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Abstract
Small data sets are an extremely challenging problem in the machine learning
(ML) realm, and in specific, in regression scenarios, as the lack of relevant data
can lead toMLmodels that have large bias. However, there aremany applications
for which a purely data-driven procedure would be advantageous, but a large
amount of data are not available. This article proposes a novel regression-based
transfer learning (TL) model to address this challenge, where TL is defined as
knowledge transfer froma large, relevant data set (source domain data) to a small
data set (target domain data). The proposed TLmodel is termed double-weighted
support vector transfer regression (DW-SVTR), which couples least squares sup-
port vector machines for regression (LS-SVMR) with two weight functions. The
first weight function uses kernel mean matching (KMM) to reweight the source
domain data such that the mean values of the source and target domain data in a
reproduced kernelHilbert space (RKHS) are close. In thisway, the source domain
data points relevant to the target domain points have a larger weight than irrel-
evant source domain points. The second weight is a function of estimated resid-
uals, which aims to further reduce the negative interference of irrelevant source
domain points. The proposed approach is assessed and validated via simulated
data and by enhanced shear strength prediction of nonductile columns based
on limited availability of nonductile column data. Specifically, the results for the
latter show that the proposed DW-SVTR can reduce the root mean square error
(RMSE) by 34% and enhance the coefficient of determination (R2) by 229%. These
numerical results demonstrate that theDW-SVTR significantly reduces the effect
of small sample bias and improves prediction performance compared to standard
ML methods.

1 INTRODUCTION

Despite the fact that machine learning (ML) techniques
have reformed the world of numerical modeling and
achieved great success in many other engineering and sci-
ence disciplines (Adeli, 2001; Cha, Choi, & Büyüköztürk,
2017; Cha, Choi, Suh, Mahmoudkhani, & Büyüköztürk,
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2018; Reich, 1997), certain challenges remain unsolved.
One challenge, which significantly affects their perfor-
mance, is how to reduce the negative effect induced by
sample bias of small data sets, specifically in regression
scenarios. This is because regression-basedML techniques
usually require a large, high-quality training data set to
adaptively fit the data and form an accurate, robust model
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for prediction (Ahangar-Asr, Faramarzi, Javadi, & Gius-
tolisi, 2011; Aminian, Javid, Asghari, Gandomi, &Esmaeili,
2011; Cheng & Cao, 2014; Chou & Pham, 2015; Gandomi,
Mohammadzadeh, Pérez-Ordóñez, & Alavi, 2014; Jeon,
Shafieezadeh, & DesRoches, 2014; Luo & Paal, 2018, 2019;
Pal & Deswal, 2011; Rafiei & Adeli, 2016, 2018; Rafiei,
Khushefati, Demirboga, & Adeli, 2017; Yuen, Ortiz, &
Huang, 2016). Typically, the sample points in a train-
ing data set can reasonably represent the distribution of
a target domain. In this case, the sample bias induced
by the training data set is negligible (Quionero-Candela,
Sugiyama, Schwaighofer, & Lawrence, 2009). However,
once the size of the training data set is not sufficient (note
that we call this a small data set in this article), the effect
of small sample bias is no longer negligible.
This is because, when a data set is small, it may lead

to a biased sample. This means that the sample points in
the small data set cannot accurately represent the distri-
bution of a target domain and cannot reflect the underly-
ing patterns in the target domain data (Quionero-Candela
et al., 2009), leading to large bias in the final, fully trained
ML model for prediction in the target domain. Transfer
learning (TL) aims to address the problems with sam-
ple bias induced by small data sets by transferring ML
models trained with a relevant large data set to improve
prediction (Pan & Yang, 2009; Weiss, Khoshgoftaar, &
Wang, 2016). In this article, the following terminology is
employed: the “small data set” is from the “target domain”
and the “large data set” is from the “source domain.” In
many TL approaches it is typically assumed that the tar-
get and source domains are somewhat different from one
another, but still related to a certain extent (Pan & Yang,
2009). Thus, the ML models, fully trained based on the
source domain data, can be applied to prediction in the
target domain. This seems to deviate the default assump-
tion in many standardML settings, where the training and
test data sets are independently and identically distributed
(i.i.d), as the data set is shifted (Cortes &Mohri, 2014; Gret-
ton et al., 2009; Huang, Gretton, Borgwardt, Schölkopf,
& Smola, 2007; Quionero-Candela et al., 2009). Mathe-
matically speaking, data set shift happens when two data
sets are drawn from two different distributions (Quionero-
Candela et al., 2009). Specifically, given the distributions
of the source and target data, one can sample the train-
ing data set {(𝒙𝑆

𝑗
, 𝑦𝑆

𝑗
)}𝑛
𝑗=1

from the source data distribution
𝑝𝑆(𝒙, 𝑦) and the test data set {(𝒙𝑇

𝑘
, 𝑦𝑇

𝑘
)}𝑚
𝑘=1

from the target
data distribution 𝑝𝑇(𝒙, 𝑦), where𝒙 ∈ 𝑅𝑝 and 𝑦 ∈ 𝑅. A data
set shift is present when 𝑝𝑆(𝒙, 𝑦) ≠ 𝑝𝑇(𝒙, 𝑦).
Currently, the majority of TL approaches have been

developed for classification problems (Gao & Mosalam,
2018; Pan & Yang, 2009), but less attention has been paid
on regression problems (Pardoe & Stone, 2010; Salaken,

Khosravi, Nguyen, & Nahavandi, 2019). The main differ-
ence between classification and regression problems is that
the response variable for classification problems is dis-
crete, whereas that for regression problems, it is continu-
ous (James, Witten, Hastie, & Tibshirani, 2013). This dif-
ference strictly restricts the direct use of some existing
TL approaches for addressing regression problems (i.e.,
some TL methods for classification must be modified for
their use in regression settings, e.g., the work in Pardoe &
Stone, 2010). Besides, existing regression-based TL meth-
ods generally assume that the target and source domains
are related to each other (Garcke & Vanck, 2014; Kar-
balayghareh, Qian, & Dougherty, 2018; Pardoe & Stone,
2010). Therefore, these TL methods may work well for
regression problems when the source and target domain
data are related but will most likely work poorly when
they are unrelated. The relevance is represented by the
joint distributions of two domains (Garcke & Vanck, 2014;
Huang et al., 2007). According to Bayes rule, the joint
distribution can be written as 𝑝(𝒙, 𝑦) = 𝑝(𝒙|𝑦)𝑝 (𝑦) =

𝑝(𝑦|𝒙)𝑝(𝒙). The equation 𝑝(𝒙, 𝑦) = 𝑝(𝒙|𝑦)𝑝(𝑦) is called
the generative model, whereas 𝑝(𝒙, 𝑦) = 𝑝(𝑦|𝒙)𝑝(𝒙) is
called the discriminative model (Garcke & Vanck, 2014;
Quionero-Candela et al., 2009). Themajority of existing TL
approaches focus on the discriminative approach. Thus,
𝑝𝑆(𝑦|𝒙)𝑝𝑆(𝒙) ≠ 𝑝𝑇(𝑦|𝒙)𝑝𝑇(𝒙) (i.e., the source and target
domain distributions are different) is achieved via different
marginal distributions, that is, 𝑝𝑆(𝒙) ≠ 𝑝𝑇(𝒙) (also called
covariate shift) (Quionero-Candela et al., 2009), different
posterior distributions, that is, 𝑝𝑆(𝑦|𝒙) ≠ 𝑝𝑇(𝑦|𝒙), or both.
The case where the posterior distributions of source and

target domains are different (i.e., 𝑝𝑆(𝑦|𝒙) ≠ 𝑝𝑇(𝑦|𝒙)) is
very challenging, because the two terms could be arbi-
trarily far apart. It is even more difficult when both the
marginal and posterior distributions of two domains are
different. This is because both the marginal and the pos-
terior distributions of source and target domains could be
arbitrarily far away, which makes source and target data
completely unrelated. Almost all of the existing regression-
based TL approaches fail to solve this case, as this case is
analogous to, for example, the relation that a well-trained
MLmodelwith a sufficiently large data set in the economic
field is applied to the prediction on a problem in an engi-
neering discipline. Therefore, at first glance, there is no
way, for instance, to utilize a well-trained ML model for
housing price prediction to predict the structural strength
for engineering structures (i.e., two unrelated domains
with different tasks and/or different nonlinear relations).
In this article, a novel regression-based TL model, termed
double-weighted support vector transfer regression (DW-
SVTR), is proposed to reduce the effect of sample bias
of small data sets and sufficiently exploit the useful
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250 LUO and PAAL

information provided by small data sets in civil engi-
neering (CE). Further, the proposed DW-SVTR is also
attempted to solve the most challenging case, where both
the marginal and the posterior distributions of source and
target data are different. The final numerical results in this
article demonstrate that the proposed approach is even
effective under these circumstances. The rest of this arti-
cle is organized as follows: Section 2 presents the liter-
ature review to introduce existing work on TL, whereas
the methodology of the proposed DW-SVTR is introduced
in Section 3. Section 4 details the implementation proce-
dure of the proposed DW-SVTR. The illustrative examples
to validate the proposed approach are given in Section 5.
Finally, conclusions are made in Section 6.

2 LITERATURE REVIEW

There are many TL approaches that have been proposed
to deal with the problems associated with small data sets.
These approaches can be expressed as instance based or
feature based. Instance-based transfer approaches (such
that a portion of sample points from the source domain
data can be used in the target domain) have been cre-
ated, which use boosting (Dai, Yang, Xue, & Yu, 2007; Par-
doe & Stone, 2010), multiple input sources (Tan, Zhong,
Xiang, & Yang, 2014), and reweighting approaches based
on covariate shift setting (Cortes & Mohri, 2014; Gret-
ton et al., 2009; Huang et al., 2007; Sugiyama, Nakajima,
Kashima, Buenau, & Kawanabe, 2008). In feature-based
transfer approaches, the source and target data aremapped
into a space where the shared information from both data
can be applied to the target domain (Argyriou, Evgeniou, &
Pontil, 2007, 2008). However, asmentioned previously, the
majority of these approaches have been used to deal with
classification problems, and only a few recent research
efforts have focused on regression problems.
Pardoe and Stone (2010) modified two existing boosting-

based classification TL models, ExpBoost (Rettinger,
Zinkevich, & Bowling, 2006) and TrAdaBoost (Dai et al.,
2007), to form two TL models called ExpBoost.R2 and
Two-stage TrAdaBoost.R2 for regression problems. Both
of these TL models are based on AdaBoost.R2 (Drucker,
1997), where the reweighting of instances (i.e., data points)
that have larger residuals predicted by a learner (i.e., ML
model) are achieved by normalizing errors into adjusted
errors within the range [0, 1] in each boosting iteration.
The proposed boosting-based transfer regression models
are validated effectively by numerical experiments. Gar-
cke and Vanck (2014) proposed two approaches for induc-
tive transfer regression based on importance weighting.
These two methods are to estimate a weight that is a den-
sity ratio between the target and source data. The first

one relies on the prediction performance of an ML model
learned from the data in the source domain, whereas the
second one minimizes the Kullback–Leibler divergence
(Sugiyama et al., 2008) between two distributions of the
target and source data. Numerical experiments are per-
formed and results indicate that the former is better than
the latter. A seed-based TL model for regression problems
is proposed by Salaken et al. (2019). In this approach, each
sample point in the target domain is regarded as a seed for
initiating the transfer of the source data. An auto-encoder
deep learning technique is used to transform the source
data into an abstracted feature space, where the number
of features for the data in the source domain matches that
in the target domain. Then, a k-means clustering algo-
rithm, with the number of clusters equal to the number
of sample points in the target domain, is applied to cluster
the source domain data, and each target domain sample
point is appended with a relevant cluster by minimizing
the Euclidean distance. The effectiveness of this method is
verified by numerical results.
Although these mentioned regression-based TL appr-

oaches can reduce the effect of small sample bias and
thus improve prediction performance for small data sets,
such capabilities may be limited to the transfer between
two related domain data, as validated in the numerical
experiments. If the source and target domain data are far
apart and unrelated, these methodsmay no longer be valid
because these approaches may not be able to extract the
shared information from two unrelated domains. To alle-
viate this limitation, we propose a novel TL approach for
regression problems.

3 DOUBLE-WEIGHTED SUPPORT
VECTOR TRANSFER REGRESSION

This section presents a novel regression-based TL
approach, which is a new variant of least squares support
vector machines for regression (LS-SVMR), by coupling
LS-SVMR with two weight functions. Thus, the proposed
approach is called DW-SVTR. The two weight functions
have different effects. The first weight is obtained using
kernel mean matching (KMM), which accords more
weight to the source domain points that are relevant
to target domain points than irrelevant source domain
points. In this way, the first weight function can augment
the small data set in the target domain with the relevant
source domain points to reduce the small sample bias. The
second weight is a function of residuals and thus, serves
the purpose to further reduce the negative interference
of irrelevant source domain points analogous to outliers
for the target domain training sample. The detailed
information is presented as follows.
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Suppose the data set {(𝒙𝑆
𝑗
, 𝑦𝑆

𝑗
)}𝑛
𝑗=1

is sampled from
the source domain distribution 𝑝𝑆(𝒙, 𝑦) and the data set
{(𝒙𝑇

𝑘
, 𝑦𝑇

𝑘
)}𝑚
𝑘=1

is sampled from the target domain distribu-
tion 𝑝𝑇(𝒙, 𝑦), where 𝒙𝑆

𝑗
and 𝒙𝑇

𝑘
both ∈ 𝑅𝑝 have the same

dimension, 𝑦𝑆
𝑗
and 𝑦𝑇

𝑘
both ∈ 𝑅 also have the same dimen-

sion, and 𝑚 ≪ 𝑛. In the proposed TL method, we do not
have a priori assumption that the source and target data
are related. Therefore, the source and target data could be
unrelated (e.g., both the marginal and posterior distribu-
tions of the two domains are different). Because the source
and target data could be unrelated and arbitrarily far apart,
this means that the units of the predictors and response
variables between these two domains may vary greatly,
leading to a significant discrepancy in numeric values in
the original space. In this case, there is no way to utilize
the information from the source data to improve the pre-
diction for the target domain in the original space. Thus,
the first step is to eliminate the effect of different ranges of
values due to the different units. For both domain data, we
first transform the predictors𝒙𝑜

𝑡 ∈ 𝑅𝑝 and response 𝑦𝑜𝑡 ∈ 𝑅

of the data set {(𝒙𝑜
𝑡 , 𝑦

𝑜
𝑡 )}

𝑑
𝑡=1

to zero mean and unit variance
by using the following formulas:

𝒙𝑡 =
(
𝒙𝑜
𝑡 − 𝒙̄

)
.∕𝝈𝒙 (1)

𝑦𝑡 =
𝑦𝑜𝑡 − 𝑦̄

𝜎𝑦
(2)

where “.∕” operator represents element division of two vec-
tors, 𝒙̄ ∈ 𝑅𝑝 is the mean of the predictors, 𝝈𝒙 ∈ 𝑅𝑝 is the
standard deviation of the predictors, 𝑦̄ ∈ 𝑅 is the mean of
the response variable, 𝜎𝑦 ∈ 𝑅 is the standard deviation of
the response variable.
After successfully transforming the data, the trans-

formed data in both domains will be within the space with
zero mean and unit variance. Denote 𝒛𝑆

𝑗
= (𝒙𝑆

𝑗
, 𝑦𝑆

𝑗
) as a

point from the transformed data set in the source domain
and 𝒛𝑇

𝑘
= (𝒙𝑇

𝑘
, 𝑦𝑇

𝑘
) as a point from the transformed data

set in the target domain. Because the data set in the tar-
get domain is small and not sufficient in size, it cannot
be directly employed to train a good ML model due to the
potential small sample bias. Thus, we need to reweight the
source domain data such that partial points with appro-
priate weights in the source domain can be utilized by
small data set in the target domain to reduce its sam-
ple bias. Denote 𝒛𝑖 = (𝒙𝑖, 𝑦𝑖) as a point from the aug-
mented data set {(𝒙𝑖, 𝑦𝑖)}

𝑚+𝑛
𝑖=1

that is formed by combin-
ing the transformed source domain data set {(𝒙𝑆

𝑗
, 𝑦𝑆

𝑗
)}𝑛
𝑗=1

and the transformed target domain data set {(𝒙𝑇
𝑘
, 𝑦𝑇

𝑘
)}𝑚
𝑘=1

.
Given the augmented data set, the learning objective of the

proposed DW-SVTR is to find optimal model parameters
𝒘 = (𝑤1, 𝑤2, … ,𝑤ℎ)

𝑇 ∈ 𝑅ℎ and 𝑏 ∈ 𝑅 that minimize the
following objective function:

𝐽(𝒘, 𝑒𝑖) =
1

2
𝒘𝑇𝒘 +

1

2
𝛾

𝑚+𝑛∑
𝑖=1

𝛽 (𝒛𝑖) 𝑣 (𝒙𝑖) 𝑒
2
𝑖

(3)

Subject to ∶ 𝑦𝑖 = 𝑤𝑇 𝜑 (𝑥𝑖) + 𝑏 + 𝑒𝑖,

𝑖 = 1, … , (𝑚 + 𝑛)
(4)

where 𝑒𝑖 ∈ 𝑅, 𝑖 = 1, … ,𝑚 + 𝑛 is the error term; 𝛾 ∈ 𝑅 is a
regularization parameter;𝛽(𝒛𝑖), 𝑣(𝒙𝑖) ∈ 𝑅, 𝑖 = 1, … ,𝑚 + 𝑛

areweights that can take any value in the range [𝜀, 1], 𝛽(𝒛𝑖)
is a weight to determine the importance of each data point
in the augmented data set and 𝑣(𝒙𝑖) is a weight, which is a
function of residual where data points having large residu-
als have smaller weights and those having small residuals
have larger weights; the determination of these two types
of weight functions will be introduced in detail; ε ∈ R is a
real number approaching 0; 𝜑(𝒙𝑖) is a feature vector, and
𝜑(⋅) ∶ 𝑅𝑝 → 𝑅ℎ is a mapping function from 𝑝 dimensions
to a higher h-dimensional feature space.
If 𝛽(𝒛𝑖) takes a value approaching 𝜀, it means the point

𝒛𝑖 is irrelevant to the data points in the target domain and
plays a lesser role in prediction for the target domain; oth-
erwise, if 𝛽(𝒛𝑖) takes a value approaching one, it means the
point 𝒛𝑖 is highly relevant to the target domain and plays
an important role in prediction for the target domain.
The Lagrangian function is established to solve Equa-

tion (3) and Equation (4):

𝐿(𝒘, 𝑏, 𝑒𝑖; 𝛼𝑖) = 𝐽 (𝒘, 𝑒𝑖) −
𝑚+𝑛∑
𝑖=1

𝛼𝑖

(
(𝒘)

𝑇
𝜑 (𝒙𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖

) (5)

where 𝛼𝑖 ∈ 𝑅, 𝑖 = 1, … ,𝑚 + 𝑛 is a Lagrange multiplier
(also called support values).
The Karush–Kuhn–Tucker (KKT) conditions for

optimality are used by differentiating the variables in
Equation (5) above, which results in the following:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝐿

𝜕𝒘
= 0 → 𝒘 =

𝑚+𝑛∑
𝑖=1

𝛼𝑖𝜑 (𝒙𝑖)

𝜕𝐿

𝜕𝑏
= 0 → 0 =

𝑚+𝑛∑
𝑖=1

𝛼𝑖

𝜕𝐿

𝜕𝑒𝑖
= 0 → 𝑒𝑖 =

𝛼𝑖

𝛾𝑣(𝒙𝑖)𝛽(𝒛𝑖)
, 𝑖 = 1, … ,𝑚 + 𝑛

𝜕𝐿

𝜕𝛼𝑖
= 0 → y𝑖 = 𝒘𝑇 𝜑 (𝒙𝑖) + 𝑏 + 𝑒𝑖, 𝑖 = 1, … ,𝑚 + 𝑛

(6)
Rearranging Equation (6) and eliminating 𝒘 and 𝑒𝑖 ,

using a kernel function to replace the inner product of the
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252 LUO and PAAL

feature vectors, the following matrix equation (7) can be
obtained:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 ⋯ 1

1 𝐾 (𝒙1, 𝒙1) +
1

𝛾𝑣(𝒙1)𝛽(𝒛1 )
𝐾 (𝒙1, 𝒙2) ⋯ 𝐾 (𝒙1, 𝒙𝑚+𝑛)

1 𝐾 (𝒙2, 𝒙1) 𝐾 (𝒙2, 𝒙2) +
1

𝛾𝑣(𝒙2)𝛽(𝒛2 )
⋯ 𝐾 (𝒙2, 𝒙𝑚+𝑛)

⋮ ⋮ ⋮ ⋱ ⋮

1 𝐾 (𝒙𝑚+𝑛, 𝒙1) 𝐾 (𝒙𝑚+𝑛, 𝒙2) ⋯ 𝐾 (𝒙𝑚+𝑛, 𝒙𝑚+𝑛) +
1

𝛾𝑣(𝒙𝑚+𝑛 )𝛽(𝒛𝑚+𝑛 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏

𝛼1

𝛼2

⋮

𝛼𝑚+𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

𝑦1

𝑦2

⋮

𝑦𝑚+𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where the kernel function is 𝐾(𝐱𝑖, 𝐱𝑡) = 𝜑𝑇 (𝐱𝑖)𝜑(𝑥𝑡), 𝑖 =

1, … ,𝑚 + 𝑛; 𝑡 = 1,… ,𝑚 + 𝑛.

For the determination of 𝛽(𝒛𝑖) ∈ 𝑅, 𝑖 = 1, … ,𝑚 + 𝑛, for
each data point in the augmented data set, we wish to
accord points relevant to the points in the target domain
more weight than irrelevant points. In conjunction with
the use of the kernel function, the relevance is evalu-
ated by the Euclidean distance in a reproduced kernel
Hilbert space (RKHS). Specifically, in a feature space, data
points (e.g.,𝜑(𝒛𝑖)) close to the points in the target domain
(e.g., 𝜑(𝒛𝑇

𝑘
)) will acquire more weight than distant points.

Because the small data set in the target domain has already
been included in the augmented data set, 𝛽(𝒛𝑖 ∩ 𝒛𝑇

𝑘
)will be

one. Thus, the problem is changed to determine 𝛽(𝒛𝑖 ∩ 𝒛𝑆
𝑗
).

To obtain 𝛽(𝒛𝑖 ∩ 𝒛𝑆
𝑗
) for each data point in the source

domain, we wish to reweight the data points in the source
domain such that the mean of the weighted data points

in the source domain (i.e.,
1

𝑛

𝑛∑
𝑗=1

𝛽(𝒛𝑖 ∩ 𝒛𝑆
𝑗
)𝜑(𝒛𝑆

𝑗
)) is close

to the mean of the data points in the target domain

(
1

𝑚

𝑚∑
𝑘=1

𝜑(𝒛𝑇
𝑘
)). Denote 𝜷 = {𝛽(𝒛𝑖 ∩ 𝒛𝑆

𝑗
)}𝑛
𝑗=1

as a weight vec-

tor containing the weight for each data point in the
source domain. According to the KMMalgorithm (Gretton
et al., 2009; Huang et al., 2007), the weight vector 𝜷 can
be obtained by minimizing the discrepancy between the
mean of the weighted source domain data and the mean
of the target domain data subjected to two constraints as
shown in the following:

𝜷 = 𝑎𝑟𝑔min
𝛽

‖‖‖‖‖‖
1

𝑛

𝑛∑
𝑗=1

𝛽
(
𝒛𝑖 ∩ 𝒛𝑆

𝑗

)
𝜑
(
𝒛𝑆
𝑗

)
−

1

𝑚

𝑚∑
𝑘=1

𝜑
(
𝒛𝑇
𝑘

)‖‖‖‖‖‖
2

(8)
By reformulating Equation (8) and using the kernel

function to replace the inner product of the feature vec-
tors, the following quadratic programming (QP) problem

concerning the two constraints can be formulated:

Minimize ∶ 𝐽(𝛽) =
1

2
𝛽𝑇𝐾1𝛽 − 𝜅𝑇𝛽 (9)

subject to ∶
|||||
1

𝑛

𝑛∑
𝑗=1

𝛽
(
𝑧𝑖 ∩ 𝑧𝑆

𝑗

)
− 1

||||| ≤ 𝜖

0 ≤ 𝛽
(
𝑧𝑖 ∩ 𝑧𝑆

𝑗

)
≤ 𝐵, 𝑗 = 1,… , 𝑛

(10)

where 𝑲1 = 𝑲𝑗𝑡 = 𝐾(𝒛𝑆
𝑗
, 𝒛𝑆𝑡 ) ∈ 𝑅𝑛×𝑛, 𝑗, 𝑡 = 1, … , 𝑛 is a

kernel matrix calculated based on the data in the source
domain, 𝐵 = 1, 000 is the upper boundary to reflect
the scope of discrepancy between the source domain
distribution 𝑝𝑆(𝒛) and the target domain distribution
𝑝𝑇(𝑧), 𝜖 = (

√
𝑛 − 1) ∕

√
𝑛 is the normalization error, 𝜿 =

𝑛

𝑚
𝑲21𝑚×1 ∈ 𝑅𝑛, where 𝑲2 = 𝑲𝑗𝑘 = 𝐾(𝒛𝑆

𝑗
, 𝒛𝑇

𝑘
) ∈ 𝑅𝑛×𝑚,

𝑗 = 1,… , 𝑛 and 𝑘 = 1,… ,𝑚 is a kernel matrix calculated
based on the source and target domain data.
After solving the QP problem and normalizing the

weights 𝜷 = 𝜷∕𝑚𝑎𝑥(𝜷), each data point in the source
domain will have an associated weight 𝛽(𝒛𝑖 ∩ 𝒛𝑆

𝑗
). Because

we have already determined the weight 𝛽(𝒛𝑖 ∩ 𝒛𝑇
𝑘
) for each

data point in the target domain, we now have determined
the weight 𝛽(𝒛𝑖) for each data point in the augmented data
set. The points having a largeweight in the augmented data
set will be more relevant to the target domain points than
points having a small weight. Additionally, irrelevant data
points are equivalent to outliers in this case, as they are
distant from the target domain data points (De Brabanter
et al., 2009; Mu & Yuen, 2015; Rousseeuw & Leroy, 1987;
Suykens, De Brabanter, Lukas, & Vandewalle, 2002; Yuen
&Mu, 2012; Yuen&Ortiz, 2017). Although these “outliers”
already have a small weight, we wish to further reduce
their negative effect. Thus, anotherweight 𝑣(𝒙𝑖), which is a
function of residuals, is incorporated as well, as presented
in Equation (3). By imposing the weight 𝛽(𝒛𝑖) to each data
point in the augmented data set, the relevant points will
have small residuals whereas the irrelevant points or “out-
liers” will have large residuals. Points having large residu-
als will have a small weight 𝑣(𝒙𝑖), whereas points having
small residuals will have a large weight 𝑣(𝒙𝑖). Therefore, in
this sense, the importance of the relevant points is further
emphasized, whereas that of the irrelevant points is fur-
ther diminished. According to Suykens, De Brabanter et al.
(2002), the weight 𝑣(𝒙𝑖) is determined by the following:

𝑣(𝑥𝑖) =

⎧⎪⎨⎪⎩
1 if ||𝑒𝑖∕ 𝛿|| ≤ 𝑐1

𝑐2−|𝑒𝑖∕ 𝛿|
𝑐2−𝑐1

if 𝑐1 ≤ ||𝑒𝑖∕ 𝛿|| ≤ 𝑐2

𝜀 otherwise

⎞⎟⎟⎟⎠
(11)
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where 𝑐1 = 2.5, 𝑐2 = 3, 𝜀 = 10−4 , and 𝛿 =

1.483𝑀𝐴𝐷({𝑒𝑖}
𝑚+𝑛
𝑖=1

) is a robust estimate where MAD
is the median absolute deviation and other variables are
defined previously.
After solving Equation (7) (Suykens, VanGestel, De Bra-

banter, De Moor, & Vandewalle, 2002), the Lagrange mul-
tiplier 𝜶 = (𝛼1, … , 𝛼𝑟) and parameter 𝑏 can be obtained,
which can then be utilized for prediction in the target
domain (e.g., 𝒙𝑇) using the following:

𝑦̂
(
𝒙𝑇

)
=

𝑚+𝑛∑
𝑖=1

𝛼𝑖 𝐾
(
𝒙𝑇, 𝒙𝑖

)
+ 𝑏 (12)

The RBF kernel is utilized for all the mentioned kernel
functions above, which is defined as follows:

𝐾(𝒙𝑖, 𝒙𝑡) = exp

(
−
𝒙𝑖 − 𝒙𝑡

2

2𝜎2

)
(13)

4 HYPERPARAMETER TUNING AND
IMPLEMENTATION

There are three hyperparameters in the proposed DW-
SVTR—one regularization parameter 𝛾, one kernel param-
eter 𝜎2 for the kernel function 𝐾(𝒙𝑖, 𝒙𝑡), and one ker-
nel parameter 𝜎2

𝛽
for kernel functions 𝐾(𝒛𝑆

𝑗
, 𝒛𝑆𝑡 ) and

𝐾(𝒛𝑆
𝑗
, 𝒛𝑇

𝑘
)—that need to be accurately defined before the

training process because they can significantly affect the
accuracy level of the predicted results. In this article,
the hyperparameter tuning procedure is performed by
evaluating the performance of the proposed DW-SVTR
using leave-one-out (LOO) cross-validation on the target
domain data points {(𝒙𝑇

𝑘
, 𝑦𝑇

𝑘
)}𝑚
𝑘=1

in the augmented train-
ing data set {(𝒙𝑖, 𝑦𝑖)}

𝑚+𝑛
𝑖=1

introduced in Section 3. The opti-
mal values are those that minimize the mean square error
(MSE).
The implementation procedure of the proposed DW-

SVTR approach for reducing the effect of sample bias
of small data sets in the target domain, which is also
applicable for unrelated domains, is summarized as
follows:
Algorithm 1: Implementation of the proposedDW-SVTR

model
Require: Training data sets in the source domain

{𝒛𝑆
𝑗
}𝑛
𝑗=1

= {(𝒙𝑆
𝑗
, 𝑦𝑆

𝑗
)}𝑛
𝑗=1

and target domain {𝒛𝑇
𝑘
}𝑚
𝑘=1

=

{(𝒙𝑇
𝑘
, 𝑦𝑇

𝑘
)}𝑚
𝑘=1

, test data in the target domain 𝒙𝑇 , and opti-
mal hyper-parameter combination (𝛾, 𝜎2, 𝜎2

𝛽
).

1. Initialization stage:
(a) Transform the training data sets in the source and

target domains individually using Eqs. (1-2);

(b) Record the means 𝒙̄𝑇
𝑡𝑟, 𝑦̄𝑇𝑡𝑟 and standard devia-

tions 𝝈𝒙𝑇𝑡𝑟
, 𝜎𝑦𝑇𝑡𝑟 for the target domain training data set

{(𝒙𝑇
𝑘
, 𝑦𝑇

𝑘
)}𝑚
𝑘=1

;

(c) Combine the transformed data sets in the source and
target domains as an augmented data set {(𝒙𝑖, 𝑦𝑖)}

𝑚+𝑛
𝑖=1

;
2. Reweighting stage:
(a) Calculate the 𝑲1 and 𝜿 in Eq. (9) using Eq. (13) with

the parameter 𝜎2
𝛽
;

(b) Set 𝛽 (𝒛𝑖 ∩ 𝒛𝑇
𝑘
) = 1, 𝑘 = 1,… ,𝑚;

(c) Solve Eq. (9-10) to obtain 𝜷 = {𝛽(𝒛𝑖 ∩ 𝒛𝑆
𝑗
)}𝑛
𝑗=1

and
normalize it as 𝜷 = 𝜷∕𝑚𝑎𝑥(𝜷);
(d) Combine {𝛽(𝒛𝑖 ∩ 𝒛𝑇

𝑘
)}𝑚
𝑘=1

and {𝛽(𝒛𝑖 ∩ 𝒛𝑆
𝑗
)}𝑛
𝑗=1

as
{𝛽(𝒛𝑖)}

𝑚+𝑛
𝑖=1

;
(e) Set weight 𝑣(𝒙𝑖) in Eq. (7) for each data point in the

augmented data set {(𝒙𝑖, 𝑦𝑖)}
𝑚+𝑛
𝑖=1

to 1;
(f) Solve Eq. (7) to obtain 𝜶, 𝑏, and compute 𝑒𝑖 =

𝛼𝑖∕(𝛾𝑣(𝒙𝑖)𝛽(𝒛𝑖)), 𝑖 = 1, … ,𝑚 + 𝑛;
3. Iterative stage:
Set the maximum iterative number 𝑆, tolerance 𝑡𝑜𝑙,

count 𝑠 = 0, and 𝑡 = 𝐼𝑛𝑓

while 𝑡 > 𝑡𝑜𝑙 & 𝑠 < 𝑆 do
(a) Set𝜶(𝑠) = 𝜶, 𝑏(𝑠) = 𝑏, 𝑒(𝑠)

𝑖
= 𝑒𝑖 , and 𝑣(𝑠) (𝒙𝑖) = 𝑣(𝒙𝑖);

(b) Compute the robust estimate 𝛿(𝑠) = 1.483𝑀𝐴𝐷(𝑒
(𝑠)
𝑖
);

(c) Update the weight 𝑣(𝑠+1)(𝒙𝑖) from 𝛿(𝑠) and 𝑒
(𝑠)
𝑖
using

Eq. (11);
(d) Solve Eq. (7) to obtain the 𝜶(𝑠+1) and 𝑏(𝑠+1);
(e) Update the 𝑒(𝑠+1)

𝑖
= 𝛼

(𝑠+1)
𝑖

∕(𝛾𝑣(𝑠+1)(𝒙𝑖)𝛽(𝒛𝑖));
(f) Calculate 𝑡 = 𝜶(𝑠+1) − 𝜶(𝑠) ;
(g) Set 𝜶 = 𝜶(𝑠+1) , 𝑏 = 𝑏(𝑠+1), 𝑒𝑖 = 𝑒

(𝑠+1)
𝑖

, and 𝑣 (𝒙𝑖) =

𝑣(𝑠+1) (𝒙𝑖), 𝑖 = 1, … ,𝑚 + 𝑛;
(h) Set 𝑠 = 𝑠 + 1

end while
4. Output stage:
(a) Transform the target test data 𝒙𝑇 with the recorded

mean 𝒙̄𝑇
𝑡𝑟 and standard deviation 𝝈𝒙𝑇𝑡𝑟

using Eq. (1);
(b) Output the final 𝜶 and 𝑏 from the stage 3;
(c) Given 𝜶 and 𝑏, predict the response value 𝑦̂(𝒙𝑇) of

the transformed data 𝒙𝑇 using Eq. (12);
(d) Transform the predicted 𝑦̂(𝒙𝑇) back by 𝑦̂ (𝒙𝑇) =

𝑦̂ (𝒙𝑇) × 𝜎𝑦𝑇𝑡𝑟
+ 𝑦̄𝑇𝑡𝑟;

5 ILLUSTRATIVE EXAMPLES

To thoroughly assess the performance of the proposedDW-
SVTR approach, two examples using simulated and mul-
tidimensional real data are carried out. First, the simu-
lated example is used to illustrate the general performance
for the most challenging case via data sets where both the
marginal and posterior distributions of the two domains
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(c)                                                        

(a)                                                        (b)

(d)

90.02

F IGURE 1 A typical representation of 10 random trials for the three analytical cases: (a) target domain training sample points in the
original space; (b) combined source and target domain training data sets in the original space; (c) combined source and target domain training
data sets in the transformed space; (d) result comparison of three analytical cases in the original space

are different. Then, the proposed approach is employed to
predict the shear strength of nonductile reinforced con-
crete (RC) columns to illustrate the real-world utilization
of the approach when sufficient large data sets are not
available.

5.1 Example 1: Simulated data sets

This example is designed to illustrate how the proposed
DW-SVTR works in an especially challenging case. In this
example, the data sets in the source and target domains
are generated from different joint distributions, where
both themarginal and posterior distributions are different,
that is, 𝑝𝑆(𝒙) ≠ 𝑝𝑇(𝒙) and 𝑝𝑆(𝑦|𝒙) ≠ 𝑝𝑇(𝑦|𝒙). The source
domain has a sufficient number of data points, whereas the
target domain only has a few data points. Thus, the target
domain data have a potentially large sample bias. This case
is more challenging as both the predictor and the response
values in the data sets for the source and the target domains
may be significantly different, more likely leading to the
case where there is no relevance between the source and
the target domains. In the context of regression settings,

it is commonly thought that there is no way to use an
ML model trained with data from one domain to improve
the prediction on another, seemingly, completely irrele-
vant domain. However, the theory presented in the previ-
ous section along with the following experimental results
demonstrates that the proposed DW-SVTR can still trans-
fer useful information to reduce thenegative effect induced
by sample bias due to small data and improve the predic-
tive performance in this case.
The marginal distributions of the data sets in the source

and target domains are assumed as normal and uniform
distributions, respectively, where 𝑥𝑆 ∼ Normal(8, 32) and
𝑥𝑇 ∼ Uniform(−5, 5). The responses for the data set in the
source domain are generated from 𝑦𝑆 = −6𝑥𝑆 + (𝑥𝑆)3 +

𝜀𝑆 , whereas those for the data set in the target domain
are generated according to 𝑦𝑇 = 𝑥𝑇 + (𝑥𝑇)2 + (𝑥𝑇)3 + 𝜀𝑇 .
The distribution of the error term for the source data is
𝜀𝑆 ∼ Normal(0, 2002), and for the target data, it is 𝜀𝑇 ∼

Normal(0, 122). Thus, in this sense, both the posterior and
the marginal distributions between the source and the tar-
get domain data are different. Ten points (e.g., red squares
in Figure 1a) randomly sampled from the target domain
serve as the training data from the target domain and 600
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LUO and PAAL 255

points (e.g., blue circles in Figure 1b) randomly sampled
from the source domain are the training data from the
source domain. An individual test data set including 200
points (e.g., green squares in Figure 1d) is randomly gener-
ated from the target domain.
In this example, based on the simulated data sets pre-

sented above, three analytical cases are designed and com-
pared to demonstrate how the proposed method reduces
the negative effect induced by a biased sample, thus,
improving the overall prediction performance. For these
three cases, the training data set varies, but the test data
set is held constant: (1) Target only: the 10 training sample
points in the target domain (e.g., squares in Figure 1a) are
used to train an ML model, and this trained ML model is
then used to predict the 200 test sample points in the target
domain (e.g., squares in Figure 1d); (2) Source only: the 600
training sample points in the source domain (e.g., circles
in Figure 1b) are used to train an ML model, and this ML
model is used to predict the 200 test sample points in the
target domain; and, (3) DW-SVTR: all 610 training sample
points (i.e., 10 sample points from target domain as intro-
duced in Case 1 and 600 sample points from the source
domain as introduced in Case 2) are used as the training
data set for the proposed DW-SVTR, and the trained DW-
SVTR model is then utilized to predict the 200 test sample
points in the target domain. The LS-SVMR (Suykens, Van
Gestel et al., 2002) is employed for Cases (1) and (2). There-
fore, the cases of target only and source only are regarded
as the benchmarks in comparison to the DW-SVTR case.
It should be noted that both LS-SVMR and proposed DW-
SVTR are nonparametric regression methods.
We individually run the experiment 10 times by setting

10 different random seeds to statistically reflect the perfor-
mance of the proposed DW-SVTR. A typical representative
of the results within the 10 runs is presented in Figure 1.
Figure 1a shows the small training data set in the target
domain,which only includes 10 training sample points and
thus has a potentially large sample bias. Figure 1b presents
the training data sets in the source and target domains
that are combined in a figure. It is found that in Figure 1b
only four target domain points are near to the points in the
source domain in the original space. This illustrates the sig-
nificant lack of relevance between the two domains. Fig-
ure 1c shows the combined training data set in the trans-
formed space. Note that the transformation for the data
sets in the source and target domains is first performed sep-
arately using Equations (1) and (2). Then, the transformed
data sets in the source and target domains are combined,
as described in Algorithm 1 in Section 4. It is observed in
Figure 1c that the relevance between the two domains sig-
nificantly increases after transformation.
Figure 1d shows the comparison of results among the

three analytical cases. For analytical Case 1, fromFigure 1d,

it is observed that the LS-SVMR model trained with 10
training sample points has a large bias in some areaswhere
the training sample points are not available. This is demon-
strated in Figure 1d by the dashed line (i.e., target only),
which has an apparent discrepancy from the solid line
(i.e., true function) in the areas where the training sample
points are not available as shown in Figure 1a. For ana-
lytical Case 2, as the source domain training data set is
not relevant to the target domain, and thus, the LS-SVMR
model trained with the 600 source domain training sam-
ple points has a significantly large bias for prediction on
the target domain. This is illustrated by the significant dis-
crepancy between the dotted line (i.e., source only) and the
solid line across almost all the areas represented by the
test data set in the target domain. For analytical Case 3,
the proposed DW-SVTR model is used and trained with
the combined training data set in the transformed space.
The proposed DW-SVTR model attributes more weight
to the source domain sample points that are close to the
10 target domain training sample points than the distant
source domain points. Hence, the proposed approach can
borrowmore relevant source domain sample points to aug-
ment the small set of target domain training sample points,
reducing the effect of small sample bias without sustaining
negative effects from those distant source domain points.
Also, the negative interferences of these distant source
domain points are further diminished by another weight
in the proposed DW-SVTR model, as introduced previ-
ously. The obtained three hyperparameters of the proposed
DW-SVTR for this typical representative is presented in
Figure 1d. The numerical experiment result predicted by
the DW-SVTR (dash-dot line in Figure 1d) agrees well with
the true function (solid line in Figure 1d), demonstrating
that the proposed DW-SVTR can reasonably predict all test
sample points in the target domain regardless of the unre-
lated nature of the two domains, and further, illuminat-
ing the powerful TL capabilities of the proposedDW-SVTR
approach.
The result comparisons of 10 random trials among

these three analytical cases are presented in Figure 2.
Figures 2a and 2b show their predictive performance
comparison over the 10 random trials using box plots
in terms of coefficient of determination (R2) and root
mean square error (RMSE), respectively. By observation of
Figure 2, the proposed DW-SVTR has the highest R2 and
the lowest RMSE among these three analytical cases in
terms of the median of the 10 random trials. Further, the
proposed DW-SVTR achieves the smallest performance
variation among these three analytical cases over the 10
random trials. Additionally, the obtained mean values of
R2 and RMSE over the 10 random trials for the source
only case are −7.57 and 135.64, for the target only case are
0.88 and 16.06, and for the proposed DW-SVTR case are
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256 LUO and PAAL

F IGURE 2 Comparison of the performance of the TL approaches over the 10 random trials using box plots in terms of R2 and RMSE. For
visual reasons, not all data are displayed for source only case

0.94 and 11.36. Therefore, it is evident that the proposed
DW-SVTR (i.e., Case 3) statistically performs the best in
comparison to the other two analytical cases, and ana-
lytical Case 2 (i.e., source only) statistically has the worst
performance.

5.2 Example 2: Shear strength
prediction of nonductile RC columns

In structural and earthquake engineering, ductile and
nonductile RC columns under earthquake loads have
different physical behaviors and failure modes. Ductile
columns typically have good seismic performance and
deformation capacity and will most likely experience flex-
ure failures under large earthquakes, whereas nonductile
columns have worse seismic-resistant capabilities, lead-
ing to flexure-shear and shear failures under earthquakes
(Moehle, 2014). Nonductile columns will easily cause the
global collapse of RC frame buildings under large earth-
quakes due to their associated shear strength deficiency.
Thus, it is critical and necessary to identify the shear
strength of nonductile columns before the occurrence of
large earthquakes such that these nonductile columns can
be reinforced and retrofitted to enhance their seismic per-
formance, avoiding the global collapse of RC frame build-
ings. The challenge is that there are a greater number
of tests performed on ductile columns than nonductile
columns. Thus, if nonductile columns are considered in
isolation, significant bias may be present in an ML model
due to the smaller size of this data set. Therefore, this
example intends to predict the shear strength of nonductile
columns using the proposed DW-SVTR model when the
availability of the training data set of nonductile columns
is limited, by transferring knowledge from a data set com-
posed of ductile columns.

5.2.1 Data sets

In this example, two column data sets, including rectan-
gular RC columns and circular RC columns, are used to
further assess the proposed DW-SVTRmodel in real-world
applications. Both of these two data sets are taken from
physical experiments. For the rectangular RC column data
set, there are a total of 262 sample points where 208 of them
are flexure-critical columns, which are classified as duc-
tile columns and the remaining 54 are shear- and flexure-
shear–critical columns, which are categorized as nonduc-
tile columns. For the circular RC column data set, there are
a total of 160 sample points where 98 of them are ductile
columns (i.e., flexure-critical columns) and the remaining
62 are nonductile columns (i.e., flexure-shear- and shear-
critical columns). For each data set, the input predictors
(i.e., explanatory variables) are column gross sectional area
(𝑋1), concrete compressive strength (𝑋2), column cross-
sectional effective depth (𝑋3), longitudinal reinforcement
yield stress (𝑋4) and area (𝑋5), transverse reinforcement
yield stress (𝑋6) and area (𝑋7), stirrup spacing to effec-
tive depth ratio (𝑋8), shear span to effective depth ratio
(𝑋9), and applied axial load (𝑋10), and the response vari-
ables are lateral strength (𝑦1) and drift capacity (𝑦2). Thus,
for either rectangular or circular section RC columns, the
data set is comprised of the same predictors and response
variables. The input predictors are selected to cover all the
aspects that can affect the seismic performance of an RC
column (Hua, Eberhard, Lowes,&Gu, 2019;Moehle, 2014).
The statistical properties for the 208 and 54 rectangular RC
ductile and nonductile columns and the 98 and 62 circu-
lar RC ductile and nonductile columns are summarized in
Tables 1 and 2, respectively.Note that someof the input pre-
dictors are normalized in Tables 1 and 2 to maintain com-
monly used terminologies. Because only the drift capacity
(i.e., 𝑦2) of ductile columns will be used to constitute the
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TABLE 1 Statistical range of material and geometric properties for the rectangular RC ductile and nonductile column database

Property Minimum Maximum Mean Std. dev
Shear span to effective depth ratio 1.5 (1.08) 8.40 (3.76) 4.19 (2.49) 1.52 (0.93)
Stirrup spacing to effective depth ratio 0.12 (0.11) 0.9 (1.14) 0.28 (0.5) 0.13 (0.33)
Concrete compressive strength (MPa) 20.6 (16) 118 (86) 55.4 (31.1) 29.7 (12.4)
Longitudinal reinforcement yield
stress (MPa)

339 (318) 635 (510) 445.7 (406.4) 62.35 (70.87)

Transverse reinforcement yield stress
(MPa)

255 (249) 1,424 (559) 509.4 (400.3) 235.97 (82.99)

Longitudinal reinforcement ratio 0.01 (0.013) 0.06 (0.04) 0.023 (0.024) 0.01 (0.005)
Transverse reinforcement ratio 0.0011 (0.0006) 0.03 (0.012) 0.009 (0.004) 0.006 (0.003)
Axial load ratio 0 (0) 0.8 (0.9) 0.25 (0.3) 0.17 (0.28)
Maximum shear force (kN) 32.16 (29.56) 1,338.80 (604.6) 218.84 (187.5) 191.82 (135.78)
Drift capacity (%) 0.72 9.39 3.93 1.91

Note: The values in the parentheses are for nonductile columns.

TABLE 2 Statistical range of material and geometric properties for the circular RC ductile and nonductile column database

Property Minimum Maximum Mean Std. dev
Shear span to effective depth ratio 1.76 (1.18) 10.49 (3.32) 4.78 (1.84) 1.98 (0.52)
Stirrup spacing to effective depth ratio 0.04 (0) 0.73 (0.58) 0.14 (0.21) 0.098 (0.12)
Concrete compressive strength (MPa) 22 (18.9) 90 (42.2) 40.64 (31.65) 17.31 (4)
Longitudinal reinforcement yield stress
(MPa)

240 (240) 565.4 (482) 425.35 (400) 65.68 (54.89)

Transverse reinforcement yield stress
(MPa)

207 (0) 1,000 (691.5) 460.47 (334.4) 152.2 (125.1)

Longitudinal reinforcement ratio 0.0046 (0.005) 0.0558 (0.05) 0.024 (0.03) 0.0098 (0.01)
Transverse reinforcement ratio 0.0013 (0) 0.0349 (0.0427) 0.012 (0.007) 0.0073 (0.007)
Axial load ratio 0.00 (0) 0.74 (0.57) 0.17 (0.11) 0.16 (0.12)
Maximum shear force (kN) 19.00 (75) 2,968.00 (985) 251.43 (295.39) 360.18 (156.58)
Drift capacity (%) 1.59 14.66 6.04 2.72

Note: The values in the parentheses are for nonductile columns.

source domain data (see Sections 5.2.2 and 5.2.3 for more
detailed information), the statistical properties for the drift
capacity of ductile columns are given. More detailed infor-
mation for the rectangular and circular RC column data
sets can be found in Luo and Paal (2018, 2019), respectively.
For each data set, we select the nonductile columns as

the target domain and the ductile columns as the source
domain. The main difference between ductile and non-
ductile columns is that the lateral strength for the duc-
tile columns is governed by flexural strength, whereas that
for nonductile columns is dominated by shear strength
(Moehle, 2014). The lateral strength is defined at the maxi-
mum shear force (kN) in the hysteretic force–deformation
curve. We designed 10 numerical experiments to suffi-
ciently assess the performance of the proposed DW-SVTR
approach based on these two data sets. For each data set,
the task for the target domain will always be the shear
strength prediction of nonductile columns, but the source

domain training data set will vary. The detailed informa-
tion is as follows.

5.2.2 Validation for rectangular
columns

For the rectangular columns, the target domain data
set is comprised of the 54 nonductile RC rectangular
columns with shear strength (i.e., 𝑦1) as the response
variable. Five numerical experiments are designed to
evaluate four different transfer strategies in comparison
to one baseline model. Experiment 1 corresponds to the
scenario where the source domain training data set
consists of the 208 rectangular ductile columns with
the flexural strength (i.e., 𝑦1) as the response variable.
Experiment 2 corresponds to the scenario where the source
domain training data set consists of the 208 rectangular
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F IGURE 3 Performance versus size of target domain training data availability in terms of (a) mean RMSE and (b) mean R2 for rectangular
columns over the 10 random trials

ductile columns with the drift capacity (i.e., 𝑦2) as the
response variable. Experiment 3 corresponds to the sce-
nario where the source domain training data set consists
of the 98 circular ductile columns with the flexural
strength (i.e., 𝑦1) as the response variable. Experiment
4 corresponds to the scenario where the source domain
training data set consists of the 98 circular ductile columns
with the drift capacity (i.e., 𝑦2) as the response variable.
Finally, Experiment 5 corresponds to the baseline, where
only the target domain training data set is used and no
transfer strategy is applied. It should be noted that drift
capacity (%) has an entirely different physical meaning
from shear strength (kN) (Moehle, 2014), which trans-
lates to a large discrepancy between the corresponding
numeric values. Further, the reinforcement layouts and
cross-section shapes of rectangular and circular columns
are also different. In this sense, Experiment 1 is analogous
to related joint distributions between the source and
target domains; Experiment 2 is analogous to related
marginal distributions but unrelated posterior distribu-
tions (i.e., 𝑝𝑆(𝑦|𝒙) ≠ 𝑝𝑇(𝑦|𝒙)); Experiment 3 is analogous
to unrelated marginal distributions (i.e., 𝑝𝑆(𝒙) ≠ 𝑝𝑇(𝒙))

but related posterior distributions; and, Experiment
4 is analogous to unrelated marginal and posterior
distributions (i.e., 𝑝𝑆(𝒙) ≠ 𝑝𝑇(𝒙) and 𝑝𝑆(𝑦|𝒙) ≠ 𝑝𝑇(𝑦|𝒙)).
Therefore, these five numerical experiments can thor-
oughly and effectively assess the performance of the
proposed DW-SVTR model.
For each experiment, the availability of the target

domain training data is apportioned as 10%, 15%, 20%, 25%,
30%, 35%, 40%, 45%, and 50% of the total target domain
data, and the test set for the target domain will be main-
tained at 50% of the total target domain data (mutually
exclusive from the target domain training data). For each
case of data availability, each experiment is run 10 times

with different random seeds to measure the performance
variability for the proposed DW-SVTR model for different
split of target domain training and test sets. This ensures
the results are statistically reliable. It should be noted that
for each run, the same target domain training and test sets
are applied for all five experiments mentioned above. For
Experiments 1 through 4, the proposed DW-SVTR model
is used, whereas for Experiment 5 (i.e., the baseline), LS-
SVMR is used. The comparison of results for these transfer
strategies and the baseline in each case of target domain
training data availability is shown in Figure 3, where both
R2 andRMSE are taken as the averages of theR2 andRMSE
over the 10 random trials.
From Figure 3, it is observed that, compared to the

baseline, both R2 and RMSE suggest that the proposed
DW-SVTR model significantly improves the prediction
performance when the target domain training data is
very small (i.e., only 10% availability). The RMSE is
decreased from 109.59 kN (in the baseline model) to
72.34 kN (Experiment 1), 96.22 kN (Experiment 2), 91.02 kN
(Experiment 3), and 97.52 kN (Experiment 4), resulting in a
reduction of 34%, 12%, 17%, and 11%, respectively. The R2 is
increased from 0.19 (Baseline) to 0.62 (Experiment 1), 0.40
(Experiment 2), 0.46 (Experiment 3), and 0.35 (Experiment
4), enhancing the performance by 229%, 110%, 142%, and
84%, respectively. With the increase in the size of the
target domain training data, the prediction performance
in terms of average RMSE and R2 values over the 10
random trials for all five experiments globally increases
(though a few locally decreases), and the improved
performance of the proposed DW-SVTR globally
decreases. This is because, with the increase of avail-
able target domain training data, the target domain
sample bias decreases, and thus, the performance differ-
ence between the baseline and the proposed approach also
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F IGURE 4 Boxplots for rectangular columns over 10 random trials based on four different transfer situations and one baseline in terms
of (a) RMSE and (b) R2. The values on the x-axis represent the experiment number as described in Section 5.2.2. For visual reasons, not all data
is displayed for some experiments

decreases. According to different transfer strategies, the
improved performance by the proposed DW-SVTR also
varies. The most significant performance improvement in
terms of both RMSE and R2 is in Experiment 1, followed
by Experiment 3, and Experiment 2 is comparable to
Experiment 4. However, both Experiments 2 and 4 are
outperformed by Experiment 3. It is worth noting that the
proposed DW-SVTR model also works for Experiment 2
where the posterior distributions between the source and
target domains are unrelated and for Experiment 4 where
both the marginal and posterior distributions are unre-
lated, as introduced previously. This further demonstrates
that the proposed approach is effective even if the source
and target domains are unrelated. The comparison of per-
formance variability over the 10 random trials in each case
is reported by way of boxplots in Figure 4. From Figure 4,
it is observed that, compared to the baseline, the proposed
DW-SVTR statistically improves the performance in terms
of the median of 10 random trials for all four transfer
strategies.

5.2.3 Validation for circular columns

For the circular columns, the target domain data set is com-
prised of the 62 nonductile circular columns with shear
strength (i.e., 𝑦1) as the response variable.Experiment 1 cor-
responds to the scenario where the source domain train-
ing data set consists of the 98 circular ductile columns
with the flexural strength (i.e., 𝑦1) as the response variable.
Experiment 2 corresponds to the scenario where the source
domain training data set consists of the 98 circular ductile

columns with the drift capacity (i.e., 𝑦2) as the response
variable. Experiment 3 corresponds to the scenario where
the source domain training data set consists of the 208 rect-
angular ductile columns with the flexural strength (i.e.,
𝑦1) as the response variable. Experiment 4 corresponds to
the scenario where the source domain training data set
consists of the 208 rectangular ductile columns with the
drift capacity (i.e., 𝑦2) as the response variable. Experi-
ment 5 also corresponds to the baseline, as introduced in
Section 5.2.2. The same validation procedure described in
the previous section is also utilized here. The compari-
son among these four transfer strategies and the baseline
in each case of target domain training data availability is
shown in Figure 5, where both R2 and RMSE are taken as
the averages of the R2 and RMSE over 10 random trials.
From Figure 5, it is observed that when the availability

of target domain training data is 10%, the R2 for the base-
line is negative, which means the fully trained LS-SVMR
model for the baseline has a significantly large bias and
thus breaks down. In this case, the proposed DW-SVTR
can still improve the performance of the baseline. Addi-
tionally, when the availability of target domain training
data is 15%, both R2 and RMSE suggest that the proposed
DW-SVTR approach significantly improves the prediction
performance of the baseline. The RMSE is decreased from
143.38 kN (Baseline) to 110.48 kN (Experiment 1), 129.07 kN
(Experiment 2), 128.57 kN (Experiment 3), and 135.66 kN
(Experiment 4), resulting in a reduction of roughly 23%,
10%, 10%, and 5%, respectively. The R2 value is increased
from 0.16 (Baseline) to 0.49 (Experiment 1), 0.33 (Exper-
iment 2), 0.31 (Experiment 3), and 0.19 (Experiment 4),
enhancing the performance by roughly 206%, 106%, 94%,
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F IGURE 5 Performance versus size of target domain training data availability curve in terms of (a) mean RMSE and (b) mean R2 for
circular columns over the 10 random trials

(a)                                                                           (b)

F IGURE 6 Boxplots for circular columns over 10 random trials based on four different transfer situations and one baseline in terms of
(a) RMSE and (b) R2. The values on the x-axis represent the experiment number as described in Section 5.2.3. For visual reasons, not all data is
displayed for some experiments

and 19%, respectively. With the increase of the size of the
target domain training data, a similar trend reflected in
the rectangular columns is also captured for the circu-
lar columns. According to different transfer strategies, the
improved performance by the proposed DW-SVTR also
varies. The most significant improvement for both RMSE
and R2 is again in Experiment 1, followed by Experiment
3. Experiment 2 is slightly better than Experiment 4, but
both are outperformed by Experiment 3. This investigation
agrees well with that for the rectangular column valida-
tion. The comparison of performance variability over the
10 random trials in each experiment is also reported as box-
plots in Figure 6. By observation of Figures 6a and 6b, the
median values of both RMSE and R2 for all four transfer

strategies (i.e., Experiments 1–4) are better than the base-
line (i.e.,Experiment 5)when the size of target training data
is small. Therefore, it is evident that, compared to the base-
line, the proposedDW-SVTR statistically improves the per-
formance in terms of the median of 10 random trials for all
four transfer strategies, as observed for the rectangular col-
umn data set.

5.3 Discussion of results

The results obtained for both the simulated data and the
multidimensional real-world data presented herein sug-
gest that the proposed DW-SVTR approach can reduce
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the effect of sample bias induced by a small data set and
improve the overall prediction performance substantially.
Further, the proposed DW-SVTR model is also validated
for two unrelated domains with both marginal and poste-
rior distributions, which are different (i.e., 𝑝𝑆(𝒙) ≠ 𝑝𝑇(𝒙)

and 𝑝𝑆(𝑦|𝒙) ≠ 𝑝𝑇(𝑦|𝒙)).
The simulated example clearly illustrates how the pro-

posed approach reduces the effect of small sample bias
and improves the prediction performance for two unre-
lated domains. The real-world examples explicitly investi-
gate the performance of the proposed approach in terms of
target domain training data availability and different trans-
fer strategies. For the relation between performance vari-
ability and target domain training data availability over 10
random trials, it is observed that the apparent performance
variability is present when the size of target domain train-
ing data is small (e.g., 10% availability) (Figures 4 and 6).
Further, with an increase in the target domain training
data availability, the performance variability decreases in
general. This is because when the target domain train-
ing data set is small (e.g., 10% availability), different ran-
dom seeds (i.e., 10 random trials) produce target domain
training data that has different levels of small sample bias
for corresponding test data. This causes the variation of
improvement in performance, leading to apparent per-
formance variability. When the size of the target domain
training data increases, the difference among these levels
of small sample bias decreases, producing relatively lower
performance variability. For the relation between perfor-
mance variability and different transfer strategies, all of the
numerical results suggested thatExperiment 1 produces the
best performance improvement. This could be explained
by the fact that, compared to other transfer strategies,
Experiment 1 is associated with the source domain that
is most related to the target domain as explained in Sec-
tion 5.2.2, which means that the source domain data can
provide more useful information for the proposed DW-
SVTR model to reduce the effect of small sample bias
and improve the prediction performance. Notably, even for
the case where there are two irrelevant domains, the pro-
posed approach is still able to seek useful information from
the source domain data to enhance the prediction perfor-
mance in the target domain if there is shared information
in the transformed space.
The successful validation of the proposed method for

the knowledge transfer between two irrelevant domains
under this premise in regression settings has emphasized
its widespread potential. This approach can be employed
regardless of the problem or discipline to reduce the effect
of small sample bias in regression scenarios by augmenting
small data sets with useful data from a relevant or irrele-
vant large data set. This will be extremely powerful in sce-
narios where large data are difficult to acquire, whether

that be due to the high economic or computational cost of
experimental tests or simulations, or due to the complex
nature of acquiring real-world data. For example, in CE,
due to the expensive cost associated with full-scale physi-
cal experiments of structures, it is often difficult to perform
a sufficient number of experimental tests to investigate the
structural behavior of a new design, material, construction
method, or load. However, with the proposed method, it
is possible to augment a small number of tests with useful
data from an easily available large data set (e.g., data set
from economic ormedical domains or somethingmore rel-
evant such as the ductile vs. nonductile example). In this
sense, the proposed approach can be employed in count-
less ways to reduce our reliance on physical testing, mini-
mize computational expense, and minimize actual cost.

5.4 Limitations and future works

Although the proposed TL method has shown good per-
formance on both synthetic and real data for regression
transfer between two domains, it does have some limita-
tions. One of the key limitations is that the target domain
data should be close to the source domain data in the trans-
formed space. This is because in the proposed method,
one coupled weight function assigns larger weights to the
source domain data points close to the target domain data
than those source domain points, which are more distant.
The source domain data points with larger weights are
more relevant to the target domain data and thus play
an important role in prediction on the target domain. For
source domain points with smaller weights, they are most
likely irrelevant and play a lesser role. Additionally, these
points with smaller weights can be thought of as outliers,
because they are distant from the target domain data. Their
negative interference can be further diminished by another
coupled weight function. In this way, the performance
improvement by the proposed approach for the prediction
in the target domain can be achieved with the help of the
source domain points with larger weights. Therefore, once
there is no nearby source domain data in the transformed
space (i.e., all the source domain data are distant from
the target domain data), the coupled weight functions will
assign smallerweights to all the source domain data points.
The proposed approach is not able to improve the predic-
tion performance on the target domain under this circum-
stance, because there would be no source domain points
with larger weights that can be transferred to improve the
prediction performance on target domain.
Another limitation of the proposed method is addi-

tional data transformation techniques were not tested.
The use of appropriate data transformation methods has
been proven to improve prediction performance (Han,
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Pei, & Kamber, 2011). Further, data transformation tech-
niques could be useful to eliminate the effects of different
ranges of values, which can transform the data in differ-
ent domains into the same transformed space. In this way,
some information that is not shared between two domains
in the original space may be shared in the transformed
space. Future works will explore more data transforma-
tion methods such that more shared information between
two different domains can be exploited in the transformed
space.
Additionally, because the proposed TL method is also

an ML model, some properties that ML methods have are
also applicable to the proposed method. Like all the ML
methods, the proposed method can accurately predict the
response within the input ranges of the target domain
training set. Outside of these ranges, it cannot necessar-
ily reliably be used for prediction. In this case, the pre-
dicted results must be carefully checked with the phys-
ical knowledge or experts. This is because the proposed
TL method can transfer source domain points with larger
weights to improve the prediction performance on target
domain. This means that only source domain points close
to the target training data in the transformed space are
utilized and other distant source domain points are aban-
doned due to their smaller weights. Thus, the useful infor-
mation from source domain data is limited to the input
ranges of the target training data.

6 CONCLUSIONS

A novel regression-based TL approach is proposed to
reduce the negative effect of sample bias for small data
sets. The proposed TL model is termed DW-SVTR, which
couples LS-SVMR with two weight functions. The model
formulation and implementation are introduced in detail.
Numerical experiments are performed on two types of data
sets to comprehensively demonstrate the advantages of
the proposed approach: simulated data sets and multidi-
mensional real-world (experimental) data sets. The simu-
lated data set example shows how the proposed approach
reduces the negative effect of small sample bias and
improves the prediction performance for two unrelated
domains.Moreover, the real-world data set example explic-
itly investigates the performance of the proposed approach
in terms of target domain training data availability and dif-
ferent transfer strategies. The results from both examples
ultimately show that the proposed approach can transfer
useful information from the source domain (large data set)
to the target domain (small data set), effectively reducing
the small sample bias of the target domain (small data set).
Further, the results also demonstrate that the proposed
approach is still valid for transfer between two irrelevant

domains if there is shared information in the transformed
space.
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