
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022 4667

Preplacement Net Length and Timing Estimation by
Customized Graph Neural Network

Zhiyao Xie , Rongjian Liang , Xiaoqing Xu, Member, IEEE, Jiang Hu, Fellow, IEEE, Chen-Chia Chang,
Jingyu Pan , Graduate Student Member, IEEE, and Yiran Chen , Fellow, IEEE

Abstract—Net length is a key proxy metric for optimizing
timing and power across various stages of a standard digi-
tal design flow. However, the bulk of net length information
is not available until cell placement, and hence, it is a signif-
icant challenge to explicitly consider net length optimization in
design stages prior to placement, such as logic synthesis. In
addition, the absence of net length information makes accurate
preplacement timing estimation extremely difficult. Poor pre-
dictability on the timing not only affects timing optimizations
but also hampers the accurate evaluation of synthesis solu-
tions. This work addresses these challenges by a preplacement
prediction flow with estimators on both net length and timing.
We propose a graph attention network (GAT) method with cus-
tomization, called Net2, to estimate individual net length before
cell placement. Its accuracy-oriented version Net2a achieves about
15% better accuracy than several previous works in identifying
both long nets and long critical paths. Its fast version Net2f is
more than 1000× faster than placement while still outperforms
previous works and other neural network techniques in terms
of various accuracy metrics. Based on net size estimations, we
propose the first machine learning-based preplacement timing
estimator. Compared with the preplacement timing report from
commercial tools, it improves the correlation coefficient in arc
delays by 0.08, and reduces the mean absolute error in slack,
worst negative slack, and total negative slack estimations by more
than 50%.

Index Terms—Graph neural network, physical-aware synthe-
sis, timing, VLSI design, wirelength.

I. INTRODUCTION

IN MODERN VLSI design, logic synthesis plays a critical
role by mapping designs in the RTL level into netlists with

logic gates. Previous studies [1] show that different logic syn-
thesis solutions can result in 3× difference in power and more
than one clock cycle difference in slack when measured at

Manuscript received 23 May 2021; revised 29 August 2021 and
28 November 2021; accepted 30 January 2022. Date of publication
8 February 2022; date of current version 24 October 2022. This work was
supported in part by the National Science Foundation under Grant NSF-
2106828, and in part by the Semiconductor Research Corporation (SRC)
Tasks 2810.021 and 2810.022 through UT Dallas’ Texas Analog Center of
Excellence (TxACE). This article was recommended by Associate Editor
L. Behjat. (Corresponding author: Zhiyao Xie.)

Zhiyao Xie is with the Department of Electronic and Computer Engineering,
Hong Kong University of Science and Technology, Hong Kong, SAR (e-mail:
eezhiyao@ust.hk).

Rongjian Liang is with ASIC and VLSI Research Group, Nvidia, Austin,
TX 78717 USA

Xiaoqing Xu is with Arm Research, Austin, TX 78735 USA.
Jiang Hu is with the Department of Electrical and Computer Engineering,

Texas A&M University, College Station, TX 77843 USA.
Chen-Chia Chang, Jingyu Pan, and Yiran Chen are with the Department of

Electrical and Computer Engineering, Duke University, Durham, NC 27708
USA.

Digital Object Identifier 10.1109/TCAD.2022.3149977

the sign-off stage. As the design complexity keeps increasing,
logic synthesis may not generate the netlist with the highest
quality, because it lacks a credible prediction on the QoR of
synthesized netlists at subsequent design stages like placement
and routing (P&R). For example, estimated slacks from the
synthesis tool can be largely different from sign-off static tim-
ing analysis (STA) results. To alleviate such poor predictability
at the early stage, more design iterations are required to reach
an optimized design quality, thus largely increasing the overall
turnaround time.

To improve the design predictability, a recent industrial
trend among commercial electronic design automation (EDA)
flows [2], [3] takes an ambitious goal to explicitly address the
interaction between logic synthesis and layout. Commercial
synthesis tools [4] provide increasingly better support on
physical-aware logic synthesis by directly integrating both
placement and optimization engines from the physical design
tool [5] into its logic synthesis process. By using a unified
data model in both early and late phases of the design, and
by tightly integrating the engines that use that model, these
state-of-the-art tools claim to achieve a tight correlation to sub-
sequent P&R quality, thus generating higher quality netlists
in a shorter turn-around time [6]. Such a trend in the EDA
industry has demonstrated the importance of predictability at
early design stages and its large impact on the final chip qual-
ity, but this solution is costly. Directly invoking placement
and optimization engines during synthesis can be highly time
consuming. This is further discussed in detail in Section V-D.

Besides invoking core engines at downstream design stages,
in recent years, machine learning (ML) techniques have been
widely adopted to improve the predictability at different
stages of the chip design flow. However, a large portion of
these ML methods only focuses on postplacement predictions.
Predictions at earlier stages are more challenging due to the
absence of placement information. Preplacement ML-based
works are proposed to guide synthesis flow [1], [7] or predict
the power consumption [8], [9]. But existing estimators on
net length, a fundamental design information related to both
power and timing, still cannot achieve very high accuracy.
Recent ML techniques tend to only estimate the overall wire-
length of a netlist [10] or lengths of a few selected paths [11]
for better accuracy, rather than predicting the length of each
individual net. But the knowledge of individual net sizes can
help to identify potentially large-wire nets in any path and
guide transformations focusing on them. In addition, due to the
absence of individual net length information before placement,
the wire load cannot be accurately estimated and thus, makes
timing prediction extremely challenging. To the best of our
knowledge, detailed preplacement ML estimator on timing,

1937-4151 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

4668 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

one of the most important design objectives, is still not avail-
able until today. In summary, individual net length and timing
are two important and correlated design objectives that are
difficult to predict before placement. In this work, we address
the problem by proposing a preplacement prediction flow with
estimators on both net length and timing.

Net Length Estimation: For state-of-the-art semiconductor
manufacturing technology nodes, interconnect is a dominating
factor for integrated circuit (IC) performance and power, e.g.,
it can contribute to over 1/3 of clock period [11] and about
1/2 of total chip dynamic power [12]. Interconnect character-
istics are affected by almost every step in a design flow, but
not explicitly quantified and optimized until the layout stage.
Therefore, previous academic studies attempted to address the
interconnect effect in design steps prior to layout, e.g., layout-
aware synthesis [13], [14]. To achieve such a goal, an essential
element is to enable fast yet accurate prelayout net length
prediction, which has received significant research attention in
the past [10], [11], [15]–[19]. Some works [15], [16] predefine
numerous features describing each net, and then a polynomial
model is built by fitting these features. The work of [10] esti-
mates wirelength by artificial neural networks (ANNs), but it
is limited to the total wirelength on an FPGA only, which
is easier to estimate than individual net length. The mutual
contraction (MC) [17] estimates net length by checking the
number of cells in every neighboring net. The intrinsic short-
est path length (ISPL) [18] is an interesting heuristic, which
finds the shortest path between cells in the net to be estimated,
apart from the net itself. The idea in [19] is similar to [18] in
measuring the graph distance between cells in the netlist. The
recent work [11] can only estimate the wirelength of an entire
path instead of individual nets, and it relies on the results from
virtual placement and routing.

Although net length prediction has been extensively stud-
ied previously, we notice a major limitation in most works.
That is, they only focus on the local topology around each
individual net with an oversimplified model. In other words,
when estimating each net, usually their features only include
information from nets one- or two-hop away. The big pic-
ture, which is the net’s position in the whole netlist, is largely
absent. However, a placer optimizes a cost function defined on
the whole netlist. It is not likely to achieve high accuracy with-
out accessing any global information. Some previous models
indeed attempt to embrace global information like the number
of 2-pin nets in an entire circuit [15], [16], or a few shortest
paths [18], but such information is either too sketchy [15], [16]
or still limited to a region of several hops [18]. Since the global
or long-range impact on individual nets is much more com-
plex than local circuit topologies, it can hardly be captured
by simple models or models with only human-defined param-
eters that cannot learn from data. To solve this, we propose
a new approach, called Net2,1 based on GAT [20]. Its basic
version, Net2f, intends to be fast yet effective. The other ver-
sion, which emphasizes more on accuracy and is denoted as
Net2a, captures rich global information with a highly flexible
model through circuit partitioning.

1Net2 stands for preplacement net length estimator by customized graph
neural network.

Recently, deep learning has generated a huge impact on
many applications where data is represented in Euclidean
space. However, there is a wide range of applications where
data are in the form of graphs. ML on graphs is much
more challenging as there is no fixed neighborhood structure
like in images. All neural network-based methods on graphs
are referred to as graph neural networks (GNNs). The most
widely used GNN methods include graph convolution network
(GCN) [21], graphSage (GSage) [22], and GAT [20]. They all
convolve each node’s representation with its neighbors’ repre-
sentations, to derive an updated representation for the central
node. Such operation essentially propagates node information
along edges and thereby, topology pattern is learned.

Similarly, in EDA, circuit designs are embedded in the
Euclidean space after placement, which inspired many convo-
lutional neural network (CNN)-based methods [23]–[25]. But
before placement, a circuit structure is described as a graph
and spatial information is not yet available. Till recent years,
GNN is explored for EDA applications [26], [27]. The work
in [26] predicts observation point candidates with a model
similar to GSage [22]. Graph-CNN [27] predicts the electro-
magnetic properties of postplacement circuits. This method
is limited to very small-scale circuit graphs with less than
ten nodes. Overall, GNN has great potential but is much less
studied than CNN in EDA.

Timing Estimation: In digital circuit design, timing is a pri-
mary design objective that needs to be considered since very
early design stages. A fast and accurate preplacement timing
estimator can essentially benefit design automation by provid-
ing early and high-fidelity feedback to synthesis solutions or
during the timing-driven placement. However, accurate timing
estimation is extremely challenging before placement, largely
due to the absence of wire length information. It is highly
difficult to estimate the impact from wires when locations of
all cell instances have not been fixed. In some commercial
tools [5], the timing engine ignores or underestimates the wire
load before placement. As a result, they fail to correlate well
with the postplacement timing report.

ML techniques are also proposed for timing prediction.
But due to aforementioned challenges, almost all existing
ML-based timing estimators [28]–[31] are only applied after
placement for sign-off timing analysis. Barboza et al. [28]
reduced the pessimism in the prerouting timing report from
current commercial tools. The work of [29] makes predictions
with its incremental STA tools and [30] predicts sign-off tim-
ing based on non-SI (signal integrity) analysis. Besides these
timing estimators, some ML-based flow tuning methods [1]
optimize their flow for better timing. They typically treat the
design as a black box by training one separate model for
each design, and only predict the overall quality like worst
negative slack (WNS) without providing any detailed timing
predictions on each net or path. Compared with our method
that predicts the delay at every individual net, this type of
black-box predictions are significantly more coarse grained,
less challenging, and apply to fewer scenarios.

In this work, we propose to address the absence of wire
information and provide an accurate preplacement timing
estimator with our knowledge from net length estimation.
Both features and predictions of our net size estimator Net2

are selected as input to timing prediction. Different from a

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: PREPLACEMENT NET LENGTH AND TIMING ESTIMATION BY CUSTOMIZED GNN 4669

representative timing estimator [28] that incorporates both gate
and wire delays to a net and does not differentiate multiple
input pins of the same cell, we estimate the delay of every
individual cell arc and net arc. To accomplish this, in our tim-
ing estimator, we construct two separate models for cell arc
and net arc with different input features.

Our contributions in this work include the following.
1) As far as we know, this is the first work making

use of GNN for preplacement net length estimation.
GNNs (GCN, GSage, and GAT) outperform both con-
ventional heuristics and common ML methods in almost
all measured metrics when validated on a comprehensive
benchmark with dozens of designs.

2) We propose to extract global topology information
through partitioning. Based on partition results, we define
innovative directional edge features between nets, which
substantially contribute to Net2’s superior accuracy.

3) We propose a GAT-based model named Net2, which is
customized for this net length problem. It includes a
fast version Net2f, which is 1000× faster than place-
ment, and an accuracy-centric version Net2a, which
effectively extracts global topology information from
unseen netlists and significantly outperforms plug-in use
of existing GNN techniques.

4) To focus on nets, we propose a graph construction
method that treats nets as nodes. In designing the Net2

architecture, we define different convolution layers for
graph nodes and edges to incorporate both edge and
node features.

5) We propose the first ML-based timing estimator before
placement, to the best of our knowledge. It addresses
the major challenge in preplacement timing estimation
by adopting net size estimations as input features.

II. PROBLEM FORMULATION

The major target in this work is to predict the size of each
net with preplacement features. The net length Lk of each indi-
vidual net nk is the label for training and prediction. The net
length is the half perimeter wirelength (HPWL) of the bound-
ing box of the net after placement. The features of each net are
based on the connection information derived from the circuit
netlist. These features include information about each analyzed
net’s driver, sinks, fan-in size, fan-out size, and the number
of neighbors. In addition, our method directly processes the
netlist as a graph to capture global information of the whole
circuit design.

We define terminologies of relevant features with the exam-
ple in Fig. 1, and commonly used notations throughout this
article are all summarized in Table I. Fig. 1(a) shows part of a
netlist, including five nets {n1, n2, n3, n4, n5} and 11 cells
{cA, cB, . . . , cK}. Now, we focus on net n3, which touches
three cells {cD, cG, cH} and is referred to as a 3-pin net.
Its driver is cell cD; its sinks are cells {cG, cH}. We denote
the area of n3’s driver cell as a3

dri. Net n3’s fan-ins N3
in =

{n1, n2}; its fan-outs N3
out = {n4, n5}. Its fan-in size is 2,

denoted as |N3
in| = 2. Its fan-out size (number of sinks) is 2,

denoted as |N3
out| = 2. Every net can have only one driver but

multiple sinks. Thus, the number of cells = 1 + |N3
out| = 3

for this net. Net n3’s one-hop neighbors include both its fan-
in and fan-out: N (n3) = N3

in ∪ N3
out = {n1, n2, n4, n5}. The

(a) (b)

Fig. 1. (a) Part of a netlist. (b) Corresponding graph.

TABLE I
COMMONLY USED NOTATIONS

number of its neighbors is also known as the degree of n3:
deg(n3) = |N (n3)| = 4.

To apply graph-based methods, we convert each netlist to
one directed graph. Different from most GNN-based EDA
tasks, net length prediction focuses on nets rather than cells.
Thus, we represent each net as a node, and use the terms node
and net interchangeably. For each net nk, it is connected with
its fan-ins and fan-outs through their common cells by edges
in both directions. The common cell shared by both nets on
that edge is called its edge cell. For example, in Fig. 1(b), net
n3 is connected with nets n4 and n5 through its sinks cG and
cH ; it is connected with nets n1 and n2 through its driver cD.
The edges through edge cell cG are denoted as n3 → n5 and
n5 → n3. The edge cell cG can also be referred to as c35 or
c53. We differentiate edges in different directions because we
will assign different edge features to n3 → n5 and n5 → n3.

An important concept throughout this article is global and
local topology information. We use the number of hops to
denote the shortest graph distance between two nodes on
a graph. The information of each net refers to its number
of cells and driver’s area. Local information includes the
information about the estimated net itself, or from its one
to two-hop neighboring nets. In contrast, global information
means the pattern behind the topology of the whole netlist
or the information from nets far away from the estimated net
nk. Here, we define the “far away” of global information as at
least three-hop away from the analyzed net. This is beyond the

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

4670 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

(b)(a)

Fig. 2. (a) Typical local topology. (b) Predictions on nets with similar local
topology information.

scope of several previous methods [16], [17]. By performing
clustering/partitioning, the global information can incorporate
the information from the whole netlist, reaching the furthest
net. The range of neighbors that can be accessed by each
model is referred to as the model’s receptive field.

III. CHALLENGES

We provide an example to show the challenge in net
length prediction and the importance of global information.
Fig. 2(a) shows a net n6 with a commonly seen local topol-
ogy information: |N6

in| = 1, |N6
out| = 2, deg(n6) = 3. When we

inspect its neighboring nets, this net n6 has three neighbors.
These neighbors are one 2-pin net as n6’s fan-in, one 2-pin
net in its fan-outs, and one 3-pin net in its fan-outs.

In a netlist of design B20 in ITC 99 [32], we find 725
nets with exactly the same driver cell’s area, number of cells,
and one-hop neighbor information as n6, but their net lengths
after placement range from 1 μm to more than 100 μm.
Distinguishing these similar nets is highly challenging with-
out rich global information. To demonstrate this, Fig. 2(b)
shows the prediction from different methods on these 725
similar nets. These nets are first divided into four different
types according to their actual net length, each type with
432, 190, 67, and 36 nets, respectively. We then plot the scaled
averaged estimation by different methods for each type of
net. MC [17], which only looks at one-hop neighbors, can-
not distinguish these nets at all. ISPL [18], which captures
some global information by searching shortest path, gives a
slightly lower estimation on the shortest type (netLen < 5 μm).
By looking at two-hop neighbors, a polynomial model with
predefined features (Poly) [15], [16] captures the trend with a
tiny difference between different types. For Net2, we only train
its edge convolution layer on other designs and present its out-
put. Its estimations on different net types differ significantly.
This example shows the importance of global information
in distinguishing a large number of nets with similar local
information.

We provide a brief analysis to demonstrate why previous
works like MC [17] cannot well distinguish these similar nets.
According to MC [17], the MC of net n6 is a 3-tuple (0.4,
0.5, and 0.5), contributed by the one 2-pin neighboring net
and two 3-pin neighboring nets, respectively. This net length
estimation by MC [17] is the same for all these 725 net with
similar topology as n6.

Fig. 3. Net size and timing prediction flow.

IV. ALGORITHM

A. Overall Flow

Fig. 3 shows the overall preplacement flow for both indi-
vidual net size and timing predictions. It is applied before lay-
out and predicts postplacement design objectives. Prediction
results can benefit optimization and evaluation for both syn-
thesis and placement. For our net length estimator Net2, we
develop a fast version and an accuracy-centric version named
Net2f and Net2a, respectively. As Fig. 3 shows, both versions
of Net2 extract features directly from the netlist, while Net2a

further captures global information by performing clustering
on the circuit netlist. As for timing prediction, we also pro-
vide both accurate and fast versions of timing estimators,
named Timea and Timef. The dashed blue arrows in Fig. 3
mean the arrows only hold for accuracy-centric versions of
our methods, like Net2a and Timea. It indicates that the clus-
tering/partitioning information is only utilized by Net2a and
Timea, providing higher accuracy at the cost of extra runtime
for clustering. Besides features used by net size prediction,
the preplacement timing report from commercial EDA tools
is also used as the input. The timing estimators also utilize
the information from net size predictions as important input
features.

B. Node Features on Graph

Algorithm 1 shows how we build a directed graph and gen-
erate features for each node with a given netlist. On average,
a net with more large cells tends to be longer. Thus, the most
basic net features include the net’s driver’s area, fan-in and
fan-out size {|Nk

in|, |Nk
out|, ak

dri}. Feature
∑

aall is the sum of
areas over all cells in nk. It is calculated by including the
drivers of all nk’s fan-outs in line 7, which are the sinks of
nk. Besides these basic features, we capture the more complex
impact from neighbors. As shown in line 4, we go through all
neighbors of nk to collect their fan-in and fan-out sizes. The
summation

∑
and standard deviation s() of these neighboring

information are added to node features Ok in line 8.

C. Edge Features

In Algorithm 1, node features Ok include up to two-hop
neighboring information. The receptive field of the GNN
method itself depends on the model depth, which is usually
two to three layers. Thus, the model can reach as far as four-
to five-hop neighbors, which is already more than previous
works. To achieve a good tradeoff between accuracy, speed,

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: PREPLACEMENT NET LENGTH AND TIMING ESTIMATION BY CUSTOMIZED GNN 4671

Algorithm 1 Graph Generation With Node Features

Input: Basic features {|Nk
in|, |Nk

out|, ak
dri}, net length label Lk,

the fan-in nets Nk
in and fan-out nets Nk

out of each net nk.
Generate Node Features:

1: for each net nk do
2: inin = [], inout = [] // start with empty lists
3: aall = [ak

dri], outin = [], outout = []
4: for each net ni ∈ Nk

in, each net no ∈ Nk
out do

5: inin.add (|Ni
in|) ; inout.add (|Ni

out|)
6: outin.add (|No

in|) ; outout.add (|No
out|)

7: aall.add(ao
dri)

8: Ok = {|Nk
in|, |Nk

out|, ak
dri,

∑
aall,

∑
outin,∑

outout,
∑

inin,
∑

inout, std(outin),
std(outout), std(inin), std(inout)}

Build Graph:

1: Initiate a graph G. Each net is a node.
2: for each net nk do
3: For node nk in G, set Ok as node feature, Lk as label.
4: for each net nb ∈ Nk

in ∪ Nk
out do

5: Add directed edge nb → nk.

Output: Graph G with node features O and label L.

Algorithm 2 Perform Partitioning for Edge Features
Input: A netlist with each net denoted as nk and each cell
denoted as ck. Required number of clusters/partitions.

1: Based on the netlist, construct a hyper-graph HGc with
cells as nodes, nets as hyper-edges.

2: Partitioning the hyper-graph HGc, result denoted as P.
Each node(cell) ck is assigned a cluster ID P[ck].

3: Based on the netlist, construct a hyper-graph HGn with
nets as nodes, cells as hyper-edges.

4: Partitioning the hyper-graph HGn, result denoted as M.
Each node(net) nk is assigned a cluster ID M[nk].

Output: Partition result P, M.

and computation cost, our fast-version model Net2f adopts this
conservative and efficient setting to reach as far as five hops.
But for the accuracy-centric Net2a, it goes way beyond that to
capture more global information from the whole graph.

To capture global information, we use an efficient multilevel
hypergraph partitioning method hMETIS [33] to divide one
netlist into multiple clusters/partitions. The partition method
minimizes the overall cut between all clusters, which provides
a global perspective. In this article, we use the terms partition
and cluster interchangeably. The details of this partitioning
process are given in Algorithm 2. To collect more information,
we construct two different types of hypergraphs based on the
netlist for this partition process. One type of hypergraph HGc
is generated by viewing cells as nodes, and the other type
of hypergraph HGn is generated by viewing nets as nodes.
After performing partitioning with hMETIS, we get partition-
ing results P and M, respectively. Each net nk is assigned a
cluster ID M[nk], which denotes the cluster/partition it belongs
to. Similarly, each cell ck is assigned a cluster ID P[ck]. Notice

Algorithm 3 Define Edge Features on Graph
Input: Cell cluster ID P[ck] for each cell ck, net cluster ID
M[nk] and the neighbors N (nk) of each net nk. Directed
graph G.

1: function MEASUREDIFF(cbk, nb, cok, no)
2: f0 = 1 − (P[cbk] == P[cok])
3: Pb = [P[c] for c ∈ nb] // cluster IDs for nb’s cells
4: Po = [P[c] for c ∈ no] // cluster IDs for no’s cells
5: Pb_not_o = Pb\Po // IDs in Pb but not in Po
6: Po_not_b = Po\Pb // IDs in Po but not in Pb

7: f1 = |Pb_not_o|
|Pb| + |Po_not_b|

|Po| // percent of different IDs
8: f2 = 1 − (M[nb] == M[no])
9: return [f0, f1, f2]

10: end function
11:

12: for each net nk do
13: for each net nb ∈ N (nk) do
14: F0 = [], F1 = [], F2 = []
15: Cell cbk is the edge cell on nb → nk
16: Other neighbors Nk

other = N (nk)\{nb}
17: for each net no ∈ Nk

other do
18: Cell cok is the edge cell on no → nk
19: f0, f1, f2 = MEASUREDIFF (cbk, nb, cok, no)
20: F0.add(f0) ; F1.add(f1) ; F2.add(f2)
21: f3 = 1 − (M[nb] == M[nk])
22: Eb→k = {

∑
F0, μ(F0),

∑
F1, μ(F1),

∑
F2,

μ(F2), f3}
23: Set Eb→k as the feature of edge nb → nk in G.

Output: Graph G with edge features E.

that HGc and HGn are only constructed to generate cluster ID
for each cell and net.

Cluster IDs are not directly useful by themselves. What mat-
ters in this context is the difference in cluster IDs between cells
and nets. Algorithm 3 shows how the cluster information is
incorporated into GNN models through novel edge features
F0, F1, F2, and f3. The most important intuition behind this
is: for a high-quality placement solution, on average, the cells
assigned to different clusters tend to be placed far away from
each other.

In Algorithm 3, we design the edge features to quantify
the source node’s contribution to the target node’s length. The
contribution here means the source net is “pulling” the edge
cell far away from other cells in the target net. The edge fea-
tures measure such “pulling” strength. When the edge cell
is “pulled” away, the target net results in a longer length. In
Algorithm 3, for edge nb → nk, function MEASUREDIFF mea-
sures the difference in assigned clusters between node nb and
every other neighboring node no, which indicates the distance
between cbk and cok. If the distance between edge cell cbk and
every other cell cok in nk is large, it means cbk is placed far
away from other cells in net nk. In this case, edges features
F0, F1, F2, and f3 are large. That is, why edge features imply
how strong the edge cell is “pulled” away from the target node.

Fig. 4 shows an example of Algorithm 3 using the netlist
same as Fig. 1. The number on each cell or net is the cluster

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

4672 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 4. Define edge features by partition results.

ID assigned to it after partition. Fig. 4 measures the edge
features of edge n5 → n3, representing how strongly edge
cell cG is pulled by n5 from both cells {cD, cH} in n3. To
calculate this, we measure the distance between cG and cH
by MEASUREDIFF(cG, n5, cH , n4) in Algorithm 3; and the
distance between cG and cD by MEASUREDIFF(cG, n5, cD,
n1) and MEASUREDIFF(cG, n5, cD, n2).

Take MEASUREDIFF(cG, n5, cH , n4) as an example to show
how it measures distance between cG and cH . As shown in
line 2 of Algorithm 3, feature f0 measures the difference in
cG and cH’ cluster IDs, f0 = 1 − (P[cG] == P[cH]) = 1 −
(3 == 3) = 0. Feature f1 measures the difference in all cells
between n5 and n4. As shown from line 3 to 7, P5 = [3, 6, 3]
and P4 = [3, 3]. Then, P5_ not _4 = [6] and P4_ not _5 = [].
They are normalized by the number of cells |P5| = 3 and
|P4| = 2, in order to avoid bias toward nets with many cells.
Thus, f1 = (1/3) + (0/2) = (1/3). Feature f2 measures the
difference between n5 and n4, f2 = 1 − (M[n5] == M[n4]) =
1 − (1 == 1) = 0. As this example shows, we only measure
whether cells/nets have the same cluster IDs, and the order of
IDs does not matter.

After measuring the difference in cluster ID between cG
and all other cells in n3, for the edge n5 → n3, F0 = [1, 1, 0];
F1 = [2, 1, (1/3)]; F2 = [1, 0, 0]. f3 measures the difference
between n5 and n3, f3 = 1. This example shows how we incor-
porate global information from partition into edge features.
Actually, we generate multiple different partitioning results M
and P by requesting different numbers of clusters. That results
in multiple different {F0, F1, F2, f3}. All these different edge
features are processed in line 22 and concatenated together as
the final edge features Eb→k.

D. Common GNN Models

This section introduces how GNN models are applied on
the graph G we build. GNN models are comprised of multiple
sequential convolution layers. Each layer generates a new
embedding for every node based on the previous embeddings.
For node nk with node features Ok, denote its embedding at
the tth layer as h(t)

k . Its initial embedding is the node features
h(0)

k = Ok. Sometimes the operation includes both neighbors
and the node itself, we use nβ to denote it: nβ ∈ N (nk)∪{nk}.
In each layer t, GNNs calculate the updated embedding h(t)

k
based on the previous embedding of the node itself h(t−1)

k and
its neighbors h(t−1)

b |nb ∈ N (nk).
We show one layer of GCN, GSage, and GAT below. Notice

that there exist other expressions of these models. The 2-D
learnable weight at layer t is W(t). In GAT, there is an extra

1-D weight θ(t). The operation [‖] concatenates two vectors
into one longer vector. Functions σ and g are sigmoid and
Leaky ReLu activation function, respectively.

On GCN (with self-loops), F (t)
GCN [21] is

h(t)
k = σ

⎛
⎝ ∑

nβ∈N (nk)∪{nk}
akβW(t)h(t−1)

β

⎞
⎠

where akβ = 1√
deg(k) + 1

√
deg(β) + 1

∈ R.

On GSage, F (t)
GSage [22] is

h(t)
k = σ

⎛
⎝W(t)

⎡
⎣h(t−1)

k ‖ 1

deg(k)

∑
nb∈N (nk)

h(t−1)
b

⎤
⎦

⎞
⎠.

On GAT, F (t)
GAT [20] is

h(t)
k = σ

⎛
⎝ ∑

nβ∈N (nk)∪{nk}
akβW(t)h(t−1)

β

⎞
⎠

where akβ = softmaxβ

(
rkβ

)
over nk and its neighbors

rkβ = g
(
θ(t)ᵀ

[
W(t)h(t−1)

β ‖W(t)h(t−1)
k

])
∈ R.

Here, we briefly discuss the difference between these meth-
ods. GCN scales the contribution of neighbors by a predeter-
mined coefficient akβ , depending on the node degree. GSage
does not scale neighbors by any factor. In contrast, GAT uses
learnable weights W and θ to first decide node nβ ’s contribu-
tion rkβ , and then normalize the coefficient rkβ across nk and
its neighbors through a softmax operation. Such a learnable
akβ leads to a more flexible model. For all these GNN meth-
ods, the last layer’s output embedding h(t)

k is connected to a
multilayer ANN.

E. Net2 Model

The node convolution layer of the Net2 is based on GAT,
considering its higher flexibility in deciding neighbors’ con-
tribution akβ . Thus, node convolution layer is F (t)

GAT. In the
final embedding, we concatenate the outputs from all layers,
instead of only using the output of the final layer like most
GNN works. This is a customization, by which the embedding
includes contents from different depths. The shallower ones
from the first few layers include more local information, while
the deeper ones from the last few layers contain more global
information. Such an embedding provides more information
for the ANN model at the end and may lead to better con-
vergence. The idea of combining shallow and deep layers has
inspired many classical deep learning methods in Euclidian
space [34], [35], but it is not widely applied in GNNs for
node embeddings. After three layers of node convolution, the
final embedding for each node is [h(1)

k ‖h(2)
k ‖h(3)

k]. Without
partitioning, this is the embedding for our fast solution Net2f.

In order to utilize edge features, here we define our own
edge convolution layers E as customization. For each directed
edge nb → nk, we concatenate both target and source nodes’
features [Ok‖Ob] together with its edge features Eb→k as the
input of edge convolution. Combining node features when

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: PREPLACEMENT NET LENGTH AND TIMING ESTIMATION BY CUSTOMIZED GNN 4673

Fig. 5. Example to illustrate timing prediction algorithm.

processing edge features enables E to distinguish different
edges with similar edge features. The output embedding is

ek_ sum =
∑

nb∈N (nk)

W2W1[Ok‖Eb→k‖Ob]

ek_ mean = 1

deg(k)
ek_ sum.

The two 2-D learnable weights W1 and W2 can be viewed
as applying a two-layer ANN to the concatenated input. We
choose two-layer ANN rather than one-layer here because the
input vector [Ok‖Eb→k‖Ob] is long and contains heteroge-
neous information from both edge and node. We prefer to
learn from them with a slightly more complex function. After
the operation, both ek_ sum and ek_ mean are on nodes. Then, we
add an extra node convolution using the output from edge con-
volution as input. This structure learns from neighbors’ edge
embeddings eb_ sum and eb_ mean

h(e)
k = F (e)

GAT

([
ek_ sum‖ek_ mean

]
,
[
eb_ sum‖eb_ mean

])
.

Inspired by the same idea in Net2f, we combine the contents
from all layers for our accurate solution Net2a. Its final embed-
ding is [h(1)

k ‖h(2)
k ‖h(3)

k ‖ek_sum‖ek_mean‖h(e)
k]. For both Net2f

and Net2a, their final embeddings are then connected to an
ANN.

F. Timing Prediction Method

This section introduces our timing prediction method in
detail. The timing estimator is constructed and applied to
directly predict the delay of each individual timing arc. Then,
based on the inference result, we further obtain arrival time,
required arrival time, and slack of each circuit node by travers-
ing the graph with predicted delay values. Similar to the Net2

model, we provide both fast and accuracy-oriented versions
for timing prediction, named Timef and Timea, respectively.

We take the simplified circuit in Fig. 5 to demonstrate our
timing estimator, which predicts the delay of every timing arc.
The timing arc, as the basic component of a timing path, can be
categorized into cell arc and net arc. Each cell arc is between
an input pin and output pin of a cell, and each net arc is
between the driver pin and load pin of a net. Considering
their different properties, in our timing estimator, two separate
timing prediction models are constructed to handle these two
types of timing arcs. For each timing arc, we denote the pin
from which it originates as the source pin, and the pin at
which it ends as the sink pin. For example, the timing arc
C2.A⇒C2.Z means a cell arc from source pin C2.A to the
sink pin C2.Z.

For each cell, the cell-arc timing model predicts the post-
placement delay of all its cell arcs. Take cell C2 in Fig. 5 as
an example, the model predicts delays of both C2.A⇒C2.Z
and C2.B⇒C2.Z. This is essentially different from the timing

TABLE II
PREPLACEMENT FEATURES FOR TIMING PREDICTION

model in a representative postplacement timing estimator [28],
which assumes the delays of all cell arcs in the same cell are
the same. This approximation in [28] may lead to inaccuracies,
considering the input slews and diffusion capacitances seen
by input pins of the same cell can be different. Our observa-
tion in experiments shows the cell delays at C2.A⇒C2.Z and
C2.B⇒C2.Z can differ a lot and thus, distinguishing all cell
arcs helps to achieve higher accuracy. Similarly, for each net,
the net-arc timing model predicts the postplacement delay of
each net arc. In net N2, for example, there are two net arcs
C2.Z⇒C4.A and C2.Z⇒C3.B. In addition, our timing esti-
mator takes the worst delay between rising and falling as the
ground truth, without constructing separate models for rising
and falling edges. This avoids doubling the required timing
models and simplifies the timing analysis through traversals.

Table II summarizes selected features for cell arcs and
net arcs, with examples on C2.A⇒C2.Z and C2.Z⇒C4.A in
Fig. 5, respectively. All these features in Table II are from two
main sources, as summarized as follows.

1) All relevant slew, delay, and slack information from the
preplacement timing report.

2) All relevant net and cell information that can be derived
from the netlist. It includes the global information
captured by performing clustering on the netlist.

Both cell-arc and net-arc models are constructed based on
the existing timing report and the netlist information used in
net size prediction. We can also view the prediction proce-
dure as improving the inaccurate preplacement timing report
by incorporating net size information into our ML-based tim-
ing model. Specifically, a detailed explanation of all selected
features is elaborated as follows.

1) Preplacement Delay: Although the preplacement timing
report fails to evaluate wire load accurately for delay
measurement, it still shows a generally acceptable cor-
relation with ground truth. Thus, the preplacement delay
of the predicted cell arc itself is adopted as an important
input feature. Notice that the preplacement delay of net
arcs is set to zero in some commercial layout tools [5];
thus, the delay of the net arc itself is not used as a feature
of C2.Z⇒C4.A.

2) Capacitance at the Input Pin of Cells: For the same type
of cell, the capacitance at the cell input pin is usually
proportional to the cell’s driving strength. For cell arcs, a
larger capacitance at each arc’s source pin indicates the
larger driving strength and thus, smaller delay. For net

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

4674 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

arcs, a larger capacitance at each arc’s sink pin indicates
a higher load seen by the wire.

3) Preplacement Slew at the Source Pin: The slew, or
named transition time, also significantly affects the
delay. Thus, the preplacement slew at the source pin
of both types of arcs is adopted as features.

4) Detailed Net Size Information: The net size of net N2 is
a determining factor of the delay. For both cell and net
arcs in this example, it is directly proportional to the wire
load seen by the C2.Z pin. A larger wire load at C2.Z
takes longer to charge/discharge, leading to a larger cell-
arc delay. For the net arc, the net size is also proportional
to the wire length from C2.Z to C4.A. For the fast timing
estimator Timef, both node features and Net2f-predicted
size of the net N2 are included as features. For the
accurate version Timea, besides using predictions from
Net2a, the clustering-related information of this node is
also included as features.

5) Brief Net Size Information: For the cell arc like
C2.A⇒C2.Z, its previous net N1 affects the input slew
at the source pin C2.A. For the net arc like C2.Z⇒C4.A,
its following net N3 affects where cell C4 is placed,
and thus, affects the distance between C2.Z and C4.A.
Since their impact on the arcs is less than the net N2,
we only adopt the brief net size information, which is
corresponding net size estimators’ predictions on these
nets as features.

Notice that although the resistance and capacity are not
explicitly calculated as input features, they strongly relate with
our estimations on net size, which is the main focus of this
work. Thus, RC parasitics are not ignored by the timing model.

Based on extracted features of the two different types
of timing arcs, we develop one cell-arc model and one
net-arc model, both based on the random forest (RF) algo-
rithm [36]. Tree-based ML algorithms are good at handling
largely distinct types of features, which include slew, delay,
capacitance, cell/net number, and clustering information in this
case. Instead of directly predicting the ground-truth postplace-
ment delay of each arc, our model is actually trained to predict
the incremental delay, which is the difference between pre-
placement and the ground-truth postplacement timing. Then,
the final predicted delay is the summation of both preplace-
ment delay and the prediction of the incremental delay. This
strategy, not adopted in previous ML-in-EDA works [28],
helps the model to directly capture wire-load-induced delay
based on the preplacement timing report.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

To thoroughly validate our algorithms, we constructed a
comprehensive dataset by including 37 different designs with
largely varying sizes. All 37 designs are synthesized with
Synopsys Design Compilier [37] in 45-nm NanGate Library,
and then placed by Cadence Innovus v17.0 [5]. When testing
ML models on each design, we train the model only on the
other 36 designs in the dataset to prevent information leakage.
Thus, all accuracy numbers measure the performance on new
designs completely unseen to the existing model. These accu-
racies reflect how well the model generalizes to each of the 37

TABLE III
NUMBER OF NETS IN DESIGNS

designs in our dataset. The detail of each design is shown in
Table III. They are collected from various benchmarks, includ-
ing ISCAS’89 [38], ITC’99 [32], ANUBIS [39], and other
selected designs from Faraday, OpenCores, and Gaisler in the
IWLS’05 [40]. To ensure all designs in the experiment are
representative, we discard tiny designs with less than 3K nets.
As shown in Table III, the size of these designs ranges from
4K to 800K nets. We set the clock period of all designs to be
1.5 ns and thus, most designs result in a negative worst slack.
This mimics a common design scenario where designers target
high performance and rely on the timing estimator to address
negative slacks on critical paths.

All GNNs are built with Pytorch 1.5 [41] and Pytorch-
geometric [42]. The partition on graphs is performed by
hMETIS [33] executable files. The RF models are developed
based on the RF regressor in scikit-learn [43]. The experiment
is performed on a machine with a Xeon E5 processor and an
Nvidia GTX 1080 graphics card.

Hyperparameter values are decided during parameter tuning.
This is accomplished by testing combinations of hyperparam-
eters on a much smaller validation dataset constructed for
parameter tuning. This smaller validation dataset may com-
prise netlists only from one benchmark like ITC’99, in order
to make the testing faster and allow us to test how well
the model generalizes on other designs in the whole dataset.
Here, we introduce the best hyperparameters after parame-
ter tuning. They target to achieve a good tradeoff between
bias and variance, making the model sufficiently flexible while
not too complex. For all GNN methods, we use three layers
of GNN with two layers ANN. The attention head number
of GAT is two. The size of each node convolution output is
64. The size of edge convolution output is twice of the input
size [Ok‖Eb→k‖Ob]. The size of the first-layer ANN is the
same as its input embedding, and the size of the second-layer
ANN is 64. A batch normalization layer is applied after each
GNN layer for better convergence. Because of the difference
in graph size, each batch includes only one graph, and the
training data are shuffled during training. We use stochastic

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: PREPLACEMENT NET LENGTH AND TIMING ESTIMATION BY CUSTOMIZED GNN 4675

Fig. 6. Correlation coefficient R between net length prediction and label. Averaged over designs in each benchmark. (a) 20 bins generated according to
labels. (b) 20 bins generated according to predictions.

gradient descent (SGD) with a learning rate 0.002 and momen-
tum factor 0.9 for optimization. GNN models converge in 250
epoches. For all RF models in timing prediction, we set the
number of tree-based estimators to be 80 and the maximum
depth of each estimator to be 12. Other parameters are left the
same as default settings.

When partitioning each netlist, we generate seven differ-
ent cell-based partitions P by requesting the number of output
clusters to be the number of cells divided by 100, 200, 300,
500, 1000, 2000, and 3000. Because different partitions are
generated in parallel, the overall runtime depends on the slow-
est one. Similarly, we generate three net-based partitions M by
requesting the cluster number to be the number of nets divided
by 500, 1000, and 2000. These cluster numbers are achieved
by tuning during experiments, which provides good enough
coverage over different cluster sizes.

Representative previous methods MC [17], ISPL [18], and
Poly [16] are implemented for comparisons. As for traditional
ML models, besides the polynomial model proposed in the
previous work [16], we implement a three-layer ANN model
using node features O. Here, we summarize the receptive field
of all methods. MC is limited to one-hop neighbors, while Poly
and ANN can reach two-hop neighbors. The receptive field of
ISPL varies among different nodes. According to [18], ISPL
for most nets is within several hops. In comparison, all GNNs
and Net2f can access five-hop neighbors. Net2a measures the
impact from the whole netlist.

We evaluate our methods with various metrics, including
mean absolute error (MAE), correlation coefficient R, and
coefficient of determination R2. For classification tasks, we
evaluate the accuracy with a receiver operating characteristic
(ROC) curve, where a larger area under curve (AUC) indicates
higher accuracy.

B. Net Length Prediction Result

We first measure the correlation between prediction and
ground truth on all nets in each netlist in Fig. 6, with a clas-
sical criterion used in many net length estimation works [16],

[18], [19]. For each netlist, we first calculate a range of net
length [L0%, L95%]. It means from the shortest net length to
the 95 percentile largest net length. The top 5% longest nets
are excluded to prevent an extraordinarily large range. Then,
the calculated range is partitioned into 20 equal bins, and the
average of both predictions and labels in each bin is calcu-
lated. After that, the correlation coefficient R between these
20 averaged predictions and labels is measured and reported.
To make fair comparisons, we calculate the range [L0%, L95%]
and define such 20 bins using both labels and predictions, as
shown in Fig. 6(a) and (b), respectively. Fig. 6 reports the
correlation coefficient averaged over designs from the same
benchmark. In addition, the “Average All” bars in Fig. 6 show
the averaged R over netlists from all 37 designs.

Fig. 6(a) and (b) shows highly similar trend of averaged
accuracy, indicating that Net2a > Net2f > GCN/GAT > ANN.
The correlations of GNN methods are significantly higher than
previous methods with a limited receptive field, including MC,
ANN, ISPL, and Poly. Then, Net2f outperforms GAT and
GCN with its residual connection. By capturing the global
information, Net2a performs the best on all benchmarks, with
an average accuracy R = 0.964.

Besides correlation, we also measure the quality of net
length estimators by how well they identify long nets in each
circuit. Longer nets generally tend to contribute more wire
load, and thus, leaves a larger space for improving both wire-
induced delay and the total wirelength. We believe identifying
long nets is helpful for timing-related operations including
timing-driven placement. Table IV(a) shows the accuracy in
identifying the top 10% longest nets. For each netlist, the 10%
longest nets are labeled as true, and the accuracy is measured
in ROC curve’s AUC. Models capturing only one or two-hop
neighbors, like MC and Poly, perform the worst. On average,
ISPL outperforms MC and Poly with AUC ≈ 0.69. Notice that
for large designs with more than 500 thousand nets, our imple-
mented ISPL takes days of runtime, which is much slower than
placement and too time consuming in our experiment. Thus,
we denote “N/A” for these designs in Table IV(a) and omit
them when measuring the average accuracy for ISPL. Using

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

4676 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

TABLE IV
(a) NET LENGTH PREDICTION: LONG NETS IDENTIFICATION ACCURACY IN ROC AUC (%). (b) TIMING PREDICTION:

ARC DELAY PREDICTION ACCURACY

our proposed node features, the ANN achieves AUC ≈ 0.73.
In comparison, graph methods like GCN (AUC ≈ 0.78) and
GAT (AUC ≈ 0.77) perform significantly better by learning
with a larger receptive field reaching five-hop neighbors. By
combining shallow and deep embeddings, Net2f achieves AUC
≈ 0.82. Net2a achieves AUC ≈ 0.90 by learning more global
information from clustering on edge features with its edge
convolution layer. The trend Net2a > Net2f > GAT > ANN
clearly decomposes the contribution of different component
of our ML algorithm. The good accuracy can be attributed
to convolution of node features introduced in GAT, our cus-
tomization of residual connections in Net2f, and the global
information in Net2a.

Besides the average accuracy over all designs, we also count
the average accuracy over eight large designs with more than
100K nets in Table IV. These large designs are marked with
asterisks (*). The accuracy trend Net2a > Net2f > GAT >

ANN remains the same for large designs. Also, the accuracy
in net length prediction does not degrade when measured on
large designs only.

C. Timing Prediction Result

For timing estimators, we first evaluate the accuracy in
predicting the delay of each timing arc. Table IV(b) measures
the delay of all arcs in the same netlist with both correlation
coefficient R and coefficient of determination R2. For a biased

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: PREPLACEMENT NET LENGTH AND TIMING ESTIMATION BY CUSTOMIZED GNN 4677

estimator, which means its predictions are consistently higher
or lower than the ground-truth labels, it may achieve high R
but much lower R2 if it well correlates with the label.

In Table IV(b), the report_timing is the preplacement timing
report from the timing engine from a representative commer-
cial tool.2 Before placement, due to the absence of wire length
information, the timing engine tends to underestimate wire
load in its timing report. As a result, the reported delay values
of all arcs are consistently smaller than the ground-truth post-
placement report. In other words, the preplacement report is
biased toward more optimistic predictions, which is especially
undesired in timing analysis since it underestimates timing vio-
lations. Such a bias is reflected in its low averaged R2 = 0.70,
but the bias does not affect the correlation R = 0.86. When
averaged over all 37 designs, the fast timing estimator Timef

is 0.05 higher in R and 0.12 higher in R2 than the report from
the commercial EDA tool. The accurate version, Timea, fur-
ther achieves R = 0.94 and R2 = 0.87. The improvement
in R means both Timef and Timea not only fix the bias in
preplacement timing reports but also improve the correlation.

In Table IV(b), to analyze the contributions from different
features, we also include an extra baseline named “only-
Time,” referring to only using timing-related features listed in
Section IV-F as input features of the timing model. This base-
line measures whether timing input features alone are enough
for accurate timing estimations. This “onlyTime” outperforms
the report_timing with R = 0.89 and R2 = 0.78, but is still less
accurate than Timef, and the gap is even larger compared with
Timea. This gap shows the contribution purely from the net-
length-related predictions. In addition, we further measured
the accuracy of a timing model using the ground-truth net-
length as an input feature. The averaged accuracy turns out to
be R = 0.98 and R2 = 0.96. This can be viewed as an upper
limit of the current Timef/a model, assuming perfect net length
predictions are available.

We observe that the arc-delay prediction accuracy in
Table IV(b) is lower for large designs with more than 100K
nets, such as leon2, netcard, and OR1200. But as our analysis
of Table IV(a) has demonstrated, net length prediction accu-
racy for large designs is not worse than average. Our study
shows that in these large designs, there are much more very-
long nets, which cause dominating wire-induced incremental
delay. It means the gap between preplacement and pose-
placement timing is significantly larger and more difficult to
predict, thus an inaccurate net length estimation causes a larger
penalty to timing prediction accuracy. This is validated by the
poor accuracy of “report_timing” by the commercial tool on
these large designs. Although our Timea performs not as well
on large designs, it more significantly outperforms the com-
mercial tool baseline on large designs. As Table IV(b) shows,
Timea outperforms “report_timing” by 0.08 (= 0.94 − 0.86)
in correlation R when averaged over all designs, while by as
large as 0.26 (= 0.81 − 0.55) in R for large designs.

Based on the prediction on all delay arcs, we perform the
PERT [44] traversal, which is widely used in STA, to mea-
sure the arrival time, required arrival time, and slacks. Fig. 7
shows predictions versus labels on calculated slacks for both

2According to the license agreement, we should not disclose the name of
vendor’s tool when making direct comparisons with it.

Fig. 7. Examples on preplacement slack prediction.

TABLE V
PREPLACEMENT PATH SLACK PREDICTION ACCURACY

preplacement timing report and the estimator Timea. Eight rep-
resentative designs are presented, and each subplot measures
all slacks in the netlist. Similar to the trend of arcs delay, slacks

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

4678 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 8. WNS (left) and TNS (right) of all designs.

from the preplacement timing report are consistently higher
than ground truth, thus are biased toward optimism. For each
design in Fig. 7, the timing estimator Timea achieves a much
higher accuracy when measured in R2 and absolute errors.
Both averaged and median accuracies on slack prediction over
all 37 designs are shown in Table V. The averaged accuracy
is more affected by less accurate predictions, thus, the median
accuracy is higher. The trend in accuracy remains the same,
showing Timea > Timef > report_timing. On average, the
Timea achieves high R2 = 0.91, indicating that high cor-
relation and low bias are achieved simultaneously. Its MAE
is 0.11 ns, which reduces the error in preplacement timing
report by more than 50% and is less than 10% of the clock
cycle.

According to all slacks calculated by traversing delay
predictions, we can easily measure the total negative slack
(TNS) and WNS of each netlist. The TNS and WNS of all
designs are presented in Fig. 8. For the small portion of netlists
with all slacks positive, we set the WNS to the lowest posi-
tive slack and leave the TNS to be zero. Each point in Fig. 8
represents the TNS/WNS of one netlist. The estimator Timea

maintains its high accuracy in TNS and WNS prediction.
Considering this correlation is measured on all designs and
each testing design is completely unseen by the model, the
result proves that the performance of Timea is robust on all
37 tested designs in our experiment.

To show our timing model’s performance on large designs
more clearly, we pick those eight largest designs with more
than 100K nets and only show the TNS/WNS predictions on
these designs in Fig. 9. The arrow with design name text in
Fig. 9 points to the prediction from Timea, and the correspond-
ing evaluation from report_timing shares the same ground truth
in the x-axis. Compared with other designs, WNS/TNS of large
designs is more negative. The estimation from report_timing
is close to ground truth for designs “b18” and “b19,” but sig-
nificantly more optimistic for designs “vga_lcd,” “netcard,”
“OR1200,” and “leon2.” In comparison, our Timea gives rather
accurate predictions to all these large designs.

D. Runtime Comparison

Table VI shows the runtime of placement, net length esti-
mators Net2f/2a, and timing estimators Timef/a. We report the
runtime separately for multiple representative designs, which
cover a large range of design sizes from 12K to 800K nets
in the netlist. For a fair comparison, the runtime of place-
ment includes the placement algorithm only, without any extra
time for file I/O, floorplanning, or placement optimization.

Fig. 9. WNS (left) and TNS (right) on only large designs.

The inference of Net2f/2a requires one Nvidia GTX 1080
graphics card, and other runtimes are performed with CPU
only.

As Table VI shows, Net2a takes slightly longer inference
time than Net2f for its extra edge convolution layer. The
overall runtime of Net2a includes both partition and infer-
ence. Partitioning contributes the majority of Net2a’s runtime.
Net2a is more than > 15× faster than placement. The run-
time of Net2a can be potentially improved by using coarser
but faster partition P and M, especially on larger designs.
Without partition, Net2f is > 1000× faster than placement.
For timing estimators, similarly, Timea takes longer infer-
ence time than Timef since it takes more input features. The
Timea is > 15× faster and the Timef is > 1000× faster
than the placement for not-too-small designs. In addition, we
report the overhead time to extract all features from the circuit
raw data in Table VI. The overhead is now comparable with
the cost of partition. Currently, this feature extraction step is
implemented only to verify our ML algorithm and not opti-
mized for fast runtime yet. It dumps all feature information
from the EDA tools and then loads it to the external ML
model. The room for improvement is large if extra engineer-
ing effort is spent to integrate the flow into industrial tools.
The runtime comparison between different designs in Table VI
shows that the speedup of Net2f/2a and Timef/a is more sig-
nificant for larger designs. It validates the scalability of our
method.

Besides comparisons with placement, to gain more insights
on the whole VLSI design flow, we also evaluate the run-
time of both traditional logic synthesis and physical-aware
synthesis from an anonymous industry-standard commercial
synthesis tool in Table VII. It is measured on the design b21.
As introduced, physical-aware synthesis explicitly addresses
the interaction between synthesis and layout with the cost of
extra runtime. The commercial synthesis tool we use offers
two options for physical-aware synthesis, one using a fast
placement method and the other using the complete place-
ment to provide feedback on the backend implementations.
As shown in Table VII, the two versions of physical-aware
logic synthesis take 115 and 247 more seconds than tradi-
tional logic synthesis. This extra runtime is close to the time
spent on placement. This verifies our claim that compared with
ML-based solutions, the physical-aware synthesis is more time
consuming.

As for the model training time, it takes around 30 min to
train the Net2a model, and less than 10 min to train the RF-
based timing estimator Timea.

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: PREPLACEMENT NET LENGTH AND TIMING ESTIMATION BY CUSTOMIZED GNN 4679

TABLE VI
DETAILED RUNTIME COMPARISON ON REPRESENTATIVE DESIGNS (IN SECONDS)

TABLE VII
SYNTHESIS RUNTIME MEASUREMENT (IN SECONDS)

VI. CONCLUSION

In this article, we proposed Net2, a GAT method cus-
tomized for individual net length estimation. It includes a
fast version Net2f, which is 1000 × faster than placement,
and an accuracy-centric version Net2a, which extracts global
information and significantly outperform all previous net
length estimation methods. Based on net length predictions,
we further developed a preplacement timing estimator, which
achieves significantly better correlations with ground truth
compared with the preplacement timing report from commer-
cial tools.

REFERENCES

[1] Z. Xie et al., “Fist: A feature-importance sampling and tree-based
method for automatic design flow parameter tuning,” in Proc. ASPDAC,
2020, pp. 19–25.

[2] Synopsys, Mountain View, CA, USA, “Fusion Compiler: The
Singular RTL-to-GDSII Digital Implementation Solution,” 2020.
[Online]. Available: https://www.synopsys.com/implementation-and-
signoff/physical-implementation/fusion-compiler.html (accessed May
2021).

[3] Cadence, San Jose, CA, USA, “Cadence Digital Full Flow Optimized
To Deliver Improved Quality of Results With Up to 3X Faster
Throughput,” 2020. [Online]. Available: https://www.cadence.com/en_
US/home/company/newsroom/press-releases/pr/2020/cadence-digital-
full-flow-optimized-to-deliver-improved-quality-.html (accessed May
2021).

[4] Cadence, San Jose, CA, USA, “Cadence Genus User Guide,” 2019.
[Online]. Available: https://www.cadence.com/content/dam/cadence-
www/global/en_US/documents/tools/digital-design-signoff/genus-
synthesis-solution-ds.pdf (accessed May 2021).

[5] Cadence, San Jose, CA, USA, “Cadence Innovus User Guide,” 2017.
[Online]. Available: https://www.cadence.com/content/dam/cadence-
www/global/en_US/documents/tools/digital-design-signoff/innovus-
implementation-system-ds.pdf (accessed May 2021).

[6] S. Kapoor and M. Richards, “Getting Better Results Faster With the
Singular RTL-to-GDSII Product,” 2021. [Online]. Available: https://
www.synopsys.com/implementation-and-signoff/resources/articles/
unified-data-engines-fusion-compiler.html (accessed May 2021).

[7] C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows without
human knowledge,” in Proc. ICCAD, 2018, p. 50.

[8] Y. Zhou, H. Ren, Y. Zhang, B. Keller, B. Khailany, and Z. Zhang,
“PRIMAL: Power inference using machine learning,” in Proc. DAC,
2019, p. 39.

[9] Y. Zhang, H. Ren, and B. Khailany, “GRANNITE: Graph neural network
inference for transferable power estimation,” in Proc. DAC, 2020,
pp. 1–6.

[10] Q. Liu, J. Ma, and Q. Zhang, “Neural network based pre-placement
wirelength estimation,” in Proc. FPT, 2012, pp. 16–22.

[11] D. Hyun, Y. Fan, and Y. Shin, “Accurate wirelength prediction for
placement-aware synthesis through machine learning,” in Proc. DATE,
2019, pp. 324–327.

[12] N. Magen, A. Kolodny, U. C. Weiser, and N. Shamir, “Interconnect-
power dissipation in a microprocessor,” in Proc. SLIP, 2004, pp. 7–13.

[13] M. Pedram and N. Bhat, “Layout driven technology mapping,” in Proc.
DAC, 1991, pp. 99–105.

[14] M. Pedram and N. B. Bhat, “Layout driven logic restructur-
ing/decomposition,” in Proc. ICCAD, 1991, pp. 134–137.

[15] S. Bodapati and F. N. Najm, “Prelayout estimation of individual wire
lengths,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 6,
pp. 943–958, Dec. 2001.

[16] B. Fathi, L. Behjat, and L. M. Rakai, “A pre-placement net length
estimation technique for mixed-size circuits,” in Proc. SLIP, 2009,
pp. 45–52.

[17] B. Hu and M. Marek-Sadowska, “Wire length prediction based clustering
and its application in placement,” in Proc. DAC, 2003, pp. 800–805.

[18] A. B. Kahng and S. Reda, “Intrinsic shortest path length: A new, accurate
a priori wirelength estimator,” in Proc. ICCAD, 2005, pp. 173–180.

[19] Q. Liu and M. Marek-Sadowska, “Pre-layout wire length and congestion
estimation,” in Proc. DAC, 2004, pp. 582–587.

[20] P. Veličković et al., “Graph attention networks,” in Proc. ICLR, 2017,
pp. 1–12.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[22] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. NeurIPS, 2017, pp. 1024–1034.

[23] Z. Xie et al., “Routenet: Routability prediction for mixed-size designs
using convolutional neural network,” in Proc. ICCAD, 2018, p. 80.

[24] Y.-C. Fang, H.-Y. Lin, M.-Y. Su, C.-M. J. Li, and E. J.-W. Fang,
“Machine-learning-based dynamic ir drop prediction for ECO,” in Proc.
ICCAD, 2018, p. 17.

[25] Z. Xie et al., “Powernet: Transferable dynamic IR drop estimation
via maximum convolutional neural network,” in Proc. ASPDAC, 2020,
pp. 13–18.

[26] Y. Ma et al., “High performance graph convolutional networks with
applications in testability analysis,” in Proc. DAC, 2019, p. 18.

[27] G. Zhang, H. He, and D. Katabi, “Circuit-GNN: Graph neural networks
for distributed circuit design,” in Proc. ICML, 2019, pp. 7364–7373.

[28] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in Proc. DAC,
2019, p. 106.

[29] A. B. Kahng, S. Kang, H. Lee, S. Nath, and J. Wadhwani, “Learning-
based approximation of interconnect delay and slew in signoff timing
tools,” in Proc. SLIP, 2013, pp. 1–8.

[30] A. B. Kahng, M. Luo, and S. Nath, “SI for free: Machine learning of
interconnect coupling delay and transition effects,” in Proc. SLIP, 2015,
pp. 1–8.

[31] S.-S. Han, A. B. Kahng, S. Nath, and A. S. Vydyanathan, “A deep learn-
ing methodology to proliferate golden signoff timing,” in Proc. DATE,
2014, pp. 1–6.

[32] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 bench-
marks and first ATPG results,” IEEE Des. Test. Comput., vol. 17, no. 3,
pp. 44–53, Jul.–Sep. 2000.

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

4680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

[33] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Applications in VLSI domain,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 7, no. 1, pp. 69–79, Mar. 1999.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770–778.

[35] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. MICCAI, 2015,
pp. 234–241.

[36] L. Breiman, “Random forests,” Mach. Learn., 2001, pp. 1–32.
[37] Synopsys, Mountain View, CA, USA, “Synopsys Design Compilier User

Guide,” 2018. [Online]. Available: https://www.synopsys.com (accessed
May 2021).

[38] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. ISCAS, 1989, pp. 1929–1934.

[39] R. T. Possignolo, N. Kabylkas, and J. Renau, “Anubis: A new benchmark
for incremental synthesis,” in Proc. Int. Workshop Logic Synth., 2017,
p. 8.

[40] C. Albrecht, “IWLS 2005 benchmarks,” in Proc. Int.
Workshop Logic Synthsis, 2005. [Online]. Available:
http://iwls.org/iwls2005/benchmarks.html

[41] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. NeurIPS, 2019, pp. 8024–8035.

[42] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” 2019, arXiv:1903.02428.

[43] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, no. 85, pp. 2825–2830, 2011.

[44] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single pert-like traversal,” in Proc. ICCAD,
2003, pp. 621–626.

Zhiyao Xie received the B.E. degree in electronic
engineering from the City University of Hong Kong,
Hong Kong, in 2013, and the Ph.D. degree in com-
puter engineering from Duke University, Durham,
NC, USA, in 2022.

He is currently an Assistant Professor with
the Department of Electronic and Computer
Engineering, Hong Kong University of Science
and Technology, Hong Kong. His research interests
include machine learning and its applications in
EDA, VLSI design, and computer architecture.

Dr. Xie received the Best Paper Award in MICRO 2021.

Rongjian Liang received the B.S. degree from
Beihang University, Beijing, China, in 2014, the
M.S. degree from Tsinghua University, Beijing,
2017, and the Ph.D. degree from Texas A&M
University, College Station, TX, USA, in 2021.

He is currently a Research Scientist with Nvidia,
Austin, TX, USA. His research interests lie in
the areas of machine learning for EDA, EDA for
machine learning, and hardware-software co-design.

Xiaoqing Xu (Member, IEEE) received the B.S.
degree in microelectronics from Peking University,
Beijing, China, in 2012, and the M.S.E. and Ph.D.
degrees in electrical and computer engineering from
the University of Texas at Austin, Austin, TX, USA,
in 2015 and 2017, respectively.

He was a Staff Research Engineer with Arm
Research, Austin. His current research interests
include standard cell design and automation, phys-
ical design, and applied machine learning in elec-
tronic design automation.

Dr. Xu was a recipient of numerous awards, including the Best Paper Award
at MICRO 2021, the Golden Medal at ACM Student Research Competition
at ICCAD 2016, the University Graduate Continuing Fellowship in 2016,
the SPIE BACUS Fellowship in 2016, the Best in Session Award at SRC
TECHCON 2015, the William J. McCalla Best Paper Award at ICCAD 2013,
and the CAD Contest Award at ICCAD 2013.

Jiang Hu (Fellow, IEEE) received the Ph.D. degree
from the University of Minnesota, Minneapolis,
MN, USA, in 2001.

He has worked with IBM Microelectronics,
Armonk, NY, USA, from 2001 to 2002, and
has been a Faculty Member with Texas A&M
University, College Station, TX, USA.

Dr. Hu received the Best Paper Awards at
ACM/IEEE Design Automation Conference
2001, the IEEE/ACM International Conference
on Computer-Aided Design 2011, the IEEE

International Conference on Vehicular Electronics and Safety 2018, and
the IEEE/ACM International Symposium on Microarchitecture 2021. He
also received the IBM Invention Achievement Award and the Humboldt
Research Fellowship. He has served on the Editorial Boards of the
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS and the ACM Transactions on Design Automation
of Electronic Systems. He was the Technical Program Chair of the ACM
International Symposium on Physical Design 2011.

Chen-Chia Chang received the B.S. degree in elec-
trical engineering from National Taiwan University,
Taipei, Taiwan, in 2020. He is currently pursuing the
Ph.D. degree in electrical and computer engineering
with Duke University, Durham, NC, USA, under the
guidance of Prof. Y. Chen and Prof. H. Li with the
Computational Evolutionary Intelligence Lab.

His research interests are focused on electronic
design automation and machine learning algorithms.

Jingyu Pan (Graduate Student Member, IEEE)
received the B.Eng. degree from Zhejiang
University, Hangzhou, China, in 2020. He is
currently pursuing the Ph.D. degree with the
Electrical and Computer Engineering Department,
Duke University, Durham, NC, USA.

His research interests include machine learning
applications in electronics design automation and
VLSI circuits and systems.

Yiran Chen (Fellow, IEEE) received the B.S. and
M.S. degrees from Tsinghua University, Beijing,
China, in 1998 and 2001, respectively, and the Ph.D.
degree from Purdue University, West Lafayette, IN,
USA, in 2005.

After five years in industry, he joined as an
Assistant Professor with the University of Pittsburgh,
Pittsburgh, PA, USA, in 2010, and then was pro-
moted to an Associate Professor (Tenure) in 2014,
holding Bicentennial Alumni Faculty Fellow. He
is currently a Professor with the Department of

Electrical and Computer Engineering, Duke University, Durham, NC,
USA, and serving as the Director of the NSF AI Institute for Edge
Computing Leveraging the Next-Generation Networks (Athena) and the NSF
Industry–University Cooperative Research Center for Alternative Sustainable
and Intelligent Computing and the Co-Director of the Duke Center for
Computational Evolutionary Intelligence. He has published one book and
about 500 technical publications and has been granted 96 U.S. patents. His
group focuses on the research of new memory and storage systems, machine
learning and neuromorphic computing, and mobile computing systems.

Dr. Chen received the Eight Best Paper Awards, One Best Poster Award, and
Fourteen Best Paper Nominations from Reputable International Conferences
and Workshops, such as MICRO, KDD, DATE, and SEC. He received numer-
ous awards for his technical contributions and professional services, such as
the IEEE Computer Society Edward J. McCluskey Technical Achievement
Award and the ACM SIGDA Service Award. He has served as an associate
editor of more than a dozen international academic periodicals and served on
the technical and organization committees of more than 60 international con-
ferences. He is currently serving as the Editor-in-Chief of the IEEE Circuits
and Systems Magazine. He is a Fellow of ACM and currently serves as the
Chair of ACM SIGDA.

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:21:01 UTC from IEEE Xplore. Restrictions apply.

