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Abstract—Neural network models have demonstrated out-
standing performance in a variety of applications, from image
classification to natural language processing. However, deploying
the models to hardware raises efficiency and reliability issues.
From the efficiency perspective, the storage, computation, and
communication cost of neural network processing is considerably
large because the neural network models have a large number of
parameters and operations. From the standpoint of robustness,
the perturbation in hardware is unavoidable and thus the
performance of neural networks can be degraded. As a result, this
paper investigates effective learning and optimization approaches
as well as advanced hardware designs in order to build efficient
and robust neural network designs.

Index Terms—efficiency, robustness, neural network,
hardware-software co-design,

I. INTRODUCTION

In recent years, deep neural network (DNN) models have

shown beyond-human performance in multiple tasks. However,

there exists some outstanding issues in the efficient application

of DNNs in the real world. For instance, modern DNN archi-

tectures often contain millions of parameters and require bil-

lions of operations to process a single input, which hinders the

deployment of these models on mobile and edge devices [1].

In addition to that, the quantization process will introduce

information loss to input and weight data, and may bring a

gap to the software-based accuracy and the hardware-deployed

accuracy [2], [3]. Therefore, it is necessary to develop efficient

and robust neural network designs that reduce the number of

parameters and operations in neural networks and protect the

inference accuracy under quantization.

In this paper, we review the technical background of net-

work pruning and quantization methods and focus on the

challenging problems on building efficient and robust neural

network design. Specifically, we investigate the structured

pruning method for the long short-term memory (LSTM)

and provide unique solutions for this sequential model. Then,

we explore the bit-level sparsity quantization method that

can efficiently perform the mixed-precision quantization and

achieve better compression rates and inference accuracy com-

pared with state-of-the-art (SOTA) solutions. Furthermore,

we develop a second-order regularization scheme to provide

quantization robustness and achieve excellent performance

even under low-bit settings.

II. BACKGROUND AND RELATED WORK

To tackle the challenge of high memory consumption and

computation cost, model compression techniques for neural

network models, such as pruning and quantization, have

been extensively studied. Moreover, the sparse gradient prun-

ing methods are also proposed to accelerate the training

process [4]–[6]. Other than the algorithm development, the

specialized hardware designs to support the efficient neural

networks are also proposed and analyzed [7]–[9]. In this

section, we will go over the representative neural network

pruning and quantization methods.

A. Neural Network Pruning Techniques

To achieve highly sparse neural networks, there are effective

approaches targeted at unstructured pruning and structured

pruning. Unstructured pruning can boost the sparsity level

of the neural network without the concern of structural in-

formation. For instance, deep compression method can prune

weights by setting a threshold and achieve final results on

convergence with iterative pruning and retraining [10]. Other

than threshold-based pruning methods, the regularizer can

induce the model sparsity by implementing additional pe-

nalization on the weights with large absolute values. Han

et al. investigate setting an element-wise �0 constraint by

iterative pruning a fixed ratio of smallest weight elements [11].

However, this method is heuristic and can hardly achieve

an optimal compression rate. This �0 regularizer is only an

indicator of the sparsity level but doesn’t reflect the gradient

magnitude information. Then, the following work focuses on

combining the �0 regularizer with sensitivity analysis [12] and

adaptive optimization methods [13]. It is worth noting that

�1 regularizer reflects the weight amplitude and can easily

optimize through the network training process. Therefore,

multiple approaches take advantage of �1 regularizer to achieve

a high sparsity level. For instance, Liu et al. [14] directly

apply �1 regularization to all the weights to improve the

sparsity level. Furthermore, Wen et al. [15] propose structural

sparsity learning (SSL) via group lasso, which injects an

�1 regularzation over the weight �2 norm. Additionally, this

structural sparsity is proven to be more hardware-efficient than

unstructural sparsity [16], [17]. Yang et al. [18] propose a

Hoyer-Square regularizer to boost the sparsity level.
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B. Neural Network Quantization Approaches

Quantization techniques convert the floating-point parame-

ters to fixed-point representations. Moreover, low-bit quanti-

zation can significantly reduce the memory consumption of

the mode, and enable further acceleration on specialized hard-

ware. However, directly quantizing all the weights to a lower

precision may severely harm the performance of the neural

network model. Polino et al. [19] observe that the weight of

different layers may have various dynamic ranges, keeping the

dynamic range of each layer is important for maintaining the

performance of the model, especially after low-precision quan-

tization. Straight-Through Estimator (STE) enables continuous

gradient descent on the discrete values of fixed-point neural

network model, which further improves the performance of

model quantization [20]. However, model performance still

degrades a lot when the quantization requirement for the

whole model is set to low precision, such as three or two

bits. Research work also demonstrates that the best tradeoff

point between compression rate and accuracy can be achieved

with mixed-precision quantization, where different layers of

the neural network are quantized to different precision. The

challenge lies in determining the quantization precision of

each layer. Due to the large potential search space, previous

methods propose to utilize neural architecture search (NAS)

approach on determining the precision [21]. Another work

proposes to rank each layer based on its importance and assign

higher precision to a more important layer [22]. The exact

precision of each layer, however, is still manually selected. It

is hard to control the model size-performance tradeoff of the

generated quantization scheme with these methods.

III. STRUCTURED SPARSITY EXPLORATION IN LONG

SHORT-TERM MEMORY

In this section, we present our study of Intrinsic Sparse

Structures (ISS) Learning [23] and Efficient Sparsity Learning

(ESS) [16] to regularize the structure and accelerate LSTM.

We first introduce the computations within LSTM and cover

the intrinsic challenges of LSTM sparsity regularization. Then,

we propose novel methods and present evaluation results.

A common LSTM unit is composed of a cell (c), an

input gate (i), an output gate (o) and a forget gate (f ). The

computation within LSTMs is as follows:

it = σ (xt ·Wxi + ht−1 ·Whi + bi)

ft = σ (xt ·Wxf + ht−1 ·Whf + bf )

ot = σ (xt ·Wxo + ht−1 ·Who + bo)

ut = tanh (xt ·Wxu + ht−1 ·Whu + bu)

ct = ft � ct−1 + it � ut

ht = ot � tanh (ct)

, (1)

where � denotes Hadamard product (element-wise multipli-

cation), σ(·) denotes sigmoid function, and tanh(·) denotes

hyperbolic tangent function. Ws denotes weight matrices,

which transform the concatenation (of hidden states ht−1

and inputs xt) to input updates ut and gates (it, ft and ot).

Due to the element-wise computation in LSTM, the involved

Fig. 1. Intrinsic Sparse Structures (ISS) in LSTMs that maintain the dimension
consistency.

vectors should have the same dimension, as shown in the blue

bands in Fig. 1. Therefore, the intrinsic challenge of LSTM

is to simultaneously reduce the size of the basic structures

of LSTM, including input updates, gates, hidden states, cell

states, and outputs. For instance, given the circumstance that

one selected element of a hidden state is pruned, we track the

weight matrices of [Whi, Whf , Who, Whu] and prune the

selected rows. Then, we observe the generation of the hidden

state and find that the selected dimensions of output gate and

cell gate are also removable. This will result in the pruning

of selected columns of weight matrices [Wxi, Wxf , Wxo,

Wxu, Whi, Whf , Who, Whu]. Moreover, if we consider

the next layer where the hidden state is propagated to, the

selected columns of weight matrices in the next layer can also

be pruned. Therefore, these selected rows and columns are

defined as ISS. The optimization goal is to increase the ISS

without degrading the accuracy result.

Based on the analysis, we illustrate ISS that maintains the

dimension consistency, as shown in Fig. 1. Suppose w
(n)
k is a

vector of all weights in the k-th component of ISS in the n-th

LSTM layer (1 ≤ n ≤ N and 1 ≤ k ≤ K(n)), where N is

the number of LSTM layers and K(n) is the number of ISS

components (i.e., hidden size) of the n-th LSTM layer. The

regularization of ISS is constructed as follows:

R(w) =
N∑

n=1

K(n)∑
k=1

∣∣∣∣∣∣w(n)
k

∣∣∣∣∣∣
2
, (2)

where w denotes the vector of all weights and ||·||2 is �2-norm

(i.e., Euclidean length). We develop our learning alogithm

based on the Stochastic Gradient Descent (SGD) training, the

update rule for each ISS weight group is

w
(n)
k ← w

(n)
k − η ·

⎛
⎝∂E(w)

∂w
(n)
k

+ λ · w
(n)
k∣∣∣∣∣∣w(n)
k

∣∣∣∣∣∣
2

⎞
⎠ , (3)

where E(w) is data loss, η is learning rate and λ > 0 is the

coefficient of group Lasso regularization to trade off accuracy

result and ISS sparsity.

The experimental results are evaluated with an RNN with

two stacked LSTM layers and shown in Table I. Note that

"
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TABLE I
LEARNING ISS SPARSITY FROM SCRATCH IN STACKED LSTMS.

Method
Dropout

keep ratio
Perplexity

(validate, test)
ISS # in

(1st , 2nd) LSTM
Weight # Total time Speedup

Mult-add
reduction

baseline 0.35 (82.57, 78.57) (1500, 1500) 66.0M 157.0ms 1.00× 1.00×

ISS 0.60
(82.59, 78.65) (373, 315) 21.8M 14.82ms 10.59× 7.48×
(80.24, 76.03) (381, 535) 25.2M 22.11ms 7.10× 5.01×

direct design 0.55 (90.31, 85.66) (373, 315) 21.8M 14.82ms 10.59× 7.48×

Fig. 2. The visualization of weight matrices in LSTM units learned by
efficient structural sparsity (ESS).

the proposed ISS can avoid overfitting and thus the dropout

keep ratio for ISS is larger than the baseline setting. With

a weight size of 21.8M, the proposed method can achieve

10.59× speedup and 7.48× multi-add reduction. Other than

that, the ISS can perform as structure regularization that

achieves a smaller perplexity result with a faster and more

compact model. Moreover, we compare our design with the

direct design and show that ISS provides the best tradeoff

between perplexity results and speedup.

Furthermore, ESS is developed to deal with real-world

acoustic tasks and improve the computing efficiency [16]. The

training process consists of a dedicated three-step training

pipeline. Firstly, the network is trained from scratch with a

structured-sparsity learning method until a sparse model at the

desired sparsity level is generated. At this stage, the accuracy

of the model may be relatively low. Therefore, the next

two steps are proposed to mitigate the accuracy degradation.

The second step fixes the zero parameters and protects the

structured sparsity. In the third step, the SGD method is

utilized to update the nonzero elements in the network.

In the evaluation, we use the open-source Kaldi toolkit and

implement the network in Intel Gaussian Neural Accelerator

(GNA). As shown in Fig. 2, ESS enables significant sparsity

improvement, such as 72.5% pruning in weight groups.

IV. BIT LEVEL SPARSITY QUANTIZATION

Fixed point quantization is an important model compression

technique for neural network models. To further reduce the

bit level, finer-granularity quantization is preferred. The key

problem of mix-precision quantization lies in determining

the optimal mixed-precision quantization scheme. The whole

design space for the quantization scheme is typically huge and

discrete. Existing work either uses costly neural architecture

search methods to explore the design space or utilizes a

ranking of the importance of all layers and assign the precision

manually, which may not be optimal [21], [22]. We aim

to propose a differentiable regularizer to induce a mixed-

precision quantization scheme [24].

For bit representation, we follow the dynamic scaling quan-

tization procedure, where we utilize the element with the

largest absolute value in each layer as the scaling factor and

uniformly quantize all the elements to n bits and represent the

quantized values in binary form. We consider scaling factor s
and each bit in Ws as independent trainable variables.

Specifically, the STE for the bit representation training is

defined as:

Forward: Wq =
1

2n − 1
Round

[
n−1∑
b=0

W (b)
s 2b

]
;

Backward:
∂L

∂W
(b)
s

=
2b

2n − 1

∂L
∂Wq

.

(4)

To enable gradient-based training of the bit representation, we

allow each bit to take a continuous value between 0 and 2. The

STE is then applied where it estimates the actual quantized

value Wq of the weight to compute loss and gradient. As the

gradient is back propagated to Wq , it will be passed directly

to each bit of Ws.

The bit-level sparse quantization (BSQ) regularizer is de-

fined as:

BGL(W
g) =

n−1∑
b=0

∥∥∥[W (b)
p ;W (b)

n

]∥∥∥
2
, (5)

where W
(b)
p and W

(b)
n are bit representations converted from

W g , and [·; ·] denotes the concatenation of matrices. BGL

could guarantee a certain bit b of all elements in both W
(b)
p

and W
(b)
n to be zero simultaneously.

We show the results of BSQ in Table II and prove that our

method can figure out the desired mixed-precision quantization

scheme and provide a model with higher performance under

the same quantization scheme.

!
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TABLE II
ACCURACY-#BITS TRADEOFF UNDER DIFFERENT REGULARIZATION STRENGTHS.

Strength α 3e-3 5e-3 7e-3 1e-2 2e-2

#Bits per Para / Comp (×) 3.02 / 10.60 2.25 / 14.24 1.66 / 19.24 1.37 / 23.44 0.87 / 36.63
BSQ acc before / after FT (%) 91.30 / 92.60 90.98 / 92.32 90.42 / 91.48 90.35 / 91.16 85.77 / 89.49

Train from scratch acc (%) 91.72 91.45 91.12 89.57 89.14

V. ROBUST ALGORITHM TOWARDS QUANTIZATION

ROBUSTNESS

For neural network models to be deployed into the real

world, we expect the model to be generalizable to unseen data

and to be flexible to potential compression required by the run-

time environment. We observe that both model generalizability

and performance under compression can be unified as per-

formance under weight perturbation. Specifically, sharpness-

aware minimization work notes that the generalization gap is

bounded by �2 weight perturbation [25]. Moreover, common

model compression techniques can also be understood as

adding perturbation to the pre-trained weights. For instance,

uniform fixed-precision quantization can be modeled as �∞
weight perturbation. In general, we can unify generalization

and quantization performance as improving the model’s ro-

bustness to �p norm bounded weight perturbation.

To improve such robustness, we first observe how the model

is performing under weight perturbation. Here we introduce

the idea of a perturbation lower bound, which is the minimal

perturbation strength needed to induce a loss increase larger

than our tolerance. In this setting, a larger perturbation lower

bound indicates that the model is more robust against weight

perturbation, which is our optimization goal. With additional

analysis utilizing Taylor expansion, we derive the bounds

for �2 and �∞ perturbation and find that a smaller Hessian

eigenvalue can lead to better generalization performance and

quantization robustness.

We propose Hessian-Enhanced Robust Optimization

(HERO) [26] to regularize the hessian eigenvalue and

improve the generalization ability and quantization robustness.

We compute the Hessian norm with a finite difference

approximation, which is formulated as the gradient difference

regarding the original and perturbed weight. We simplify

the gradient computation of the Hessian regularization by

only keeping the gradient terms related to the perturbed

weight. For the overall gradient optimization step, we utilize

the perturbed weight gradient from SAM, which is the first

term in the gradient formulation, SAM term behaves as a

first-order regularization to the optimization process for better

stability in the training.

For a neural network model, Lr needs to be computed on

the weight tensors from all the layers, each having distinct

dimensions and gradient value ranges. To accommodate the

diversity among layers, we propose to compute Lr layer by

layer and scale the �2 norm of the perturbation z to match the

weight value range in each layer. Specifically, for layer i, we

have

Li
r(W

i) = ||∇L(W i + hzi)−∇L(W i)||2,

zi =
W i2

||W i||2
∇L(W i)

||∇L(W i)||2 .
(6)

The overall Hessian regularization is then computed as

Lr(W ) =
∑N

i=1 L
i
r(W

i), summing over all the N layers

in the model. We derive the gradient of our Hessian-enhanced

robust optimization as

∇W i = ∇(W i+hzi)L(W
i + hzi) + αW

+γ

N∑
i=1

∇(W i+hzi)G(W i + hzi),
(7)

where α > 0 denotes the weight decay and γ > 0 denotes the

regularization strength of the Hessian regularization. Besides,

we summarize the HERO algorithm as shown in Algorithm 1.

Algorithm 1 Hessian-Enhanced Robust Optimization (HERO)

1: Randomly initialize model weights W i
0 for all layer i;

2: Set total step T , perturbation strength h, learning rate η;

3: Set weight decay α and Hessian regularization strength γ;

4: for t = 0, . . . , T do
5: Sample batch B from training set;

6: Compute batch loss’s gradient gi = ∇LB(W i
t );

7: Compute weight perturbation zi with gi per Equa-

tion (6);

8: Weight perturbation W i∗ = W i + hzi;

9: Compute perturbed gradient ∇LB(W i∗)
10: Hessian regularization G(W i∗) = ||∇LB(W i∗) −

gi||2
11: Compute HERO gradient ∇W i per Equation (7);

12: Weight update W i
t+1 = W i

t − η∇W i

return W i
T for all layer i

To verify our theoretical analysis, we perform neural net-

work training with the proposed HERO optimizer. In Fig. 3, we

compare the SGD and first-order gradient regularization, and

it shows that HERO reaches a smaller Hessian norm towards

the end of training, thus showing a smaller generalization gap.

As shown in Table III, we provide the quantization results

and full-precision results on three representative methods. It

shows that adding the Hessian regularization leads to better

testing accuracy and higher robustness against post-training

)'
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Fig. 3. Hessian norm and generalization gap evolution through the training
with HERO, GRAD L1, and SGD.

TABLE III
ABLATION STUDY ON HERO, FIRST-ORDER ONLY, AND SGD GRADIENT

UPDATE RULE. RESULTS REPORTED WITH MOBILENETV2 NETWORK ON

THE CIFAR-10 DATASET.

Quantization (bit) 4 6 8 Full

HERO 93.45% 94.90% 95.03% 95.03%
First-order only 91.61% 93.92% 94.00% 94.06%

SGD 85.88% 91.81% 92.33% 92.45%

quantization, showing the necessity of the Hessian enhance-

ment. Moreover, the 4-bit quantization result shows that the

HERO method can preserve the quantization robustness even

under a relatively low precision setting.

VI. CONCLUSION

This paper covers structured sparsity exploration in long

short-term memory and includes the ISS and ESS methods.

Moreover, we discuss bit-level quantization work BSQ for

more advanced compression rates and inference accuracy

compared with SOTA designs. Furthermore, we build gener-

alized robust algorithms HERO, which can protect the neural

network against weight perturbation. For future exploration,

we believe that execution acceleration and design flexibility

enhancement will significantly benefit the efficient and robust

neural network designs.
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