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Abstract

We propose a sparse regularization model for inversion of incomplete Fourier transforms
and apply it to seismic wavefield modeling. The objective function of the proposed model
employs the Moreau envelope of the £o norm under a tight framelet system as a regularization
to promote sparsity. This model leads to a non-smooth, non-convex optimization problem for
which traditional iteration schemes are inefficient or even divergent. By exploiting special
structures of the £p norm, we identify a local minimizer of the proposed non-convex opti-
mization problem with a global minimizer of a convex optimization problem, which provides
us insights for the development of efficient and convergence guaranteed algorithms to solve
it. We characterize the solution of the regularization model in terms of a fixed-point of a map
defined by the proximity operator of the £p norm and develop a fixed-point iteration algorithm
to solve it. By connecting the map with an w-averaged nonexpansive operator, we prove that
the sequence generated by the proposed fixed-point proximity algorithm converges to a local
minimizer of the proposed model. Our numerical examples confirm that the proposed model
outperforms significantly the existing model based on the ¢{-norm. The seismic wavefield
modeling in the frequency domain requires solving a series of the Helmholtz equation with
large wave numbers, which is a computationally intensive task. Applying the proposed sparse
regularization model to the seismic wavefield modeling requires data of only a few low fre-
quencies, avoiding solving the Helmholtz equation with large wave numbers. This makes the
proposed model particularly suitable for the seismic wavefield (SW) modeling. Numerical
results show that the proposed method performs better than the existing method based on the
£1 norm in terms of the SNR values and visual quality of the restored synthetic seismograms.
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1 Introduction

The aim of this study is to develop a sparse regularization model for inverting incomplete
Fourier transforms and an efficient, convergence guaranteed iteration algorithm for solving
the resulting non-convex, non-smooth optimization problem. Moreover, we apply the devel-
oped method to seismic wavefield modeling. Incomplete Fourier transforms arise in many
engineering problems [3, 14, 28, 31]. They are of special interest as reconstructing a digi-
tal signal or image from incomplete Fourier data has important applications in biomedical
imaging (MRI and tomography), astrophysics (interferometric imaging), and geophysical
exploration. Reconstruction of a digital signal or image from incomplete Fourier transform
data is an ill-posed problem, which often produces aliasing artifacts due to vast undersam-
pling and distortion which means that the reconstructed signal is not like what we expect.
Therefore, it is crucial to develop an effective inversion model which alleviates the artifacts
and distortion, and design an efficient algorithm to solve the resulting optimization problem.

To overcome the difficulty caused by incomplete data, inverting incomplete Fourier trans-
forms has been investigated in the context of sparse signal/image processing. Compressed
sensing [5, 6, 10] was used in [5, 20, 22] to invert incomplete Fourier transforms. Specifically,
the paper [5] applied the £; norm as a regularization to reconstruct an object from randomly
chosen incomplete frequency samples. In [20, 21], the problem of inverting incomplete
Fourier transforms is also considered in forward wavefield extrapolation. While in [22], the
compressed sensing method was applied for rapid MR imaging, which employed an £ -norm
model to invert incomplete Fourier transforms. We also developed a sparse regularization
method in [31] for inverting incomplete Fourier transforms. Both the compressed sensing
method and the sparse regularization method employ the £; norm as a regularization to
impose sparsity for the reconstructed signal under certain transforms. Because the £1-norm
based models are convex, they can be solved efficiently by available tools [7, 12, 16, 19, 25,
26]. However, according to [11], the £;-norm based models can lead to outliers and thus,
there is a need to develop more effective, robust models.

The main purpose of this research is to propose a model which can reduce both artifacts
and outliers in the reconstructed signal and can be efficiently solved. To this end, we propose
to use the Moreau envelope of the £o norm as a sparsity promoting function as a regular-
ization. That is, we will invert incomplete Fourier transforms with a sparsity penalty, under
a framelet transform, of the envelope of the £( norm. Note that the sparsity of a vector is
originally measured by the number of its nonzero components, namely, the £o norm of the
vector. However, the £y norm is discontinuous at the origin, which is not favorable from a
computational viewpoint. The envelope of the £y norm is a continuous surrogate of the £
norm. Although the £ norm is non-convex, according to [32], due to the special structure of
the £¢ norm, a local minimizer of a function that is the sum of a convex function and the £
norm can be identified with a global minimizer of the convex function. This fact provides us
with great convenience for algorithmic development of optimization problems of this type.
The use of the £ norm enables us to formulate a sparsity regularization model, for inverting
incomplete Fourier transforms, which can reduce artifacts and outliers in the reconstructed
signal, and allow us to design an efficient fixed-point iteration algorithm for the resulting
non-convex, non-smooth optimization problem. Moreover, by exploiting the connection of
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this minimization problem with the related convex minimization problem, we are able to
establish convergence of the proposed fixed-point algorithm.

The second component of this paper is to apply the developed method for inverting
incomplete Fourier transforms to analyzing seismic wavefield in the frequency domain. It
is well-known [20] that seismic wavefield can be analyzed by inverting Fourier transforms.
In this approach, we need to solve the Helmholtz equation with wave numbers that corre-
spond to Fourier frequencies. However, this approach has a major drawback: A high Fourier
frequency corresponds to a large wave number and the numerical solution of the Helmholtz
equation with a large wave number is a challenging task due to the high oscillation in its
solution [1]. The proposed incomplete Fourier transform inversion method suggests that we
can analyze seismic wavefield without solving the Helmholtz equation with large wave num-
bers. That is, using only low Fourier frequencies, we can obtain satisfactory reconstruction
results by employing the developed inversion method. Therefore, the proposed incomplete
Fourier transform inversion method makes the seismic wavefield modeling in the frequency
domain a feasible approach.

‘We organize the paper in eight sections. In Sect. 2, the envelope of the £¢ norm is employed
to construct a sparse regularization model for inverting incomplete Fourier transforms. For
the proposed regularization model, an equivalent model is then presented by considering
properties of the envelope of the £y norm. Section 3 is devoted to an investigation of a local
convexity of the proposed env-{( regularization model which is by nature a non-convex
minimization problem. We propose a fixed-point iterative algorithm for solving the resulting
non-convex minimization problem in Sect. 4, and establish its convergence theorem in Sect.
5. Sect. 6 considers applications of the proposed inversion method of incomplete Fourier
transforms in seismic wavefield modeling in the frequency domain. Numerical examples are
presented in Sect. 7 to validate the effectiveness, robustness and efficiency of the proposed
methods. Finally, Section 8 concludes this paper.

2 A Sparse Regularization Model

In this section, we propose a sparse regularization model using the envelope of the £y norm
for inverting incomplete Fourier transforms. By employing properties of the envelope of the
£o norm, we derive an equivalent model for the purpose of algorithmic development.

We first describe incomplete Fourier transforms under consideration. By F we denote an
M x M discrete Fourier transform (DFT) matrix with the (m, n)-th entry given by

Fo o 1 o (_iZﬂ(m—l)(n—1)>
mn ._«/M p M .

Suppose that r € R¢ is a given vector in the Fourier frequency domain, where d is a positive
integer such that d < M. As a convention through out the paper, we assume that all vectors
are column vectors unless stated otherwise. Let R denote a d x M “row selector” matrix, a
row submatrix of the identity matrix I by selecting certain rows of I. In fact, for a positive
integer m with 2 < m < M, if the m-th row of I is included in R, then R also includes the
(M — m + 2)-th row of L. This is a reasonable choice, as F,, j and Fy;_,, 1> ; are mutually
conjugate for2 < m < M and 1 < j < M. For a row selector R, RF is an incomplete
Fourier transform. Inverting the incomplete Fourier transform is to find a vector v.e RM
such that

RFv =r. @2.1)
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It is known that a solution v € R of equation (2.1) may be sparse under a transform
[18]. We wish to reconstruct a solution v € RY of equation (2.1) which is sparse under a
tight framelet transform. To this end, for a proper tight framelet matrix W of size N x M,
we define

y :=Wyv and K := RFW*, (2.2)
where A* denotes the conjugate transpose of a matrix A. Then model (2.1) becomes
Ky =r. (2.3)

Note that the vector y is the transform of v under the framelet matrix W. Inverting equation
(2.3) is an ill-posed problem, which requires proper regularization.

Our next task is to describe the sparse regularization model for “inverting” equation (2.3)
to obtain a sparse vector y. The sparsity of a vector is naturally measured by the £ “norm”
which counts the number of nonzero components of the vector. Specifically, for an a € R,
we let |alo := 1 ifa # 0, and |a|g := 0 if @ = 0. The £ norm of x € R¥ is defined by

N
Ixllo == > Ixilo-
i=1

Even though || - || is not a norm, traditionally it is called the £y norm in the signal processing
community. We will follow the tradition to call it the £¢ norm through out this paper. The £
norm is non-convex and discontinuous at the origin, which causes computational difficulties.
To overcome the difficulties, we adopt a continuous approximation of the £p norm by its
Moreau envelope. According to [27, 29], for a positive number 8, the Moreau envelope of
| - llo with index B at x € RY is defined by

1

envg.,(X) := min {ﬁux —z|3+|lzlo:z € RN} ) (2.4)

A direct computation leads to

N
envg|.o (X) = Z @(xi),
i=1

where

o(xi) : {11’ Ixil = /28;
i) = 2 :
25%i otherwise.
Clearly, envg).|, is continuous and locally convex near the origin. Moreover, as 8 — 0F,
envg|.lo — Il - llo. Therefore, when B is small enough, envg ., is a good approximation of
| - llo. With an appropriate choice of the parameter 8, envg|.|, can be used as a measure of
sparsity and at the same time we avoid drawbacks of || - ||o. For (r,y) € R? x RN, we let

1
o(r,y) = 3 IKy — rl)3 + yenvgyy, (¥)., (2.5)

where y is a positive parameter. As r € R? in inverting incomplete Fourier transform (2.1)
is fixed, we write Q(r,y) as Q(y) for convenient presentation. We now propose the sparse
regularization model using the Moreau envelope of the £ norm to recover a sparse vector y
from (2.3)

y* = argmin [Q (y):ye RN] . (2.6)
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Since envg|.|, is an approximation of | - ||p, we expect that the proposed model enjoys most
advantages of the £p norm-based model, while it may be solved by efficient algorithms.

Model (2.6) may be reinterpreted from a Bayesian viewpoint [30]. In Bayesian statistics,
a maximum a posteriori probability (MAP) estimate is an estimate of an unknown quantity,
which equals to the mode of the posterior distribution. To derive model (2.6) from the Bayesian
approach, we treat variables y and r in equation (2.3) as random variables. Let 1 denote the
vector of the same size as r, with its all components being 1. We assume that the known data
r related to the unknown distribution y can be approximated by the following model

r = Normal (Ky, 021) , 2.7

where Normal (Ky, 021) denotes a Normal distributed random vector with mean Ky and
variation o21. In model (2.7) we use the Normal distribution since the Gaussian noise is the
most common noise that we encounter in applications. The MAP estimate y* is obtained by
maximizing the conditional a posteriori probability p(y|r), the probability that y occurs
when r is observed. This probability may be computed using the Bayes law:

p(ylr) o p(rly) p(¥), (2.8)

where the notation “x o z” means that the scalar x is proportional to the scalar z, and p(r|y)
denotes the conditional probability that r occurs when y is known. By taking the logarithm
of both sides of equation (2.8), the MAP estimate can then be calculated using the formula

y* = argmax {ln ply) +Inp(y):y € ]RN} . 2.9)

The first term can be considered as a fidelity term, a measure of the discrepancy between
the estimated and the observed data. The second term is a regularization function, which
penalizes solutions that have low probability. We then compute the two terms in model (2.9).
According to equation (2.7), r follows the Normal distribution with Ky as its mean and 21
as its variation. As a result, the probability density function p(r|y) of r conditioned on y can
be computed by using the formula

N 2

1 (Ky); —ri)
- _B T ) 2.10
p(rly) i|:|1 5y exp( 252 ) (2.10)

Taking the logarithm of both sides of equation (2.10) yields
1
In p(rly) = const; — ——|[Ky —r]l3, (2.11)

where const; is a constant independent of y. To compute the second term in model (2.9), the
Gibbs prior [17] is used

p(y) ocexp (=¥ (y)), (2.12)

with the Gibbs real-valued energy function 9 (y) defined on RY and a positive regularization
parameter ¥ called hyperparameter. For the purpose of promoting sparsity of the estimated
solution, we may choose the energy function ¥ (y) in (2.12) as a sparsity promoting norm
of y, such as [ly||; [10, 31]. As we have discussed earlier, envg., is an excellent sparsity
promoting function. Hence, in this paper we adopt

ﬁ(y) = env,g”.”O(y). (2.13)
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From (2.12) and (2.13), we have that
In p(y) = —Yenvg.,(y) + const, (2.14)

where const is again a constant independent of y. Letting ¥ : = o2% and substituting
equations (2.11), (2.14) into (2.9) lead to model (2.6).

We reformulate the proposed model (2.6) so that the resulting model is convenient for
computation. Motivated by the definition (2.4) of envgy.||, in the non-convex model (2.6), we
introduce the following function

1 Y
Fr,x,y) = [Ky - rll3 + ﬁux —ylI3+yIxlo. (rxy) eR! xRN x RV,
(2.15)

Again since r is fixed, we write F(r, X, y) as F (x, y). The non-convex function F(x,y) is a
special case of those considered in [32]. We then consider the model

(x*, y*) = argmin {F(x, y), (x,y) RN x RN} . (2.16)

We next show that models (2.6) and (2.16) are essentially equivalent. A global minimizer
of any of these models will also be called a solution of the model. We first present a relation
between Q(y) and F(x,y). We recall the proximity operator of the £y norm. For 8 > 0, the
proximity operator of || - [|o at z € R" is defined by

. 1
Proxgy.j, () := argmin {ﬁ”x — z||% + |Ixllo:x € ]RN} , 2.17)
see, for example, [25]. Clearly, if x € PIoXg. |, (z), then we have that
1
envp|.j (2) = 5 [1x — 2[5 + IIxllo. 2.18)
2p
By equation (2.18), we observe that
Q(y) = F(x,y), forallxe proxg.;, (¥) and forally e RV, (2.19)

The next proposition modifies Proposition 1 of [29] for the current setting.

Proposition1 Let 8 > 0 and y > 0. A pair (x*,y*) is a solution of model (2.16) if and only
if y* is a solution of model (2.6) with X* satisfying the inclusion relation

x* € prOXﬁ”,”O (y*) . (220)

Proof Suppose that a pair (x*, y*) is a solution of model (2.16). We first establish the inclusion
relation (2.20). Since (x*, y*) is a solution of the minimization problem (2.16), we have for
all (x,y) € RV x RV that

1 * 2 Y * * (12 * 1 2 Y 2
EHK}’ —rll; + EHX =y lz+vIxTo = §||Ky—r||2+ %HX—}’HZ-I-VHXHO'
2.21)

In particular, inequality (2.21) holds for all x € RY with y := y*. The resulting inequality
together with y > 0 yields
1
28

* _ o*)2 * <L —w*2 f 11 RN
Ix* =yl + lIx ||0_2/3||X ylI3 + lIxllo, forallx € R™.
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By the definition (2.17) of prox Bll-llo (y*), we obtain the desired inclusion relation (2.20). We
next show by contradiction that y* is a solution of model (2.6). Assume to the contrary that
there exists a vector ¥ € R such that Q(¥) < Q(y*). This inequality together with (2.19)
leads to

FX,¥) = 0®F) < 0®y"), forallX e ProXgi.jo ). (2.22)

By inclusion (2.20) and equation (2.19), we obtain that Q(y*) = F(x*,y*). Thus, (2.22)
yields that F(X,y) < F(x*,y*), which contradicts the assumption and proves that y* is a
solution of model (2.6).

Now, we suppose that y* is a solution of model (2.6) with x* satisfying inclusion (2.20) and
show that the pair (x*, y*) is a solution of model (2.16). Assume to the contrary that (x*, y*)
is not a solution of model (2.16). Then, there exists a pair (X, ¥) € RY x RV satisfying

FXY) < FX",y") = 0(y".

If X € proxg)., (¥), we have that Q (¥) = F(X,¥). If X ¢ proxg., (), by the definition of
proxgy.;, and envgj.j,, we have that

1
28
Combining this with the definition of Q in (2.5) and F in (2.15) yields Q(¥) < F (X, ).

Therefore, in either case, we have that Q(y) < Q(y*), which contradicts the assumption of
y* being a solution of model (2.6). Thus, (x*, y*) must be a solution of model (2.16). O

envgy B < == IXK = ¥II3 + IXllo-

Proposition 1 leads us to solving minimization problem (2.16).

3 Local Convexity of the env-{y Regularization Model

In this section, we show that the proposed env-£( regularization model (2.6), a non-convex
minimization problem, is reduced to a convex minimization problem on a subdomain. For
this purpose, as Proposition 1 ensures that the proposed model (2.6) and model (2.16) are
essentially equivalent, it suffices to prove that a local minimizer of the non-convex model
(2.16) is a minimizer of a convex problem on a subdomain. To this end, we first construct
a convex optimization problem on a proper subdomain, and discuss the relation between a
minimizer of the convex optimization problem on a proper subdomain and that of model
(2.16). Then, we establish the relation between a local minimizer of model (2.6) and that of
model (2.16).

We first present a convex model on a subdomain of RN x R¥ related to model (2.16). We
need the notion of the support of a vector. By N (x) we denote the support of x € R, the
index set on which the components of x is nonzero, thatis N(x) := {i : x; # 0}. Note that
when the support of x in model (2.16) is specified, the non-convex model (2.16) reduces to
a convex one. Based on this observation, we introduce a convex function by

1 4
G(r,x,y) = 5Ky - rll3 + ﬁux -yl3. (r,x,y) e R x R¥ xRV, (3.1)

When there is no ambiguity, we shall write G(x,y) = G(r,Xx,y) for simplicity since r
is fixed. Clearly, F(x,y) = G(X,y) + y|Ix]lo and G(x, y) is a differentiable and convex
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component of F(x,y) on RV x RV, For a given index set A/, we define a subspace of RV
by letting

By = [x eRV i N(x) C N] . 32)

Clearly, forx € Byr, x; = Oforall j ¢ N, and By is convex. Moreover, B/ is a closed set
in RN To show this, we state Item (i) of Lemma 4.7 in [32] as the next lemma.

Lemma 1 If the sequence {x*} C RN converges to x*, then there exists an integer V > 0
such that N(x*) C N(xX) forallk > V.

We remark that the reverse inclusion relation of that in Lemma 1 does not hold in general,
see [32]. We now return to set Bs.

Lemma 2 The set Bns defined by (3.2) is closed in the norm || - ||2.

Proof Assume that {xk} is a convergent sequence in Bs in the norm || - ||2. As Byr € RV,
{Xk} converges to some X* € RN, By Lemma 1, there exists V > 0 such that N(x*) € N (xb)
for k > V. In addition, from the definition of B/, there holds N (xk) C N forallk > 1.
Thus, N(x*) € N. Once again, by the definition (3.2) of Bas, we conclude that x* € By .
Thus, B is a closed set. O

For a given index set \/, we introduce the minimization problem on By x RY by
argmin {G(x, y), (X,¥) € By X ]RN} . 3.3)

Since function G is convex and set By x RY is convex, problem (3.3) is convex.

We next show that the non-convex model (2.16) is equivalent to the convex model (3.3)
with a properly chosen index set A/. To this end, we explore properties of the support set of
certain sequences in R". For a given index set \V, we define an operator Py I RY — By
as

i ifi e N
Pey(y) = {0, otherwise. 3.4)

The next lemma confirms that the operator defined by (3.4) is indeed the orthogonal projection
from RY onto Bys.

Lemma3 IfN isasubsetof{l1,2,..., N}, thenPg,, defined by equation (3.4) is the orthog-
onal projection from RN onto the closed convex set Bys.

Proof Lety € R™ be fixed. For all x € B A7, We have that

x=yI3= 3" vl + Y Iyl

JEN JEN
By the definition (3.4) of Pj,,, we derive that
2 2
Ix =I5 =[x =Py W5+ [y = Psy @5 (3.5)
Therefore, there holds

|y = Psy ], < lly —xl,. forall x € By.

That is, P, (y) is the best £, approximation of y from Bxs. In other words, P, is the
orthogonal projection from R™ onto By. O
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Itis convenient to identify the proximity operator of the £o9 norm with the projection P,
We recall the closed-form formula of the proximity operator of the £( norm (see, for example
[29]). Forall z in RV,

T
proxg)., (2) = [proxg,. |, (z1), proxg . (z2), . .., proxg , zn)] (3.6)
where T denotes the transpose and
{zit,  lzil > V2B
prox ., (z1) = 1 {zi. 0}, |zil = v/2B; (3.7)
{0}, otherwise.

Lemma4 Suppose that > 0 and x,z € RV satisfy x = PByw (@) If

|zjl = /2B forall j € N(x) and |z;| < /28 forall j ¢ N(x),

then x € proxgy.j, (2.

Proof As x = PBy (2), using the definition (3.4) of Pp,, leads to that x; = z; for all
J € N(x),and x; = O for all j ¢ N(x). On the other hand, under the hypothesis, applying
formulas (3.6) and (3.7) yields that ProXg,.j, (zj) isequal to {z;} or {z;, 0} forall j € N(x),
and proxg,.,(zj) = {0} for all j ¢ N(x). Summarizing the above leads to the desired
conclusion. ]

We next present a reverse result of Lemma 4.

Lemma5 Suppose that B > 0 and x,z € RV satisfy x € proxgy.j, (@). Then
(i) forall j € N(x), |xj| = lzj| = v/2B;
(ii) forall j ¢ N(x), x; =0and |z;| < /28;
(iii) X = Py, (2).
Proof Ttems (i) and (ii) follow immediately from formulas (3.6) and (3.7).
It remains to prove Item (iii). Clearly, for all j ¢ N(x), there holds x; = 0. For all

J € N(x), by Item (i) of this lemma, we have that |x ;| = |z;| > /2. According to formula
(3.7), we obtain that x; = z;. By the definition (3.4) of Pp,,, (z), we confirm (iii). ]

We now apply Lemma 5 to a sequence generated by proxg.;,-

Lemma 6 If{zk} is a sequence in RN and for a fixed B > 0, x* € ProXgj. i (Zk), then
(i) |x§| > /2B forall j € N(x*), and xj? =0forall j € N(x¥),

(ii) if N (x*) # N, x5 —xk))y > /28
where C denotes the complement of the set C € {1,2,...,N}in{1,2,...,N}.

Proof Ttem (i) is immediately obtained from Lemma 5.
To prove Item (ii) we assume that N (x5 #* N (x**t1) for some k > 0. Then, there exists
at least an index j such that j € N(x*) N N(xk+1) or j € N(x*) N N(x**1). By Item (i),
|x§| > /28 and xf“ = 0 for the first case, or xj? = 0and |x§+1| > /2 for the second
case. For the both cases, there holds |xjf+l — x§| > /2. It follows that
I =Xt = e xf) = /28,

proving Item (ii). O
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When the sequence x* described in Lemma 6 is convergent, we have the following result.

Lemma?7 If {zk} is a sequence in RN and for a fixed B > 0, sequence {x*} defined by x* €

ProXgj. i (zk) converges to X*, then there exists an integer V- > 0 such that N k) = Nx*»)
forallk > V.

Proof Since the sequence {x*} converges to x*, we have that
lim [x**! — x¥|, = 0.
k—00

Hence, there exists a number V > 0 such that
X1 — xK|, < /2B, forallk > V.

It follows from Item (ii) of Lemma 6 that N (x¥) = N (x¥*1) for all k > V. Thus, for any
fixedk > V and all m > 0, N(x*) = N(x¥T™). Since {x¥} converges to x*, letting m — oo,
we obtain that N (x}) = N(x*) forall k > V. u]

The next proposition is a special case of Item (ii) of Lemma 4.7 in [32]. This proposition
plays a crucial role in reducing the non-convex optimization (2.16) to a convex one.

Proposition 2 Ler (x*,y*) € RN x RN be given and set N' := N(x*). If {(xk, yk)} is a
convergent sequence in Bar x RN with limit (x*,y*), then, there exists an integer V > 0
such that N (x*) = N(x*) forallk > V.

Proof As { (xk, yk )} converges to (x*, y*), we have that the sequence {x*} converges to x*.
By Lemma 1, there exists an integer V' > 0 such that N(x*) € N (xk) forall k > V. As
xk e B A for all k, the definition (3.2) of Br leads to N x5 € Nx*). Combining the above
two inclusions yields the desired result of this proposition. O

We are now ready to present a result which connects the non-convex model (2.16) with
the convex model (3.3). We first review the definition of a local minimizer of the non-convex
model (2.16). If there exists a § > 0 such that

F(x*,y") < F (x* + Ax, y* + Ay), forall [Ax]| <8, [|Ay] <3,
we call (x*, y*) a local minimizer of the non-convex model (2.16).
Theorem 1 Let B,y > 0, and (x*,y*) € RN x RN be given. The pair (x*,y*) is a local

minimizer of the non-convex model (2.16) if and only if (X*, y*) is a minimizer of the convex
model (3.3) with N := N (x*).

Proof This result follows directly from Corollary 4.9 of [32], with ¢(y) := %HKy — r||%,
u::ﬁandD::I. 5]

In Proposition 1, we have identified a global minimizer of model (2.16) with that of model
(2.6). In the following proposition, inspired by Theorem 4.4 in [32], we explore the relation
between a local minimizer of model (2.16) and that of model (2.6).

Proposition 3 Suppose that B,y > 0 and (x*,y*) € RN x RY satisfies x* € proxg., (¥*).
If (x*, y*) is a local minimizer of model (2.16) and |yj*.| # /2B forall j € N(y*), then y* is
a local minimizer of model (2.6). Conversely, if y* is a local minimizer of model (2.6), then
(x*, y*) is a local minimizer of model (2.16).
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Proof 1If the pair (x*,y*) is a local minimizer of of model (2.16) and |y;| # /2 for all
j € N(y*), we prove that y* is a local minimizer of model (2.6) by contradiction. As (x*, y*)
is a local minimizer of model (2.16), there exists a number § > 0 such that

F (X*, y*) <F (X* + AX, y* + Ay) , forall [|[Ax|| <3, |Ay] <8é. (3.8)

Assume that y* is not a local minimizer of model (2.6). Hence, there exists a sequence {y}
satisfying

Hyk —v|, =0 ask— 400, ad Q) < 0. (3.9)

It follows that for any j € N(y*),
lim [y5] = yil # V28 (3.10)
k— 00
For any j ¢ N(y*), as y; = 0, we have that
lim |y%| = 0. 3.11
Jim 1yl (3.11)
For convenient presentation, we introduce three index sets
Ni={j:jeNy)and|yjl > 2B}, Na:=={j:j € N(y") and |yj]
< V2B N3 = N(y*).
Under the hypothesis, we have {1,2,..., N} = N JNo N3 and N; N =B if i # j.
For any j € N, from (3.10) there exists an integer V; > 0 such that for all k > V;,
¥l > V28 (3.12)

For any j € N3, from (3.10) there exists an integer V; > O such that forall k > V;,

il < V26. (3.13)

For any j € N3, from (3.11) there exists an integer V; > 0 such that for all k > V;,

il < V26. (3.14)

LetV :=max{V;:j=1,2,..., N}and xk e PIOXgj. | (y").

We next prove that, for k > V there holds that N(x*) = N(x*). If j € N(x*), as
X* € proxg, (¥*), by Lemma 5 we have that |y%| > /2B. Since /28 # |31 for all
Jj € N(y*), we derive that for any j € N(x*), there holds |y;| > /2B. Hence, j € N}.By
(3.12), when k > V, there holds |yj?| > /2B. According to (3.7), we have that x? = y;?,
which verifies that j € N (x¥). Therefore, N(x*) € N(x¥) forall k > V. Conversely, if
k> Vandj € N(xb), applying Lemma 5 yields |y§| > J2B. As |yj?| — |y]*.| when
k — o0, there holds |y;f| > /2B.Thus, j € N. Using (3.7), we have that x;f = y;.‘, which
confirms that j € N(x*). Therefore, N (x*) € N(x*) for all k > V. Summarizing the two
inclusions obtained above yields that N (xk )=NE*)fork > V.

Set N := N(x*). Notice that for k > V, N(x¥) = N(x*). This together with Lemmas 3
and 5 yields that for k > V

|

* —|lp k_P *”<Hk_* )
x| = |Pan 09 = Pay )| = v -
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Since |y* — y* H2 — 0 as k — 400, there exists V| > V > 0 such that for k > V,

ka —x*

8
< = d Hk_ *
_23.1'1 y y

< -.
-2
For k > Vi, by (3.9) and (2.19), the pair (xk, yk) with x¥ € PIOXgi. | (yk) satisfies that

Fx*,y5) = 049" < 0(v") = F(x*, y),

which contradicts inequality (3.8). Therefore, y* is a local minimizer of model (2.6).

The second part of this proposition can be proved in a way similar to the proof of Proposi-
tion 1. In deed, under the hypothesis, if y* is a local minimizer of model (2.6), we prove the
pair (x*, y*) with x* € proxg., (¥*) is a local minimizer of model (2.16) by contradiction.
As y* is a local minimizer of model (2.6), there exists a number 8; > 0 such that

0(y) < Q(y +a4y). forall [ay]<é;. (3.15)

Assume to the contrary that (x*, y*) is not a local minimizer of model (2.16). Then, there
exists a pair (X,¥) € RV x RV satisfying

~ 4 81
y-yl=3

~ - )
FRY < Fx',y) =0, |x—x| < 51

IfX € proxg)., (¥), we have that Q (¥) = F(X,¥). If X & proxg., (¥), by the definition of
ProXgj. i and envg).|,, we have that

| B ~
envgyjy @ < 251X =13 + IXllo.
B
Combining this with the definition (2.5) of Q and that (2.15) of F yields Q(¥) < F (X,¥).
Therefore, in either case, we have that Q(y) < Q(y*) and ||y — y*|| < %‘ which contradicts
(3.15). Thus, (x*, y*) must be a local minimizer of model (2.16). O

4 A Fixed-Point Formulation and a Fixed-Point Iterative Algorithm

In this section, we describe a fixed-point formulation of problem (2.16) and then propose an
iterative algorithm for finding a local minimizer of the minimization problem (2.16) based
on the fixed-point formulation.

In the following proposition, we characterize a minimizer of the convex model (3.3) with
a proper set NV,

Proposition 4 Suppose B,y > 0. If C is a subset of {1,2, ..., N}, then model (3.3) with
N := C has a solution and a pair (x*,y*) € RN x RV is a solution of model (3.3) with
N = C if and only if

* * * * ,3 3 *
X' =Pp, (), ¥y =x —;K (Ky —r). “4.1)

Proof In the case when N = @, by the definition (3.4) of P > we get that P, (y) =y
for all y € RY. Hence, model (3.3) reduces to be a convex model on RN x R¥. Applying
the Fermat rule yields that (X, ¥) is a solution of model (3.3) if and only if (X, ) satisfies
equation (4.1).
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We now consider the case when N # (. We first prove the existence of a minimizer of
model (3.3) with \V. To this end, noticing that Ps,, (x) = x for any x € By and applying
formula (3.5), we rewrite model (3.3) as

|1 y 14
argmin {EnKy —r|3 + ﬁny —Pay W3+ = lIx—Pgy M3, (x,y) € By x RN} .

2p
4.2)
The model above can be solved by two steps. Firstly, since N # ¢, we have that
. 1 4 2
i —IKy—rl3+ = |y—P >:+oo.
hm <2 1Ky —xll3 + 72 |y = Pay 0]
Hence, the objective function of the following model
)1 14
mm{5||Ky—r||%+ﬁny—P3N W) 113, yeRN} 4.3)
is coercive. Therefore, model (4.3) has a solution y. Secondly, set X := Pp,,(y). By the

definition (3.4) of P,,, we have that X € Bs. By the expression of model (4.2) and the
discussion above, we derive that (X, ¥) is a solution of model (4.2). Thus, model (3.3) with
N := C has a solution.

Note that model (3.3) with A/ := C is a convex minimization problem with a differentiable
objective function. Applying the Fermat rule yields that (x*, y*) is a solution of (3.3) with
N := C if and only if

Gx(x*,y)T (x =x*) > 0, forall x € By, Gy(x*,y) (y—y*) >0, forall yeR",
4.4
where Gy and Gy denote the derivative of G with respect to x and y, respectively. By Lemma

3, P, is an orthogonal projection. Hence, for a pair (X,y) € By x RY, equation (3.5)
holds. By differentiation, we obtain that
Gux' ¥ = (5" = Pry ). “5)
Gy(x*,y") =K* (Ky* — r) + % ( *— x*) . (4.6)
Substituting (4.5) into the first inequality of (4.4) and letting x := Pg,,(y*) yield the first

equation of (4.1). Substituting (4.6) into the second inequality of (4.4) and choosing y :=
—K* (Ky* —r) — % (y* — x*) 4+ y* we obtain the second equation of (4.1). O

Direct application of Proposition 4 to the case with N := N (x*) leads to the next result.

Proposition5 Let 8,y > 0, and (x*,y*) € RN x RN be given. Then, the pair (x*, y*) is a
solution of model (3.3) with N := N (x*) if and only if
* * * * ﬂ *
x* = PBN(X,)(y ), Y =x"— ;K* (Ky — r). 4.7

Combining Theorem 1 and Proposition 5 yields the following characterization of a local
minimizer of the non-convex model (2.16).

Theorem2 Let B,y > 0 be fixed. A pair (x*,y*) € RN x RY is a local minimizer of the
non-convex minimization problem (2.16) if and only if (x*, y*) satisfies equations (4.7).
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We next formulate a necessary condition for a global minimizer of the non-convex mini-
mization problem (2.16) as a fixed-point of a nonlinear map, and show that a fixed-point of
the map is sufficiently a local minimizer of (2.16).

Theorem 3 Let B, y > 0 be fixed. If a pair (x*, y*) is a solution of the minimization problem
(2.16), then (x*, y*) satisfies the fixed-point equation

* * * ﬁ
x* € proxg., (y*) , Yy =x"-— ;K*(Ky* -r). (4.8)
Conversely, if a pair (x*, y*) satisfies (4.8), then (X*, y*) is a local minimizer of (2.16).

Proof Suppose that a pair (x*, y*) is a solution of the minimization problem (2.16). The first
inclusion of (4.8) has been proved in Proposition 1. It remains to show the second equation of
(4.8). Clearly, (x*, y*) is a local minimizer of the non-convex minimization problem (2.16).
By Theorem 2, the second equation of (4.8) holds.

We next prove the second part of this theorem. By Item (iii) of Lemma 5, we have that
x* = Pp, (x,)(y*). This together with the second equation of (4.8) yields that (x*, y*) is a
local minimizer of model (2.16), by employing Theorem 2. O

Theorem 3 motivates us to propose a fixed-point algorithm for solving the minimization
problem (2.16). Based on the fixed-point equations (4.8) of Theorem 3, we propose the
iteration algorithm as

X e proxgyy, (vF)

yk+1 — Xk+l _ gK*(Kyk+l _ I'). (49)

Updates of both variables x and y in Algorithm (4.9) at each iteration can be efficiently
implemented. The first subproblem in (4.9) can be explicitly solved by employing the closed-
form formula (3.6) of the proximity operator of the £y norm. Once the value x**! is obtained,
we can solve the linear system of (4.9) for yk‘H.

The unique solvability of the linear system of (4.9) requires further consideration. To this
end, we first exam the eigenvalues of matrix K*K. By the definition of R and F, and the
property of the tight framelet W that W*W = I [4], it can be verified that KK* = I. This
property of K leads to the following results.

Lemma8 Ifd, M and N are positive integers withd < M < N, Wisan N x M real matrix
satisfying W*W =1, R is a d x M row selection matrix, then the matrix K*K defined by
the second equation of (2.2) is a real matrix and the eigenvalues |1 ; of K*K are

pi=pa= =g =1, ap1 = a2 = ... = pn-a =0. (4.10)

Proof Using the definitions of R and F in Sect. 2 yields that matrix F*R*RF is real. Since
W is a real matrix, applying the definition of K in (2.2) leads to that K*K is a real matrix.
Furthermore, as KK* = I, we have that K*K is an idempotent matrix. Immediately, it follows
from [13] that if x is an eigenvalue of the matrix K*K, then © = 0 or © = 1. Let r(A)
denote the rank of matrix A. It can be proved that r (K*K) = d. This together with the above
discussion leads to the desired conclusion of this lemma. O

The next lemma follows from Lemma 8.

Lemma9 IfB,y > 0, then1 + gK*K is invertible.
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Proof 1If B8, y > 0, employing Lemma 8 yields that I + gK*K is a positive definite matrix.
Hence, it is invertible. O

Lemma 9 ensures that given x € R, the linear system

B

x — —K*(Ky —r)
Y

y=

has a unique solution y € R". It can be solved by an internal iteration:

vg =yk,

Forj>1

vi =xH - LK (Kv,ﬁ‘1 - r) : @D
yk-ﬁ-l — V]?o'
Integrating iteration (4.11) with Algorithm (4.9), we have the following double-loop iteration
algorithm for solving the model (2.16):

X e proxgyy, (v).
Vi =Y,
Forj=1 (4.12)

J o Gkl _ Byex j=1 _
Vi, =X J/K <Kvk r),
yorl = v,

5 Convergence Analysis

In this section, we study the convergence property of Algorithm (4.9). Specifically, we show
that the support of the sparse variable x* generated by Algorithm (4.9) will remain unchanged
after a finite number of iterations, and thus, Algorithm (4.9) solving the non-convex opti-
mization problem (2.16) reduces to solving a convex optimization problem on the support.
The convergence analysis of Algorithm (4.9) is then boiled down to analyzing convergence
of a convex optimization problem.

We now outline the steps of the convergence analysis. Firstly, a function E is introduced.
Under the assumption that (x,y) € RY x R satisfy the second equation of (4.8), the
function F defined by (2.15) is then rewritten by E. Let {(xF, yk )} be a sequence generated
by Algorithm (4.9). To prove that the sequence {F (x¥, y¥)} is convergent, the property of E
is further explored to present a relation between E(y**!) and E (y¥). Applying the property
of a-averaged nonexpansive operators, the sequence {(x*, y¥)} is then proved to converge to
aminimizer (x*, y*) of the convex optimization model (3.3) with A/ := N (x*). This together
with Theorem 1 shows that (x*, y*) is a local minimizer of the non-convex model (2.16).
Finally, it follows from Proposition 3 that y* is a local minimizer of the proposed model (2.6).

We first consider a function E, which is closely related to both functions F and G.
Specifically, we define E : RY x RN — Raty € RN by

L 2
E(r.y) == Ky -rl3, (5.1)
where L := 1+ 2. Asr € R? inthe problem of inverting incomplete Fourier transform (2.1)

is fixed, we write E (r, y) as E(y) for short. In the following lemma, we rewrite the objective
function F given in (2.16) in terms of E.
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Lemma10 Lerx € RV, Ify =x — gK*(Ky —1), then
G(x,y) = E(y) and F(x,y) = E(y) +y [Ixllp- (5.2)

Proof We prove the first equation of (5.2). If y = x — gK* (Ky — r), there holds

2

K*Ky — éK*r

14 2
—lx=yl; =
z y

]

2p 28
Note that KK* = I. Combining this with the definition of || - |2, the above equation leads
to ﬁ Ix — y||% = % Ky — r||§ . This together with the definition (3.1) of G yields the first
equation of (5.2). The second equation of (5.2) follows from the first equation and the relation
between F and G. O

B
v

2

We next explore the property that the function E is bounded above by a quadratic function.
This property plays a crucial role in our convergence analysis.

Lemma 11 If E is defined by (5.1), then
L 2 N
E(@) < EGS)+(VE(s),z—s)+ §||z —s|3, forallz,s e R™.

Proof We first show that V E is Lipschitz continuous with Lipschitz constant L. It is observed
that |[VE(z) — VE(s)||% = L?|K*K(z — s)||% . As ||[K*K]|, = 1, we obtain that | VE (z) —
VE (s)||% < L%z - s||%, which ensures that VE is Lipschitz continuous with Lipschitz

constant L. The result of this lemma follows immediately from the well-known property of
a differentiable convex function with a Lipschitz continuous gradient. O

We follow [29, 33, 34] to establish a convergence theorem of Algorithm (4.9).

Theorem 4 Let {(Xk,yk)} be a sequence generated by Algorithm (4.9) with an initial

(x2,y%) € RN x RN for model (2.16). If B, v are positive numbers and 0 < g < @,
then the following statements hold:

(i) F(XkH,ka) < F(Xk, yk) forall k > 0and the sequence {F(Xk, yk)} converges.

(ii) The sequence {(Xk, yk)} has a finite length, that is

+00 > +00 )
k+1 Lk k+1 _ Gk
D D
k=0 k=0
li H k+1 kH = 1 H k+1 _ kH =0. 53
G0 T = A o, 9

Proof We first prove Item (i). The second part of Item (i) follows directly from the first part
and the fact that F(x¥, y*) > 0 for all positive integer k. It remains to prove the first part
of Item (i). By the second equation in Algorithm (4.9) and the second equation of (5.2) in
Lemma 10, we have that F (x**1, y*+1) = E (yk+1) 4 ||xF*! |, - Combining this equation
with Lemma 11 yields that

L 2
F (Xk+l7yk+1) <E (yk> +(VE <yk) Y yhy 4 > Hyk+1 _yk H2 +y ka+1 HO'
5.4
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We next exam the second and third terms on the right hand side of inequality (5.4). Specifically,
we shall establish that

VE (v*), y*t! — yk) = Y wvE (v xkH_ xky 55
(VE(v) ¥ =y = T vE(v) ) (5.5)
and
2 2
Lt —o], < gl -], 65

We first prove (5.5). To this end, we differentiate E defined by (5.1) to get that
VE (yk> —L (K*Kyk - K*r) . (5.7)
Combining the second equation in (4.9) and equation (5.7), we obtain that
s <VE (yk) X xky = <(K*Kyk B K*r) Y gk Bk (yk+1 _ yk>>.
y+8 1

Expanding the right hand side of the equation above with the fact that KK* = I and combining
the like terms with noticing the definition of L yield

s
v+ B

Substituting the left hand side of equation (5.7) into the right hand side of the above equation
yields equation (5.5).

‘We now prove that inequality (5.6) holds for 0 < 7 f L By using the second equation
in Algorithm (4.9), expanding the resulting expression and employmg the relation KK* =1,
we get that

2 2 28 B2 H 2
k+1 k k+1 k+1 k
— = K H . 5.8
Hx XHz Hy y"2+(y+ > ( y)z (5-8)

Equation (5.8) implies that

2 2

Hka N yk ”2 = ka+1 -x! Hz (5-9)
Since 0 < g < @, there holds
L:1+§<%. (5.10)

Combining inequalities (5.9) and (5.10) yields inequality (5.6).
Substituting (5.5) and (5.6) into the right hand side of inequality (5.4) yields

) <) L) ]
+y Hx"*‘ HO (5.11)

To prove the first part of Item (i), it suffices to show

14 /3 (VE <yk) , Xk-‘rl _ Xk

2
k+1 _ ok k1~ H k” 512
z S S5 e

%
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To this end, we note that equation (5.7) together with the second equation in Algorithm 4.9)
leads to y* = x* — %VE ( ) Substituting this equation into proxg., (y ) and using the
definition of the proximity operator (2.17), we may rewrite the first part of Algorithm (4.9)
as

1 B 2
k+1 : N
€ — ——VE , e R™ {. 5.13
X argmin { 2 x —xf + v (y ) ) +IIxllo, x } (5.13)
Expanding the quadratic term in (5.13) as
o [vE 9+ 95 [,
+7VE X — X +—HX—XH
s | VE W)L e () v g :

and noticing that the first term of the above expression is constant with respect to x, the
inclusion relation (5.13) becomes
xl e argmin {;(VE (yk) X — Xk) + L HX - ka2 + Ixllg, x€ RN} .
y+8 ’ 2B 2 ’
This ensures the validity of (5.12) and thus completes the proof of the first part of Item (i).
We next prove Item (ii). It follows from inequality (5.12) that

2
14 (VE(yh), xk+1 <K+l _XkH2+y ka+1”0 < F(Xk’yk).

k
]
y+B ) 28
In addition, from (5.4) we get that

EGY) +——

<_F (xk+l7yk+l) )

Summing the above two inequalities and noticing that (5.5) holds, we obtain that

L 2
SRR e e

L 2
<K _ 2k kT < FexkovE) — Fedk gk,
i I ) A ISR C A
Again, since 0 < g < */ngl,inequality (5.10) holds. Substituting (5.8) into above inequality

yields
o<t Z_LHfH_fW+ HﬁquMﬂ yw
—2\B 2
< F(xb, yb) — FxFT yhth, (5.14)

For V > 1, summing inequality (5.14) fromk = 0 to V — 1 yields

o= S (3 G-l (e ) I ) ]
= FO 0 — F¥ oy,

Noticing that the sequence {F (xk, yk)} converges, 8 > 0, y > 0 and (5.10) holds, letting
V — o0, the following inequality is obtained

2[5 (5 ) b oo (1 4 s (=) ] <o
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Hence, we have

+o0 2 +00 )
k+1 _ ok k+1 _ gk
Sy yl<om SIREE L o
k=0 k=0
This together with (5.8) yields
400 2
3 ka“ Xt H < +oo. (5.16)
k=0 2
Therefore, Item (ii) is obtained.
Item (iii) is obtained directly from Item (ii). ]

We next confirm the existence of the invariant support set of the sequence generated by
Algorithm (4.9) for the non-convex model (2.16).

Lemma 12 Let {(Xk,yk)} be a sequence generated by algorithm (4.9) with an initial
0 0 N N L . B V5-1
x",y") € RY x R" for model (2.16). If B, y are positive numbers with 0 < y < 5

then there exists a V > 0 such that N (x*) = NXY) forallk > V.

Proof Ttem (iii) of Theorem 4 implies that there exists a number V > 0 such that
ka+1 —xk Hz <28, forallk>V.
AsxF € ProXgi.j (yk_l), by (ii) of Lemma 6, sets N (x¥) for all k > V must be identical. O

We next show that the sequence {(xk, y* )} generated by Algorithm (4.9) with an initial
(x2, y%) € RN x R¥ converges. We need the notion of the nonexpansive averaged operator.

Definition 1 A nonlinear operator P : RN — R¥ is called nonexpansive if

IP(x)— P, <Ix—yl,, forallx,yeR".

Definition 2 A nonlinear operator P : RN — R¥ is called nonexpansive averaged if there
are a number o € (0, 1) and a nonexpansive operator S such that

P=al+(1—-a)S,
where [ is the identity operator. In this case, P is called nonexpansive «-averaged.

For a nonlinear operator P : RN — RY and any vector x* € RV, the sequence x¥*! =
P(xF),k=0,1, ... is called a Picard sequence of P. It is known [2] that a Picard sequence
of a nonexpansive averaged operator converges to a fixed-point of P. We state this result
next.

Theorem5 Leta € (0, 1), P : RN — R be an a-averaged nonexpansive operator such
that Fix(P) # (. Here, Fix(P) denotes the set of fixed points of P. Then for any given
x? € RV, the Picard sequence {Xk}k>1 of P converges to ax* € Fix(P).

Convergence of the sequence {(xk, y* )} generated by Algorithm (4.9) will be analyzed
by showing that the sequence {xk } is a Picard sequence of a nonexpansive averaged operator
which is the composition of three operators. To this end, we need a lemma regarding the
composition of two nonexpansive averaged operators [9].

@ Springer



48  Page 20 of 35 Journal of Scientific Computing (2022) 92:48

Lemma 13 If P; is nonexpansive oi-averaged and P, is nonexpansive ay-averaged, then
Py o P, is nonexpansive o az-averaged.

We consider three operators involved in Algorithm (4.9). Lemma 12 allows us to identify
a positive integer V such that N(x¥) = N(x") forall k > V. If we set V' := N(x"), then
the next lemma shows that the projection P, defined by (3.4) is a nonexpansive averaged
operator.

Lemma 14 If N := N(x"), then the projection Pp,, defined by (3.4) is nonexpansive %-

averaged.

Proof For the index set A/, we let Sy := diag (s1,s2,...,sy), where s; 1= 1if j € N
and s; := 0 otherwise. We observe that P, (x) = Syx, forall x € RN . We define another
matrix SN = diag (51, 52, ...,5n), where §; :=1,if j € N and§; := —1, otherwise.

It can be verified that Sy = 11 + (1 — %) Sn. Clearly, ISarll2 = 1, which implies that Sy

is nonexpansive. By the definition of nonexpansive averaged operators, S/ is nonexpansive

1 C . . 1
5-averaged. In other words, the projection Pg,, is nonexpansive 5-averaged. O

Lemma 9 shows that for 8 > 0, y > 0, the matrix I 4 gK*K is invertible. We next show

-1
that the matrix (I + gK*K) is nonexpansive %—averaged.

-1
Lemmal5 If B,y > Owith0 < g < 1, then the matrix (I + gK*K) is nonexpansive

1
5-averaged.

-1 -1
Proof We write (I+ £K'K) = 31+ (1= })Swith § = 2(I+LK'K) — LIt

suffices to show that S is nonexpansive. For all x,y € R, we have that

—1
1
[ISx — Syll, <2 (I + gK*K) — 5I Ix =yl (5.17)
2
Note that
—1 —1
1 1
<I + EK*K) ——I=- (I + éK”‘K) (I — éK*K) . (5.18)
14 22 14 14

-1
According to Lemma 8, simple computation leads to the eigenvalues of (I + gK*K) are

B+y
—1
ort =1— g Moreover, both matrix (I + gK*K) and (I — gK*K) are symmetric.

Therefore,

either u = 1 or © = %-. Likewise, we obtain the eigenvalues of (I - gK*K) are t = 1

-1
(1 + éK*K) < max{l, L} <1 (5.19)
4 5 B+y
and
HI—EK*K gmax{l,l—ﬁ} <1 (5.20)
Y 2 Y
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Combining (5.18), (5.19) and (5.20) yields

—1
1
(1 4 EK*K) L
y 2

1
<.
-2

2

Substituting the above inequality into inequality (5.17) leads to [S(X) =Sy, <

1 -
Ix —yll,, that is, S is nonexpansive. Therefore, (I+ gK*K) is nonexpansive %—
averaged. O

We now consider the translation operator defined by Hx = x + gK*r, forall x € RV,
Lemma 16 The operator H is nonexpansive a-averaged for any o € (0, 1).

Proof We write H = ol + (1 — @) S, for any fixed o € (0, 1), with
B

Sx :=x+ ——K*r, forall x e R".
(I-a)y
Clearly, for all x, y € R¥, we observe that ||Sx — Syll, = Ix — yll2, which implies that S is
nonexpansive. Hence, H is nonexpansive o-averaged. O

For an index set N of {1, 2, ..., N}, we define

—1
ON :=PBN0<I+EK*K) oH.
v

Lemma 17 The operator Q nr is nonexpansive %a-avemged, foranya € (0, 1).
Proof This result follows directly from Lemma 13 with Lemmas 14, 15 and 16. ]

Algorithm (4.9) is essentially solving the convex optimization model (3.3) with A/ :=
N(xY), for k > V. We confirm this fact in the next lemma.

Lemma 18 Let {(Xk,yk)} be a sequence generated by Algorithm (4.9) with an initial
(x?, yo) € RN x RN. Let V be a positive integer such that N = NXY) forallk > V.
If B,y > 0 are chosen such that 0 < g < @, then the subsequence {(Xk, yk)}kzv
converges to a solution (X*,y*) of the convex model (3.3) with N := N(xV). In addition,

there holds N' = N (x*).

Proof By Proposition 4, model (3.3) with A" := N (x") has a solution, and a pair (X, §) is
a solution of model (3.3) with V' := N(x") if and only if (X, §) satisfies equations (4.1).
According to Proposition 4, if (%, ¥) is a solution of model (3.3) with V' := N(x"), then %
is a solution of the equation

—1
x = Pg,, |:<I + gK*K) (X + iK*r>:| (5.21)

and in this case, the above equation has a solution.
We next verify that the subsequence {(x*, y*)}

k1 — PBN (yk) ,
yk+1 = xk+1 _ gK* (Kka _ r) )

k> satisfies the equations

(5.22)
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Since {(Xk, yk)} is a sequence generated by Algorithm (4.9), there holds x*t! e
ProXgy. i (yk ) Applying Item (iii) of Lemma 5 yields x**! = PBN(xk T, (yk ) Moreover, by
hypothesis we have V' = N (x**1) forany k > V. Therefore, we derive thatx**! = Py v (yk )
for all k > V. This confirms that (5.22) holds for all k > V.

We now show that the subsequence {xk} >y is convergent. In (5.22), substituting the
second equation of (5.22) into the first one to eliminate y¥, we obtain that

-1
X/(+1 — PBN |:<I_|_ EK*K> <Xk + 'BK*I'):| ]
Y 14

By the definition of operator Q nr with A" := N(x"), we see that the subsequence {Xk}k>V

is a Picard sequence of Q. Lemma 17 confirms that Q or is nonexpansive %a-averaged.
Moreover, the existence of a solution of equation (5.21) ensures that Fix(Q ar) # ?. Theorem
5 implies that the subsequence {xk } 4>y converges to a solution Xx* of equation (5.21). Note

that {xk} >V is a sequence in Bys. Since Bys is closed, we get that x* € Bas. In addition,
applying Lemma 7 yields A" = N (x¥) = N (x*).

It remains to show that the subsequence { y } is convergent. It suffices to prove that

kv
{¥*},- is a Cauchy sequence in R¥. By (5.22) and Lemma 9, we have that

—1
yit = (1 + %{*K) (xk“ + §K*r> : (5.23)

Thus, for allm > n > V, by the above equation we have that

-1
<1+ EK*K)
14

=

2

I—}—EK*K _l(m n m n
y X" —x") [x™ — x"|

2

27

|y _Y””z:‘

which together with inequality (5.19) yields [ly” — y" ||, < [x™ — x"||, . Since {Xk}k>v is
convergent, it is a Cauchy sequence in Bas. Thus, {yk } >y is a Cauchy sequence in RY and

is convergent. Denote y* as the limit point of {y*}, _,,.

-1

Finally, in equation (5.23), we let k — 400 and obtain that y* = (I + gK*K)
(x* + gK*r) , where x* is a solution of equation (5.21). Consequently, the pair (x*,y*) €
By x RY satisfies equations (4.7). According to Proposition 5, (x*, y*) is a solution of model
(3.3) with A/ := N (x*). O

We are now ready to prove the main theorem on convergence of Algorithm (4.9).

Theorem 6 Let {(Xk,yk)} be a sequence generated by Algorithm (4.9) with an initial
x,y%) e RYN x RN If B,y > 0 are chosen such that 0 < g < #, then {(Xk, yk)}
converges to a local minimizer (X*, y*) of model (2.16). Moreover, the sequence {F(Xk, yk)}

converges to F(X*,y*). Furthermore, if |y;| # /2B for all j € N(y*), then y* is a local
minimizer of model (2.6).

Proof By Lemma 18, the sequence {(xk ) } converges to a pair (x*, y*), which is a solution

of the convex model (3.3) with A/ := N (x*). It follows from Theorem 1 that (x*, y*) is a
local minimizer of the non-convex model (2.16).
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We next prove that {F (xk, yk )} converges to F'(x*, y*). By the hypothesis and Theorem

4 we have that the sequence {F (xk, yk )} is convergent. As the function G defined by (3.1)

is continuous, we have that klim G(Xk, yk) = G(x*, y*). Furthermore, by Lemma 12, there
—00

exists a positive integer V such that N (x¥) = NxV) forall k > V.Hence, N(x*) = N(x*)
and ||Xk ”0 = ||x*||( for all k > V. Noting that F(xF, y* = G(x*, yk) +y ”Xk ||0 and letting
k — ocoyield lim F(x*,y*) = F(x*, y*).
k—o00
Notice that x* € ProXgj. i (y*). Since (x*, y*) is a local minimizer of model (2.16) and
|y;| # /2B forall j € N(y*), applying Proposition 3 yields that y* is a local minimizer of
model (2.6). ]

6 Applications in Seismic Wavefield Modeling in the Frequency Domain

In this section, we consider applications of the incomplete Fourier transform method devel-
oped in sect. 4 to seismic wavefield modeling in the frequency domain.

Frequency domain modeling for the generation of synthetic seismograms and crosshole
tomography has been an active field of research since 1970s [23, 24]. Modeling of seismic
wavefield in the frequency domain requires solving a sequence of boundary value problems of
the Helmholtz equation with different wave numbers (frequencies) [15, 21]. When solutions
for all frequencies satisfying the Nyquist-Shannon criterion are available, we can obtain the
corresponding time domain results by the inverse discrete Fourier transform (IDFT) [3, 14,
28]. However, it is a challenging task to obtain solutions for the boundary value problems
corresponding to high frequencies [1]. To overcome this difficulty, an incomplete Fourier
transform model [31] was proposed for frequency domain modeling, by using an £;-norm
regularization method. According to [11], the £;-norm is not an ideal sparsity promotion
function since it would cause biases. The regularization with the envelop of the £o norm
developed in the previous sections can avoid biases and allow us to recover data from incom-
plete Fourier transforms with only lower frequencies. In this way, we do not have to solve
boundary value problems of the Helmholtz equation with large wave numbers.

We now recall the seismic wavefield modeling in the frequency domain. In the time
domain, the 2D acoustic wave equation has the form

2
%%—Au:g, on R?, (6.1)
where u, v and g denote, respectively, the unknown pressure of the wave field, the background
velocity and the source term in the medium. Both u and g are functions in the spatial-time
space R? x R, while v is a function in the spatial space R?. By using the Fourier transform,
one may convert the wave equation as a family of the Helmholtz equations. Upon solving
these Helmholtz equations and converting back to the solution of the wave equation, one can
model propagation of seismic wavefields. This is the frequency approach for modeling the
seismic wave propagation.

Next, we present the 2D acoustic wave equation in the frequency domain. To this end, we
call the definition of the continuous Fourier transform. For a function i defined on R, its
continuous Fourier transform at frequency f € R is given as

V(f) = /R V(e "z, 6.2)

@ Springer



48  Page 24 of 35 Journal of Scientific Computing (2022) 92:48

With the Fourier transform, the acoustic wave equation (6.1) is converted to the well-known
Helmbholtz equation

— AT -k =73, (6.3)

27 f . . .
== with f being the frequency in Hz. For

any (x,z) € RZ, u(x, z, f) and Z(x, z, f) represent, respectively, the continuous Fourier
transforms at the frequency f of the functions u(x, z, -) and g(x, z, -) which appear in (6.1).
The solution u(x, z, t) of the acoustic wave equation (6.1) may be obtained by the inverse
Fourier transform from the solutions #(x, z, f) of the Helmholtz equation, for all f € R.
Therefore, the fundamental problem for the acoustic wave modeling in the frequency domain
is to solve the family of the Helmholtz equations (6.3) for all f € R.

We now discuss the generation of synthetic seismograms in frequency domain modeling.
For convenience of expression, we describe only the generation of the synthetic seismogram
of a fixed point (x,, z,). We assume that there exists 7 > 0 such that the solution u of the
wave equation (6.1) satisfies the condition u(x,, z, t) = Oforall ¢t ¢ [0, T]. Mathematically,
the synthetic seismogram of the point (x,, z,) is the function u(x,, z,, t), where ¢ € [0, T'].
We will use the notation u, (t) := u(x,, z,,t) and u, (f) := u(x,, z,, f). In the context of
seismic wavefield modeling, we say that a receiver is located at the point (x,, z,) [15], and
the synthetic seismogram u(x,, z,, t) is the wave which the receiver receives. Our goal is to
obtain the values of u, () at M equally spaced points taken in the interval [0, 7], where M is
a positive integer. By the definition of the continuous Fourier transform (6.2) of u, (¢), with
the rectangle quadrature method, we have that

where « is the wave number defined by k :=

M—1
U(f) =21 u n)e /M forall feR, (6.4)
n=0
where A = % In the frequency domain seismic wavefield modeling, u, (f) is usually

obtained through solving the Helmholtz equation (6.3) by finite difference [8, 15] or finite
element methods [1]. In addition, as the source function in the seismic case approximately has
a limited spectrum (see, [31]), we denote by f,u4x an approximate highest frequency of the
source, and assume that equation (6.4) holds approximately for f € [0, fumax]- Following
the Nyquist sampling theorem, we require the frequency step size Af to satisfy the condition
Af < % Hence, we choose f,, = %, form = 0,1,..., M — 1, and the corresponding
frequency step size Af = % Also, we let

u=|u,0),u(—),... up | ———
M M

s ooz (! (M -1\]"

u._|:ur( ),ur<?),...,ur< T >:| .

Hence, from equation (6.4), we have that

u = AV MFu, (6.5)

and

where F is the M x M discrete Fourier transform matrix defined as before. We can reconstruct
u from U with IDFT, that is,
1 1 .
u=-——>F.

T
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For a large scale problem, solving the Helmholtz equation with large wave numbers is
a difficult task (see, [1, 14]). We even have difficulty in obtaining u, (f) for frequencies f
satisfying f < fumax. In fact, only some components of @ are available. We use r,ps to
denote the vector formed by the W by removing its components that are not available. Thus,
there exists a row selector matrix R such that

RU = rps. (6.6)
Letr := LMrabs. Substituting equation (6.5) into equation (6.6) and noticing the definition
of r yield

ARFu=r, 6.7)

which is indeed an incomplete Fourier transform system (2.1) with v := Au. We also note that
different row selector matrices correspond to different ways of sampling. To avoid solving
the Helmholtz equation with large wave numbers, we follow [31] to sample only lower
frequencies in recovering the seismic wavefield. We then adopt the sparse regularization
model (2.16) developed in Sect. 2 to find an approximation of u of equation (6.7) by employing
Algorithm (4.9) proposed in Sect. 4.

7 Numerical Experiments

In this section, we present four numerical experiments to demonstrate the effectiveness of
the proposed sparse regularization model (2.16). All the experiments are performed on an
Intel Xeon (4-core) with 3.60 GHz, 16 Gb RAM and Matlab 7v.

We begin with setting up equation (2.3) and model (2.16). The selector matrix R depends
on the sampling method to be specified later. The N x M matrix W, with N = [M and [
being a positive integer, is constructed from the piecewise linear spline tight framelets system
described in [4]. By Af we denote the step size of the frequency f, and f,i, and fiax
represent, respectively, the lowest frequency and the highest frequency that we compute. We
will use Algorithm (4.9) to solve the model (2.16) (ELOM). When implementing Algorithm
(4.9), proxg.;, (@), forallz € RV is computed by equation (3.6) with the following formula

{zi}. lzil > V2B;

proxg. 1, (zi) = { {0}, otherwise.

We point out that the variable y in model (2.16) is used to generate the numerical results of
ELOM in all the following tables and figures. This is because our goal is to solve model (2.6)
and Theorem 6 verifies that a sequence {(xX, y¥)} generated by Algorithm (4.9) converges to
a pair (x*, y*), with y* being a local minimizer of model (2.6).

We shall compare the effectiveness of model ELOM with that of the £1-norm model (L1M)
which has the form

. 1
argmin {EHKy — I'||% + vyl } ,

proposed in [31] for inversion of incomplete Fourier transforms. Model L1M will be solved by
Algorithm 1 [31]. The quality of the restored signals will be measured by the signal-to-noise
ratio (SNR) defined by

datagie||?
SNR := 10log,, Idatdorigl; 5
||data0r,'g — datareco”g
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Algorithm 1
Input: the matrix K, the vector r, and the diagonal matrix I' = y1
Initialization: y0 =vl =0, =1
repeat (k > 0)

yk = ProX|.|| oI (Vk — K*(Kvk — l‘))
L+,/ 1441
e+l = — 7
t—1 —
viFl = yk (ﬁl ) 0F=yh
until [[y* — y*= o /)y* 1o > ol
Return: u = %W‘ryOO

Table 1 The SNR results of

1 1 1% 1
ELOM with comparison to L1M 0% 40% 30% 20%
for recovering time-domain data 1y 21.0756 21.2153 10.8219 3.7084
from incomplete exact frequency
ELOM 37.0167 30.9599 16.0520 4.8128

data with random sampling

where data,,ig and datayec, represent the original data and the recovered data, respectively.

7.1 Recovering Time-domain Data with Exact Frequency Data

In this subsection, we consider recovering the first derivative of Gaussian function with
its insufficient exact frequency data by model ELOM, with comparison to model L1M, for
random sampling and uniform sampling.

The first derivative of the Gaussian function has the form

G(t, 19, @) = —20(t — tp) exp(—a(t — 10)%), (7.1)

and its Fourier transform is given by

2 (2
a(f, to, @) = 2\/gnf exp (—%) [sin(27 fty) + i cos(2m fto)] . (7.2)

In this experiment, we set 7y := 1 and & := 200, and choose T := 2s and M := 129, where
s denotes second. The natural maximum frequency of G(f,1,200) is approximately equal
to 15Hz, thatis, fumex = 15Hz. In the remaining part of this paper, we will always use Hz as
the frequency unit without mentioning it. Furthermore, we set the tolerance as tol = 10~° for
iterations in implementing the two algorithms, and obtain the SNR-values for reconstructed
data.

We first test the restoration ability of ELOM for exact data with random sampling. We
randomly select 50%, 40%, 30%, 20% frequencies from the set {0.5, 1, 1.5, ..., 15}. We
report numerical results in Table 1, where each SNR-value reported is the average of five
runs.

We then test the restoration ability of ELOM with comparison to L1M for exact frequency
data of only low Fourier frequencies. In this test, we choose fy,4, as 7.5, 6, 4.5 and 3, and
sample exact data from intervals [0.5, f,4,x] With the uniform step size Af := 0.5. The
selector matrices R for this example are chosen according to the values of f,,,,. Note that
fmax in each of these cases is much smaller than f,;,,x = 15 required by the Nyquist
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Table2 The SNR results of
Model
ELOM with comparison to L1M ode Jmax § 15 3
for recovering time-domain data i
from exact frequency data with [ 1 24.5150 16.0542 13.6275 13.4741
uniform sampling from intervals
[0.5, fnax] with Af = 0.5 ELOM 39.0745 33.8784 34.6615 21.2628
15 15
Original Signal Original Signal
- - - - ELOM ----ELOM
10 10+
5+ 5t
0 0
5t 5L
-0 10+
-15 : : : -15 : : :
0 0.5 1 15 0.5 1 15 2
Time s Time s
(b)
15 ‘ ; ;
Original Signal
- = ELOM
10+
5 L
0 P
5t
-10 +
-15 -15

0 0.5 1 15
Time s

(c)

0.5 1 1.5 2
Time s

(@)

Fig. 1 ELOM, Af = 0.5,1 = 3: (a) finax = 7.5, y = 0.0202, B = 0.0100, (b) frnax = 6, y = 3.1053,
B = 1.9000, (¢) frnax = 4.5,y = 1.0460, B = 0.6400, (d) frmax = 3,y = 0.6211, B = 0.3800

sampling theorem. We report numerical results in Table 2. In Fig. 1, the figures obtained by
ELOM are presented. Here, “Original Signal” represents the real signal in time and “ELOM”

represents the signal restored by ELOM.

From Tables 1 and 2, we find that ELOM outperforms L1M significantly in both of the
tests. Moreover, we observe that the results from the uniform sampling are better than those
from random sampling. These numerical results and Fig. 1 confirm that ELOM can well
recover the first derivative of the Gaussian function with exact lower frequency data .
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Table3 A summary of the SNR

results of L1M and ELOM for Model ;"gax G a3 3

recovering time-domain data : .

from noisy data sampled from o =01

intervals [0.5, fiax] with

Af =0.5ando = 0.1, 0.3, 0.5 LIM 18.8278 13.4524 13.3601 13.0725
ELOM 249187 24.0535 24.1239 14.1184
o =0.3
LIM 15.6276 12.5826 12.1345 10.7584
ELOM 18.5610 17.8948 14.5159 12.5585
o=0.5
LIM 11.5818 11.4273 10.3744 6.7984
ELOM 16.2983 13.9437 13.5271 11.9359

0 2000m Receiver Source

1000m
b1

Source Receiver

2000m

200 400 600 800 1000 1200 1400 1600 1800 2000
(a) (b)

Fig.2 Velocity models: (a) The homogenous model; (b) The layered model

7.2 Recovering Time-domain Data from Noisy Low Frequency Data

We consider in this subsection recovering the first derivative of Gaussian function from its
noisy low frequency data by model ELOM, with comparison to model L1M. All conditions
imposed in this example are the same as those in the last subsection for uniform sampling,
except data are contaminated with Gaussian noise of standard deviations o = 0.1, 0.3, 0.5,
respectively. The tolerance for iterations is again set as ol = 107%. We report numerical
results for this example in Table 3, where each SNR-value is the average of five runs. From
Table 3, we find that model ELOM can restore well signals from their noisy low frequency
data and model ELOM once again outperforms model L1M significantly.

7.3 The Homogeneous Velocity Model

In this subsection, we consider the homogeneous velocity model for generating synthetic
seismograms with a source function g. This requires solving equation (6.1) with constant
velocity v illustrated by Fig. 2 (a) and the source function g(x, z, t) := §(x —xg, 2 —25)q (1),
where § denotes the Dirac delta function and (x;, z,) is the coordinates of the source location.
We will consider two source functions the Ricker wavelet and the first derivative of the
Gaussian function.
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We employ the Frequency domain modeling to generate the synthetic seismogram by
solving a sequence of 2D Helmholtz equations (6.3) with different frequencies and then
inverting the Fourier transform using model ELOM with Algorithm (4.9). Our interested
domain is [0, 2000] x [0, 2000], having meter m as the length unit. The velocity v of the
medium is 1500m /s, where s denotes the time unit second. The receiver described in Sect. 6 is
located at the point (x,, z,) := (1500, 1000). The source location is (xg, z;) = (500, 1000),
and the natural maximum frequency of the source function is denoted by f;;u4x. To obtain
the synthetic seismogram at the receiver point (x,, z,), we choose proper parameters 7,
M, and let Af = %, where T, M, Af are defined in Sect. 6. By f,in and f,5c we
denote respectively the minimum and maximum frequency used in generating the synthetic
seismogram. We let Ny be the smallest positive integer such that fg—}" < Npg.Thus, Ny isthe
number of Helmholtz equations (6.3) we need to solve for a particular f,,,,, chosen. If f,,
were chosen as f,;uqx, We need to solve many Helmholtz equations (6.3) and some of these
equations have large wave numbers. We will choose f,,,,x smaller than f;,,,,» and reconstruct
the synthetic seismogram (the solution of equation (6.1)) by inverting an incomplete Fourier
transform (solutions of Helmholtz equations (6.3) with only small wave numbers). To this
end, we sample frequencies f from intervals [ fiuin, fmax], With four different f,,, values
and solve the resulting Helmholtz equations (6.3) by employing the finite difference method
developed in [8], with the same step size & := 10 for both variables x and z. To invert the
corresponding incomplete Fourier transform, we construct the tight framelet matrix W with
a parameter /, and then apply model ELOM with Algorithm (4.9).

For comparison purposes the exact solution of the wave equation (6.1) with v and g
described above can be obtained by the D’ Alembert formula:

u(x,z,t) = iq (t — %, fo) )

where r == /(x — x;)2 + (z — z5)2. In this experiment, we take the signal u(x,, z,,1),
t € [0, T] obtained by the D’ Alembert formula as the original signal for the comparison
purpose.

In our first example, we choose ¢ (¢) := R(t, fo), where R(z, fo) is the Ricker wavelet
defined by

R(t, fo) == (1 = 272 f31?) exp(—n? f3?), (7.3)

with fy := 25. Note that the natural maximum frequency of the Ricker wavelet is approxi-
mately equal to 60. In this example, we choose T := 1.3440s, M := 168 and [ := 3. If fi,4x
were chosen as fymqx := 60, we would need to solve Ny := 81 number of Helmholtz equa-
tions (6.3). This requires significantly large computational efforts to perform the task. We
instead sample frequencies f from intervals [ fiin, finax], With fiuin = land fax < fumax-
We illustrate in Fig. 3 the synthetic seismogram generated from this source function by model
ELOM, with comparison to the original signal and those by the IDFT and L1M. In Fig. 3, all
results of IDFT are obtained with frequencies sampled from the interval [1, 60], while the
synthetic seismograms generated by L1M and ELOM are obtained with frequencies sampled
from intervals [1, fax], Where fi,q. are 54, 48, 42 and 36, respectively.

Our second example considers ¢ (¢) := G (t, 1y, &), where G (¢, 1y, &) is the first derivative
of the Gaussian function defined by (7.1), with 7o = 0.3, & = 200. The natural maximum
frequency of the first derivative of the Gaussian function is approximately equal to 15, that
iS, fumax = 15. In this example, we choose T := 2s, M := 129,] := 4 and fiux < fumax-
Specifically, we sample frequencies f from intervals [ fiuin, fmax]l, With fiin = 0.5 and
Jmax = 9,7.5,6,4.5. We illustrate in Fig. 4 the synthetic seismogram generated from this
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- - -~ IDFT - - - - IDFT
o8 LM 1 Lo | D LM
ELOM ELOM
0.6 Original Signal | 0.6 Original Signal
04+
0.2+
0 - L .
02} '
04}
-0.6 -
-0.8 - q -0.8 -
-1 L L L L -1 L L L L
0.55 0.6 0.65 0.7 0.75 0.8 0.55 0.6 0.65 0.7 0.75 0.8
Time s Time s
(a) (b)
1 r 1 r T
- - -~ IDFT d] - - -~ IDFT
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0.6 Original Signal | 1 0.6 - : { Original Signal
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-0.8 - 1 -0.8 -

L L L L -1 L L L L
0.55 0.6 0.65 0.7 0.75 0.8 0.55 0.6 0.65 0.7 0.75 0.8

Fig. 3 Synthetic seismograms generated by different methods for the homogeneous model with the Ricker
wave as the source function: (a) fiax = 54, (b) finax = 48, (€) finax = 42, (d) finax = 36

source function by model ELOM, with comparison to the original signal and those by the
IDFT and L1M. In Fig. 4, all results of IDFT are obtained with frequencies sampled from
the interval [0.5, 15], while the synthetic seismograms generated by L1M and ELOM are
obtained with frequencies sampled from intervals [0.5, f4x], Where fqx are 9, 7.5, 6 and
4.5, respectively.

From Figs. 3 and 4, in both the examples, we find that even though only low frequencies are
used, the best synthetic seismogram is obtained by ELOM. Specifically, the signals recovered
by ELOM are much better than those by IDFT, as the IDFT creates many spurious oscillations
in the recovered signals, and ELOM performs better than L1M. In passing, we comment
that there are phase displacements between the original signal and each of the synthetic
seismograms obtained by the IDFT, L1M and ELOM (see Figs. 3 and 4), which is due to the
difference between the numerical phase velocity and the exact velocity (see FIG 2 in [15]).

7.4 The three layered velocity model
In this subsection, we consider the three layered velocity model illustrated by Fig. 2 (b)

for generating common-shot-point records (shot profiles) with the source function being the
same Ricker wavelet as in the last subsection. In other words, we will solve equation (6.1)
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Fig.4 Synthetic seismograms generated by different methods for the homogeneous model with the first order
derivative of the Gaussian function as the source function: (a) fjuax = 9, B = 0.73, y = 21.4757, (b)
fmax = 7.5, =0.73, y = 21.4757, (¢) frax = 6, 8 = 0.75, y = 21.2899, (d) finax = 4.5, B = 0.75,
y = 18.6696

in the heterogenous medium (the three layered velocity model) by the Frequency domain
modeling.

Our interested domain is the same as that in the last subsection. The three layered velocity
model is different from the homogeneous velocity model considered in Sect. 7.3, as there are
three velocities: v = 2, 000m /s, 2, 500m /s, 4,000m /s, from the top to the bottom in this
model. The source function is located at the point (xg, z5) := (0, 1000), and the receivers
are located on the top ground, that is, they are located at points (x;, 0), where x; := jh and
h:=10for j =0, 1,...,200. In this example, we choose T := 2.2400s, M := 280 and
Af = 0.4464. We generate the synthetic seismograms in the frequency domain by solving a
sequence of 2D Helmbholtz equations (6.3) using the finite difference method developed in [8],
with the grid size Ax = Az := 10. We then invert the Fourier transform using model ELOM
with Algorithm (4.9) and obtain the common-shot-point records, the image of u(x;, 0, )
for j =0,1,...,200 and #; := kAt € [0, T] with Az := 8 x 1073s.

The common-shot-point records obtained by ELOM are compared to those by IDFT and
LIM. Figs. 5, 6, 7 and 8 present the common-shot-point records with frequencies sampled
from intervals [1, 60], [1, 42], [1, 36] and [1, 30], respectively. Note that all of the three
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Fig.8 The common-shot-point records via different methods with the frequency samples taken from[1, 30]: (a)
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numbers 42, 36, 30 are smaller than f,,,,,, := 60 required by the Nyquist sampling theorem.
From part (a) of Figs. 6, 7 and 8, we find that nonphysical oscillations appear in the seismic
wavefields obtained by the IDFT, as the Nyquist-Shannon criterion are not satisfied, and as
Jfmax reduces, the oscillations become stronger. As shown in parts (b) and (c) of Figs. 6, 7 and
8, the direct waves of the source, the reflected waves of the top side of the second layer and
the reflected waves of the bottom side of the second layer are displayed clearly in the seismic
wavefields obtained by both L1M and ELOM. Furthermore, waves obtained by ELOM are
clearer than those by L1M, as less nonphysical oscillations appear in part (c) of these figures.
These demonstrate that ELOM outperforms L1M and frequencies sampled from [1, 30] with
Af = 0.4464 are enough to restore the seismic wavefield by ELOM, which confirms the
effectiveness of the proposed method.

8 Conclusions

We have developed a sparse regularization model based on the Moreau envelope of the £
norm under a tight framelet system for inversion of incomplete Fourier transforms and a fixed-
point iteration algorithm to solve the model. We have also applied this proposed method to
seismic wavefield modeling. We have established that the proposed fixed-point algorithm
converges to a local minimizer of the non-convex, non-smooth model. Numerical results
have verified that the proposed model outperforms significantly the model based on the ¢;
norm. In the context of the seismic wavefield modeling, substantial numerical studies that
we have conducted show that the proposed method, which requires data of only a few low
frequencies and avoids solving the Helmholtz equations with large wave numbers, performs
better than the method based on the £; norm, in terms of the SNR values and visual quality
of the restored synthetic seismograms. They confirm that the proposed model is particularly
suitable for the seismic wavefield modeling.

The proposed inverting incomplete Fourier transform method may be applicable to other
applications such as MRI and seismic data restoration. Some MRI images such as angiograms
are already sparse in the pixel representation, and more complicated images may have a
sparse representation in some transform domain, for example, in terms of their wavelet
coefficients. The paper [22] performed the reconstruction of sparse MRI by minimizing the
£1 norm of a transformed image, subject to data fidelity constraints. The proposed model (2.6)
with envg) .|, as a measure of sparsity may also work well in this application. In addition,
seismic data restoration is a useful tool in seismic exploration, and it is an ill-posed inverse
problem. Due to the sparsity of seismic data in some transform domain, this problem can be
transformed into a sparse optimization problem. Thus, our proposed method is also expected
to work efficiently for this problem.

Finally, we comment that machine learning methods may be employed to train data driven
filters for regularization when training data are available. We will consider it as our future
projects for applications in which training data are available.
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