners
in terms of million base/second. SALIENT on average,
achieves a throughput of 546 M base/second. Averaged over
all the benchmarks, SALIENT outperforms the minimap2 by
40x, and Bowtie2 by 37X, 56x, and 107x when Bowtie2
runs in very-fast, sensitive, and very-sensitive modes. The
ungapped stage of SALIENT uses a seeding step of 15 (like
Bowtie2 default) which, depending on the read length, can
achieve a seeding throughput of 1200-1750 M base/second as
we showed in Fig. 5. However, since usually more than one
candidate location per read is found, the effective throughput
diminishes. The gapped aligner of SALIENT uses a seeding
step of 7 (similar to Bowtie2-VS), so it can try more seeds
for the candidate unaligned reads. Considering only the human
datasets, SALIENT throughput ranges from 160 Mbp/sec up
to 683 Mbp/sec, on average 362 Mbp/sec (versus 6.7 Mbp/sec
of minimap2 and 4.5 Mbp/sec of Bowtie2-VS). SALIENT
can thus align 6000 Gbp of a 44 hours high-throughput se-
quencing run [8] in 4.6 hours versus 250 hours of minimap2
and 370 hours of Bowtie2-VS.

In certain datasets such as art_illumina that the percentage
of the gapped alignments is very low, SALIENT’s speedup is
massive, e.g., 112x over minimap2 and 356 x over Bowtie2-

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:26:00 UTC from IEEE Xplore. Restrictions apply.



ESALIENT BEminimap2 M@ Bowtie2-VF @O Bowtie2-S [OBowtie2-VS

1000

<
@
<
<100
i)
2
5
3 10
<
o
5
o
<4
= 1
ST I I SN SR LRGN AN AN SN SC I
%\\)@ & N E:\/ N ??’ ¥ & ’9’\/ ’f’\, ,\?}’\/ S &7 (\';; X o~ S &
i & o& o&b <38 ‘3% ‘3& ‘8‘& \“)@ ‘0\\'@ & 7 ° o 'o'@Q
& < S§ & N &
AN < &

Fig. 13. Overall performance (million base-pair/second) comparison of SALIENT and software tools. —VF, —S, and —VS denote Bowtie2 in very-fast,
sensitive, and very-sensitive modes. The ungapped and gapped stages of SALIENT use a seeding step of 15 and 7, respectively.

VS, whereas in ERR231578 (another human dataset), the
speedup is 21 x due to higher calls of the gapped aligner. Note
that datasets such as covid_43802 also have relatively high
gaps (12.8%, shown in Fig. 8), but SALIENT"s throughput
is very high (938 Mbp/second) as we observed that 10.8% out
of the 12.8% could be mapped with the fast ungapped aligner
since the gaps reside in the reads ends. Note that the indexing
tables of software tools for small genome is small and fits in
the cache, so software tools also achieve high performance.

Software scalability: For the CPU evaluations, we originally
used a more conventional 16 core Intel Core i7 11700K
processor. To evaluate the performance scaling, we also tried
Intel Xeon Scalable Processors (Cascade Lake) which is a 96
core processor (available on AWS as c5a.24xlarge instance).
For Bowtie2, we observed that the performance of 96 cores
Cascade Lake (which contains 6 times more cores) is only
1.9%-2.2x higher than the 16 cores Intel Core i7 11700K.
This improvement ratio is even smaller for minimap2; the
performance of Cascade Lake is only 1.54x better than the
original processor, which makes our FPGA design still 24x
faster than the 96 cores minimap?2.

We also tried to compare with GPU-based aligners. Due to
the random memory access nature of short read alignment,
most GPU aligners have only targeted pairwise alignment of
long genomes which ends up in accelerating a huge GPU-
friendly Smith-Waterman matrix. A more prominent GPU
short read aligner is nvBowtie, which is a GPU-accelerated
re-engineering of Bowtie2 [33]. Our evaluation of nvBowtie
on COVID dataset shows it is 2.35x faster than Bowtie2, but
45% slower than minimap2. On human dataset, nvBowtie is
1.5x=7x faster than Bowtie2 (depending on the dataset and
sensitivity of Bowtie2), but it is only 1.8x-3.2x faster than
minimap2. These improvements achieved by nvBowtie are
significantly less than the 40x-107x of SALIENT.

SALIENT performance details: Table II reports the (1)
ratio of reads that call the gapped aligner, (2) our ungapped
aligner throughput (which depends on the read length), (3)
our gapped aligner throughput, and (4) throughput (Mbp)/Watt
for the ungapped and end-to-end flow. Note that calls to the
gapped aligner can be more or less than the gapped reads.
For instance, the majority of the COVID gapped reads could
be aligned using the ungapped aligner. On the other hand, a
dataset such as human_0.2 with only 0.07% gapped reads calls
the gapped aligner for 4.7% of the reads. The majority of such

TABLE II
DETAILED PERFORMANCE RESULTS OF SALIENT.
Dataset Gapped Throughput (M bp/second) Throughput/Watt
calls % Ungapped Gapped Overall Ungapped Overall

art_illumina [6] 1.2% 750 92 683 19 18
bisulfite [2] 6.7% 563 69 363 14 10
covid_41819 0.9% 1073 72 941 28 25
covid_43802 1.0% 1073 72 938 28 25
covid_43853 0.6% 1073 72 978 28 25
ERP001652 [3] 19.7% 675 82 259 17 8
ERR231578 [1] 457% 758 93 160 19 5
ERR231579 43.4% 758 93 167 19 5
ERR231582 452% 758 93 161 19 5

0.2 [7] 4.7% 1066 71 625 27 17
I 0.9 [7] 3.3% 1066 71 716 27 20
h _300M [4] 6.5% 1066 71 539 27 15
I _exome [5] 0.2% 570 70 562 15 14
rhodobac_frag 4.8% 758 93 544 19 15
rhodobac_jump 8.9% 758 93 437 19 12
staphy_frag 1.6% 758 93 670 19 18

W Throughput B Throughput/Watt
40x

35 36.3

w
o
X

Improvement
= N
o o
X X

o
X

[ @2 B (@ 51 6] (7]
Ungapped FPGA Aligners Gapped FPGA Aligners

Fig. 14. Improvement of SALIENT over FPGA aligners [1]-[7].

reads contain at least one seed that (accidentally) overlap with
the reference genome, which, after an unsuccessful ungapped
alignment, examined with the gapped aligner. To obtain the
throughput/Watt, we measured the FPGA run time power using
the xbutil query utility. We observed an average power of
39W and 32.5W for the ungapped and gapped aligners.
Comparison with ungapped FPGA aligners: We compare
SALIENT with the FPGA-based aligners using the informa-
tion of Table II. Fig. 14 shows the performance improvement
of SALIENT over previous works. SALIENT achieves 4.3—
24.0x speedup over the previous ungapped FPGA acceler-
ators [1]-[4]. The main reason of SALIENT efficiency is
due to using hash-based seed lookup, which, as elaborated
on Section II-E, delivers significantly higher seed lookup
throughput over these FM-index-based techniques. To account
for the difference in power consumption, especially as several
of previous studies use multi-FPGA platforms, Fig. 14 also
compares throughput/Watt (note that [1] has not reported

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:26:00 UTC from IEEE Xplore. Restrictions apply.



power consumption). Since SALIENT consumes less power
than these platforms, its throughput/Watt range improves to
9.4—-18x. Note that these works support up to 2 mismatches,
while the default setting of ungapped SALIENT supports
6—9 mismatches depending on the read length. The relative
performance of SALIENT further improves if we limit the
number of mismatches (which reduces seed lookups).

Comparison with gapped FPGA aligners: According to
Fig. 14, SALIENT improves the throughput (throughput/Watt)
by 5.0-36x (28-35x) over gapped aligners, including DRA-
GEN [7]. Similar to SALIENT, [5] also uses hash-table
to lookup seeds, and achieves an overall throughput of
112 Mbp/second using a system of six Pico M-503 boards,
each equipped with a Virtex-6 LX240T. SALIENT improves
the throughput (throughput/Watt) by 5.0x (35x) over [5] on
a similar dataset. The main source of SALIENT"s advantage
stems from the ungapped aligner that achieves a throughput of
570 Mbp/second (see Table II), and since the gapped aligner
is only called for 0.2% of reads, the end-to-end throughput
is 562 Mbp/second. Even if we merely compare the gapped
stage of SALIENT on this dataset, it yields 70 Mbp/second on
a single device with two DIMMs, whereas [5] distributes the
reads over six boards with independent DIMMs with a total
throughput of 112 Mbp/sec (18.7 Mbp/sec per device). Even
with the same amount of total logic resources, having multiple
devices with separate DIMMSs can alleviate per-device routing
congestion and allows having more Smith-Waterman units on
overall to further improve the pairwise alignment bottleneck.

Compared to [6] that uses a Xilinx UltraScale+ VU9P,
SALIENT improves the throughput (throughput/Watt) by 36 x
(28x) on the same dataset. [6] uses FM-index for seed lookup
which, in Section II-E, we showed that has a limited through-
put. Especially, to reduce the size of FM-index table, [6]
uses bucketing that increases the number of accesses per
base and further degrades the effective throughput. Finally,
to compare with Illumina DRAGEN [7], we used the human
genome datasets human_0.2 and human_0.9 used in micro-
biome pipeline [14]. Thanks to its two-stage flow with an un-
gapped throughput of 1066 Mbp/second, SALTENT’s overall
throughput on the two datasets (average 670 Mbp/second) is
7.6 % higher than DRAGEN’s. The gapped stage of SALIENT
alone achieves 71 Mbp/second in these datasets which is only
1.2x slower than DRAGEN. The Alveo U200 card of DRA-
GEN contains four DDR4 banks, which we can use to replicate
the PTR and CAL tables and place the Smith-Waterman units
within the adjacent SLRs (super logic regions) to alleviate the
routing congestion and/or increase the frequency and further
improve the SALTENT’s gapped stage throughput.

C. Accuracy

Fig. 15 compares the alignment rate of SALIENT frame-
work (ungapped alignment, followed by gapped on determined
reads) with minimap2 and Bowtie2. On average, SALIENT
obtains an alignment rate of 85.4%, whereas minimap2,
Bowtie2-VS, Bowtie2-S, and Bowtie2-VF achieve 85.4%,
85.3%, 84.9%, and 84.1%, respectively. Therefore, SALIENT

O SALIENT O minimap2 l Bowtie-VF O Bowtie-VS
100% -

80% A
40% A
= 20% A |-|-I-|
0%
& @

Q .xZ
S

t Rate

ignmen
(o2}
o
N
.

Al

. "
N *0"’.53(@/ > O
&

S

Fig. 15. Comparison of the SALIENT and software tools alignment rate.

TABLE III
FALSE NEGATIVE (FN) AND ERROR OF SALIENT VS SOFTWARE.

SALIENT minimap2 Bowtie2-VS

FN Error FN  Error FN Error
0.07% 0.08% | 0.10% 0.47% | 0.13% 0.78%
0.26% 0.28% | 0.40% 0.45% | 0.70% 0.77%

human_0.2
human_0.9

achieves the same or slightly better accuracy than minimap2
and Bowtie2-VS. Recall that none of the previous ungapped
FPGA aligners can achieve such a high alignment rate. Indeed,
without gap, the average alignment rate became 73.9% (11.5%
drop, see Section III-A), while these works [1]-[4] support
only two mismatches, which further drops the accuracy by
an additional 25%. Among the existing gapped FPGA align-
ers, [5] does not compare the accuracy with gapped software
aligners, and [6] reports 2.8% lower accuracy versus Bowtie2.

Alignment rate does not explain the falsely aligned and
the failed reads. Thus, in Table III we compare the false
negative (failed to align) and error (total of FN and FP)
rate of SALIENT for the human_0.2 and human_0.9 datasets
for which the golden result is available [14]. Both the false
negative and error rate of SALIENT are lower than software
tools. E.g., for human_0.9, the error rate (false negative) of
SALIENT is 0.28% (0.26%), which is 0.17% (0.14%) lower
than minimap2 and 0.49% (0.44%) lower than Bowtie2-VS.

VI. CONCLUSION

In this paper, we proposed SALIENT, an FPGA-based short
read aligner that builds upon the fact a significant ratio of
reads do not contain gaps. Thus, SALIENT decouples the
flow into two stages of ungapped and gapped alignments to
identify and avoid the costly pairwise alignments of gapped
alignment. SALIENT employs a hash-based seed lookup
to combat the memory bottleneck of ungapped alignment.
SALIENT achieves an average end-to-end throughput of
546 M bases/second, and reduces the alignment time of the
human sequencing run from 250 hours of the state-of-the-art
software to 4.6 hours, and helps to take a major step towards
the grand challenge of real-time diagnostic and precision
medicine by substantially boosting the analysis pipeline.

ACKNOWLEDGEMENTS

This work was supported in part by CRISP, one of six
centers in JUMP (an SRC program sponsored by DARPA),
and NSF grants #1911095, #2100237, and #2112167.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:26:00 UTC from IEEE Xplore. Restrictions apply.



[1]

[2

—

[3]

[4]

[5]

[6]

[7
[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

E. B. Fernandez, J. Villarreal, S. Lonardi, and W. A. Najjar, “Fhast:
Fpga-based acceleration of bowtie in hardware,” IEEE/ACM transactions
on computational biology and bioinformatics, vol. 12, no. 5, pp. 973—
981, 2015.

J. Arram, W. Luk, and P. Jiang, “Ramethy: Reconfigurable acceler-
ation of bisulfite sequence alignment,” in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2015, pp. 250-259.

J. Arram, T. Kaplan, W. Luk, and P. Jiang, “Leveraging fpgas for accel-
erating short read alignment,” IEEE/ACM transactions on computational
biology and bioinformatics, vol. 14, no. 3, pp. 668-677, 2016.

H.-C. Ng, L. Coleman, S. Liu, and W. Luk, “Reconfigurable acceleration
of short read mapping with biological consideration,” in The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2021, pp. 229-239.

C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck
et al., “Hardware acceleration of short read mapping,” in 2012 IEEE 20th
International Symposium on Field-Programmable Custom Computing
Machines. 1EEE, 2012, pp. 161-168.

H.-C. Ng, S. Liu, I. Coleman, R. S. Chu, M.-C. Yue, and W. Luk,
“Acceleration of short read alignment with runtime reconfiguration,”
in 2020 International Conference on Field-Programmable Technology
(ICFPT). IEEE, 2020, pp. 256-262.

“Illumina dragen bio-it platform 3.7,” User Guide, Illumina, Oct 2020.
“Novaseq 6000 sequencing system guide,” User Guide, Illumina,
September 2020.

Z.D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron
et al., “Big data: astronomical or genomical?” PLoS biology, vol. 13,
no. 7, p. 1002195, 2015.

R. F. Schwabe and C. Jobin, “The microbiome and cancer,” Nature
Reviews Cancer, vol. 13, no. 11, pp. 800-812, 2013.

T. Li, D. Liu, Y. Yang, J. Guo, Y. Feng, X. Zhang et al., “Phylogenetic
supertree reveals detailed evolution of sars-cov-2,” Scientific reports,
vol. 10, no. 1, pp. 1-9, 2020.

H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioin-
Sformatics, vol. 34, no. 18, pp. 3094-3100, 2018.

B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
bowtie 2,” Nature methods, vol. 9, no. 4, pp. 357-359, 2012.

G. Armstrong, C. Martino, J. Morris, B. Khaleghi, J. Kang, J. DeReus
et al., “Swapping metagenomics preprocessing pipeline components
offers speed and sensitivity increases,” Msystems, pp. €01 378-21, 2022.
A. Al Kawam, S. Khatri, and A. Datta, “A survey of software and
hardware approaches to performing read alignment in next generation
sequencing,” [EEE/ACM transactions on computational biology and
bioinformatics, vol. 14, no. 6, pp. 1202-1213, 2016.

H.-C. Ng, S. Liu, and W. Luk, “Reconfigurable acceleration of genetic
sequence alignment: A survey of two decades of efforts,” in 2017 27th
International Conference on Field Programmable Logic and Applica-
tions (FPL). IEEE, 2017, pp. 1-8.

S. Salamat and T. Rosing, “Fpga acceleration of sequence alignment: A
survey,” arXiv preprint arXiv:2002.02394, 2020.

Y. Sogabe and T. Maruyama, “Fpga acceleration of short read mapping
based on sort and parallel comparison,” in 2014 24th International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2014, pp. 1-4.

J. Arram, K. H. Tsoi, W. Luk, and P. Jiang, “Reconfigurable acceleration
of short read mapping,” in 2013 IEEE 21st Annual International Sym-
posium on Field-Programmable Custom Computing Machines. 1EEE,
2013, pp. 210-217.

T. B. Preuber, O. Knodel, and R. G. Spallek, “Short-read mapping
by a systolic custom fpga computation,” in 2012 IEEE 20th Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines. IEEE, 2012, pp. 169-176.

J.-Q. Chen, Y. Wu, H. Yang, J. Bergelson, M. Kreitman, and D. Tian,
“Variation in the ratio of nucleotide substitution and indel rates across
genomes in mammals and bacteria,” Molecular biology and evolution,
vol. 26, no. 7, pp. 1523-1531, 20009.

M. Lin, S. Whitmire, J. Chen, A. Farrel, X. Shi, and J.-t. Guo, “Effects
of short indels on protein structure and function in human genomes,”
Scientific reports, vol. 7, no. 1, pp. 1-9, 2017.

K. Koliogeorgi, N. Voss, S. Fytraki, S. Xydis, G. Gaydadjiev, and
D. Soudris, “Dataflow acceleration of smith-waterman with traceback for
high throughput next generation sequencing,” in 2019 29th International

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2019, pp. 74-80.

T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195—
197, 1981.

“Alveo u280 data center accelerator card data sheet (ds963),” Datasheet,
Xilinx, September 2021.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short dna sequences to the human
genome,” Genome biology, vol. 10, no. 3, pp. 1-10, 2009.

H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows—wheeler transform,” bioinformatics, vol. 25, no. 14, pp. 1754—
1760, 2009.

W. J. Kent, “Blat—the blast-like alignment tool,” Genome research,
vol. 12, no. 4, pp. 656-664, 2002.

N. Homer, B. Merriman, and S. F. Nelson, “Bfast: an alignment tool for
large scale genome resequencing,” PloS one, vol. 4, no. 11, p. €7767,
2009.

“Vitis high-level synthesis user guide,” User Guide, Xilinx, December
2021.

N. Moshiri, K. M. Fisch, A. Birmingham, P. DeHoff, G. W. Yeo,
K. Jepsen et al., “The vireflow pipeline enables user friendly large scale
viral consensus genome reconstruction,” Scientific reports, vol. 12, no. 1,
pp. 1-6, 2022.

Y. S. Ju, J.-I. Kim, S. Kim, D. Hong, H. Park, J.-Y. Shin et al., “Exten-
sive genomic and transcriptional diversity identified through massively
parallel dna and rna sequencing of eighteen korean individuals,” Nature
genetics, vol. 43, no. 8, pp. 745-752, 2011.

“Nvbowtie webpage,” https://nvlabs.github.io/nvbio/nvbowtie_page.
html, accessed: 2022-10-29.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 13,2023 at 23:26:00 UTC from IEEE Xplore. Restrictions apply.



