2022 56th Asilomar Conference on Signals, Systems, and Computers | 978-1-6654-5906-8/22/$31.00 ©2022 IEEE | DOI: 10.1109/IEEECONF56349.2022.10051891

On Building Efficient and Robust Neural Network
Designs

Xiaoxuan Yang

Duke University
Durham, NC, USA

xy92 @duke.edu

Huanrui Yang
Duke University
Durham, NC, USA
huanrui.yang @duke.edu

Abstract—Neural network models have demonstrated out-
standing performance in a variety of applications, from image
classification to natural language processing. However, deploying
the models to hardware raises efficiency and reliability issues.
From the efficiency perspective, the storage, computation, and
communication cost of neural network processing is considerably
large because the neural network models have a large number of
parameters and operations. From the standpoint of robustness,
the perturbation in hardware is unavoidable and thus the
performance of neural networks can be degraded. As a result, this
paper investigates effective learning and optimization approaches
as well as advanced hardware designs in order to build efficient
and robust neural network designs.

Index Terms—efficiency, robustness,
hardware-software co-design,

neural network,

I. INTRODUCTION

In recent years, deep neural network (DNN) models have
shown beyond-human performance in multiple tasks. However,
there exists some outstanding issues in the efficient application
of DNNSs in the real world. For instance, modern DNN archi-
tectures often contain millions of parameters and require bil-
lions of operations to process a single input, which hinders the
deployment of these models on mobile and edge devices [1].
In addition to that, the quantization process will introduce
information loss to input and weight data, and may bring a
gap to the software-based accuracy and the hardware-deployed
accuracy [2], [3]. Therefore, it is necessary to develop efficient
and robust neural network designs that reduce the number of
parameters and operations in neural networks and protect the
inference accuracy under quantization.

In this paper, we review the technical background of net-
work pruning and quantization methods and focus on the
challenging problems on building efficient and robust neural
network design. Specifically, we investigate the structured
pruning method for the long short-term memory (LSTM)
and provide unique solutions for this sequential model. Then,
we explore the bit-level sparsity quantization method that
can efficiently perform the mixed-precision quantization and
achieve better compression rates and inference accuracy com-
pared with state-of-the-art (SOTA) solutions. Furthermore,
we develop a second-order regularization scheme to provide
quantization robustness and achieve excellent performance
even under low-bit settings.

978-1-6654-5906-8/22/$31.00 ©2022 IEEE 317

Jingchi Zhang
Duke University
Durham, NC, USA
jingchi.zhang @duke.edu

Hai Helen Li
Duke University
Durham, NC, USA
hai.li@duke.edu

Yiran Chen
Duke University
Durham, NC, USA
yiran.chen@duke.edu

II. BACKGROUND AND RELATED WORK

To tackle the challenge of high memory consumption and
computation cost, model compression techniques for neural
network models, such as pruning and quantization, have
been extensively studied. Moreover, the sparse gradient prun-
ing methods are also proposed to accelerate the training
process [4]-[6]. Other than the algorithm development, the
specialized hardware designs to support the efficient neural
networks are also proposed and analyzed [7]-[9]. In this
section, we will go over the representative neural network
pruning and quantization methods.

A. Neural Network Pruning Techniques

To achieve highly sparse neural networks, there are effective
approaches targeted at unstructured pruning and structured
pruning. Unstructured pruning can boost the sparsity level
of the neural network without the concern of structural in-
formation. For instance, deep compression method can prune
weights by setting a threshold and achieve final results on
convergence with iterative pruning and retraining [10]. Other
than threshold-based pruning methods, the regularizer can
induce the model sparsity by implementing additional pe-
nalization on the weights with large absolute values. Han
et al. investigate setting an element-wise ¢y constraint by
iterative pruning a fixed ratio of smallest weight elements [11].
However, this method is heuristic and can hardly achieve
an optimal compression rate. This ¢y regularizer is only an
indicator of the sparsity level but doesn’t reflect the gradient
magnitude information. Then, the following work focuses on
combining the ¢, regularizer with sensitivity analysis [12] and
adaptive optimization methods [13]. It is worth noting that
¢y regularizer reflects the weight amplitude and can easily
optimize through the network training process. Therefore,
multiple approaches take advantage of /1 regularizer to achieve
a high sparsity level. For instance, Liu et al. [14] directly
apply ¢; regularization to all the weights to improve the
sparsity level. Furthermore, Wen et al. [15] propose structural
sparsity learning (SSL) via group lasso, which injects an
{1 regularzation over the weight 5 norm. Additionally, this
structural sparsity is proven to be more hardware-efficient than
unstructural sparsity [16], [17]. Yang et al. [18] propose a
Hoyer-Square regularizer to boost the sparsity level.

Asilomar 2022

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 19:53:38 UTC from IEEE Xplore. Restrictions apply.

B. Neural Network Quantization Approaches

Quantization techniques convert the floating-point parame-
ters to fixed-point representations. Moreover, low-bit quanti-
zation can significantly reduce the memory consumption of
the mode, and enable further acceleration on specialized hard-
ware. However, directly quantizing all the weights to a lower
precision may severely harm the performance of the neural
network model. Polino et al. [19] observe that the weight of
different layers may have various dynamic ranges, keeping the
dynamic range of each layer is important for maintaining the
performance of the model, especially after low-precision quan-
tization. Straight-Through Estimator (STE) enables continuous
gradient descent on the discrete values of fixed-point neural
network model, which further improves the performance of
model quantization [20]. However, model performance still
degrades a lot when the quantization requirement for the
whole model is set to low precision, such as three or two
bits. Research work also demonstrates that the best tradeoff
point between compression rate and accuracy can be achieved
with mixed-precision quantization, where different layers of
the neural network are quantized to different precision. The
challenge lies in determining the quantization precision of
each layer. Due to the large potential search space, previous
methods propose to utilize neural architecture search (NAS)
approach on determining the precision [21]. Another work
proposes to rank each layer based on its importance and assign
higher precision to a more important layer [22]. The exact
precision of each layer, however, is still manually selected. It
is hard to control the model size-performance tradeoff of the
generated quantization scheme with these methods.

III. STRUCTURED SPARSITY EXPLORATION IN LONG
SHORT-TERM MEMORY

In this section, we present our study of Intrinsic Sparse
Structures (ISS) Learning [23] and Efficient Sparsity Learning
(ESS) [16] to regularize the structure and accelerate LSTM.
We first introduce the computations within LSTM and cover
the intrinsic challenges of LSTM sparsity regularization. Then,
we propose novel methods and present evaluation results.

A common LSTM unit is composed of a cell (c), an
input gate (i), an output gate (o) and a forget gate (f). The
computation within LSTMs is as follows:

iy =0 (x;- Wy +hi_1 - Wy +by)

fi =0 (x¢ - Wgr+hy 1 - Wy +by)

0 =0 (X - Wao +hy_1 - Wy, +by,)

u; = tanh (x; - Wy +hy_1 - Wiy +by)
¢ =f0c 1+ Ow

h; = o; ® tanh (c)

e))

where © denotes Hadamard product (element-wise multipli-
cation), o(-) denotes sigmoid function, and tanh(-) denotes
hyperbolic tangent function. Ws denotes weight matrices,
which transform the concatenation (of hidden states h; 1
and inputs x;) to input updates u; and gates (i;, f; and oy).
Due to the element-wise computation in LSTM, the involved

FIN
outputs
(hidden states)
€iaa cell states ¢,
=== >D >
: 3
g input gates i, ® @
b I_' u, output gates o,
en input ®
i) rupdiaies II L
o | o ||tanh]|| o | |
. I I 1 I I I—
hey X hidden states h,
inputs

Fig. 1. Intrinsic Sparse Structures (ISS) in LSTMs that maintain the dimension
consistency.

vectors should have the same dimension, as shown in the blue
bands in Fig. 1. Therefore, the intrinsic challenge of LSTM
is to simultaneously reduce the size of the basic structures
of LSTM, including input updates, gates, hidden states, cell
states, and outputs. For instance, given the circumstance that
one selected element of a hidden state is pruned, we track the
weight matrices of [Wy;, Wy, r, Wy, Wy,] and prune the
selected rows. Then, we observe the generation of the hidden
state and find that the selected dimensions of output gate and
cell gate are also removable. This will result in the pruning
of selected columns of weight matrices [Wy;, Wy, W,
Wou, Whi, Wy, Wy, Wy, 1. Moreover, if we consider
the next layer where the hidden state is propagated to, the
selected columns of weight matrices in the next layer can also
be pruned. Therefore, these selected rows and columns are
defined as ISS. The optimization goal is to increase the ISS
without degrading the accuracy result.

Based on the analysis, we illustrate ISS that maintains the
dimension consistency, as shown in Fig. 1. Suppose w,&") is a
vector of all weights in the k-th component of ISS in the n-th
LSTM layer (1 < n < Nand 1 <k < K(”)), where N is
the number of LSTM layers and K (™) is the number of ISS
components (i.e., hidden size) of the n-th LSTM layer. The
regularization of ISS is constructed as follows:

N K™
=SS WL e
n=1 k=1

where w denotes the vector of all weights and ||| is £2-norm
(i.e., Euclidean length). We develop our learning alogithm
based on the Stochastic Gradient Descent (SGD) training, the
update rule for each ISS weight group is

" " OE(w w™
W i = (<n))+A' w | @
w7 o

‘ 2

where E(w) is data loss, 7 is learning rate and A > 0 is the
coefficient of group Lasso regularization to trade off accuracy
result and ISS sparsity.

The experimental results are evaluated with an RNN with
two stacked LSTM layers and shown in Table I. Note that

318

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 19:53:38 UTC from IEEE Xplore. Restrictions apply.

TABLE I
LEARNING ISS SPARSITY FROM SCRATCH IN STACKED LSTMS.

Dropout Perplexity ISS # in . . Mult-add
Method keep ratio (validate, test) (Ist, 2nd) LSTM Weight # Total time Speedup reduction
baseline 0.35 (82.57, 78.57) (1500, 1500) 66.0M 157.0ms 1.00x 1.00x
ISS 0.60 (82.59, 78.65) (373, 315) 21.8M 14.82ms 10.59x 7.48 %
' (80.24, 76.03) (381, 535) 25.2M 22.11ms 7.10x 5.01x
direct design 0.55 (90.31, 85.66) (373, 315) 21.8M 14.82ms 10.59x 7.48 %
—— = —— T = — problem of mix-precision quantization lies in determining
——— — the optimal mixed-precision quantization scheme. The whole
: = all——

|

:

H?

!.

:%

|

Fig. 2. The visualization of weight matrices in LSTM units learned by
efficient structural sparsity (ESS).

the proposed ISS can avoid overfitting and thus the dropout
keep ratio for ISS is larger than the baseline setting. With
a weight size of 21.8M, the proposed method can achieve
10.59x speedup and 7.48x multi-add reduction. Other than
that, the ISS can perform as structure regularization that
achieves a smaller perplexity result with a faster and more
compact model. Moreover, we compare our design with the
direct design and show that ISS provides the best tradeoff
between perplexity results and speedup.

Furthermore, ESS is developed to deal with real-world
acoustic tasks and improve the computing efficiency [16]. The
training process consists of a dedicated three-step training
pipeline. Firstly, the network is trained from scratch with a
structured-sparsity learning method until a sparse model at the
desired sparsity level is generated. At this stage, the accuracy
of the model may be relatively low. Therefore, the next
two steps are proposed to mitigate the accuracy degradation.
The second step fixes the zero parameters and protects the
structured sparsity. In the third step, the SGD method is
utilized to update the nonzero elements in the network.

In the evaluation, we use the open-source Kaldi toolkit and
implement the network in Intel Gaussian Neural Accelerator
(GNA). As shown in Fig. 2, ESS enables significant sparsity
improvement, such as 72.5% pruning in weight groups.

IV. BIT LEVEL SPARSITY QUANTIZATION

Fixed point quantization is an important model compression
technique for neural network models. To further reduce the
bit level, finer-granularity quantization is preferred. The key

design space for the quantization scheme is typically huge and
discrete. Existing work either uses costly neural architecture
search methods to explore the design space or utilizes a
ranking of the importance of all layers and assign the precision
manually, which may not be optimal [21], [22]. We aim
to propose a differentiable regularizer to induce a mixed-
precision quantization scheme [24].

For bit representation, we follow the dynamic scaling quan-
tization procedure, where we utilize the element with the
largest absolute value in each layer as the scaling factor and
uniformly quantize all the elements to n bits and represent the
quantized values in binary form. We consider scaling factor s
and each bit in W, as independent trainable variables.

Specifically, the STE for the bit representation training is
defined as:

n—1
1
Forward: W, = ﬁRound Z Ws(b)2b1 ;
b=0 “)
oL 20 ac

Backward: = :
ackwar w® = 1o,

To enable gradient-based training of the bit representation, we
allow each bit to take a continuous value between 0 and 2. The
STE is then applied where it estimates the actual quantized
value W, of the weight to compute loss and gradient. As the
gradient is back propagated to W, it will be passed directly
to each bit of Wj.

The bit-level sparse quantization (BSQ) regularizer is de-
fined as:

n—1
ot =S [l o
b=0
where W,gb) and W," are bit representations converted from

W9, and [-;-] denotes the concatenation of matrices. Bgy,
could guarantee a certain bit b of all elements in both W,Eb)
and W,Sb) to be zero simultaneously.

We show the results of BSQ in Table II and prove that our
method can figure out the desired mixed-precision quantization
scheme and provide a model with higher performance under
the same quantization scheme.

319

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 19:53:38 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ACCURACY-#BITS TRADEOFF UNDER DIFFERENT REGULARIZATION STRENGTHS.

Strength « | 3e-3

5e-3 Te-3 le-2 2e-2

#Bits per Para / Comp (X)
BSQ acc before / after FT (%)

3.02/710.60 2.25/14.24
91.30 / 92.60 90.98 / 92.32 90.42 /91.48 90.35/91.16 85.77 / 89.49

1.66 /19.24 13772344 0.87/36.63

Train from scratch acc (%) | 91.72

91.45

91.12 89.57 89.14

V. ROBUST ALGORITHM TOWARDS QUANTIZATION
ROBUSTNESS

For neural network models to be deployed into the real
world, we expect the model to be generalizable to unseen data
and to be flexible to potential compression required by the run-
time environment. We observe that both model generalizability
and performance under compression can be unified as per-
formance under weight perturbation. Specifically, sharpness-
aware minimization work notes that the generalization gap is
bounded by /> weight perturbation [25]. Moreover, common
model compression techniques can also be understood as
adding perturbation to the pre-trained weights. For instance,
uniform fixed-precision quantization can be modeled as /.,
weight perturbation. In general, we can unify generalization
and quantization performance as improving the model’s ro-
bustness to £, norm bounded weight perturbation.

To improve such robustness, we first observe how the model
is performing under weight perturbation. Here we introduce
the idea of a perturbation lower bound, which is the minimal
perturbation strength needed to induce a loss increase larger
than our tolerance. In this setting, a larger perturbation lower
bound indicates that the model is more robust against weight
perturbation, which is our optimization goal. With additional
analysis utilizing Taylor expansion, we derive the bounds
for /5 and ¢, perturbation and find that a smaller Hessian
eigenvalue can lead to better generalization performance and
quantization robustness.

We propose Hessian-Enhanced Robust Optimization
(HERO) [26] to regularize the hessian eigenvalue and
improve the generalization ability and quantization robustness.
We compute the Hessian norm with a finite difference
approximation, which is formulated as the gradient difference
regarding the original and perturbed weight. We simplify
the gradient computation of the Hessian regularization by
only keeping the gradient terms related to the perturbed
weight. For the overall gradient optimization step, we utilize
the perturbed weight gradient from SAM, which is the first
term in the gradient formulation, SAM term behaves as a
first-order regularization to the optimization process for better
stability in the training.

For a neural network model, L, needs to be computed on
the weight tensors from all the layers, each having distinct
dimensions and gradient value ranges. To accommodate the
diversity among layers, we propose to compute L, layer by
layer and scale the ¢5 norm of the perturbation z to match the

weight value range in each layer. Specifically, for layer 7, we
have
Ly(W") = [[VL(W' + hz') = VL(W")|]?,

WP VLW

Wl [[VL(W)2

The overall Hessian regularization is then computed as
L.(W) Zf\il Li(W?), summing over all the N layers
in the model. We derive the gradient of our Hessian-enhanced
robust optimization as

Vwi = V(Wi_;'_hzi)L(Wi + hz’) + aW
N
+y Z V(W7,+hzi)G(Wi + hzi),

i=1

Z. ©)
z

(7

where o > 0 denotes the weight decay and v > 0 denotes the
regularization strength of the Hessian regularization. Besides,
we summarize the HERO algorithm as shown in Algorithm 1.

Algorithm 1 Hessian-Enhanced Robust Optimization (HERO)

1: Randomly initialize model weights W for all layer i;

2: Set total step 7', perturbation strength h, learning rate 7;

3: Set weight decay o and Hessian regularization strength -;

4: for t =0,...,7T do

5 Sample batch 5 from training set;

6 Compute batch loss’s gradient g° = VLg(W});

7 Compute weight perturbation z’ with ¢’ per Equa-
tion (6);

8: Weight perturbation W% = W' + hz?;

9: Compute perturbed gradient V Lgz(W)

10: Hessian regularization G(W™) = |[VLg(W™) —
gl

11: Compute HERO gradient Vi per Equation (7);

12 Weight update W}, ; = W} — V.

return W, for all layer i

To verify our theoretical analysis, we perform neural net-
work training with the proposed HERO optimizer. In Fig. 3, we
compare the SGD and first-order gradient regularization, and
it shows that HERO reaches a smaller Hessian norm towards
the end of training, thus showing a smaller generalization gap.
As shown in Table III, we provide the quantization results
and full-precision results on three representative methods. It
shows that adding the Hessian regularization leads to better
testing accuracy and higher robustness against post-training

320

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 19:53:38 UTC from IEEE Xplore. Restrictions apply.

L0

1 Y —THERD |

,‘fL, GRAD L |
SG0D

= 4L =

150 175 200

(a) . :) Epoch) . (b)

Epoch

Fig. 3. Hessian norm and generalization gap evolution through the training
with HERO, GRAD L1, and SGD.

TABLE III
ABLATION STUDY ON HERO, FIRST-ORDER ONLY, AND SGD GRADIENT
UPDATE RULE. RESULTS REPORTED WITH MOBILENETV2 NETWORK ON
THE CIFAR-10 DATASET.

Full

95.03%
94.06%
92.45%

Quantization (bit) | 4 6 8

HERO 93.45% 94.90% 95.03%
First-order only 91.61% 93.92% 94.00%
SGD 85.88% 91.81% 92.33%

quantization, showing the necessity of the Hessian enhance-
ment. Moreover, the 4-bit quantization result shows that the
HERO method can preserve the quantization robustness even
under a relatively low precision setting.

VI. CONCLUSION

This paper covers structured sparsity exploration in long
short-term memory and includes the ISS and ESS methods.
Moreover, we discuss bit-level quantization work BSQ for
more advanced compression rates and inference accuracy
compared with SOTA designs. Furthermore, we build gener-
alized robust algorithms HERO, which can protect the neural
network against weight perturbation. For future exploration,
we believe that execution acceleration and design flexibility
enhancement will significantly benefit the efficient and robust
neural network designs.

ACKNOWLEDGMENT

This work is supported in part by NSF 2112562, NSF
1955246, and ARO W911NF-19-2-0107.

REFERENCES

[1] F. Chen, W. Wen, L. Song, J. Zhang, H. H. Li, and Y. Chen, “How

to obtain and run light and efficient deep learning networks,” in

2019 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD). IEEE, 2019, pp. 1-5.

X. Yang, S. Belakaria, B. K. Joardar, H. Yang, J. R. Doppa, P. P.

Pande, K. Chakrabarty, and H. H. Li, “Multi-objective optimization of

reram crossbars for robust dnn inferencing under stochastic noise,” in

2021 IEEE/ACM International Conference On Computer Aided Design

(ICCAD). IEEE, 2021, pp. 1-9.

[3] X. Yang, C. Wu, M. Li, and Y. Chen, “Tolerating noise effects
in processing-in-memory systems for neural networks: A hardware—
software codesign perspective,” Advanced Intelligent Systems, p.
2200029, 2022.

[4] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
Advances in neural information processing systems, vol. 30, 2017.

[5] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

[2

—

321

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

X. Yang, H. Yang, J. R. Doppa, P. P. Pande, K. Chakrabarty, and
H. Li, “Essence: Exploiting structured stochastic gradient pruning
for endurance-aware reram-based in-memory training systems,” /IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2022.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243-254, 2016.

S. Li, E. Hanson, X. Qian, H. H. Li, and Y. Chen, “Escalate: Boosting
the efficiency of sparse cnn accelerator with kernel decomposition,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 992—-1004.

E. Hanson, S. Li, H. Li, and Y. Chen, “Cascading structured pruning:
Enabling high data reuse for sparse dnn accelerators,” in Proceedings
of the 49th Annual International Symposium on Computer Architecture,
ser. ISCA °22. New York, NY, USA: ACM, 2022, p. 522-535.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135-1143.

C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through [_0 regularization,” arXiv preprint arXiv:1712.01312,
2017.

T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 806-814.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Annual Conference on Neural
Information Processing Systems 2016, 2016, pp. 2074-2082.

J. Zhang, W. Wen, M. Deisher, H.-P. Cheng, H. Li, and Y. Chen,
“Learning efficient sparse structures in speech recognition,” in /CASSP
2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 1EEE, 2019, pp. 2717-2721.

J. Zhang, J. Huang, M. Deisher, H. Li, and Y. Chen, “Structural
sparsification for far-field speaker recognition with gna,” arXiv preprint
arXiv:1910.11488, 2019.

H. Yang, W. Wen, and H. Li, “Deephoyer: Learning sparser neural
network with differentiable scale-invariant sparsity measures,” arXiv
preprint arXiv:1908.09979, 2019.

A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” arXiv preprint arXiv:1802.05668, 2018.
D. Zhang, J. Yang, D. Ye, and G. Hua, “Lg-nets: Learned quantization
for highly accurate and compact deep neural networks,” in Proceedings
of the European conference on computer vision (ECCV), 2018, pp. 365—
382.

K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 8612-8620.

Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, “Hawq:
Hessian aware quantization of neural networks with mixed-precision,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 293-302.

W. Wen, Y. He, S. Rajbhandari, M. Zhang, W. Wang, F. Liu, B. Hu,
Y. Chen, and H. Li, “Learning intrinsic sparse structures within long
short-term memory,” arXiv preprint arXiv:1709.05027, 2017.

H. Yang, L. Duan, Y. Chen, and H. Li, “Bsq: Exploring bit-level
sparsity for mixed-precision neural network quantization,” arXiv preprint
arXiv:2102.10462, 2021.

P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware
minimization for efficiently improving generalization,” arXiv preprint
arXiv:2010.01412, 2020.

H. Yang, X. Yang, N. Z. Gong, and Y. Chen, “Hero: Hessian-enhanced
robust optimization for unifying and improving generalization and quan-
tization performance,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, pp. 25-30.

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 19:53:38 UTC from IEEE Xplore. Restrictions apply.

