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Abstract

This paper proposes a novel learning algorithm, the transfer ensemble neural
network (TENN) model, to increase the performance of shear capacity pre-
dictions on small datasets, illuminating the usefulness of advanced machine
learning techniques in general. By incorporating ensemble learning and transfer
learning, the TENN model is designed to control the high variability inher-
ent in machine learning models trained on small amounts of data. The novel
TENN model is validated to predict the shear capacity of deep reinforced concrete
(RC) beams without stirrups across varying data availability levels. Knowledge
acquired through pretraining a model on slender RC beams is utilized for train-
ing a model to better predict the shear capacity of deep RC beams without
stirrups. To evaluate the performance of the TENN model, three baseline models
are developed and examined across multiple data availability levels. The novel
TENN model outperforms the baseline models, particularly when trained on
a very limited dataset. Furthermore, the proposed algorithm achieves a higher
accuracy than the currently accepted design standards in accurately predicting
deep RC beams’ shear capacity and demonstrates the capabilities of the TENN
model to extrapolate in other domains where large-scale or physical testing
is cost-prohibitive.

rups are not accurate (Bentz, 2005; Lubell et al., 2004).
Therefore, further understanding of the shear behavior of

Generally, reinforced concrete (RC) beams fail in flexure
or shear. Shear failure occurs in a relatively brittle manner
compared to the more ductile flexural failure. As sudden
brittle failure of RC beams may cause severe collapse of
structures, loss of properties, and casualties, accurate pre-
diction of shear behavior is critical. Although RC beams
are designed to fail in flexure to avoid such hazards, deep
beams are usually governed by shear. In addition, consid-
erable research has shown that the American Concrete
Institute (ACI) provisions for estimating the shear capacity
of large, narrow, lightly reinforced beams without stir-
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deep beams and methods for accurate prediction of shear
capacity is necessary.

Flexural behavior can be predicted with reasonable
accuracy; however, shear behavior still lacks an equa-
tion that is universally accepted. To predict the shear
capacity of slender beams, which have a/d values approx-
imately higher than 2.5, a consensus has been reached that
shear capacity is taken as the sum of the shear strengths
of the concrete and transverse reinforcement (Hu &
Wu, 2018). However, although many experiments and
numerical analyses have been carried out to understand

Comput Aided Civ Inf. 2023;1-16.

wileyonlinelibrary.com/journal/mice | 1


mailto:spaal@civil.tamu.edu
https://wileyonlinelibrary.com/journal/mice

L WILEY

the influence of various parameters such as shear span-
to-depth ratio, reinforcement ratio, failure mode, and
concrete strength on the shear capacity of deep beams,
there is still disagreement regarding the shear transfer
mechanisms and critical influencing parameters, causing
discrepancies in the predicted shear capacity between
different codes and researchers (J.-H. Zhang et al., 2020).
Thus, there is still a need to develop techniques that can
more accurately predict the shear capacity of RC beams.

Recent advancements in the field of machine learn-
ing (ML) have enabled many applications in estimating
structural behavior in civil engineering (CE) (Adeli, 2001;
Gao & Mosalam, 2018; German et al., 2012; Rafiei et al.,
2017a; Rafiei et al., 2017b). By using databases based on
experimental results, real-world data, and/or simulations,
various ML models have been proposed to predict the
behavior of different structural components and systems
with better accuracy. However, one crucial and inevitable
assumption exists in previous studies. Traditionally, ML
algorithms assume that both training and testing data have
identical explanatory features and have the same, or almost
identical, distributions to obtain a good model from the
established data. Accurately predicting the response vari-
able(s) when this assumption is not satisfied is difficult
for conventional ML models. One obvious solution is to
collect more data of interest; however, this often requires
a lot of time and money, and it is sometimes impractical
or impossible. To avoid unnecessary time or cost, transfer
learning (TL) or ensemble learning (EL) can be adopted.
TL is a specific subfield of ML focusing on breaking the
previous assumption by learning from nonidentical but
relevant domains. It is often called by different names
(e.g., covariate shift, domain adaptation, instance-based
transfer) based on the primary approach used to transfer
knowledge. EL is a subfield of ML which focuses on aggre-
gating multiple learners trained on different subsets of
datasets. In this study, by incorporating TL and EL, a new
algorithm is proposed to overcome the problem of data
scarcity and provide a more efficient ML model with low
prediction variance even when trained on a small number
of training samples.

2 | RELATED WORK

2.1 | Traditional approaches

The shear behavior of RC deep beams has been a prime
focus of investigation over the last few decades, as the cal-
culation of the shear capacity of RC deep beams needs
further improvement due to the complexity of the shear
transfer mechanism (Bazant & Sun, 1987; Cladera & Mari,
2004a,2004b; Mansour et al., 2004). As a result of extensive
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studies, a large number of experimental data are avail-
able in the literature. Based on the results, understanding
of shear behavior has been notably improved, and vari-
ous theories and design codes have been realized (Reineck
et al., 2013, 2014; Reineck & Todisco, 2014). The strut-and-
tie model (STM) (Schlaich et al., 1987) was developed based
on the failure pattern of deep beams, and compression
field theory, modified compression field theory (MCFT)
(Vecchio & Collins, 1986), and so on were developed fol-
lowing the development of STM. STM has been generally
recognized as the most rational method for designing deep
beams since its development. Accordingly, design stan-
dards such as ACI 318 and Canadian Standards Association
(CSA) A23.3 recommend STM as a design approach for
deep beams.

STM is more appropriate for deep beams because a
significant portion of shear is transferred directly from the
loading point to supports via diagonal compression struts
(Hu & Wu, 2018). In STM, the diagonal strut and truss
concept is used to describe the shear failure of an RC deep
beam. While the diagonal strut represents compression
stress fields that develop in the concrete web among
diagonal cracks, the truss mechanism accounts for the
horizontal and vertical web reinforcement (Chetchotisak
et al., 2014). In other words, to apply STM and provide a
safe design, both horizontal and vertical web reinforce-
ment is desired; however, this is not applicable when
considering shear in RC deep beams without stirrups
because stirrups act as vertical reinforcement. Some
theories like MCFT have proved their applicability to
members without shear reinforcement; however, the use
of such theories in practice remains complicated (Muttoni
& Fernandez Ruiz, 2008).

Because most of the current equations for calculating
the shear capacity of beams without stirrups are based
on empirical observation, they do not represent the actual
shear failure mechanism and often are highly conservative
despite identifying the important variables that affect shear
capacity (T. Zhang et al., 2016). Therefore, in this study, an
ML approach will be adopted to estimate the shear capacity
of RC deep beams without shear reinforcement. Accu-
rate predictions of the shear capacity of RC deep beams
will provide a better understanding of the shear failure
mechanism. Then, the estimated shear capacity will be
compared with the results based on the equations for the
shear capacity of nonprestressed concrete members listed
in ACI 318-19 (ACI Committee 318, 2020) and CSA A23.319
(Canadian Standards Association , 2019).

In ACI 318-19 (ACI Committee 318, 2020), the shear
strength of nonprestressed concrete members is given as
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where 4 is a factor that accounts for lightweight concrete
(for normal weight concrete, 4 is taken as 1), f is the
concrete compressive strength, p,, is the flexural reinforce-
ment ratio, N,, is the axial load, Ag is the cross-sectional
area, by, is the width of the web, d is the effective depth of
the section, A, is the area of transverse reinforcement, f,
is the yield strength of transverse reinforcement, and 4, is
the size effect modification factor.

In CSA A23.3-19 (Canadian Standards Association,
2019), the shear strength of RC beams without shear rein-
forcement is considered as a function of the concrete
compressive strength and sectional dimensions. The shear
strength in an RC beam without shear reinforcement is
given as

Ve=9AB f::bwdv’ @)

where ¢, is the resistance factor for concrete, which is
taken as 0.65, A is the strength reduction factor, taken as
1 for normal density concrete, d, is the effective depth,
and g is a factor to account for aggregate interlock in
concrete members.

Furthermore, 8 can be calculated as follows:

0.18, if minimum transverse reinforcement is provided
230
= —F, a,2>20mm
B 1000 + d,, & ®3)
230
ag <20 mm

1000 + S,

Here, S,, can be conservatively taken as d, and a, is the
maximum nominal size of coarse aggregate.

2.2 | Machine learning approaches

In recent years, ML techniques have been widely adopted
in CE, and most of them have shown excellent perfor-
mance to find the optimal values in a given condition
(Adeli & Panakkat, 2009; Butcher et al., 2014; Rafiei et al.,
2016; Chen & Feng, 2022). In the field of structural engi-
neering, many researchers have focused on developing ML
techniques to accurately predict the shear behavior of RC
beams. Sanad and Saka (2001) trained an artificial neu-
ral network (ANN) to predict the ultimate shear capacity
of deep beams with 111 experimental results and con-
cluded that reliable predictions can be made even if equa-
tions used to calculate the ultimate shear capacity of deep
beams are not provided. Other researchers not only proved
the reliability of ANNSs in predicting the shear capacity but
also compared the prediction with empirical equations in
the literature (Mansour et al., 2004; Yang et al., 2007). Man-
sour et al. (2004) trained an ANN with 176 experiments to
predict the shear capacity of RC beams, and Yang et al.
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(2007) used 631 experiments to train an ANN with the early
stopping technique to predict the shear capacity of deep
beams. Abdalla et al. (2007) used a multilayer ANN trained
with 164 experimental observations to predict the shear
capacity of RC beams. Koo et al. (2021) also used an ANN
to predict shear capacity and tried to increase prediction
accuracy by preprocessing the data with a principal com-
ponent analysis. They compared the prediction to the exist-
ing building codes and conducted a parametric study to
determine the effects of the variables. In addition to mak-
ing a prediction, (Cladera & Mari, 2004a, 2004b) studied
the shear design procedure of RC beams with and without
stirrups using ANNs with 123 experiments. Oreta (2004)
examined the influence of the size effect on the shear
capacity of RC beams without stirrups using a multilayer
ANN. In total, 118 experimental observations were used,
and the trained model could successfully simulate the
effects of input variables on the shear capacity of RC beams
without stirrups. Moving away from ANNs, Mohammed
and Ismail (2021) predicted the shear capacity of RC beams
using a random forest (RF). The data they used comprised
349 experimental samples, and they validated the predic-
tion by comparing it to the results of a support vector
machine (SVM) and other empirical equations. They con-
cluded that the proposed model was a robust approach to
predict the shear capacity of RC beams. Although several of
the aforementioned researchers have successfully demon-
strated the applicability of ML approaches to predict the
shear capacity of various types of RC beams, the number
of available data samples is still lacking compared to that
of other fields, such as image processing, transportation,
or natural language processing, where ML approaches are
easily and actively adopted. One dilemma is that collect-
ing a large amount of data in structural engineering is
often difficult, considering that setting up a full-scale struc-
tural experiment requires enormous cost, time, and space.
However, EL and TL provide one way to circumvent these
challenges and may offer a remedy for the data scarcity
problem in structural engineering.

2.3 | Ensemble learning and transfer
learning

EL is the process of combining predictions from multiple
learners to achieve more powerful performance. Through
the aggregation of the predictions of multiple models, it is
possible to achieve a more robust model with higher accu-
racy compared to that of a single learner (Sagi & Rokach,
2018). An ensemble method can be applied to any ML algo-
rithm, such as a decision tree, SVM, neural network (NN),
etc. The main premise of EL is that by aggregating multi-
ple weak learners, errors of a single learner will likely be
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compensated for by other weak learners. Consequently,
the overall prediction of the model would become bet-
ter than that of a weak learner. Thus, EL is considered
as a state-of-the-art approach to solving a plethora of
ML challenges. While a single ML learner is more fre-
quently used, EL has been used in several areas within
structural engineering. Huang et al. (2018) utilized EL to
increase the performance of models in structural dam-
age detection. They compared these EL prediction results
to those of SVM, XGBoost, and RF models. Based on
their results, EL increased the classification accuracy by
over 20%. Feng et al. (2020) used several ensemble learn-
ers to predict failure modes and the bearing capacity of
RC columns. They compared single learners, including a
classification and regression tree, SVM, and ANN, to EL
algorithms including RF and a gradient-boosting decision
tree. They proved that the EL methods provide better per-
formance than the single learners. There have also been
more studies related to EL for predicting various structural
performances, for example, shear capacity prediction of
RC deep beams (Feng et al., 2021), Fiber reinforced poly-
mer (FRP)-concrete bond strength (Chen, Zhang et al.,
2021), and Carbon fiber reinforced polymer (CFRP)-steel
bond strength (Chen, Feng et al., 2021). These studies have
demonstrated the capabilities of EL in both classification
and regression problems.

TL is an ML technique that seeks to apply knowledge
learned from one or more domains to another domain
(Pan & Yang, 2009). Traditional ML algorithms implicitly
assume that the training and testing data should share the
same features, distributions, and tasks. Thus, it is neces-
sary to gather appropriate data samples and train a new
ML model if any of the three are different. This requires
extensive time and money, and it may be impractical if
the number of new data samples is still insufficient. TL
has the ability to address this problem while maintaining
good predictive performance. The primary goal of TL is to
reduce the amount of data necessary for training a high-
performance model in a specific domain (J.-H. Zhang et al.,
2020). A common issue, especially in the field of structural
engineering, is the difficulty of gathering large, labeled
datasets suitable for training an ML model. TL aims to train
a model on a dataset similar to the domain in which data
is difficult to obtain and then transfer that knowledge to
the desired domain for further training. While various ML
theories and techniques have been adopted in CE, few TL
studies have been conducted (Azimi & Pekcan, 2020; Luo
& Paal, 2021; Pak & Paal, 2022). Furthermore, the majority
are focused on image-based models (Cha et al., 2017; Cheng
et al., 2021; Leach et al., 2021; Li et al., 2019).

In contrast to the number of studies regarding ML,
there has been a very limited number of studies com-
bining EL and TL. Liu et al. (2017) designed a frame-
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work for ensemble TL to increase classification accuracy
when the number of training data is insufficient. This
study dealt with weighted-resampling-based, bagging-
based, and multiboosting-based TL algorithms. They
proved that the performance of their algorithm was excel-
lent compared to that of TrAdaBoost, naive Bayes, and
SVM. Zhu et al. (2020) also extended the classic TL model
through EL and demonstrated its superior generalization
ability. After dividing their target dataset into 10 folds,
deep neural networks (DNN) were trained on the source
dataset and then refined on the target dataset to make an
ensembled prediction from the 10 models. Although some
researchers have demonstrated the efficacy of combining
EL and TL, there remain many areas that require more
thorough investigation. First, the previous studies have
primarily addressed the task of classification. Combined
ensemble and TL algorithms need to be developed for the
task of regression. Second, no research has been conducted
on the simultaneous application of bagging and random
subspace sampling. Third, the application of these combi-
nation methods should be investigated in civil engineering.

2.4 | Significance of this study

To increase the accuracy of shear capacity predictions
of ML models and achieve better generality than those
of the existing empirical equations, collecting more data
and understanding the complex relationship between
parameters is important. However, continuously conduct-
ing additional structural experiments is difficult due to
the aforementioned limitations. Therefore, because large
amounts of data already exist for slender RC beams, the
application of ML techniques specifically designed to uti-
lize these existing experiments to predict the shear capacity
of deep RC beams is beneficial. The hypothesis of this
work is that it is possible to transfer knowledge from slen-
der to deep beams, hence validating this type of approach
for other components or materials where even less data is
available. In this study, a new algorithm is proposed to pre-
dict the shear capacity of deep beams without stirrups and
then evaluated by comparing the shear capacity calculated
based on ACI 318-19 (ACI Committee 318, 2020) and CSA
(Canadian Standards Association , 2019). Although many
studies related to ML have been made to accurately pre-
dict the shear capacity of RC beams, the scarcity of the
experimental data limits the efficiency in the training pro-
cess and decreases the prediction accuracy. A new learning
algorithm integrating EL and TL is proposed to mitigate
the data scarcity problem and reduce necessary expenses
for gathering additional samples or training a new ML
model, all while increasing the robustness of the result-
ing prediction. The proposed algorithm does not require
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data preprocessing and is able to train a good ML model
with a small training dataset. The application to deep RC
beams without stirrups is illustrative of the wider impact of
this research. As different mechanisms are responsible for
the shear capacity of slender and deep beams, historically,
these capacities have also been calculated via different, dis-
parate processes. With the recent advancement of ML, and,
in specific, the emphasis of TL in this work, we can use one
approach to predict the capacity of both beams. This could
be very useful in the analysis of existing structures where
the beams may not be apparent but instead, occluded by
nonstructural components, and thus, it is not clear if the
beams are slender or deep.

3 | FUNDAMENTALS OF THE
PROPOSED METHODOLOGY
3.1 | Knowledge transfer and fine-tuning
A domain, 9, consists of a feature space and its proba-
bility distribution, and a task, 7, is what the ML model
learns from 9. TL aims to extract knowledge from the
source domain, and then properly utilize the pretrained
knowledge to more efficiently learn the target task with
additional training processes on the target domain. Given
the source domain, @°, and source learning task, I S
TL helps in understanding the target learning task, J7,
trained on the target domain, 27, where @° # @7 and/or
TS # JT. DS can be represented as {(x},y?) }, where
n is the number of samples in the source domain. Simi-
larly, @7 can be represented as {(xl.T, yl.T .}, where m is
the number of samples in the target domain. Here, x; € R¢
is the ith explanatory variable vector, where d indicates
the vector dimension, and y; denotes the response variable,
which could be a discrete variable for a classification prob-
lem or a continuous variable for a regression problem. In
most cases, m is much smaller than n, and probability dis-
tributions of the source and target domains are different
but somewhat related.

A powerful advantage of TL is the ability to learn a
target task from not only the target domain but also the
source domain. This advantage is most compelling when
overfitting problems are encountered due to a limited
number of training samples. To efficiently transfer the pre-
trained knowledge from a NN model trained on the source
domain, the parameter-transfer approach was adopted in
this study. The fine-tuning strategy is the most popular
application of TL for a NN model. Figure 1 shows the
schematic procedure for transferring knowledge from the
source model to the target model. In Figure 1, the dotted
line box on the left represents the process for training an
ANN model on the source domain and the solid line box on
the right represents the process for training an ANN model
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Load the source
domain
‘A Model for the source

Hyperparameter tuning
Train and validate a model Knowledge
transfer
Test the model and measure the
prediction performance

Extract knowledge
from the best model

FIGURE 1
neural networks

Load the target
domain
A Model for the target

Hyperparameter tuning

Train and validate a model
Test the model and measure the
prediction performance

Schematic procedure of transferring knowledge in

on the target domain. The same nomenclature is used later
in Figure 3. The first step of the procedure is to develop an
ANN model that can accurately predict the response vari-
able(s) in the source domain. The second step is to extract
the pretrained knowledge from the developed model and
transfer it into another ANN model created for the target
domain. In this process, the number of transferred lay-
ersis automatically determined by hyperparameter tuning,
which will be introduced in Section 4.3, and thus varies
based on the complexity of the problem. The ANN model
for the target task has the same model structure for the lay-
ers containing the knowledge from the source model. In
other words, the first n hidden layers of the source model
are identical to those of the target model. Additional layers
may or may not be added to the target model according to
the results from hyperparameter tuning. The final step is
to train the target model on the target domain. During this
process, additional layers and an output layer are randomly
initialized and trained from scratch, while the layers with
the pretrained knowledge are fine-tuned or frozen.

3.2 | Ensemble learning
EL is the process of training multiple models for the same
task, then merging the outputs to produce the desired
response. The intuition behind EL lies in the concept of
the “wisdom of the crowd.” By gathering the opinions of a
collection of individuals and taking a majority vote or an
average across them, one can construct a more unbiased
response than that formed by a single expert. In general,
EL can improve the performance of a model by reduc-
ing overfitting as well as assisting to address the issue of
class imbalance (Sagi & Rokach, 2018). This method is
applicable for both regression and classification tasks.
Bootstrap aggregating, also called bagging, is an ML
ensemble method to reduce model bias and variance as
well as to avoid overfitting. Introduced by Breiman (1996),
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Bootstrap dataset
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Weak learner Weak learner | . Weak learner Weak learner
£y £, Ln-1

n

Final model

FIGURE 2
study

Overview of the Bagging algorithm used in this

it is a method of generating subsets from a dataset for
use in training a set of ensemble learners. After randomly
excluding the test set from a dataset, suppose a given train-
ing dataset &, as can be seen in Figure 2, with i number
of samples. The bagging algorithm generates n different
bootstrap datasets &y for k = 1, ..., n, with i’ number of
samples. An integer value i’ is determined by the sample
bagging ratio. This ratio is a scalar value ranging from 0
to 1, which represents the percent of samples included in
D As data samples in 9. are selected with replacement,
some data samples in & could be selected more than once.
The samples not selected in &, can be used to construct
an out-of-bag validation set. Each bootstrap dataset, 9y, is
then used to train a weak learner. Finally, the prediction
results from each learner are aggregated to form the end
prediction value.

Random subspace sampling, also referred to as feature
bagging, describes the process of only utilizing a subset
of attributes associated with the samples for each weak
learner in an EL problem. Intuitively, this is a similar pro-
cess to bagging applied to the explanatory variables instead
of the samples themselves. The random subspace sam-
pling method developed in this study follows the same
process as the bagging method. Given the training dataset
92 with j number of explanatory variables (the dimension
of explanatory variables vector is j), each of the bootstrap
datasets, @, for k = 1, ..., n has j’ number of explanatory
variables by random selection with replacement. Thus, one
explanatory variable could be selected more than once, and
each bootstrap dataset &, has a different combination of
explanatory variables.

4 | TRANSFER ENSEMBLE NEURAL
NETWORK

This study proposes a new neural network, called the
transfer ensemble neural network (TENN), to properly
take advantage of the synergetic effects of EL and TL.
To effectively demonstrate the performance of the pro-
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posed methodology, three additional models are developed
as baselines: a single ANN, a single ANN with knowl-
edge transfer, and an ensemble ANN model. Section 4.1
describes the three baseline models, and Section 4.2 intro-
duces the method newly proposed in this study. Each
model is outlined in Figure 3.

4.1 | Baseline models

A general feedforward NN, denoted as ANN in Figure 3,
is used to directly compare the model performances from
the other models. This model is the simplest among those
implemented in this study and is trained on the target
domain without using EL or TL. The architecture of the
model, including the number of hidden layers, the num-
ber of units in a layer, and the amount of regularization, is
determined by the hyperparameter optimization process.
The output of this model directly predicts the response
variable without aggregating multiple ANN models. The
second model, denoted as TLNN (transfer learning neu-
ral network) in Figure 3, is a single ANN designed to
transfer knowledge from the source domain to the target
domain. The ANN model is first trained on the source
domain, and the pretrained knowledge is then transferred
to a new model designed to learn the target task. The tar-
get model is then trained on the training set of the target
domain in a similar fashion to the single ANN. Hyper-
parameter optimization is performed first on the source
model to determine the core model architecture and then
performed again on the target model to augment the core
architecture. Thus, the target model may or may not have
additional layers based on the results from the hyperpa-
rameter optimization process. As with the single ANN,
the output provided by this model directly predicts the
response variable. For the third model, denoted as ELNN
(ensemble learning neural network) in Figure 3, both bag-
ging and random subspace sampling are performed on the
target domain to construct n different bootstrap datasets.
To maximize the number of samples available for training,
out-of-bag sampling was utilized to construct the vali-
dation set for each model. In this method, the samples
which were not selected in &, for k = 1, ..., n, are used as
the validation set. Each of these datasets is then used to
train n different ANN models. Hyperparameter tuning is
performed a single time on the original training set and
applied uniformly to each of the n weak learners. The
ensemble algorithm developed in this study aggregates the
models with good performance from the validation set.
This means models with performance below a prespecified
threshold are discarded before aggregation. The broken
lines between & for k = 1,...,n, and & in Figure 2 rep-
resent that each weak learner may or may not be included
in the final model to predict the response variable. Thus,
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FIGURE 3

the number of aggregated models is equal to or less than n.
Finally, the reciprocal of the validation loss from each weak
learner is used as a weight value for that specific weak
learner. The final prediction is calculated as the weighted
average of each weak learner’s prediction.

4.2 | Transfer ensemble neural network
The TENN model proposed in this study merges the train-
ing approaches described in Section 4.1. First, bagging and
random subspace sampling are performed on the source
domain to construct n bootstrap datasets. These datasets
are used to train n different models. As with the models
introduced in Section 4.1, hyperparameter tuning is per-
formed before bagging and random subspace sampling.
Then, the acquired knowledge is transferred to the n
different target models. Hyperparameter tuning is again
performed. Finally, bagging is applied to the target domain
to construct n target training sets. To adequately utilize
the pretrained knowledge from the n different source mod-
els, the randomly selected explanatory variables for the
source domain are maintained to train the target models.
The models are then trained on the target datasets as in
the ELNN model. As before, models that exhibit perfor-
mance below a prespecified threshold are discarded, and
the remaining models are aggregated using a weighted
average with the reciprocal of the validation loss supplying
each learner’s weight.

Overview of the models implemented and developed in this study

The TENN model is designed to mitigate the data
scarcity problem and to address the high prediction vari-
ances associated with small datasets while maintaining
robust model performance. Since bagging and random
subspace sampling are both used to produce multiple
bootstrap datasets, there is no need to include a separate
procedure for choosing or extracting the appropriate fea-
tures for the learning task. The final aggregated learner in
the TENN model will automatically exclude a weak learner
trained with irrelevant features because its performance
will be worse than that of the other weak learners. Further-
more, thanks to the knowledge acquired from the source
domain, individual weak learners of the TENN model can
be initialized better than the baseline models introduced
in Section 4.1. Therefore, such advantages from EL and TL
integrated into the TENN model are expected to perform
robustly and reduce the variances caused by small-size
datasets. Especially when developing an ML model to pre-
dict the shear capacity of RC beams, deep RC beams are
underrepresented in a database, since the majority of RC
beams are slender. Thus, if the shear capacity of deep RC
beams can be accurately predicted with limited training
data, the TENN model’s effectiveness can be highlighted.

4.3 | Hyperparameter tuning

The TENN model and three baseline models introduced
in earlier sections are all based on an ANN algorithm.
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TABLE 1 Possible values or ranges of hyperparameters

Training domain Hyperparameter ANN TLNN ELNN TENN

Source Number of layers - 1,2,3 - 1,2,3
Number of units = 10, 30, 50, 100 = 10, 30, 50, 100
Amount of regularize - [1e-4, 1e-1] - [1e-4, 1e-1]

Target Number of transferred layers - 1,2,3 - 1,2,3
Transferred layer trainable - Yes, No - Yes, No
Number of layers 1,2,3 0,1,2,3 1,2,3 0,1,2,3
Number of units 10, 30, 50, 100 10, 30, 50, 100 10, 30, 50, 100 10, 30, 50, 100
Amount of regularize [1e-4, 1e-1] [1e-4, 1e-1] [1e-4, 1e-1] [1e-4, 1e-1]
Number of learners - - 10, 30, 50 10, 30, 50

Generally, an ANN model has one or more hidden lay-
ers consisting of a number of units, edges, and activation
functions. An ANN with multiple sequential hidden lay-
ers is typically referred to as a DNN. In many engineering
problems, the input and output variables are generally gov-
erned by the design requirements. On the other hand,
as there is no rule for selecting the number of hidden
layers and units in a layer, they must be appropriately
selected by the user. In this study, before training and test-
ing NN-based models, the Bayesian optimization process
developed by Bergstra et al. (2013) has been implemented
to find a reasonable combination of hyperparameters.
This algorithm generally requires fewer iterations when
compared to the random search or grid search methods,
assuming the same search space. The algorithm developed
in this study automatically chooses the optimal number
of hidden layers and units in each layer within the given
range of hyperparameters in each trial. Thus, every trial
can have a unique model architecture with a different
number of hidden layers and units. The possible values or
ranges defined in the hyperparameter tuning process are
presented in Table 1. The most prominent value is chosen
within the possible values or ranges for the correspond-
ing hyperparameter. For the TLNN and TENN models,
the number of layers in the target domain denotes the
number of added layers built upon layers transferred from
the source model. The possible range of the amount of
regularization is defined as the minimum and maximum
values. More details of the dataset, model architectures,
and hyperparameter tuning results are accessible through
the NSF NHERI DesignSafe-CI portal.

4.4 | Model training procedures

Once a model architecture is determined based on the
results of hyperparameter tuning, the TENN and three
baseline models are trained by the procedures presented
in Figure 3. In this study, 20 trials were performed for each

model with the training and testing data being randomly
selected each time. Seventy percent of the source domain
is used to train the source model in the TLNN and TENN
models, and the remaining 30% is used to test the trained
model. To rigorously evaluate the TENN and three base-
line models, the splitting ratio of the target domain varies
depending on the experiment, and the details are explained
in Section 5. During the training procedure, the Adam opti-
mizer (Kingma & Ba, 2014) is implemented to minimize
a loss function, specifically, the root mean square error
(RMSE). To reduce the risk of overfitting problems and
properly terminate the training procedure, 10% of the train-
ing set is defined as a validation set, and the early stopping
method is adopted.

In this study, four performance metrics are utilized to
measure the model performance and estimate the error.
Each metric provides insights not provided by the other.
The RMSE is monitored during the model training and val-
idation process (Equation 4). Because of a square root, this
metric is sensitive to larger differences between the pre-
dicted and actual values. Thus, when the RMSE is used
during the training, the model becomes more robust to
outliers. Nevertheless, the drawback is that this metric is
dependent on the range of the response variable associ-
ated with the dataset. Therefore, they cannot be directly
compared across different datasets. For this reason, this
study does not report the RMSE as a metric for the model
evaluation. It is only used in the training of the models
as an optimization metric. The symmetric mean absolute
percentage error (SMAPE) can measure a relative error
in the predicted values (Equation 5). Contrary to MAPE,
SMAPE is symmetric and has a lower and upper bound.
The coefficient of determination (R?) is a metric describing
the model’s capability to account for the variation in the
response variable (Equation 6). R? is well suited for com-
paring multiple regression models across a single dataset
and a single regression model across multiple datasets. The
coefficient of variation (CV) is a measure of the dispersion
of a set of values around their mean (Equation 7). Formally,
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it is the ratio of the standard deviation to the mean of the
data samples. CV is utilized to measure the variation in
model performance across multiple trials. This provides
a means to assess a model’s robustness to changes in the
dataset. The following equations show the definitions of
the RMSE, SMAPE, R?, and CV:

RMSE = 4)
SMAPE = 100 S Ayi=dil 5)
n &yl +Inl’
n
i = 9)?
RZ =1— Zln_l—l_lz’ (6)
2 i =)
n —
_ 1 Zi:l(xi - )C)
VRV T @

where n is the number of samples, y; is the true value, y; is
the predicted value, y is the mean of y;, s, is the standard
deviation, x; is a random variable, and X is the mean of x;.

The R? for each trial was recorded, and the average
across 20 trials is presented. The CV of R? results across 20
trials is also calculated for each model and presented as a
metric of model robustness. A higher CV value indicates
that the performance of a model has a relatively greater
level of dispersion in 20 trials. Therefore, by directly com-
paring the CV values from different training approaches,
the effectiveness and robustness of the proposed approach
can be demonstrated.

5 | EXPERIMENT AND RESULTS

5.1 | Dataset description

To investigate the feasibility of the proposed approach and
compare it with other training approaches, an RC beam
database (Collins et al., 2008) has been used in this study.
The dataset consists of extensive shear experiments on
RC beams of rectangular or T-section without stirrups.
It has 1849 shear experiment specimens collected over
60 years, primarily composed of normal weight and non-
prestressed RC beams. The dataset comprises two failure
modes, 1696 of shear failure and 153 of flexural failure, and
a wide range of dimensions and reinforcement ratios. By
using this dataset, the usefulness of the TENN model in
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addressing a problem in a challenging domain, particu-
larly the accurate prediction of the shear capacity of deep
RC beams with a small training dataset, is illustrated. Six-
teen explanatory variables are provided as inputs to the
ANN and TLNN models, whereas a subset of randomly
selected explanatory variables is provided to the ELNN and
TENN models. Two variables among them are categori-
cal: loading configuration and rebar cutoffs. The detailed
information and statistics of the continuous explanatory
variables are presented in Table 2. To precisely evaluate
the performance of each model, training and test sets
are mutually exclusive from each other. For each model,
20 trials have been conducted to adequately capture the
generalization capabilities of the proposed approach.

5.2 | Validating the TENN model

Prior to applying the proposed algorithm to the predic-
tion of the shear capacity with a small dataset, a validation
study was performed. The purpose of this section is to val-
idate the model’s performance with regard to increased
accuracy and decreased model variance as compared to
the baseline models. A derived parameter, M /(p,Vd), was
used as the response variable. This parameter represents
the coexisting moment at the critical shear section, which
is a measure of the stress in the longitudinal reinforcement
and significantly affects the shear capacity of RC beams
(Collins et al., 2008).

pia ; d (for Type P)
w
pA;I/d =3 %(% —0.5) (for Type Ul), (8)
w
N 1L/d—1
‘O_L/d——z (forType UZ)
w

where a is the shear span length, d is the effective
depth, L is the span length, and p,, is the horizontal
reinforcement ratio.

Although it is not an observed result from the experi-
ments, the derived parameter is meaningful in verifying
the proposed approach because it is calculated in varying
manners depending on the loading configuration (Collins
et al., 2008). The dataset used in this study contains three
different loading configurations, as can be seen in Figure 4.
Equation (8) shows three different mathematical expres-
sions to calculate M /(p,,Vd). There are 1701 samples of
Type P and 148 samples of Types Ul and U2, corresponding
to less than 10% of the number of Type P samples. This
presents a natural case for the application of a TL approach
such as the TENN model. For the validation process, the
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TABLE 2 Statistics of the continuous explanatory variables
Parameter Description Unit
b, ‘Web width mm
b Flange width mm
h Depth mm
d Effective depth mm
a:M/V Distance from point of inflection mm

to maximum moment location
a: STM Distance from center of applied mm
load to center of support
a/d Span-to-depth ratio -
B Length of bearing plate mm
Puw Horizontal reinforcement ratio %
A Area of steel reinforcement mm?
j Concrete compressive strength MPa
ag Maximum aggregate size mm
Iy Steel yield strength MPa
M/p,Vd Derived parameter -
| | ‘TTTTTTTTTTT‘ ‘TTTTTTTTTTT‘
L L L
Type P Type Ul Type U2

FIGURE 4 Types of loading configurations present in the
dataset

data samples with Type P loading configuration are used
as the source domain, and the pretrained knowledge is
transferred to provide more accurate predictions of Types
Ul and U2 loading configurations. Seventy percent of data
samples in each domain is used as the training set, and the
remaining 30% is used as the testing set. Thus, given that
the number of samples in the target domain is not enough
to train a good ML model, the proposed approach can be
verified if it shows higher accuracy with lower variance.
Following the procedures of the four different
approaches presented in Figure 3, 20 trials were imple-
mented to verify the efficacy of combining EL and TL. The
performance of the four different models is presented in
Figure 5 in terms of their prediction ability and stability.
Figure 5a shows the average R? values within the 20 trials
with 95% confidence interval bounds. The variation of the
model performance is shown in Figure 5b, represented by
the CV values across the 20 trials. The ANN model has the
lowest performance in both accuracy and variance. These
results are expected, as the number of samples in the
target domain, Types Ul and U2 loading configuration,
is insufficient to train a robust ML model. The results

PAK ET AL.
Average Standard deviation Minimum Maximum
213.01 212.94 21 3000
256.76 230.21 21 3000
364.35 254.05 51 3140
320.25 237.77 41 3000
953.22 823.7 80 9000
1000.97 845.97 80 9000
3.2 1.82 0.25 15.06
107.13 74.15 0 600
2.24 1.52 0.1 9.5
1280.43 1350.5 16.42 18450
34.86 18.34 6.1 127.5
18.48 6.96 1 50
462.37 172.14 267 1779
138.62 156.01 0 2768.3

ANN TLNN ELNN TENN

(a) The coefficient of determination (Rz) with 95% confidence interval
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ANN TLNN ELNN TENN
(b) The coefficient of variation (CV)
FIGURE 5 Performance comparison of four different models
to predict M /p,,Vd

from the ELNN model demonstrate the effect of EL
in a small-size dataset. Although the results from the
ELNN model are not as good as those from the TLNN or
TENN models, an increased ability to predict the response
variable over the traditional ANN model can be observed.
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TABLE 3 Available data in @5 and @7 in different situations
Situation DS T (train) DT (test)
Mild 1244 302 303
Moderate 1244 151 454
Severe 1244 90 515

The highest predictive performance and its robustness
can be observed in the novel TENN model. It achieved an
R? value of 0.9168 and presented the lowest CV across the
four models (0.0424). This means that the model has the
best prediction ability with the lowest variance. The TLNN
model also shows good performance with low variance,
though less effective than the TENN model. The proposed
TENN model exhibited a CV of more than 14 times less
than that of the traditional ANN model. These results
validate the proposed TENN model and demonstrate its
usefulness in addressing the data scarcity problem.

5.3 | Predicting the shear capacity of
deep RC beams

To comprehensively investigate the feasibility of the pro-
posed methodology, 1244 samples of slender beams, which
have a/d values greater than or equal to 2.5, are used as
the source domain, @°. The remaining 605 samples of
deep beams are used as the target domain, @7. @° and
9T are physically correlated since they consist of simi-
lar specimens with similar cross sections and the same
material. Furthermore, ° and 7 are also similar since
eventually the tasks in both domains are to accurately pre-
dict the shear capacity of RC beams. Thus, transferring
the acquired knowledge on &° is expected to show better
performance on @7. As introduced in the earlier section,
the ANN and ELNN models are trained only on @7. The
TLNN and TENN models adopt the pretrained knowledge
from 9% to better predict the response variable in &7.
The main purpose of the proposed novel methodology is
to maintain high model performance and low variance
even when the size of the dataset is small. Thus, three
different situations are designed to compare the model
performance under varying levels of data scarcity. Table 3
summarizes the three data availability scenarios in this
study. In the mild scenario, the training set for the tar-
get domain consists of 50% of the deep beam samples.
In this case, all four approaches are expected to have an
acceptable ability to predict the shear capacity of the deep
beams. In the moderate scenario, 25% of the target domain
is used for training. Finally, in the severe scenario, only
15% of the target samples are used in training. Obtain-
ing a good NN model with this little amount of training
data is almost impossible. The samples not selected for

59| WILEY--

use in the training set are used as the corresponding test
set; thus, the training and test set are mutually exclusive
such that model performances can be accurately estimated
and compared with one another. Regardless of the situa-
tion, all 1244 samples in the source domain are utilized
to extract meaningful knowledge that will be transferred
to the target model. The four approaches introduced in
the earlier sections are implemented with 20 trials for
each scenario.

The results of the four different models are summarized
in Table 4. As expected, the models in the mild condition
show good test results regardless of the approaches used for
training. It is observed that every model yields average R?
values of approximately 0.9 with a small 95% confidence
interval range. Although the ANN model has the high-
est CV value compared to those of the other three models
in the mild condition, all four models can be treated as
robust and stable ML models. However, these favorable
outcomes can hardly be found in the moderate and severe
situations, since the available training data samples cor-
respondingly decrease. Under the moderate situation, the
ANN and ELNN models are trained on 151 samples of deep
beams, whereas the TLNN and TENN models are trained
on 151 samples of deep beams after they were assisted by
the pretrained knowledge from 1244 samples of slender
beams. The ANN model’s average performance falls below
0.8, and it has a CV value an order of magnitude larger
than seen in the mild case. Among the four models trained
in the moderate condition, the ANN model has the low-
est R? value and largest confidence interval. Notably, its
confidence interval is much larger than that of the other
three models. Although the average R? values of the other
three models decreased to approximately 0.8, their pre-
dictions of the shear capacity of deep RC beams remain
relatively accurate. Moreover, the ranges of their confi-
dence intervals are well controlled compared to that of the
ANN model. Similar results can also be found in the mod-
erate situation. The CV value of the ANN model is roughly
10 times higher than that of the other three models. The
TENN model proposed in this work achieves lower CV val-
ues than both the TLNN and ELNN models. Based on these
results, the effectiveness of the novel approach is evident
in cases where only moderate amounts of data are avail-
able. The worst data availability scenario in this study is
the severe situation. Only 90 data samples are available to
train a model and predict the shear capacity of deep beams.
Generally, it is difficult to obtain an adequate NN model
without additional techniques under these circumstances.
Accordingly, the ANN model experiences the worst pre-
diction performance. The ANN model achieved an average
R? value of approximately 0.5. By adopting EL, the predic-
tive performance and model variance can be enhanced to
some extent. In the severe situation, TL is more effective at
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TABLE 4 Result summary in three different data availabilities
Mild Moderate Severe
Model R? CI cv R? CI CV R? CI CV
ANN 0.87 [0.854, 0.880] 0.032 0.75 [0.630, 0.866] 0.337 0.49 [0.235, 0.746] 1114
TLNN 0.87 [0.861, 0.874] 0.015 0.80 [0.804, 0.826] 0.029 0.73 [0.704, 0.757] 0.077
ELNN 0.89 [0.877, 0.894] 0.020 0.83 [0.813, 0.849] 0.046 0.67 [0.511, 0.839] 0.520
TENN 0.88 [0.869, 0.883] 0.017 0.83 [0.824, 0.840] 0.021 0.81 [0.793, 0.815] 0.030

C.I. denotes the confidence interval.

remedying the data scarcity problem than EL. This is evi-
denced by the superior model performance of the TLNN
model compared to that of the ELNN model. In compari-
son, the approach proposed in this work saw little change
in prediction ability between the moderate and severe sce-
narios. By combining EL and TL in the novel proposed
approach, a 70% increase in predictive performance can be

0.8

0.6

0.4

observed with a much smaller range of confidence interval 02} " Tt
as compared to a traditional ANN model. The TENN model e ENN
shows a remarkable ability to predict the shear capacity Mild Moderate Severe

and robustness when trained on only 90 samples. Accord-
ing to the results presented in Table 4, the TENN model
outperforms the other three models in terms of R? and

Training data availability

(a) The coefficient of determination (Rz) with 95% confidence interval

1.2 T T T

model variance. e T , A
As training data availability decreases, it is generally § il —e—TENN L/

accepted that model performance will deteriorate due to g 08| ,/'
the lack of available information from the data. The results E o6l L/
reported in this study are in accordance with this generally § R4 !
accepted fact. Figure 6 shows the variation of the perfor- G041 i
mance metrics in mild, moderate, and severe data scarcity S sl T -
conditions. As the situations progress from mild to severe, T -
R? values from all four models decrease without exception. Mild oot ;\tw

However, the proposed model proves extremely effective
at mitigating this deterioration. As seen in Figure 6, every
model considered in this study is capable of predicting the
shear capacity of deep beams with low model variance in
the mild situation. The most drastic decline of model per-
formance is found in the ANN model: its R? value falls
to about 0.49 from around 0.87. This is because the base-
line ANN model is sensitive to the number of available
training samples. If the ANN model is trained in the mod-
erate or severe training data scarcity conditions, it is likely
to obtain an inadequate model. This drastic drop of R?
value and surge of CV value can be mitigated by adopt-
ing EL, TL, or both. When the training data availability
is changed from mild to moderate, the performances of
the TLNN, ELNN, and TENN models marginally decrease.
The performance deterioration from the three models is
significantly less than that of the ANN model. This evi-
dence supports the idea that EL and TL make the ML
model more accurate and stable in the face of data scarcity
problems. In the severe situation, it is impossible to get a
good ML model through the use of EL or TL alone. It is

Training data availability

(b) The coefficient of variation (CV)

FIGURE 6 Variation of the performance metrics in different
training data availability

observed that the ANN model has the lowest R? and high-
est CV values, and the ELNN model has a high CV which
cannot be treated as a stable model. If TL is applied to
the baseline ANN model, a slightly better model can be
obtained although the performance deterioration remains
unacceptable. The most impressive results are found in the
novel TENN model proposed in this study. Even when sub-
jected to a very limited number of training samples, the
TENN model not only blocks the reduction of R? due to
the small data but also maintains a low model variance
comparable to that of the mild or moderate scenarios. As
can be seen in Figure 6, the TENN model preserves its
high R? and low CV values across all data scarcity lev-
els. The knowledge acquired from the slender RC beams
enables the TENN model to accurately predict the shear
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FIGURE 7 Comparison of the experimental and predicted results from the TENN models in different situations
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FIGURE 8 Comparison of the experimental and calculated results based on the design standards

capacity of deep RC beams, and simultaneously, multiple
weak learners can significantly reduce the model variance.
Consequently, by incorporating the advantages from EL
and TL, the TENN model can be initialized in a superior
manner compared to the baseline models, and, accord-
ingly, provide a better estimation from the aggregated
learners.

5.4 | Comparison with the existing
standards

The shear capacity of all deep beams in the dataset is also
calculated using the provisions of ACI 318-19 and CSA and
the calculated values are compared to the results predicted
by the best TENN model out of 20 trials. The purpose of
comparisons in this section is to demonstrate the accuracy
of the TENN model in terms of properly estimating the
shear capacity of deep RC beams. Figure 7 shows the com-
parison of the experimental and predicted results from
the TENN models trained in the different data scarcity
conditions. The mild condition, Figure 7a, shows the best
agreement between the experimental and predicted results
with an R? value of 0.93. As the data availability condition

degrades, the performance of the TENN model slightly
decreases due to the nature of ML approaches. However,
it is noteworthy that even in the severe case, the model still
maintains its performance with an R? value of 0.86. More-
over, the TENN models provide more stable predictions,
since they have lower CV values than ACI 318-19 and
CSA. The comparisons of the experimental and calculated
results based on ACI 318-19 and CSA are depicted in
Figure 8. More details of the model evaluation metrics are
summarized in Table 5. Because the R? value from ACI
318-19 is higher than that from CSA, it is believed ACI
318-19 yields marginally more accurate estimations for the
shear capacity of deep beams. Notably, there are consider-
able differences between the experimental results and the
calculated values from those two existing standards. Most
of the calculated values based on the existing standards are
much lower than the experimental results. For the purpose
of precisely estimating the shear capacity of deep beams,
the TENN model outperforms the existing standards even
in the severe data availability condition by 82.56% and
102.51% sMAPE for ACI and CSA, respectively. Load fac-
tors and resistance factors were not considered when the
shear capacity values were calculated based on the stan-
dards. If those factors were included, the calculated values
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TABLE 5 The performance of the TENN models and the design standards
Model Mean of Vo, /Vexp CVofVeu/Vexp R? sMAPE (%)
TENN (Mild) 1.08 0.25 0.93 16.02
TENN (Moderate) 1.10 0.27 0.88 18.63
TENN (Severe) 111 0.34 0.86 21.72
ACI 318 0.34 0.52 —0.54 104.28
CSA 0.25 0.61 -0.72 124.23

would further shift down compared to those depicted in
Figure 8. This is understandable as sufficient amounts of
safety against service or structural limit states should be
ensured. Nevertheless, the ACI and CSA equations may
be less effective methods for accurately estimating the
shear capacity of deep beams. The proposed TENN
model provides significantly better performance than the
existing standards, even with very limited amounts of
training data.

6 | CONCLUSIONS

This study has presented a new ML algorithm, the TENN,
which can accurately predict the shear capacity of deep
beams without stirrups, when a limited amount of data
is available. The proposed algorithm integrates TL and
EL after randomly sampling subtraining datasets based
on bagging and random space sampling. The algorithm is
tested on an extensive RC beam database. The shear capac-
ity of deep beams without stirrups is estimated in three
data availability conditions and compared with the values
calculated by ACI 318-19 and CSA. In accordance with the
results, the following conclusions are drawn:

1. The TENN model shows outstanding performance in
terms of accuracy of variance, especially in the severe
data availability condition. The TENN model has the
highest R? value with the smallest confidence interval
range and the lowest model variance.

2. When it comes to accurate estimation of the shear
capacity, the TENN model not only outperforms ACI
318-19 and CSA but it also provides an efficient method
for estimating the shear capacity of RC beams without
stirrups.

3. By incorporating a knowledge transfer technique and
aggregating multiple neural network models, the TENN
model can mitigate the data scarcity problem and pro-
vide better predictions with low variance with a very
limited number of training data.

4. This work demonstrates the overall ability of the TENN
model to accurately predict structural response when

there is little data available, as long as a large dataset
can be identified to extract the common knowledge.

Expanding the proposed algorithm on RC beams with
stirrups and comparing the TENN model with other
models such as the dynamic EL algorithm should be a
focus of future research. In addition, further research spe-
cific to structural engineering should be conducted to
develop more interpretable models, to augment data with
physics-based models or simulations, and to evaluate the
extrapolative knowledge transfer capabilities associated
with the dataset.
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