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ABSTRACT

Mass spectrometry, for protein identification, generates a mas-
sive number of spectra that need to be matched against a large
database. In reality, most spectra remain mismatched due to unex-
pected post-translational modifications. Open modification search
(OMS) improves the identification rate by considering every possi-
ble change in spectra, but it expands the search space exponentially.
We propose HyperOMS, which redesigns OMS based on hyperdi-
mensional computing to cope with such challenges. HyperOMS
encodes floating-point spectral data with high-dimensional binary
vectors, enabling the massive parallelism in OMS. Experimental
results show that HyperOMS on GPU is up to 17X faster and 6.4X
more energy efficient than the state-of-the-art GPU-based OMS
tool [2] while providing comparable search quality.

1 INTRODUCTION

Tandem mass spectrometry (MS/MS) is one of the most popular
and reliable methods for identifying proteins and peptides in com-
plex biological samples in proteomics. It gathers spectrum charge,
precursor m/z, and spectrum, which is a unique fingerprint of the
measured peptide. Peptide sequences are assigned to experimen-
tal MS/MS spectra by matching them against a spectral library of
known peptides. A significant portion of spectra acquired during
the experiment remains unidentified due to the post-translational
modifications (PTMs), which change spectra patterns. However,
spectral libraries mainly contain reference spectra for unmodified
peptides, so PTMs make experimental spectra challenging to iden-
tify as they no longer exactly match the reference.

Open modification searching (OMS) addresses these issues
by (i) using a wide precursor m/z tolerance that exceeds mass shifts
induced by modifications, and (ii) using alternative spectrum sim-
ilarity measures that take peak shifts due to modifications into
account [1]. Using a wide precursor m/z tolerance enables finding
matches between unmodified reference spectra and their modified
variants. However, OMS faces low searching speed and efficiency
due to the increased search space as it considers all possible PTMs.
This problem is exacerbated by the increasing spectral data due to
the cost reduction of the experiment (2X in the recent two years).

Several tools have been introduced to perform OMS efficiently.
The state-of-the-art OMS tool ANN-SoLos [2] performs nearest
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Figure 1: Overview of OMS process using HyperOMS.

neighbor searching using GPU and computes shifted cosine simi-
larities on candidates. However, existing solutions involve a com-
plex execution pipeline and exhibit low data parallelism requiring
high-precision floating-point (FP32) arithmetic for good search
quality. As such, we redesign an OMS algorithm that only involves
hardware-friendly Boolean operations with a simple execution
pipeline.

In this work, we propose novel hyperdimensional computing
(HDC)-inspired OMS algorithm called HyperOMS. Our algorithm is
based on the efficient computing paradigm, HDC, which has shown
high efficiency for pattern-matching tasks. HDC improves the data
separability and robustness by mapping data into high-dimensional
(HD) space. We leverage HDC’s robustness to minimize the effects
of PTMs. It reflects the spatial and value locality of peaks in the
spectrum, making the encoded data resilient to peak shifts and
intensity changes. Spectra can be identified with a single similarity
computation, simplifying the execution pipeline and enhancing the
data parallelism. Furthermore, HyperOMS replaces FP32 operations
with Boolean arithmetic. HyperOMS on GPU achieves up to 17X
speedup and 6.4X energy efficiency over the state-of-the-art GPU-
based OMS solution, ANN-SoLo [2] while offering comparable
search quality to other tools [1, 2, 4].

2 HYPEROMS ALGORITHM

HyperOMS encodes raw spectral data to a binary HD vector called
hypervector (HV) to capture the position and intensities of peaks
while considering the spatial and value locality. Although peaks
shift due to PTMs, the similarity between a query spectrum and a
matching reference spectrum does not change dramatically. Further-
more, HyperOMS replaces complex similarity metrics in existing
OMS tools with a simple Hamming similarity operation.

Fig. 1 shows a flow of HyperOMS. It starts with preprocessing, a
common step in OMS. It refines and vectorizes raw spectra, resulting
in spectrum vectors. In the encoding step, HyperOMS encodes
the data into a binary vector, which can enhance the computation
efficiency. There have been efforts to represent raw data in an HD
binary vector, e.g., locality-sensitive hashing. However, they do
not reflect the characteristics of OMS, i.e., peak shifts and intensity
changes. They treat each feature position as orthogonal and peak
shifts can lead to significant similarity changes. Conversely, the
proposed encoding considers both spatial locality (for peak shift)
and value locality (for peak intensity change) of each feature.
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Figure 3: Hamming similarity searching of HyperOMS.

Unique position HVs F are assigned for each index in a spectrum
vector, i.e., F; corresponds to index i,and F € {Fy, ..., Ff} where f is
the dimensionality of spectrum vector. We use level HVs L to capture
intensities; we quantize intensity range into Q levels, and L; is
assigned to each level i where i € [0, Q]. Given F and L, a spectrum
vector is encoded into a HV I as follows: I = }(; j)ep Fi ©L; where
© indicates Hadamard product. IP is the set of peaks in the spectrum
vector, consisting of tuples (i, j), with i the peak index and j the
step value of its intensity. Finally, we binarize the I.

We devise a new position HV generation method to reflect the
spatial locality (see Fig. 2(a)). We randomly generate F; = {+1, —1}°
and flip @ components in random positions. The similarity between
the original vector and the flipped vector decreases as more flips
occur. Neighboring positions have spatial locality to deal with peak
shifts, while distant positions have adequate orthogonality. Posi-
tion HVs do not change significantly even if peak shifts occur; the
resulting representation is tolerable to PTMs. As shown in Fig. 2(b),
for F; and F, the pairwise similarity has a high value when i ~ j
and is maximum when i = j. Note that we scaled down f and HV
dimensionality D for visibility. For the value locality, we generate
level HVs similar to [3], which reflects the closeness of the intensity.

Hamming similarity searching step finds the matched ref-
erence HV that is most similar to the query HV using Hamming
similarity. Reference spectra primarily need to satisfy spectrum
charge and precursor m/z condition. It gathers reference spectra
that (1) have the same spectrum charge and (2) satisfy the precur-
sor m/z tolerance (precursor m/z difference) condition given the
query. OMS uses a wide precursor m/z tolerance to consider PTMs,
but we may miss the case of a reference with a similar precursor
m/z that can pass through the FDR filter with high similarity. We
adopt cascade search. A narrow precursor m/z tolerance is used for
standard search (Fig. 3-@). The remaining unidentified spectra are
processed with a wide precursor m/z tolerance (Fig. 3-@).

3 EVALUATION

We evaluate HyperOMS on a system with Intel i7-8700K and NVIDIA
Geforce GTX 1080Ti. We use small-scale and large-scale dataset
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Figure 4: Performance and energy efficiency comparison.

used in [1, 2]. Also, we preprocess spectra in a same fashion to
[1, 2, 4]. We compare the search quality of HyperOMS to existing
search tools, including (1) SpectraST [4] and (2) the state-of-the-art
OMS tool, ANN-SoLo [1, 2]. We count the number of identifications
to compare the search quality, which is evaluated at a fixed 1% FDR
threshold. Through the hyperparameter search, we set D to 8192,
a to D/2, and Q to 16, which gives the best search quality.

In both dataset configurations, HyperOMS offers a higher search
quality than SpectraST, i.e., HyperOMS identifies more spectra.
ANN-SoLo managed to identify more spectra than our HyperOMS.
HyperOMS approximates spectra in a way robust to PTMs and uses
Hamming similarity. Besides, ANN-SoLo uses shifted cosine simi-
larity metric, which is accurate when finding the original spectra.
Nevertheless, the HyperOMS identification rate is within the range
of the state-of-the-art in MS identification. For example, we typi-
cally expect an identification rate of 33-66% currently for human
samples that we have used, and HyperOMS satisfies the expected
range criterion and is practically usable in terms of search quality.

Fig. 4 compares the runtime and the energy consumption of Hy-
perOMS on GPU to the state-of-the-art OMS tool ANN-SoLo [1, 2].
ANN-SoLo builds the index on the CPU while the encoding of
HyperOMS is done on the GPU. The HyperOMS encoding is paral-
lelized over HV dimensions and datapoints. The encoding stage of
HyperOMS, which corresponds to the index build of ANN-SoLo, is
up to 8.6x faster than ANN-SoLo. HyperOMS uses binary vector
and easily parallelizable Hamming similarity, while ANN-SoLo uses
FP32 vector. The search process of HyperOMS GPU achieves on
average 82x speedup over ANN-SoLo on CPU and 11.2X speedup
ANN-SoLo on GPU. Overall, HyperOMS GPU gains an average
speedup of 15.7x over ANN-SoLo GPU. Besides, HyperOMS yields
7.8% and 5x% energy efficiency improvement over ANN-SoLo CPU
and GPU on average, respectively, as shown in Fig. 4.
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