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ABSTRACT

Mass spectrometry, for protein identification, generates a mas-

sive number of spectra that need to be matched against a large

database. In reality, most spectra remain mismatched due to unex-

pected post-translational modifications. Open modification search

(OMS) improves the identification rate by considering every possi-

ble change in spectra, but it expands the search space exponentially.

We propose HyperOMS, which redesigns OMS based on hyperdi-

mensional computing to cope with such challenges. HyperOMS

encodes floating-point spectral data with high-dimensional binary

vectors, enabling the massive parallelism in OMS. Experimental

results show that HyperOMS on GPU is up to 17× faster and 6.4×
more energy efficient than the state-of-the-art GPU-based OMS

tool [2] while providing comparable search quality.

1 INTRODUCTION

Tandem mass spectrometry (MS/MS) is one of the most popular

and reliable methods for identifying proteins and peptides in com-

plex biological samples in proteomics. It gathers spectrum charge,

precursor𝑚/𝑧, and spectrum, which is a unique fingerprint of the

measured peptide. Peptide sequences are assigned to experimen-

tal MS/MS spectra by matching them against a spectral library of

known peptides. A significant portion of spectra acquired during

the experiment remains unidentified due to the post-translational

modifications (PTMs), which change spectra patterns. However,

spectral libraries mainly contain reference spectra for unmodified

peptides, so PTMs make experimental spectra challenging to iden-

tify as they no longer exactly match the reference.

Open modification searching (OMS) addresses these issues

by (i) using a wide precursor𝑚/𝑧 tolerance that exceeds mass shifts

induced by modifications, and (ii) using alternative spectrum sim-

ilarity measures that take peak shifts due to modifications into

account [1]. Using a wide precursor𝑚/𝑧 tolerance enables finding
matches between unmodified reference spectra and their modified

variants. However, OMS faces low searching speed and efficiency

due to the increased search space as it considers all possible PTMs.

This problem is exacerbated by the increasing spectral data due to

the cost reduction of the experiment (2× in the recent two years).

Several tools have been introduced to perform OMS efficiently.

The state-of-the-art OMS tool ANN-SoLos [2] performs nearest
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Figure 1: Overview of OMS process using HyperOMS.

neighbor searching using GPU and computes shifted cosine simi-

larities on candidates. However, existing solutions involve a com-

plex execution pipeline and exhibit low data parallelism requiring

high-precision floating-point (FP32) arithmetic for good search

quality. As such, we redesign an OMS algorithm that only involves

hardware-friendly Boolean operations with a simple execution

pipeline.

In this work, we propose novel hyperdimensional computing

(HDC)-inspired OMS algorithm called HyperOMS. Our algorithm is

based on the efficient computing paradigm, HDC, which has shown

high efficiency for pattern-matching tasks. HDC improves the data

separability and robustness by mapping data into high-dimensional

(HD) space. We leverage HDC’s robustness to minimize the effects

of PTMs. It reflects the spatial and value locality of peaks in the

spectrum, making the encoded data resilient to peak shifts and

intensity changes. Spectra can be identified with a single similarity

computation, simplifying the execution pipeline and enhancing the

data parallelism. Furthermore, HyperOMS replaces FP32 operations

with Boolean arithmetic. HyperOMS on GPU achieves up to 17×

speedup and 6.4× energy efficiency over the state-of-the-art GPU-

based OMS solution, ANN-SoLo [2] while offering comparable

search quality to other tools [1, 2, 4].

2 HYPEROMS ALGORITHM

HyperOMS encodes raw spectral data to a binary HD vector called

hypervector (HV) to capture the position and intensities of peaks

while considering the spatial and value locality. Although peaks

shift due to PTMs, the similarity between a query spectrum and a

matching reference spectrum does not change dramatically. Further-

more, HyperOMS replaces complex similarity metrics in existing

OMS tools with a simple Hamming similarity operation.

Fig. 1 shows a flow of HyperOMS. It starts with preprocessing, a

common step inOMS. It refines and vectorizes raw spectra, resulting

in spectrum vectors. In the encoding step, HyperOMS encodes

the data into a binary vector, which can enhance the computation

efficiency. There have been efforts to represent raw data in an HD

binary vector, e.g., locality-sensitive hashing. However, they do

not reflect the characteristics of OMS, i.e., peak shifts and intensity

changes. They treat each feature position as orthogonal and peak

shifts can lead to significant similarity changes. Conversely, the

proposed encoding considers both spatial locality (for peak shift)

and value locality (for peak intensity change) of each feature.
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Figure 2: Position HV generation. (a) Strategy overview. (b)

The pairwise similarity between position HVs.

Figure 3: Hamming similarity searching of HyperOMS.

Unique position HVs F are assigned for each index in a spectrum

vector, i.e., F𝑖 corresponds to index 𝑖 , and F ∈ {F1, . . . , F𝑓 }where 𝑓 is
the dimensionality of spectrum vector. We use level HVs L to capture

intensities; we quantize intensity range into 𝑄 levels, and L𝑖 is

assigned to each level 𝑖 where 𝑖 ∈ [0, 𝑄]. Given F and L, a spectrum

vector is encoded into a HV I as follows: I =
∑

(𝑖, 𝑗) ∈P F𝑖 � L𝑗 where

� indicates Hadamard product.P is the set of peaks in the spectrum

vector, consisting of tuples (𝑖, 𝑗), with 𝑖 the peak index and 𝑗 the
step value of its intensity. Finally, we binarize the I.

We devise a new position HV generation method to reflect the

spatial locality (see Fig. 2(a)). We randomly generate F1 = {+1,−1}𝐷

and flip 𝛼 components in random positions. The similarity between

the original vector and the flipped vector decreases as more flips

occur. Neighboring positions have spatial locality to deal with peak

shifts, while distant positions have adequate orthogonality. Posi-

tion HVs do not change significantly even if peak shifts occur; the

resulting representation is tolerable to PTMs. As shown in Fig. 2(b),

for F𝑖 and F𝑗 , the pairwise similarity has a high value when 𝑖 ≈ 𝑗
and is maximum when 𝑖 = 𝑗 . Note that we scaled down 𝑓 and HV

dimensionality 𝐷 for visibility. For the value locality, we generate

level HVs similar to [3], which reflects the closeness of the intensity.

Hamming similarity searching step finds the matched ref-

erence HV that is most similar to the query HV using Hamming

similarity. Reference spectra primarily need to satisfy spectrum

charge and precursor𝑚/𝑧 condition. It gathers reference spectra
that (1) have the same spectrum charge and (2) satisfy the precur-

sor𝑚/𝑧 tolerance (precursor𝑚/𝑧 difference) condition given the

query. OMS uses a wide precursor𝑚/𝑧 tolerance to consider PTMs,

but we may miss the case of a reference with a similar precursor

𝑚/𝑧 that can pass through the FDR filter with high similarity. We

adopt cascade search. A narrow precursor𝑚/𝑧 tolerance is used for

standard search (Fig. 3-•1 ). The remaining unidentified spectra are

processed with a wide precursor𝑚/𝑧 tolerance (Fig. 3-•2 ).

3 EVALUATION

WeevaluateHyperOMS on a systemwith Intel i7-8700K andNVIDIA

Geforce GTX 1080Ti. We use small-scale and large-scale dataset

Figure 4: Performance and energy efficiency comparison.

used in [1, 2]. Also, we preprocess spectra in a same fashion to

[1, 2, 4]. We compare the search quality of HyperOMS to existing

search tools, including (1) SpectraST [4] and (2) the state-of-the-art

OMS tool, ANN-SoLo [1, 2]. We count the number of identifications

to compare the search quality, which is evaluated at a fixed 1% FDR

threshold. Through the hyperparameter search, we set 𝐷 to 8192,

𝛼 to 𝐷/2, and 𝑄 to 16, which gives the best search quality.

In both dataset configurations, HyperOMS offers a higher search

quality than SpectraST, i.e., HyperOMS identifies more spectra.

ANN-SoLo managed to identify more spectra than our HyperOMS.

HyperOMS approximates spectra in a way robust to PTMs and uses

Hamming similarity. Besides, ANN-SoLo uses shifted cosine simi-

larity metric, which is accurate when finding the original spectra.

Nevertheless, the HyperOMS identification rate is within the range

of the state-of-the-art in MS identification. For example, we typi-

cally expect an identification rate of 33–66% currently for human

samples that we have used, and HyperOMS satisfies the expected

range criterion and is practically usable in terms of search quality.

Fig. 4 compares the runtime and the energy consumption of Hy-

perOMS on GPU to the state-of-the-art OMS tool ANN-SoLo [1, 2].

ANN-SoLo builds the index on the CPU while the encoding of

HyperOMS is done on the GPU. The HyperOMS encoding is paral-

lelized over HV dimensions and datapoints. The encoding stage of

HyperOMS, which corresponds to the index build of ANN-SoLo, is

up to 8.6× faster than ANN-SoLo. HyperOMS uses binary vector

and easily parallelizable Hamming similarity, while ANN-SoLo uses

FP32 vector. The search process of HyperOMS GPU achieves on

average 82× speedup over ANN-SoLo on CPU and 11.2× speedup

ANN-SoLo on GPU. Overall, HyperOMS GPU gains an average

speedup of 15.7× over ANN-SoLo GPU. Besides, HyperOMS yields

7.8× and 5× energy efficiency improvement over ANN-SoLo CPU

and GPU on average, respectively, as shown in Fig. 4.
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