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Abstract
The permafrost–fire–climate system has been a hotspot in research for decades under a warming
climate scenario. Surface vegetation plays a dominant role in protecting permafrost from summer
warmth, thus, any alteration of vegetation structure, particularly following severe wildfires, can
cause dramatic top–down thaw. A challenge in understanding this is to quantify fire-induced thaw
settlement at large scales (>1000 km2). In this study, we explored the potential of using Landsat
products for a large-scale estimation of fire-induced thaw settlement across a well-studied area
representative of ice-rich lowland permafrost in interior Alaska. Six large fires have affected
∼1250 km2 of the area since 2000. We first identified the linkage of fires, burn severity, and land
cover response, and then developed an object-based machine learning ensemble approach to
estimate fire-induced thaw settlement by relating airborne repeat lidar data to Landsat products.
The model delineated thaw settlement patterns across the six fire scars and explained ∼65% of the
variance in lidar-detected elevation change. Our results indicate a combined application of
airborne repeat lidar and Landsat products is a valuable tool for large scale quantification of
fire-induced thaw settlement.

1. Introduction

Fire is the largest driver shaping the diverse boreal
ecosystems in interior Alaska where ∼40% is under-
lain by ice-rich permafrost (Jorgenson et al 2022).
Effects of wildfires on permafrost such as active layer
thickness and thermokarst development are well doc-
umented (e.g. Jorgenson et al 2010, Brown et al 2015,
Douglas et al 2015, Jones et al 2015, Minsley et al
2016), and recently reviewed by Holloway et al (2020)
and Li et al (2021). The mechanisms of fire in chan-
ging permafrost ecosystems have been recognized:
severe wildfire removes the vegetation and surface
soil organic matter, and the loss of this insulation
increases the ground heat flux and promotes per-
mafrost thaw. In areas of ice-rich permafrost, thaw

triggers ground subsidence and thermokarst devel-
opment, leading to surface water inundation, veget-
ation shifts, changes in soil carbon balance and car-
bon emissions, that can provide positive feedback
to climate warming (Douglas et al 2014). Recent
research of the role of fire in permafrost landscapes
has focused on determining which variables control
post-fire permafrost behavior, the interactive effects
of fire and climate on permafrost degradation and
resilience, and modeling and predicting post-fire resi-
lience (Holloway et al 2020).

Research interest in the permafrost–fire–climate
system has been growing. Current and future pro-
jected increases in mean annual air temperature, the
length of the summer growing season, and the sever-
ity and extent of wildfire are expected to lead to an
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increasingly dominant role of wildfire in permafrost
ecosystems (Gibson et al 2018). One challenge in
understanding this system is to quantify fire-induced
thaw settlement which is a gentle and continuous
ground subsidence as the ice melts and the active
layer deepens downward into near-surface perma-
frost (Anders et al 2020). Thaw settlement is difficult
to measure as there are often no absolute reference
frames to compare to the subtle but widespread topo-
graphic change in permafrost landscapes (Anders
et al 2020). Mapping fire-induced thaw settlement
is critical as it is associated with subsequent ther-
mokarst development, snow accumulation, hydro-
logy, vegetation shifts, and commensurate changes in
the land-atmospheric exchange of water, energy, and
greenhouse gases. Efforts have been made to estim-
ate fire-induced permafrost thaw settlement using
spaceborne interferometric synthetic aperture radar
(InSAR) techniques (Liu et al 2014, Molan et al 2018,
Michaelides et al 2019, Yanagiya and Furuya 2020).
Constraints of InSAR for such applications include
interferometric phase decorrelation (Antonova et al
2018), and loss of image coherence across large areas
within a burn (Jones et al 2015).

Airborne lidar is so far the best technique to gen-
erate accurate and fine resolution (<5 m) digital
elevation models (DEMs) for a variety of terrestrial
applications (Dong and Chen 2018). The applica-
tion of lidar for cryospheric studies has been increas-
ing but has been limited in permafrost landscapes
(Bhardwaj et al 2016). Ideally, repeat lidar measure-
ments can accurately estimate and map thaw settle-
ment with a fine resolution, which is evidenced by
Jones et al (2013), Jones et al (2015), Douglas et al
(2021) and Rodenhizer et al (2022). However, repeat
lidar has been seldom applied to quantify elevation
changes in fire-influenced permafrost terrains. This
is attributable to the high cost for lidar data acquis-
ition, and a limited spatial coverage of airborne plat-
forms compared to the spaceborne sensors. Chasmer
and Hopkinson (2017) applied repeat lidar to char-
acterize permafrost loss. The work from Jones et al
(2015) is the only effort analyzing post-fire repeat
lidar for detecting subsidence caused by the 2007Ana-
ktuvuk River tundra fire which burned ∼1000 km2

in northern Alaska. Multi-temporal lidar is a use-
ful means detecting fire-induced terrain subsidence
and thermokarst development since it allows for a
direct measure of land surface elevation relative to
a geodetic reference frame. Lidar-detected subsid-
ence is highly related to Landsat-derived differenced
Normalized Burn Ratio (dNBR), and the trend of
post-fire multispectral indices such as Normalized
Difference Vegetation Index (NDVI) and Normal-
ized Difference Moisture Index (NDMI) (Jones et al
2015). dNBR is a variable developed from adjacent
pre-fire and post-fire optical imagery to estimate

burn severity, which plays a critical role in post-
fire permafrost degradation and resilience (Keeley
2009). Multispectral indices NDVI and NDMI indic-
ate vegetation succession, which is coupledwith topo-
graphic change, and other interactions in post-fire
permafrost environments. A linkage of repeat lidar
with optical satellite sensors like Landsat through
modern machine learning modeling techniques may
provide potential for large-scale quantification of
fire-induced thaw settlement across broader, recently
burned regions, as well as other historic fires.

The Tanana Flats (∼2500 km2), a representat-
ive lowland landscape south of Fairbanks in interior
Alaska, consists of a complex mosaic of ice-rich per-
mafrost and permafrost free ecosystems. The region
is a hotspot for thermokarst, and ground collapse
caused by thawing permafrost (Jorgenson et al 2020,
2022). Much of the land is part of a military training
area managed by the U.S. Department of Defense. In
the past two decades, six large fires with burn scars
larger than 20 km2 have occurred and influenced a
total of 1250 km2 (∼50%) across this training area.
The large scale effects of these fires on land cover
change, post-fire resilience, and subsequent thaw set-
tlement remain unknown, although analyses using
data collected along several transects have revealed
fire-induced permafrost degradation over this area
(Brown et al 2015, Douglas et al 2015). To further
understand the effects of disturbance from fires and
climate warming on the Tanana Flats training site, the
U.S. ArmyCorps of Engineers (USACE)ColdRegions
Research and Engineering Laboratory coordinated
the collection of airborne repeat lidar that partly over-
lapped with the fire scars. This provides a unique
opportunity to quantify fire-induced thaw settle-
ment and assess the capacity of operational Land-
sat products for characterizing fire-influenced perma-
frost terrains.

In this study, we systematically analyzed the
effects of six large fires that occurred since 2000 on the
Tanana Flats lowland on land cover change, vegeta-
tion dynamics and terrain subsidence, and for the first
time developed a machine learning based ensemble
approach to quantifying fire-induced thaw settle-
ment across the entire Tanana Flats by linking limited
repeat lidar measurements with Landsat products.
We assessed three commonly used machine learn-
ing algorithms including artificial neural network
(ANN), support vector machine (SVM) and random
forest (RF) for fire-induced thaw settlement model-
ing. Machine learning has been extensively applied
for modeling in geosciences as reviewed by Dramsch
(2020) and Sun et al (2022). Our logic is that each
algorithmhas its pros and cons, and an ensemble ana-
lysis (EA) of comparative models can produce a more
robust estimation than the application of a single
model. In addition, a spatial uncertainty map can be
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created based on analyses of multiple model outputs
to complement the traditional statistical error met-
rics (Zhang et al 2022). The specific objectives were
to: (a) characterize the response of vegetation to fires
using time-series Landsat products; (b) analyze repeat
lidar-derived elevation changes related to vegetation
shift and burn severity; (c) assess the performance
of machine learning algorithms for upscaling lidar-
detected permafrost thaw settlement; and (d) identify
fire-induced subsidence patterns across the Tanana
Flats lowland.

2. Study area, data, and fire history

The Tanana Flats lowland in interior Alaska is under-
lain by discontinuous permafrost (figure 1). It is situ-
ated in a large, abandoned floodplain and alluvial
fan, and receives deposits from the fluvial and gla-
ciofluvial sediments of the Alaska Range to the south
(Jorgenson et al 1999). Tanana Flats has a gentle elev-
ation gradient of approximately 1 m km−1 declin-
ing from southeast to northwest. The Tanana River,
the largest tributary of the Yukon River, forms the
boundary around the northern portion of Tanana
Flats. Land cover types include evergreen forest
(spruce), deciduous forest (birch), shrubland, fen,
bog, streams, and open water bodies. Field photos of
the major land cover types are provided in Figure SI1.
Forests are generally located on ice-rich permafrost
plateaus elevated above fens and bogs formed in ther-
mokarst depressions. Approximately 50% of this area
is in some stage of permafrost degradation caused by
fires and climate warming (Jorgenson et al 1999). The
climate in interior Alaska is continental, with annual
mean precipitation of 28 cm, a typical annual snow-
fall of 1.7 m, and a wide variation of seasonal mean air
temperature ranging from −40 ◦C in winter to 25 ◦C
in summer.

Data used in this study include historical fire
perimeters from the Alaska Interagency Coordina-
tion Center (AICC), Landsat derived dNBR products
from the National Aeronautics and Space Adminis-
tration (NASA)’s Arctic-Boreal Vulnerability Exper-
iment (ABoVE, Goetz et al 2022) (Loboda et al
2018), Landsat derived annual dominant land cover
across the ABoVE core domain, 1984–2014 (Wang
et al 2019), Landsat 8 Collection 2 Level 2 surface
reflectance products from the U.S. Geological Sur-
vey (USGS) Earth Explorer, and airborne repeat lidar
measurements in 2014 and 2020 for USACE. The
USACE contracted with the Quantum Spatial Incor-
porated (Anchorage, Alaska) for lidar data collection
using a Lecia ALS80 laser system to yield an average
pulse density of ⩾25 points m−2 over the targeted
lidar survey area (∼40 km2, figure 1(b)). The vendor
processed the lidar point cloud data and generated
a 0.25 m hydro-flattened DEM product. The hydro-
flattening process eliminated artifacts in the digital
terrain caused by both increased variability in ranges

or dropouts in laser returns due to the low reflectivity
of water. However, limited water bodies appeared in
our study area, and they were not within the fire scars.
The 2014 lidar was collected on May 9–11, and 2020
lidar was acquired on May 17–18, in a period of 95%
snowmelt with leaf-off conditions.

Six major fires occurred since 2000 including
the 2001 Survey Line Fire (472 km2), 2004 Wil-
low Creek Fire (28 km2), 2009 Wood River 1 Fire
(507 km2), 2010 Willow Creek Fire (56 km2), 2011
Bonnifield 1 Fire (35 km2), and 2012 Dry Creek Fire
(191 km2) (figure 1). Partial scar of the 2001 fire
and the complete scar of 2004 fire were reburned
by the 2009 fire. Examples of field photos of burns
and vegetation changes after fires 2001 and 2010 are
provided in figure SI2. Because the latest big fire
occurred in 2012, we selected six snow and cloud
free Landsat 8 scenes after 2012 and calculated annual
time series NDVI for modeling. These were collected
on 06/18/2013, 08/08/2014, 07/12/2016, 06/13/2017,
07/05/2019, and 07/01/2021, respectively. Landsat 5
and 7 data products were also available following
some fires but were not used in this study to reduce
uncertainties of reflectance difference across Land-
sat sensors (Flood 2014, Roy et al 2016). Landsat 8
products are only available since 2013.

3. Methodology

To examine the response of vegetation to fires, we
selected land cover data for years 2000, 2002, 2008
and 2014 from NASA’s ABoVE annual dominant land
cover products and calculated the gain and loss of
major land cover classes caused by the six fires. The
change between 2000 and 2002 could illustrate the
disturbance from the 2001 fire, change between 2002
and 2008 could reveal the effects from the 2004 fire,
while change between 2008 and 2014 could document
the combined influence from four fires between 2009
and 2012. We selected the dNBR data for each fire
from NASA’s ABoVE dNBR product and subset it to
the fire scar defined by the AICC fire perimeter data-
set.Wemosaiced the dNBR for the entire Tanana Flats
to be used for model development and analysis. We
used the dNBR from the first fire that occurred for
the reburned areas where a larger dNBR was observed
from the first fire than the second fire because the first
fire had burned down the vegetation. We calculated
time-series NDVI from the selected Landsat 8 surface
reflectance datasets, and similarly calculated NDMI
to assess its contribution for estimating fire-induced
thaw settlement.

To examine the capacity of Landsat products for
upscaling thaw settlement detected by repeat lidar
data, we developed an object-based machine learn-
ing ensemble approach that has proven powerful
for thaw depth and snow depth estimation in per-
mafrost ecosystems of interior Alaska using optical
imagery and lidar DEMs (Douglas and Zhang 2021,
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Figure 1. Study area in (a) interior Alaska. (b) Tanana Flats shown in a natural color composite of Landsat 8 imagery collected on
08/08/2014 along with the perimeters of six major fires, and the location of repeat lidar surveys conducted in 2014 and 2020.

Zhang et al 2021). We first determined the lidar-
detected subsidence by analyzing the errors from
lidar measurements (section 3.1), and then linked
the detected subsidence with Landsat-derived reflect-
ance, dNBR, and spectral indices at the object level
to identify a quantitative relation between the target
variable (subsidence) and predictors (Landsat vari-
ables) using machine learning regression algorithms.
The models were assessed using traditional error
metrics including correlation coefficient (r), mean
absolute error (MAE), and root mean square error
(RMSE). If the models were comparable, we applied a
weighted ensemble approach to combine the outputs
from multiple models to make the prediction more
robust (section 3.3.2).Major steps for upscaling lidar-
detected subsidence include determination of thaw
settlement using repeat lidar, object-based data pro-
cessing, machine learning ensemble model develop-
ment, assessment, and mapping applications. They
are described below.

3.1. Thaw settlement detection using repeat lidar
Lidar DEMs have errors which should be considered
because they will propagate into the DEM of differ-
ence (DoD) for elevation change analysis (Wheaton
et al 2010). Based on the vendor’s 2014 lidar report,
the accuracy of the lidar DEM was assessed based on
a total of 183 ground control points (GCPs) meas-
ured using real time kinematic and post processed
kinematic techniques across five land cover classes
defined by the USGS: mixed forest, grasslands/herb-
aceous, shrubland, wetlands, and barren. Lidar data
vertical accuracy was reported using the fundamental

vertical accuracy designed to meet guidelines in Fed-
eral Geographic Data Committee National Stand-
ard for Spatial Data Accuracy. A summary of the
lidar accuracy is listed in table 1. For the 2020 lidar,
the vendor only reported errors for vegetated area
(23.2 cm) and non-vegetated area (5.1 cm) but did
not provide errors for each land cover class. Since
both 2014 and 2020 lidar data were collected by the
same vendor using the same laser system, similar set-
tings, and time (May 2014 and 2020), we thus used
the 2014 reported errors in this study. Connecting
this error table with the 2014 land cover dataset, we
developed an error layer and calculated the propag-
ated error in DoD using an equation revised from
Wheaton et al (2010) as below:

δUDoD =

√

δZ2020
2 + δZ2014

2 (1)

where δUDoD is the propagated error in DoD, and
δZ2020 and δZ2014 are individual errors in 2020 DEM
and 2014 DEM, respectively. Since we assumed 2020
and 2014 had the same errors across the eight land
cover classes appeared in the burned areas, these two
variables used the same values in table 1. We selected
the conservative 95th percentile error for each land
cover class defined by the ABoVE 10-class classific-
ation system for the burned areas (table 1) to cal-
culate the accumulative error. Any elevation changes
in DoD (|2020 DEM minus 2014 DEM|) less than
δUDoD were considered noise and dropped in further
analysis. The repeat lidar measurements within the
unburned areas and the 2001 fire was also dropped
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Table 1. Lidar DEM error (cm) in terms of mean, STD 1σ), RMSE, 95th percentile, and the number of GCPs used to assess the vertical
accuracy for each land cover class within the fire scars.

Land cover Mean STD RMSE 95th percentile Number of GCPs

Evergreen forest 1.0 5.5 5.5 8.9 42
Deciduous forest 1.0 5.5 5.5 8.9
Shrubland 1.3 6.1 6.1 11.3 39
Herbaceous 2.9 2.9 4.0 6.7 17
Sparse vegetation 0.4 3.0 3.0 6.4 57
Barren 0.4 3.0 3.0 6.4
Fen 3.8 5.7 6.8 12.8 28
Bog 3.8 5.7 6.8 12.8

because our interest was fire effects and the large time
gap between the 2001 fire and the 2014 lidar acquis-
ition. Therefore, lidar detected subsidence over the
2010 fire was analyzed and used for model develop-
ment. The mean and standard deviation (STD) of
δUDoD across the 2010 fire was 13.6 cm and 3.3 cm,
and about 45% were dropped based on the threshold
method.

3.2. Object-based data processing
The object-based image analysis (OBIA) segments
imagery into relatively homogeneous objects. It is
more accurate than the pixel-based analysis because
an object ismore representative than any pixels within
this object and using the spectral mean of an object
in a model can reduce the local spectral noise/vari-
ance caused by surrounding pixels (Dronova 2015).
We selected the OBIA in the upscaling and generated
image objects from the 2014 Landsat imagery using
the multiresolution segmentation algorithm in eCog-
nition Developer 10.0 (Trimble 2020). This algorithm
starts with a 1 pixel image segment and merges
neighboring segments together until a heterogeneity
threshold is reached. A challenge using OBIA is to
select an appropriate scale parameter given its effects
on modeling and mapping results. We applied the
commonly used ‘trial-and-error’ approach to select
an optimal scale parameter. We selected the 2014
imagery to generate objects because lidar data was
collected in 2014 and no snow and cloud free imagery
was available for 2020. Following segmentation, we
extracted the spectral mean for each object, and cal-
culated two spectral indices NDVI and NDMI. We
also calculated annual time-series NDVI for each
object to examine their contribution in thaw set-
tlement estimation. Landsat 8 images collected dur-
ing 2013–2021 for time series NDVI calculation were
provided in section 2. The mean lidar-detected sub-
sidence was calculated for objects where lidar meas-
urements were available, which was spatially matched
to Landsat variables at the object level for model
development. In total, we obtained 284 matched
objects across different land cover types with varying
burn severity, which were used for training and test-
ing the model.

3.3. Machine learning ensemble modeling,
mapping, and accuracy assessment
3.3.1. Machine learning modeling
Our preliminary analysis showed that the relation
of subsidence and Landsat predictors was nonlinear
due to the complicated post-fire permafrost response.
Machine learning algorithms are valuable in quantify-
ing the nonlinear relation and thus were explored. We
selected three popular machine learning algorithms,
ANN, SVM and RF, for subsidence modeling based
on an exploration of many algorithms integrated
in the open-source machine learning software pack-
age Waikato Environment for Knowledge Analysis
(WEKA) (Hall et al 2009). ANN is a sophisticated
machine learning algorithm that has been widely
applied in remote sensing classification, as reviewed
by Mas and Flores (2008). We selected the com-
monly used multilayer perceptron method which sets
up multiple layers connected by weights to train a
model in a nonlinear manner. This algorithm needs
to set the number of hidden layers, learning rate
and the number of training cycles. SVM is a popular
approach (Vapnik 1995) which has also been broadly
used in remote sensing, as reviewed by Mountrakis
et al (2011). In SVM, parameters including a kernel
to be used, precision and penalty need to be specified.
RF is a tree-based ensemble approach that constructs
numerous small regression trees contributing to the
predictions (Breiman 2001), as reviewed by Belgiu
and Drãguţ (2016) for remote sensing applications.
Two parameters need to be defined in RF: the num-
ber of decision trees to create and the number of ran-
domly selected variables considered for splitting each
node in a tree. We tuned each model using the exper-
imenter function in WEKA which can determine the
best model by setting different parameter through a
cycling procedure.

3.3.2. Ensemble estimation for mapping thaw
settlement
Each algorithm has its pros and cons, and these
algorithms may generate similar accuracy in terms of
reference samples but different predictions across a
large area. An EA of comparative models can pro-
duce a more robust estimation than the application
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of a single model. In addition, the application of mul-
tiple models can generate a spatial uncertainty map
to complement the traditional statistical metrics used
for error analysis (Zhang et al 2021, 2022). We used
a weighted combining scheme developed by Zhang
et al (2018) based on r derived from each model to
integrate predictions from different models. If model
i (i = 1, 2, … M) has a correlation coefficient ri, then
the final prediction of subsidence S is calculated as:

S =
∑ riSi

∑M
i=1ri

(2)

where Si is the prediction from model i, and M is the
total number ofmodels in the EA. In this way, amodel
with a larger r obtains a higher weight, and the sum
of weights is 1.0. To make the prediction more robust,
at least two models which voted subsidence (negative
elevation change) were combined for estimation.

3.3.3. Model accuracy assessment and uncertainty
mapping
We applied the commonly used k-fold cross valida-
tion method to calibrate and validate each algorithm.
The k-fold cross validation randomly splits the refer-
ence samples into k equal groups, and then iterates the
model k times. In each iteration, one group is used
to assess the model, and the remaining k-1 groups
are used to train the model. In this way it can avoid
over-fitting issues if the same dataset is used for both
training and testing. We set k to 10, a common value
used in literature. Setting of k was detailed in Anguita
et al (2012). After the iteration, prediction was gen-
erated for each matched sample and could be used to
evaluate model performance by calculating statistical
metrics including r, MAE, and RMSE. If EA is used
for predicting subsidence, the STD of multiple model
outputs to the ensemble prediction (here after refer-
ring to as STDE) can be calculated to map the uncer-
tainty in prediction caused by the application of dif-
ferent models. STDE is calculated as:

STDE =

√

∑M
i=1(Si − S)2

M
(3)

where Si, S, and M are same variables as in equation
(2).

4. Results

4.1. Burn severity, vegetation change, and
lidar-detected subsidence
The mosaiced burn severity quantified by the dNBR
across the six fires is displayed in figure 2(a), and land
cover types in 2014 (post-fire) and 2000 (pre-fire) are
displayed in figures 2(b) and (c). The total coverage,
and percentage of major land cover types in 2000,
2002, 2008 and 2014 across the entire Tanana Flats,
and areas associated with fires were calculated and
summarized in table SI1 and illustrated in figure 3.

Burn severitywas heterogeneouswithin a fire scar and
across the six fire scars. The blank stripes in the dNBR
map were caused by the lack of data from Landsat
7 due to the failure of Scan Line Corrector after 31
May 2003 in the dNBR dataset (Loboda et al 2018).
In terms of the burn severity levels defined by the
USGS and the 2000 land cover map, we analyzed areas
with dNBR larger than 100 (totaling 842 km2) for
each major land cover within the AICC fire perimet-
ers (table SI2). The greatest damage occurred in ever-
green forest which accounted for 80% on the affected
area. Fen was the second largest ecosystem associated
with burned areas, but we attribute the burn estim-
ates to problems with classifying land cover and burn
severity in fens rather than to fires. Fen was reported
to have the lowest user’s accuracy (61%) among the
identification of ten classes in NASA ABoVE annual
dominant land cover product (Wang et al 2019).

The change between the land cover maps in 2000
and 2014 further illustrated the fire effects on the
evergreen forest which covered 1177 km2 (46.5% of
the area) in 2000 before the six fires but was reduced
to 775 km2 in 2014 as the result of 2001 fire burned
∼120 km2, the 2004 fire burned ∼50 km2, the 2009–
2012 fires burned ∼230 km2. In total, ∼400 km2

(57%) of the Evergreen Forest within the fire peri-
meter was affected. Deciduous forest covered ∼7.8%
of the area in 2000 and was reduced by only 0.8% after
fires. Fires resulted in the expansion of Shrubland
from a pre-fire areal extent of 548 km2 (21.6%) to a
post-fire areal extent of 720 km2 (28.4%). This expan-
sion is distinct across the 2001 fire scar (figures 2(b)
and (c)) and better evidenced by the increase of
∼144 km2 between 2000 and 2008, but only∼28 km2

between 2008 and 2014. This indicates that it might
take more than 6 years for a complete encroachment
of shrubs after a fire. The expansion of shrubs in the
2009 fire is also clear. The removal of vegetation by
fires was also illustrated by the large increase in sparse
vegetation defined as areas with 20%–50% vegeta-
tion coverage (Wang et al 2019) from 15 km2 (0.6%)
to a post-fire areal extent of 296 km2 (11.7%). Fens
covered ∼23% of Tanana Flats and were reduced by
2.6% after fires. The decrease in fens, however, is
inconsistent with observations that wet, herbaceous
fens do not burn and the reported increase in fens
from permafrost degradation (Jorgenson et al 2020).
The change, again, was more likely due to difficulties
in classifying fens with seasonally variable water levels
and herbaceous cover.

Figure 4 shows the lidar DoD and detected thaw
settlement between 2014 and 2020 over the 2010 fire
scar. The elevation change was heterogeneous varying
from increase to decrease (figure 4(a)). Here we only
focused on thaw settlement analyses after dropping
areas with an accumulative error larger than DoD
(figure 4(b)). For the burned areas with dNBR larger
than 100, repeat lidar analyses revealed a mean elev-
ation decrease of 18.4 cm in evergreen forest with a
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Figure 2. (a) Mosaic of differenced Normalized Burn Ratio (dNBR, scaled by 103) of six fires and burn severity levels defined by
the USGS, and land cover types in (b) 2014 (post-fire), (c) 2000 (pre-fire).

Figure 3. Percentage of major land cover types in years 2000, 2002, 2008, and 2014 across the Tanana Flats. Changes between
2000–2002, 2002–2008, and 2008–2014 were caused by fires in 2001, 2004, and 2009–2012, respectively.
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Figure 4. (a) Lidar DoD between 2014 and 2020 before dropping the noise, and (b) detected thaw settlement at the 2010 fire scar
after dropping the noise at the object level.

STD of 8.7 cm, a mean decrease of 16.2 cm in decidu-
ous forest with a STD of 5.4 cm, a mean decrease of
19.5 cm in shrubland with a STD of 7.2 cm, and a
mean of 20.0 cm in fenwith a STDof 16.0 cm in terms
of the 2000 land cover types (figure 2(c)).We attribute
the consistent elevation decreases in the permafrost-
affected evergreen forest, shrubland, and sparse veget-
ation to thaw settlement, whereas attribute changes in
fens to water level changes.

4.2. Model performance, thaw settlement mapping,
and analysis
We conducted correlation analyses and applied the
variable importance function in the RF algorithm
to identify optimal Landsat predictors for thaw set-
tlement. The results illustrated that an inclusion of
post-fire NDVI for 1 or 2 years was adequate for
thaw settlement estimation, while including time-
series NDVI was not beneficial. Both dNBR and
NDVI were valuable for thaw settlement modeling
with dNBR negatively related (r =−0.23) and NDVI
positively related (0.30–0.4). An addition of NDMI
did not improve the model performance due to its
high correlation with NDVI. Inclusion of spectral
bands 2, 3, 5, and 7 was valuable in the model. Per-
formance of the final selected models with optimal
predictors for fire-induced thaw settlement is dis-
played in table 2. Three machine learning models

Table 2.Model performance for estimating lidar-detected thaw
settlement. ANN: artificial neural network; SVM: support vector
machine; RF: random forest; EA: ensemble analysis.

ANN SVM RF EA

r 0.79 0.81 0.80 0.82
MAE (cm) 8.3 7.7 7.8 7.1
RMSE (cm) 11.4 11.0 11.1 10.3

obtained a comparable result with an r of∼0.8, MAE
between 7.7 and 8.3 cm, and RMSE within 11.0–
11.4 cm. An EA of three machine learning outputs
slightly increased the estimation with an r of 0.82,
MAE of 7.1 cm and RMSE of 10.3 cm. Analysis of
the mean estimation from each model compared to
the lidar-detected settlement showed that ANN and
SVM underestimated the subsidence while RF over-
estimated the settlement by less than 1 cm.

We applied the EA model to estimate thaw set-
tlement across all the six fire scars (∼1250 km2) on
Tanana Flats with a dNBR larger than 100, as shown in
figure 5. Thaw settlement within the fire scars was not
homogeneous with some regions larger than 25 cm
and some areas less than 5 cm. Most of the regions
had a settlement larger than 10.0 cm comparable to
the RMSE of the EA model, suggesting the model
was acceptable. The fire-induced thaw settlement pat-
tern was reasonable by a joint observation of the
settlement map (figure 5(a)) and the dNBR map
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Figure 5. (a) Estimated subsidence (cm) for burned areas (dNBR >100) from the EA; and (b) corresponding STD of multiple
model outputs (STDE, cm) from ANN, SVM, and RF.

(figure 2(a)). Severe settlement (<−25 cm, in purple)
was mainly present in the 2001 fire and southern part
of the 2009 fire due to extensive loss of ecosystem-
protection provided by evergreen trees. The STD
of multiple model outputs (STDE) map illustrated
that threemodels produced consistent estimations for
most areas with STDE less than 6.0 cm (in green in
figure 5(b)). A small area in the 2012 fire scar had
STDE larger than 15 cm (in red), indicating a large
disagreement among the model estimations.

We calculated the mean subsidence across the
three major burned vegetation communities ever-
green forest, shrubland, and fen, and each fire scar.
Areas covered by evergreen forest experienced an
averaged subsidence of 17.2 cm, and fen margins had
an estimated subsidence of 14.1 cm. Estimated sub-
sidence in Shrublandwas 14.1 cm.The across fire ana-
lysis revealed that the greatest subsidence occurred in
the 2001 fire scarwith an estimation of 18.0 cm,which
was followed by areas in the 2011 fire scar with an
estimation of 17.1 cm. The smallest subsidence was

present in the 2004 fire scar which was reburned in
2009.

5. Discussion

5.1. Effects of wildfire on vegetation and thaw
settlement
Fire effects on vegetation on Tanana Flats were gen-
erally consistent with findings reported in the boreal
and arctic biome following a trajectory of changing
evergreen trees to broadleaf trees, shrubs, or grass-
lands (Li et al 2021). Analyses of the entire ABoVE
domain of land cover change during 1984–2014 illus-
trated that most of the Evergreen Forest loss occurred
in localized patches related to fire disturbance (Wang
et al 2020). Abrupt decreases in most plant func-
tion types caused by burns were also revealed by a
recent ABoVE dataset ‘Modeled Top Cover by Plant
Functional Type over Alaska and Yukon, 1985–2020’
(Macander and Nelson 2022, Macander et al 2022).
Our time-series analyses of land cover change and
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patterns on Tanana Flats across the six fire scars
showed a large increase of sparsely vegetated areas in
2002 (post-fire 2001) followed by a large increase of
shrubs in 2008 (pre-fire 2009). This particular time
span with focus on the 2001 fire scar revealed the path
of vegetation shift after fire over this lowland area:
a removal of evergreen trees, a transition of sparsely
vegetated area, and then a colonization of shrubs. Fur-
ther observation of the land cover maps of 2000 (pre-
fire) (figure 2(c)) and 2014 (post-fire) (figure 2(b))
showed that the expansion of shrubs to sparsely veget-
ated areas started from areas occupied by fens which
became shrubbier after fire. We found that fens could
also expand into burned shrubs. A shrub-rich fen sys-
tem was favorably developed due to the association
of fens and shrubs in the fire regime at the lowland
Tanana Flats. However, most severely burned areas
were still classified as the sparse vegetationmixedwith
herbaceous in the 2014 land cover map, suggesting
it might take more than two decades for a complete
colonization of shrubs over these areas. Similar shift-
ing patterns are underway for burned areas caused
by fires between 2009 and 2012, although a distinct
expansion of shrubs toward fens and sparsely veget-
ated areas has not been observed in the 2014 land
cover map across these scars. The fire and climate
warming induced expansion of shrubs often occurs
in tundra areas (Myers-Smith and Hik 2017), but the
rapid regeneration of shrubs following fires is also
reported in interior Alaska (Jorgenson et al 2013).
Our field visits showed an abundant spruce and birch
regeneration at the fire scars of 2001 and 2010, but
it was very slow. It could take decades for this to be
visible on Landsat imagery. Failure of regeneration is
possible because a synthesis study from Baltzer et al
(2021) showed that interior Alaska had the highest
instances of total regeneration failure of any tree
species after a fire based on 1538 field sites across
boreal North America. Earlier aerial photography-
based maps during 1949–1995 revealed a large shift
from broadleaf birch to fens and bogs due to cli-
mate warming, leading to a widespread permafrost
degradation on Tanana Flats (Jorgenson et al 2013).
In terms of our land cover maps, deciduous forest
(birch) now only accounts for 7%. Fires are accelerat-
ing the elimination of lowland birch forests over this
area. The recovery of vegetation–permafrost may take
decades and is unlikely to return its pre-burn condi-
tions under a warming climate scenario.

Effects of fire on permafrost thaw and surface set-
tlement is complicated by the interaction of numer-
ous biophysical factors, including highly variable
ground ice contents (Jorgenson et al 2013), fire sever-
ity (Gibson et al 2018), surface vegetation (Van Cleve
and Viereck 1983), changes in soil organic thickness
(Nossov et al 2013, Gibson et al 2018), hydrology and
lateral degradation (Kurylyk et al 2016, Douglas et al
2021), depth of snowpack (Douglas and Zhang 2021),
and climate (Jorgenson et al 2022). On the Tanana

Flats, volumetric ice contents in the top 3moften vary
from40% to 80% (Jorgenson et al 2001) and thaw set-
tlement up to 50 cm was observed within a few years
after the 2010 fire (Brown et al 2015). In our analysis,
elevation decreases were spatially variable. Given the
close association of field and lidar measurements of
elevation changes (Brown et al 2015), we are confid-
ent in concluding that the large elevation decrease is
due to permafrost thaw after fire and subsequent thaw
settlement.

5.2. Capacity of Landsat products for quantifying
fire-induced thaw settlement
This study shows there is a strong relationship
between fire-induced thaw settlement and Landsat
observations. A combination of Landsat reflectance,
NDVI, and burn severity dNBR could explain ∼65%
variance of lidar-detected thaw settlement. The fire
severity dNBR was the most critical factor in con-
trolling the settlement based on the function of vari-
able importance to measure the contribution of each
variable in the RF algorithm, similar to what was
observed by Jones et al (2015). Landsat spectral
reflectance band 2 (blue) was the second important
factor in the estimation, because it is valuable for dis-
tinguishing soil from vegetation (USGS 2022). The
addition of band 2 was useful because of the large
exposure of bare lands, and expansion of decidu-
ous vegetation after fire. NDVI was the third import-
ant variable in the estimation. Analyses of time-series
NDVI after fire, as well as other spectral indices such
as NBR, can indicate the recovery of greenness and
vegetation regrowth (Pérez-Cabello et al 2021). Thus,
inclusion of NDVI was useful in the estimation. How-
ever, an addition of time series NDVI was not bene-
ficial. We observed a consistent increase of NDVI
across time (2013–2021) within each fire scar. This
trend did not contribute the estimation of thaw settle-
ment. Including one or two NDVIs in the model was
adequate to characterize the response of plants across
space and time, and its covariation with fire-induced
thaw settlement. Inclusion of band 5 (near infrared)
and band 7 (shortwave infrared) also improved the
estimation in the ANN model but was not valuable
in the RF model. To be consistent, we included both
bands in the modeling and final estimation.

5.3. Object-based machine learning ensemble
estimation
Application of machine learning for fire-induced
thaw settlement modeling was valuable. Three
machine learning algorithms ANN, SVM and RF
achieved a comparable performance in the model in
terms of the matched dataset, but the estimations
for mapping were different. These differences were
expected due to differences in the architecture of the
algorithms. ANN models data as a structure of neur-
ons and synapses of human brains. SVM looks for
an optimal hyperplane to minimize training errors,
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whereas RF searches for optimal decision trees to gen-
eralize a model. Due to the weaknesses and strengths
of each algorithm, an EA of multiple model out-
puts can make the estimation more robust than the
application of an individual model alone. This is
especially critical for regions without any field or
lidar measurements but with a high diversity in pre-
diction from models. Furthermore, an application of
ensemble estimation generated an uncertainty map
(figure 5(b)) to complement traditional performance
metrics. This map reveals the uncertainty based on
model analyses and identify regionswith varying con-
fidence in prediction. This type ofmap can guide field
or lidar data collection for further validations, prefer-
ably over regions where large differences in model
estimations were obtained.

The object-based modeling and mapping was
beneficial. Lidar DEMs often have a high spatial res-
olution (<5 m) while Landsat has a moderate spatial
resolution (30 m). Resampling lidar DEMs into 30 m
to match Landsat would bring uncertainties from
the resampling algorithms though this resampling
may reduce some uncertainties from lidar measure-
ments. Matching lidar data and Landsat at the object
level was more reasonable by segmenting the Land-
sat imagery into relatively homogeneous patches and
calculating the mean subsidence within each patch
detected by repeat lidar to develop the model and
estimate subsidence. In addition, application of the
mean lidar-detected thaw settlement for a patch could
filter out a portion of errors from lidar measure-
ments. We did not examine the pixel-based matching
and modeling in this study, but detailed comparison
between pixel-based and object-based modeling and
mapping for estimating wetland soil properties was
provided in Zhang et al (2019).

5.4. Limitations and sources of error
Constraints in applied datasets and data processing
and analyses were identified as two major sources of
limitations and errors in this study. First, there was a
time gap between the occurrence of fire and lidar data
collection. The overlapped area between repeat lidar
and the latest fire was the 2010 fire where the first lidar
was collected in 2014 (4 year time gap). Field data
analyses between 2011 and 2014 in the forests burned
in 2010 showed that the subsidence was up to 50 cm
(Brown et al 2015). This suggests that an addition of
up to ∼50 cm should be added to the lidar-detected
subsidence across the burned forests, or the final pro-
jection from our model. Our estimated thaw settle-
ment across the 2010 fire was ∼15.5 cm, indicating a
decreasing rate of thaw settlement during 2014–2020
with the recovery of vegetation. The total fire-induced
thaw settlement for the burned forests could be up to
∼60–70 cm if lidar data were collected in 2011. Field
measurements revealed an average of ground eleva-
tion change of ∼27 cm along a transect in the 2010
fire scar (Brown et al 2015), suggesting subsidence

was smaller for other plant communities. This was
consistent with the lower subsidence estimated in our
study.

Second, the repeat lidarmeasurements in the 2010
fire scar had a small coverage (∼10 km2, figure 4)
in terms the scars of six fires (∼1250 km2) to be
mapped. Evergreen forest, deciduous forest, shrub-
land and fen were present in the lidar coverage with
varying burn severity, however, only limited train-
ing samples were obtained, especially for deciduous
forest (∼0.06 km2). Repeat lidar or field measure-
ments across all fire scars using a sampling scheme
would generate a better estimation but in practice
collecting such type of data is challenging or costly,
especially in a remote area like Tanana Flats. Limited
lidar data coverage was identified as a major error
source in the estimation. The in-orbit Ice, Cloud, and
land Elevation Satellite 2 (ICESat-2) has potential for
large scale elevation change analyses with a revisit
of 91 d (Michaelides et al 2021), but it has a coarse
spatial resolution, worse precision, as well as other
issues compared to airborne repeat lidar. An integ-
rated application of airborne lidar, ICESat-2, InSAR
and Landsat data products may improve the thaw set-
tlement estimation given the complementary features
of each sensor system. Thiswas identified as the future
research need.

The third constraint was from Landsat products.
There might be more uncertainties using Landsat 8
for predicting the thaw settlement for the 2001 fire
due to the large time gap between this fire and Land-
sat 8 products. Ideally, for the 2001 estimation, Land-
sat products within 4 years following the fire should
be used. However, direct application of Landsat 5
products for the 2001 fire generated a poor pattern
(results were not shown) due to the difference of
reflectance and NDVI across sensors (Roy et al 2016,
Berner et al 2020). Cross-calibration models have
been developed to address this issue, but it involves
more data preprocessing. Snow and cloud cover is
another issue using Landsat products as well as other
spaceborne optical sensors. For interior Alaska, snow
free imagery is limited to a time window between
May and September, and the need for cloud free con-
ditions further constrain data availability for such
applications.

The fourth constraint came from the incomplete-
ness of predictors in the machine learning model
in relation to the factors affecting thaw settlement.
Despite the complicated biophysical interactions that
affect permafrost thaw and surface settlement, Land-
sat products explained 65% of the variance in lidar-
detected thaw settlement but the models did not cap-
ture all drivers controlling thaw subsidence. Time
since disturbance is particularly important because
thaw is more rapid immediately after disturbance,
slows with time, and can continue over many dec-
ades (Burn 1998). Inclusion of soil variables, particu-
larly ground ice contents, or others might increase the
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estimation, but such types of data products with com-
parable resolution to Landsat are often not available.

Data processing and analysis is the last major
source of error. Though the developed object-based
machine learning ensemble approach was encour-
aging for thaw settlement estimation, uncertainties
from major processing steps like image segmenta-
tion and parameters used in machine learning were
inevitable. An evaluation of the selected processing
techniques for estimating settlement was beyond this
study but was identified as an area of future research
need. An independent subsidence dataset such as
InSAR or ICESat-2 estimation was also needed to fur-
ther evaluate the Landsat estimated settlement. The
upcoming NASA-Indian Space Research Organiza-
tion Synthetic Aperture Radar mission to be launched
in 2024 would offer another opportunity to validate
the settlement estimation at a broad coverage.

6. Summary and conclusions

We systematically evaluated the effects of six large
fires on the ice-rich Tanana Flats lowland in interior
Alaska and for the first time estimated and mapped
fire-influenced thaw settlement over ∼1250 km2. In
total the six fires resulted in a loss of ∼400 km2

evergreen forest during 2000–2014 among∼590 km2

fire-influenced forests with varying degree of burn
severity. The fires provided favorable conditions for
shrub-fen development, resulting in a comparable
post-fire coverage of shrubland and evergreen forest
and increasing encroachment of shrubland to areas
with sparse vegetation. The regrowth of forests was
not observed after 13 years of the oldest fire 2001
based on Landsat observations.

Despite of uncertainties in the timing of lidar data
acquisition following a wildfire, we generated a reas-
onable fire-induced thaw settlement pattern which
was generally consistent with the burn severity pat-
tern. Our study indicated that linking airborne repeat
lidar with Landsat products was an encouraging tool
for large scale quantification of fire-induced thaw set-
tlement. While there are no constraints to applying
this methodology to other fire-influenced permafrost
terrains, direct application of our developed model
to other boreal or tundra areas is limited because the
model was calibrated by site-specific lidar measure-
ments, and ice contents and thaw settlement poten-
tial is highly variable among terrain types. Because
airborne lidar measurements are increasingly being
made across northern permafrost regions (e.g. Jones
et al 2015, Rodenhizer et al 2022), our method is a
valuable means of projecting elevation change across
entire fire scars within uniform permafrost-affected
landscapes by using data-driven machine learning
techniques. Our approach is complementary to the
application of InSAR (e.g. Yanagiya and Furuya 2020)
or lidar technique alone (e.g. Jones et al 2015) for thaw
subsidence estimations. Its ability to combine active

airborne lidar sensors with passive spaceborne optical
sensors for a large-scale quantification of fire-induced
thaw settlement is unique. It is anticipated that this
work can advance the multi-sensor fusion techniques
for permafrost thawing studies under the scenario of
climate warming and increasing fire activities in cold
regions.
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