880

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 3, MARCH 2023

DyNNamic: Dynamically Reshaping, High
Data-Reuse Accelerator for Compact DNNs

Edward Hanson™, Shiyu Li

, Xuehai Qian, Hai (Helen) Li

, Fellow, IEEE, and Yiran Chen", Fellow, IEEE

Abstract—Convolutional layers dominate the computation and energy costs of Deep Neural Network (DNN) inference. Recent algorithmic
works attempt to reduce these bottlenecks via compact DNN structures and model compression. Likewise, state-of-the-art accelerator
designs leverage spatiotemporal characteristics of convolutional layers to reduce data movement overhead and improve throughput.
Although both are independently effective at reducing latency and energy costs, combining these approaches does not guarantee
cumulative improvements due to inefficient mapping. This inefficiency can be attributed to (1) inflexibility of underlying hardware and (2)
inherent reduction of data-reuse opportunities of compact DNN structures. To address these issues, we propose a dynamically reshaping,
high data-reuse PE array accelerator, namely DyNNamic. DyNNamic leverages kernel-wise filter decomposition to partition the convolution
operation into two compact stages: Shared Kernels Convolution (SKC) and Weighted Accumulation (WA). Because both stages have vastly
different dimensions, DyNNamic reshapes its PE array to effectively map the algorithm to the architecture. The architecture then exploits
data-reuse opportunities created by the SKC stage, further reducing data movement with negligible overhead. We evaluate our approach
on various representative networks and compare against state-of-the-art accelerators. On average, DyNNamic outperforms DianNao by

8.4x and 12.3x in terms of inference energy and latency, respectively.

Index Terms—Dataflow architectures, adaptable architectures, machine learning

1 INTRODUCTION

EEP Neural Networks (DNN) play an important role at

the forefront of modern Machine Learning (ML) due to
their potential for high accuracy, immense flexibility, and
scalability. In an effort to improve latency and throughput
of large models, great emphasis has been placed on com-
pressing the models or implementing DNN hardware spe-
cialization. DNNs exhibit highly regular structures and
substantial data-reuse opportunities, which are effectively
exploited by accelerators incorporating arrays of processing
elements (PE) with systolic dataflows. PEs are unit compu-
tation engines that typically perform multiply-and-accumu-
late (MAC) operations, which dominate DNN inference.
Accelerators such as TPU [14] are notably efficient for such
models due to their low-complexity processing engines and
highly parallel arrays. Such low-complexity also improves
scalability, enabling higher throughput with the addition of
more PEs. However, simply adding more PEs to the acceler-
ator may not proportionally increase throughput; this is
caused by under-utilization of the resources due to ineffi-
cient mapping from the algorithm to the architecture.

o Edward Hanson, Shiyu Li, Hai (Helen) Li, and Yiran Chen are with
Electrical and Computer Engineering, Duke University, Durham, NC 27708
USA. E-mail: {edward.t.hanson, shiyu.li, hai.li, yiran.chen)@duke.edu.

o Xuehai Qian is with the Ming Hsieh Department of Electrical Engineer-
ing, University of Southern California, Los Angeles, CA 90007 USA.
E-mail: xuehai.qian@usc.edu.

Manuscript received 15 Aug. 2021; revised 9 May 2022, accepted 6 June 2022.
Date of publication 24 June 2022; date of current version 10 Feb. 2023.

This work was supported in part by NSF under Grants 1955246 and 1937435,
and in part by ARO under Grant W911NF-19-2-0107.

(Corresponding author: Edward Hanson.)

Recommended for acceptance by P. Milder.

Digital Object Identifier no. 10.1109/TC.2022.3184272

One of the well-known reasons for the under-utilization
of PE arrays is the introduction of compact and sparse DNN
layers. Compact layers such as Xception’s [6] depthwise-
separable (DSC) layers and ResNet’s [11] residual connec-
tions drastically restrict specific dimensions of DNN filters.
Although restricting certain dimensions greatly reduces the
number of computations in the layer, it also greatly affects
data-reuse patterns, causing inefficient dataflow mappings
onto PE arrays. Meanwhile, sparse models [10] require spe-
cial compressed formats to obtain storage and bandwidth
benefits. These compressed formats result in irregular
access patterns or non-sequential data accesses, thus limit-
ing parallel processing opportunities when naively imple-
mented on general-purpose hardware. Consequently, DNN
algorithms must consider their relevant hardware platforms
to better translate theoretical computation reductions to
real-time speedup.

Orthogonal to DNN algorithm improvements, other
efforts have been made to improve the flexibility of underly-
ing hardware [4], [5]. Such works aim to provide broad sup-
port to various model compacting schemes; however,
continually increasing the flexibility of accelerators increases
area, energy, and latency costs due to higher complexity.
Allowing arbitrary data movements results in larger com-
plexity overheads, which is contrary to the design principle
of DNN accelerators. Instead, because DNNs innately pos-
sess highly regular structures and data access patterns,
efficient PE array architectures should target specific data
access patterns and remove predictably redundant opera-
tions wherever possible

The mapping from algorithm to architecture is especially
important when considering supporting computation of
low-rank decomposed filter structures while maintaining high
levels of data-reuse within PE arrays. In order to efficiently

0018-9340 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from IEEE Xplore. Restrictions apply.

HANSON ET AL.: DYNNAMIC: DYNAMICALLY RESHAPING, HIGH DATA-REUSE ACCELERATOR FOR COMPACT DNNS 881

leverage the reduced computation cost of low-rank decom-
posed structures, traditionally inflexible systolic arrays must
be re-designed to be flexible. This would allow the hardware
to support the varying dimensional characteristics of such
structures with high utilization and energy efficiency.

In this paper, we propose DyNNamic, a dynamically
reshaping, high data-reuse PE array accelerator for DNN
inference. Using kernel-wise filter decomposition, DyN-
Namic partitions the convolution operation into two compact
stages: Shared Kernels Convolution (SKC) and Weighted
Accumulation (WA). Both stages are mapped onto a PE array
using the output stationary (OS) dataflow. We then apply
array-aware sparsity regularization and a custom compres-
sion scheme to the WA stage so that the architecture can fully
leverage the model’s sparsity. DyNNamic is able to efficiently
support both of the vastly different dimensional constraints
of SKC and WA through dynamically reshaping its PE array.
The architecture then maximally exploits new data-reuse
opportunities generated by the SKC stage through circular
data-reuse paths. Main contributions of our work are:

e We propose to redesign the conventional PE array by
enabling it to dynamically reshape its architecture.
Our dynamic reshaping improves PE utilization
with negligible controller overhead.

e We propose an efficient partitioned mapping scheme
for kernel-wise decomposed convolutional layers.
We adopt a hardware friendly convolutional layer
compression framework and incorporate a custom
compression scheme to explore fine-grained struc-
tured sparsity.

e We analyze enhanced data-reuse opportunities of
the proposed mapping scheme and design data-
reuse paths to drastically reduce on-chip memory
accesses. These reuse paths are then leveraged to
address heightened on-chip bandwidth demands of
the dynamic PE array.

We evaluate our approach on representative networks,
including VGGNet [26], ResNet [11], and MobileNetV2 [25],
and compare our approach against relevant state-of-the-art
accelerators. By directly computing the partitioned and com-
pressed convolution operation, DyNNamic eliminates up to
97% of the weights, translating to improved inference energy
and latency by 12.3 x, respectively, compared to DianNao [3],
which has no compression. Against SparTen [8], DyNNamic
achieves 1.87x improved energy efficiency with comparable
inference latency by leveraging its reshaping PE array for
improved on-chip data-reuse.

The paper is structured as follows. Background in rele-
vant DNN computational footprint reduction methodolo-
gies (i.e., low-rank decomposition, compact filter structures,
and pruning) and systolic-array acceleration are discussed
in Section 2. Then, we discuss the core motivations of this
work in Section 3, including challenges of improving data-
reuse in systolic arrays and the potential for leveraging low-
rank decomposition to improve runtime and energy effi-
ciency. In Section 4, the approach to apply low-rank decom-
position in a hardware-friendly manner is detailed. Then,
we discuss DyNNamic’s design and concepts for solving
the data-reuse challenges of implementing low-rank decom-

posed convolutional layers onto a sgstolic array in Section 5.
Authorized licensed use limited to:

uke University. Downloaded on August 16,2023 at 20:27:27 UTC from

TABLE 1
Important Terms and Quantities
Term Description
h, w, ¢ Height, Width, and number of Channels for a
feature map.
d, k Kernel Dimension and number of basis Kernels.

arry, arry, arrym, PE Array Height, Width, and Minimum Width.
IFM, IntFM, OFM Input Feature Map, Intermediate Feature Map,
and Output Feature Map.

SKC Shared Kernels Convolution. ¢; IFMs are convolved
with £ basis kernels to produce ¢;k OFMs.

WA Weighted Accumulation. IntFMs are accumulated
with ¢4 coefficient vectors to produce the final
OFMs.

PE-SA Processing Element Sub-Array. Multiple PE-SAs
form a full PE array.

GLB Global Buffer. On-chip memory accessible by all
rows (or columns).

KR, AR Kernel Reuse and Activation Reuse blocks.

Sections 6 and 7 evaluate our proposed co-designed frame-
work. Lastly, Sections 8 and 9 contextualize related works
and conclude this paper.

2 BACKGROUND

2.1 Convolution Operation

To avoid ambiguity, we present the essential notations and
terms that shall be used by the following discussion. We refer
to each pixel of input feature maps (IFM) as the activation
and the convolution parameters as weight. We refer to the
weight corresponding to each 2D convolution operation (i.e.,
each input-output channel pair) as a kernel, while using filter
to denote a 3D filter corresponding to one output channel.
Thus, the weight of a conventional convolutional layer can
be represented as a 4D tensor, F' € R“%+1**%d yhere d is the
height and width of a kernel, ¢; is the number of input chan-
nels (i.e., the number of channels per filter), and ¢y, is the
number output channels (i.e., the number of filters). Table 1
defines all key terms and quantities introduced in this work.

2.2 Low-Rank Decomposition

All the weights in the same layer can be organized into a
weight matrix by combining certain dimensions. Based on
the redundancies of the DNN parameters, it is reasonable to
assume that the weight matrix is low-rank and can be well-
approximated by the multiplication of two small matrices.
For example, these matrices can be obtained by conducting
singular value decomposition (SVD) to the original matrix
and selecting dominating eigenvectors based on the singu-
lar values. As done in PENNI [18], low-Rank approximation
method will take part of the eigenvectors (usually the ones
with larger eigenvalue) and reshape them back to the filter
shape as the basis kernels, and express the approximation
by the linear combination of the remaining filters. Specifi-
cally, the flattened tensor F” has the shape of ¢;¢;1 X d? and
the approximated weight tensor F is expressed by F =
MW, where M € Re+197F i the coefficient matrix, W € R’
represents the basis kernels, and k& denotes the number of
eignvectors selected. The decomposed weight is illustrated
in Fig. 1a. With this decomposed format, the convolution

operation can now be com?uted in two stages: Shared Kernels
EEE Xplore. Restrictions apply.

882

Cl+1 [
L crl

Cp

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 3, MARCH 2023

{ 51{ { d?
C1Cr41 CiCr+1 E k

(T}

d e

9 Original Weight F

Flatten Weight F’

k

Coefficient Matrix M
Decomposed Weight

Basis Kernels W

d Multiplication _» M'yy N e Cie1
. g My,
d) k Reshaped
R “ Coefficient Matrix
[M,
k i v
M’l,k‘*"
k7 € > /’M’Lk-*-z
My 21

Intermediate

Basis Kernels
Feature Maps

Input Feature Maps

M'ycesn
- M’Lr,koz
»

Coefficient Vector

etk

1st output
feature map

Fig. 1. (a) lllustration of the decomposed weight; (b) DyNNamic’s partitioned convolution operation: (1) SKC stage. (2) WA stage.

Convolution (SKC) and Weighted Accumulation (WA). DyN-
Namic preserves the decomposed format and computes the
original convolutional layers by directly using the compact
stages. In the first stage, SKC, each input feature map (IFM) is
convolved with k base kernels and produces ¢k intermediate
feature maps (IntFM). In the second stage, WA, these IntFMs
are then accumulated with different coefficient vectors to pro-
duce the output feature maps (OFM). With this convolution
decomposition scheme, the o-th output feature map is com-
puted as

q k
OFM, =Y "> "M/ ., - IntFM;,)
i=1 j=1

where * denotes the 2D convolution operation, ¥} is the j-th
base kernel, M is the is the reshaped coefficient matrix with
the shape of ¢k x ¢;41. The SKC and WA stages are shown
in Fig. 1b.

2.3 Compact Filter Structures and Pruning
Convolutional operation incurs heavy computation costs. A
common strategy to combat such high computation costs is
to collapse certain dimension of the convolutional filters.
For example, depthwise convolution [6] removes the chan-
nel dimension of filters, decreasing the total FLOPs for a
convolutional layer. A pointwise convolution layer is then
implemented to recover inter-channel association necessary
for the spatial structure. Pointwise convolution removes the
height and width dimensions of filters, which also incur
much less computations than conventional filters. Another
recent DNN structure is the shift convolution [29]. Shift con-
volution performs depthwise-separable convolutions via
simple shift operations.

To further reduce the computation and storage costs of
DNN inference, many recent model compression frameworks
incorporate weight pruning, while DNN accelerators like
NullHop [2] skip ineffectual computations. Weight pruning
removes weights that are not expected to have a significant

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from IEEE Xplore.

contribution to model performance. To better match the hard-
ware, many recent pruning schemes are structured. Instead of
removing weights individually, structured pruning elimi-
nates whole filters, input channels or even a whole layer in a
DNN model. This method will not break the data locality of
the weights. Thus, the compression directly benefits inference
efficiency without any modifications to the software or hard-
ware. Various methods are used to identify unimportant fil-
ters, either implicitly like group LASSO [28] or explicitly
using metrics like norm [17], geometric median [12].

In terms of compact filter structures, DyNNamic imple-
ments SKC, which is analogous to an expanded depthwise
convolution, but with several key differences. SKC expands
the input channel by k times instead of the identical input/
output channels in depthwise convolution. The expansion
enhances the representation power of the SKC. Meanwhile,
unlike how depthwise uses different kernels for each input
channel, SKC utilizes the same set of kernels for each input
channel. Thus, the parameters can be shared and the com-
putation flow can be optimized. In terms of pruning, our
work adopts group LASSO in a finer-grained, array-aware
fashion, thus achieving high compression rate with negligi-
ble accuracy loss.

2.4 DNN Hardware Acceleration

The sliding-window nature of convolutional layers generates
many data-reuse opportunities. Additionally, convolutional
layers can be mapped to matrix-matrix multiplication equiva-
lents. These characteristics motivate systolic-array-based accel-
erators [4], [5], [14], which can effectively map matrix-matrix
and matrix-vector operations. Systolic arrays reduce external
bandwidth requirements by internally reusing weight, activa-
tion, and/or partial sum data across its PEs. Other computa-
tionally intensive DNN layers, such as fully connected (FC),
can also be computed with systolic arrays.

3 MOTIVATION

Data-Reuse. Despite being a key characteristic of systolic

arrays, data-reuse within these arrazs is limited by several
estrictions apply.

HANSON ET AL.: DYNNAMIC: DYNAMICALLY RESHAPING, HIGH DATA-REUSE ACCELERATOR FOR COMPACT DNNS 883

101 A Conv3 20%20 AR 1
B Conv3_Deep C
0.8 ¢ Bottleneck @ ‘
= ¥ Pointwise =
& # Residual
2 10x40
B 061 4 Depthwise-Separable i -
2 L L *
£
g 04 o
< 10x40 ‘
0.2 .
B80x5 4
0.0 0.2 0.4 0.6 08 10

Relati GLB accesse

Fig. 2. Simulated relative latency and number of GLB accesses for vari-
ous DNN layer types, normalized to the worst case for each type. Larger
shapes represent more balanced (i.e., square) PE arrays and vice-versa.
Optimal PE array shape (Rows/Cols) for each layer type are labeled.

factors. First, the size of DNN filters are often much larger
than the dimensions of a systolic array, which limits data-
reuse to only one direction along the array’s rows or col-
umns. In this scenario, a single pass over the array cannot be
completed in time to further recycle data that has fully
propagated through the array. Second, most systolic arrays
have inflexible dimensions, which constrains utilization and
data-reuse within the array. Such underutilization is made
especially worse under DNN layers that are disproportion-
ately small across some of its dimensions. These unbalanced
layers typically exist in shallow and deeper layers of a
DNN—i.e., where the feature maps are disproportionately
small or large compared to the layer width—and wherever
compact filters are incorporated. To explore the impact of
PE array shape and layer type, we simulate various PE array
shapes and layer types using SCALE-Sim [24] with an out-
put stationary dataflow. Fig. 2 displays the resulting latency
and number of global buffer (GLB) accesses from these
experiments. ‘Conv3,” ‘Conv3_Deep,” and ‘Bottleneck’ are
chosen from ResNet50’s layers 13, 49, and 32, respectively.
‘Pointwise’ and ‘Depthwise-Separable’ are chosen from
MobileNetV2’s layers 18 and 17, respectively. Here, GLB
access count can inform us of relative energy cost due to
data movement. Note that, while the exact details of Fig. 2
are specific to the OS dataflow and specified layers, the
overarching observation is applicable to every systolic data-
flow and layer type. We observe that certain layer types,
including depthwise-separable and deep layers favor unbal-
anced PE arrays for overall lower latency and energy. Alter-
natively, PE array shape can be selected to form a trade-off
between latency and energy for other layer types. Because
DyNNamic employs the compact SKC and WA stages, it is
important to understand the data-reuse opportunities of
these unbalanced layers given a particular PE array shape.
Exploiting Low-Rank Decomposition. A key characteristic of
DNN filter low-rank decomposition is that the convolution
operation can be formatted as a linear operation of the
resulting decomposed structures. In this paper, we use the
decomposition method described in PENNI [18], which pro-
duces basis kernels and a coefficient matrix for the SKC and
WA stages, respectively. Dimensions of both the set of basis
kernels and the coefficient matrix are smaller than that of a
complete filter. We leverage these constrained dimensions
by separating the convolution operation into compact stages
and designing specialized hardware that can efficiently exe-

cute these stages. This (Fartitioned convolution operation is
Authonzed license

use limited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from

—arr,—

© &=
| e

Cre1

0o

‘ c W

1 Chunk |

Fig. 3. Mapping SKC and WA using OS dataflow. (a) PE array dimen-
sions. (b) SKC IntFMs mapping. (c) WA OFMs mapping.

then further improved with an array-aware sparsity regu-
larization method to raise energy efficiency and throughput.
We show that the basis kernels creates an avenue for circu-
lar data-reuse patterns and can be supported with minor
additions to the array’s controller under an OS dataflow.
Additionally, computation cost on the coefficient matrix is
greatly reduced with the combination of a compressed
matrix representation and coarse-grained zero-skipping.
We propose the partitioned convolution mapping and regu-
larization method in Section 4 and accelerator architecture
in Section 5.

4 PARTITIONED CONVOLUTIONAL LAYER

DyNNamic implements a partitioned convolutional opera-
tion via several modifications to the underlying systolic
array architecture. This section describes how DyNNamic
supports the two stages, SKC and WA, and how these
stages are mapped onto the hardware. Fig. 1 displays the
proposed computation scheme.

4.1 SKC and WA Mapping

Fig. 3 depicts how the SKC and WA stages are mapped onto
the array using the OS dataflow. The blue square represents
the dimensions of the systolic array while Figs. 3b and 3c
display unrolled IntFMs and OFMs for SKC and WA stages,
respectively. Note that the array width arr,, and the number
of basis kernels k are independent parameters. For the SKC
stage, each column of the array maps to a single basis kernel
while each row maps to individual columns (w dim.) of the
IntFM. The h dimension is processed over time using the
corresponding rows. For the WA stage, each column of the
array maps to a single output channel while each row maps
to individual pixels of the OFM.

Despite arr,, being an independent parameter, it should
satisfy a couple constraints to maximize PE utilization and
throughput for the two stages. During the SKC stage, we
prefer arr,, = k; otherwise, any additional columns will be
unused. Meanwhile, during the WA stage, we prefer arr,, to
be small enough for effective array-aware coefficient prun-
ing (discussed in Section 4.2), but large enough to maintain
sufficient inter-column data-reuse.

4.2 Array-Aware Coefficient Pruning
Although PENNI [18] shows that we can effectively apply
sparsity regularization to the coefficient matrix, we need to

ensure that the underlying hardware can effectively use the
EE Xplore. Restrictions apply.

884

sparsity for improved throughput. Notice from Fig. 3c that
the number of filters that can be mapped onto the array at a
given time is equal to the width of the array, arr,. We call
this collection of filters a chunk, which spans the width of a
sub-row of the coefficient matrix. Motivated by Wen et al.
[28], we apply sparse group lasso regularization at the chunk
granularity to increase the ratio of the all-zero sub-rows in
the coefficient matrix. Suppose we have the coefficient
matrix M in shape ¢ x ¢k where ¢, ¢4 is the number of
the input and output channels, and % is the number of the
basis kernels. By performing a zero-skipping scheme, the
coefficient matrix can be represented by M = [wjws. . .wn]T,
where wy, ws, . . ., w,— is in the shape of arr,, x ¢k, and w, is
in the shape of min(arr,, ciy1 — (n — 1)arry,) x ¢k. The regu-
larization term of the I-th layer is

n—1 Warray

ROW) =33 fhwill, ®3)
i=1 j=1

where w; j represents the j-th row of the i-th chunk. Specifi-
cally, this regularization term computes the /-1 norm of the
[-2 norm of each sub-row. The overall loss is represented by

L'(W,X,Y) = LW, X,Y) + A (|W + Xp: R(VV;)) ,)

=1

where L(W,X,Y) is the original loss function (e.g., cross
entropy loss), A is the parameter that controls the regulariza-
tion strength, and p is the number of convolutional layers. In
addition to enforcing structural sparsity, we also add an I-1
regularization term to explore more sparsity.

We adopt the magnitude-based pruning method pro-
posed by Deep Compression [10] and select standard devia-
tion as the pruning threshold. Any lost accuracy is then
recovered by a fine-tuning phase. Experimentally, we find
that only a few epochs of fine-tuning is required to recover
accuracy. Lastly, we apply the model shrinking process
mentioned in PENNI [18] and remove the channels with all-
zero coefficients.

5 SysTtoLIC ARRAY ARCHITECTURE

5.1 Overview

An overview of DyNNamic’s microarchitecture is shown in
Fig. 4a. TPU [14] is an industry-standard systolic array-
based accelerator, so we utilize it as the baseline design and
perform key modifications described in this section. There
are three GLBs in the system: row, column, and output;
these are used to hold input activation, weight data, and
output activation locally. All GLBs, with the exception of
the output GLB, are double-buffered to avoid DRAM-
related stalls. The core computation block is the dynamic PE
array (Fig. 4b), which is comprised of several PE sub-arrays
(PE-SA), along with small control blocks (Figs. 4c and 4d)
that enable the dynamic reshaping. The dynamic PE array
performs MAC computations with an OS dataflow. The
actual PE implementation is transparent to the dynamic PE
array. For the sake of this study, we employ a simple single-
cycle MAC PE design shown in Fig. 4e. In between the col-
umn GLB and dynamic PE array is the kernel reuse (KR)

block, which recycles wei$ht data during the SKC stage,
Authorized licensed use i

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 3, MARCH 2023

Column GLB

Out
GLB

Dynamic PE
Array

Column Data
I o
G. Data R’ow Control FSM|—p
Pn-1 Data ”,Data Activation WAG
G. Control "’C ol Qut'
Pn-1 Control > Lontro Activation

Fig. 4. DyNNamic Microarchitecture. (a) Accelerator Overview, (b)
Dynamic PE Array, (c) Column Controller, (d) Row Controller, (e) PE. ‘G.’
is short for Global and ‘P, represents the n-th PE-SA.

thus avoiding redundant GLB accesses of the weight data.
Between the row GLB and PE array are the activation reuse
(AR) block and router, which are used during the SKC stage
for reusing activation data. The router multicasts data from
either the row or column GLB into the PE array’s rows.
Here, we define multicast as the act of sending one datum
to multiple destinations with only one GLB access. Systolic
data setup is handled by the global control unit, which
orchestrates data movement between the GLBs and func-
tional blocks. Results from the PE array are then sent to the
activation, normalization, and pooling module to perform
the nonlinear operations of DNNs. The dynamic PE array,
router, and AR and KR blocks are the core modifications to
the system. The remainder of this section discusses these
modules in detail.

5.2 Dynamic Array Shape

The duality of our partitioned convolution operation comes
with the caveat of requiring at least two sets of systolic array
dimensions for maximal throughput and utilization. The
most straightforward approach would be to employ two
dedicated structures to handle each stage of the computa-
tion. However, doing so would tie the DyNNamic architec-
ture to efficiently executing only the SKC and WA stages.
Because systolic arrays are known for being able to execute
general matrix-matrix and matrix-vector multiplications, we
want to preserve the generalizability of the accelerator.
Additionally, introducing another computation structure
may generate load-balancing issues and raises the area and
power footprint to the accelerator. Instead, we choose to
modify the single PE array so that it can dynamically reshape
to fit the optimal dimensions of the SKC and WA stages.

imited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from IEEE Xplore. Restrictions apply.

HANSON ET AL.: DYNNAMIC: DYNAMICALLY RESHAPING, HIGH DATA-REUSE ACCELERATOR FOR COMPACT DNNS 885

Fig. 5. Conceptual view of dynamic array shaping.

As mentioned in Section 4.1, we prefer that arr,, be equal to
k. PENNI [18] shows that k = 5 is appropriate for maintaining
high accuracy on CNN filters with 3 x 3 kernels while also
balancing the number of FLOPs. 3 x 3 kernels are frequently
used by many modern and conventional CNNs; therefore, to
better support the common case, we set the minimum width
arrymin = 5. To support more basis kernels, arr,, can be made
larger by reshaping the array. Note that we prefer an even
rectangular shape for straightforward mapping. To form an
even rectangular shape, arr,, must be of the form arr i x
2", n € Ny. For example, given that arry ., =5, arr, can
equal 5, 10, 20, 40, and so on.

Dynamic array shape is achieved by partitioning the PE
array into a collection of PE-SAs, each of which contain
arry min columns. Fig. 5 depicts the array reshaping concept
while Fig. 4b shows its implementation. Between each sub-
array is a small row controller that propagates row-wise
data from either an adjacent PE-SA or the row GLB. In addi-
tion, there are small column controllers above each PE-SA
that select among some preceding PE-SAs or the column
GLB to propagate column-wise data. Figs. 4c and 4d shows
the column and row controller implementations. Multi-
plexers choose among previous PE-SA(s) or the GLB to
receive row or column data while registers temporarily
latch the data for the subsequent PE-SA. Control signals are
nominally propagated row-wise in this design, so the row
controller also has to propagate signals from the previous
PE-SA or global control unit. Because the row controllers
only ever have to select between two sources, their individ-
ual complexity is constant no matter how many PE-SAs are
added to the architecture. However, this is not the case for
the controllers managing column-wise data. As an example,
Fig. 5 shows three possible configurations for an architec-
ture with four PE-SAs. Notice that in order to support all of
these configurations, the third PE-SA must be able to accept
column-wise data from the first PE-SA, second PE-SA, or the
column GLB. In fact, given an array with N PE-SAs, each PE-
SA must be able to receive column data from log, (n) positions
before it, Vn < N. Consequentially, complexity of the col-
umn-wise controllers scale logarithmically , which limits scal-
ing to a large number of PE-SAs.

Array Transpose. Despite the limitation to the number of
supportable array shape configurations described above,
the symmetric nature of the OS dataflow allows us to per-
form a neat trick to double this number. Activation and
weight data feeding patterns are identical and synchronized
with each other in the OS dataflow. This means that we can
arbitrarily choose either the row or column GLB for the acti-
vation or weight data as needed, conceptually transposing
the array without additional changes to the controller.

Selecting the Optimal Array Shape. Given that the proposed
array can support a selection of possible PE array dimensions,

TABLE 2
Example Layer Types of DNNs

Layer Type Impact on Layer Dimension
or PE Array Mapping
Standard Convolution N/A

Deep Convolution Layer
Depthwise-Separable Convolution

Small feature map (h x w)
g=1, ATTw,utilized = 1

Pointwise Convolution d=1
Bottleneck Layer Relatively small ¢
Downsampling Layer Relatively large c; 41
SKC aqg=1, ATTy utilized = k
WA d=1

the question naturally arises — which dimensions offer the
best performance or efficiency for a given layer? Exhaustively
searching for the best array shape by simulating each configu-
ration is the most straightforward approach; however, doing
so is time-consuming. In fact, we observe that there is a more
convenient way to accurately determine the optimal array
shape. Note that the OS dataflow maps the PE array to a sub-
set of an unrolled OFM matrix. Specifically, given an OFM
with dimensions ¢;,1 x h X w, the unrolled OFM matrix will
have h x w rows and ¢;; columns. We call each instance of
the PE array being mapped onto the unrolled OFM matrix a
pass. For each pass, it will take approximately ¢; x d x d feeds
from the activation and weight global buffers to fully process
the mapped portion of the OFM. No matter how the PE array
was mapped onto the OFM, each pass will take the same
number of cycles to complete; however, the number of GLB
accesses, which signifies relative GLB energy cost, scales with
the average bandwidth of the GLBs. Average bandwidth of
the GLBs is proporational to the sum of the number of rows
and columns in the PE array. In summary, the smaller the
number of passes, the lower the latency for processing a given
layer. Meanwhile, relative GLB energy cost is determined by
the product of the number of passes and the sum of the num-
ber of rows and columns in the PE array. The following equa-
tions display these relationships:

(hxw) ¢y
RLut(chy = X —, (5)
arry, arry
REnergyRLaLency X (CLTTh, + arru,)7 (6)

where Rpieney and Rpyepq, are the relative latency and GLB
energy cost of each PE array shape, respectively. Using
these equations to determine the appropriate array shapes,
one can optimize for latency or energy cost for most DNN
layer types without extensive simulations. Equation (5) also
explains why deeper convolution layers prefer unbalanced
arrays. When h x w is small and ¢;, is large, having a wider
array better fits the unrolled OFM.

Equations (5) and (6) do not cover every layer type. As
shown in Table 2, certain layer types limit data-reuse across
key dimensions, thus impacting utilization when their
OFMs are mapped onto a systolic PE array. For depthwise
layers such as that proposed by Xception [6] and our pro-
posed SKC, the mapping of filters to the columns of the PE
array is significantly constrained. In the case of the SKC
stage, the maximum number of active columns in the PE
array for one pass is equal to the number of bases k. Mean-
while, depthwise convolution can only utilize one column

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from IEEE Xplore. Restrictions apply.

886

Initial Feeding Pattern (TS=0)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 3, MARCH 2023

o

°

Example of Intra-
Stride-Line AR (TS=9)

..¢{3_'_'_'_ ol
b

<k

Fig. 6. Activation feeding patterns (left) and reuse blocks with working example (right). SL: Stride Line, TS: Time Stamp.

per pass, which is an extreme case. Under these conditions,
the equation for relative latency changes to

h x
RLatcncy = (w) X E’ (7)
: arry g

where g =k for the SKC stage and g =1 for depthwise.
From this result, it is easy to see the SKC and other depth-
wise layers prefer unbalanced PE arrays. We verify Equa-
tions 5—7 through simulation and obtain equivalent results
to Fig. 2.

In this study, we specially design the hardware to suit the
partitioned convolution operation; but, we keep the architec-
ture flexible enough to support other layer types. Improve-
ments due to dynamic PE array are shown in Section 7.5.

5.3 SKC Circular and Multicast Data Paths

The SKC stage is characterized by a small collection of small
basis filters. As mentioned in Section 4.1, these basis kernels
are reused across the ¢; input feature map channels. Naively
fetching basis kernel data repeatedly for each input channel
would generate wasteful energy costs. Assuming a kernel
size of d x d and k basis kernels the maximum number of
times basis kernel data is fetched in one pass during the
SKC stage is k x d x d. The sliding-window behavior of the
convolution operation also causes activation data to be
repeatedly fetched from the GLBs. However, the small size
and repeated use of these basis kernels exposes two forms
of reuse: kernel reuse and intra-stride-line activation reuse.

Kernel Reuse (KR). After the first set of kernel weights are
supplied from the global weight buffer, we can recycle the
weight data within each column. This recycling behavior
results in no more need for accessing weight data from the
GLB for the remainder of the pass, thus reducing its band-
width to zero during this computation. We exploit this idle
GLB via GLB sharing, described in Section 5.4. Fig. 6a depicts
the KR block. Multiplexers are used to select between GLB
feed or recycle feed(s). Kernel sizes of 9, 25, and 49 are sup-
ported, corresponding to kernel dimensions of 3 x 3, 5 x 5,
and 7 x 7, respectively. We recognize that an overwhelming
majority of modern CNNs utilize 3 x 3 kernels, but include
less popular kernel sizes to increase flexibility.

Activation Reuse (AR). Similar to the KR block, the AR
block recycles activation data within each row. Note that
because basis kernels are reused both within and across
input channels, we can select how data is mapped across
the array’s rows to maximize activation reuse opportunity
while limiting control complexity. We define a stride-line as

Authorized licensed use limited to: Duke University. Downloaded on August 1

the path of a convolution operation as it propagates along
the feature map. Fig. 6 depicts stride-lines with clear arrows.
Assuming each row is assigned to the collection of OFM
pixels along one stride-line and stride < d, subsequent con-
volution windows (represented with ‘a” and ‘b’ pixels) will
reuse activation data. As a result, a majority of the data
being fed into each row can be recycled instead of being re-
fetched. Specifically, using this AR scheme, the number of
GLB accesses within a stride-line is reduced to

APL = (d x d) 4+ (d x min(d, stride)) x (y — 1), (®

where APL is the number of GLB accesses per stride-line
and y is the length of the OFM along either its height or
width dimension. Let = be the length of the dimension
opposite of y. Note that the above scheme applies only
within each stride-line and that there are a total of z/stride
stride-lines. Thus, the overhead of (d x d) is incurred
x/stride times with only this approach. Fig. 6b portrays
intra-stride-line AR.

Another approach to recycle activation data is across
stride-lines (i.e., inter-stride-line AR). Intra and inter-stride-
line AR are orthogonal approaches and can be combined for
further improved data-reuse. Assuming adjacent PE array
rows are set to adjacent stride-lines, shared activations can be
multicast. Combining these two techniques, the total number
of accesses to the GLBs for activation data is reduced, at mini-
mum, to

v o min(d, stride)

Accesses = APL + APL x iride pi

)

Note that Equation (9) is the best case number of GLB
accesses for activation data using both AR approaches. In
practice, this number is slightly increased because the num-
ber of rows in the PE array can be less than the total number
of stride-lines. Fig. 6¢ displays the inter-stride-line AR block
implementation, which is a router that multicasts activation
data. The router is implemented with a cascade of multi-
plexers. In order to limit wiring complexity of the router,
each destination row can only receive input from source
rows located up to d,,., — 1 rows before it, where d,q, =7
is the maximum kernel height or width supported by this
architecture. This limits the largest size of a multiplexer in
the router to 7:1. Also, due to the reduced bandwidth
needed for activation data accesses, we can address the
increased bandwidth demands of unbalanced PE array

shages. The next section describes how we leverage this
,2023 at 20:27:27 UTC from |IEEE Xplore. Restrictions apply.

HANSON ET AL.: DYNNAMIC: DYNAMICALLY RESHAPING, HIGH DATA-REUSE ACCELERATOR FOR COMPACT DNNS 887

property alongside GLB sharing to mitigate the penalty of
dynamic array shaping.

5.4 Global Buffer Sharing

Dynamically shaping a PE array’s dimensions causes the
GLBs’ bandwidth demands to change significantly. Take
Fig. 5 as an example. In a square array scenario, i.e., Fig. 5a,
the maximum bandwidth required from the row and column
GLBs are equal. Let us refer to the bandwidths of the GLBs
under a square array as BWguqe. As the array shape
becomes more unbalanced, the maximum required band-
width for the row and column GLBs scale proportionally to
the array’s length and width, respectively. Specifically, the
array shape in Fig. 5b is twice the original length and half the
original width. This equates to maximum bandwidth
requirements of 2 X BWguare and 0.5 x BWg4p for the row
and column GLBs, respectively. Likewise, the bandwidth
requirements shown in Fig. 5c are 4 x BWgy4r and 0.25 X
BW,guare for the row and column GLBs, respectively. With-
out any changes to routing of the GLBs, this trend suggests
that the row GLB must have a maximum bandwidth equal to
the maximum number of rows in the array. However, simply
implementing a row GLB with such large bandwidth can be
very costly. In fact, implementing such a high bandwidth
GLB is wasteful if the array shape does not frequently use its
most unbalanced configuration. Instead, we leverage the
unused bandwidth of the column GLB as well as the lower
bandwidth demands discussed in Section 5.3 to balance the
bandwidth demand without modifying the row GLB.

GLB Sharing Implementation. GLB sharing is implemented
by connecting column GLB outputs to the router shown in
Fig. 4a. Prior to the SKC stage, the column GLB is pre-
loaded with the small number of basis kernels as well as
activation data corresponding to the lower rows of the PE
array. At the start of the SKC stage, the column GLB sup-
plies the basis kernels into the PE array’s columns. Once fin-
ished, the column GLB is used to supply activations into the
PE array’s rows alongside the row GLB. During the SKC
stage, the bandwidth demand for activation data is cut to
one-third the usual amount, which means that the GLBs are
able to effectively supply up to 6 X BW,guere bandwidth of
data. Thus, we choose the most unbalanced array dimen-
sions of the PE array such that its maximum row-wise band-
width demand equates to 4 x BW,gure. In summary, we
combine the multiple data reuse opportunities of the SKC
stage with GLB sharing to mitigate the heightened band-
width demands of unbalanced array configurations.

5.5 WA Computation Mapping and Control

Unlike the dense basis kernels of the SKC stage, the WA stage
involves a sparse coefficient matrix. We restructure the coef-
ficient matrix by decoupling the chunks, compressing the
chunks by pruning their all-zero sub-rows, and stacking the
chunks into a compressed matrix. Assuming n chunks, we
can mark the start and end indices of the chunks within the
compressed matrix using a chunk pointers array of size n + 1.
The first entry of this array is always ‘0" and the last entry n +
1 is the height of the compressed coefficient matrix plus one.
Let [¢;k],, represent the the height of chunk n. In addition to

distinguishing seFarate chunks in the compressed matrix,
Authorized li

n+1
[1063] 1038] [2a | o | chunkpointers
arry | [akln— [eikly | [eiklo Compressed
Coefficient Matrix

1063 1038
[---Tso]ss]

24 0
|...|1a|3|~--|5|2| IFM pointers

Fig. 7. Coefficient matrix compressed format.

we must ensure that IntFM data being fed into the systolic
array align with the coefficients. By pruning sub-rows of the
chunks, a conventional OS IntFM access pattern no longer
works. To align the IFM data with the coefficients, we incor-
porate another array of pointers called IFM pointers. The
length of the array is equal to the total height of the com-
pressed coefficient matrix. Elements in this array point to the
IFM channel that corresponds to each row of the compressed
matrix. Recall that there are ¢;k IFM channels in total prior to
pruning. Fig. 7 displays these structures. The proposed com-
pressed matrix format generates savings in the form of
greatly reduced computation count and less data transfers
among both on- and off-chip buffers.

6 EXPERIMENTAL METHODOLOGY

6.1 DNN Model Performance Validation

To validate our partitioned convolution operation and prun-
ing method, we evaluate TOP-1 accuracy and compression
rate of a variety of DNN models and two datasets. Specifi-
cally, we choose VGGNet [26], ResNet [11], and Mobile-
Netv2 [25] as representative DNNSs to show that our method
is applicable to — and incurs marginal accuracy loss on — a
wide variety types of DNN models. VGG models are heavily
overparameterized networks that are ideal candidates for
model compression. To further explore more complex net-
works, we also include results from ResNet and MobileNet.
On top of the conventional 3 x 3 convolutional window,
ResNet models incorporate bottleneck layers, which are
significantly less computationally intensive. Additionally,
ResNet models use residual connections. Lastly, MobileNet
models are mostly comprised of compact filter structures:
depthwise and pointwise convolutions. To better represent
different complexities of datasets, we choose CIFAR-10 [15]
and ImageNet [7].

All models are trained with Stochastic Gradient Descent
(SGD) with 0.9 nesterov momentum. Initial learning rate
was set to 0.1 and cosine annealing was adopted in all train-
ing procedures. On CIFAR10, We train the baseline model
for 300 epochs with 0.0001 weight decay. The regularization
retraining phase lasts for 300 epochs with 0.01 initial learn-
ing rate, 0.00002 regularization strength. The fine-tuning
phase after pruning lasts for 100 epochs. On ImageNet, we
use the same regularization settings, and the training and
fine-tuning last 50 and 30 epochs, respectively. Lastly, we
quantize both the weight and activation to 8-bit fixed-point
integers. Table 3 lists baseline accuracies for all models.

6.2 Accelerator Architecture Modelling
Baseline Accelerators. DyNNamic targets improving perfor-
mance and efficiency of DNN inference tasks. For this

censed use limited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from IEEE Xplore. Restrictions apply.

888

TABLE 3
Accuracy and Accelerator-Aware Sparsity (AA-Sparsity)
of the Decomposition and Pruning Algorithm

Dataset Model Base Acc. Final Acc. AA-Spar. Param. Spar.
(%) (%) (%) (%)
CIFAR-10 VGG-16 93.49 93.7 94.68 93.12
VGG-19[16] 93.70 94.70 - 84.00
VGG-19 93.70 93.48 90.80 91.14
ResNet-18 93.79 94.3 93.65 96.59
MobileNetV2 94.09 93.35 95.66 90.98
ImageNet VGG-16 73.37 73.01 87.88 91.35
VGG-19[16] 74.24 71.81 - 87.40
VGG-19 74.24 73.80 89.31 90.12
ResNet-50 76.22 74.11 71.86 81.70
MobileNetV2 71.88 70.21 63.64 78.55

reason, we evaluate end-to-end latency and energy con-
sumption of a single-frame inference task and compare
against various state-of-the-art and baseline DNN accelera-
tors. DianNao [3] is an early DNN accelerator with notable
throughput that incorporates 3-level memory (i.e., dedicated
registers, GLB, and off-chip memory). Eyeriss [4] employs
the energy-efficient RS dataflow alongside a network-on-
chip (NoC). Cambricon-X [30] combines a compressed data
format with efficient indexing to avoid wasteful data trans-
fers and computation. SCNN [21] targets convolution opera-
tions and leverages a compressed encoding scheme and
high-data-reuse multiplier arrays for improved energy-effi-
ciency. SparTen [8] uses a bit-mask-based compression
scheme alongside load balancing for reduced data move-
ment and improved utilization. Column Combining [16]
addresses underutilization of systolic arrays by packing non-
zero weights of sparse filters into dense tensors; we evaluate
this work separately from the others because it is a co-
designed approach that requires separately trained models.
Lastly, to expose the individual contributions of DyNNamic,
we also include the results of several configurations: a vanilla
systolic array, DyNNamic with only the dynamic PE array
(Ours-D), DyNNamic with only the proposed algorithm and
compression methods (Ours-A), and the combination of all
techniques discussed in this paper (Ours). For all experi-
ments, only convolutional layers are considered; this is to be
fair to SCNN and because convolutional layers form the
DNN computation bottleneck.

Architecture Modelling. Table 4 summarizes key technol-
ogy parameters of all accelerators for the experiment. Accel-
erator efficiency and performance are directly influenced by
MAC unit count and cumulative buffer size, so these param-
eters are kept constant across all accelerators. Frequency and
computation precision are set to 300 M Hz and 8-bit, respec-
tively. Also, all designs are scaled to 65 nm technology node
for apples-to-apples comparison. These technology projec-
tions are done using traditional scaling rules for short-chan-
nel devices, described by Stillmaker and Baas [27]. The
scaling rules are quadratic, linear, and constant for area, fre-
quency, and power, respectively. Due to the large buffer size
required by SCNN and relatively small buffer size of other
baseline architectures, we compromise among the accelera-
tors with a total on-chip capacity of 500 KB. Our design is
synthesized to estimate the power/area consumption using
Synopsys Design Compiler (DC) with TSMC 65nm library.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 3, MARCH 2023

TABLE 4
Hardware Parameters

Accelerator Global Mem. Number PEs Mem. per PE MAC units per PE
DianNao 450 KB 25 2 KB 16
Eyeriss 325 KB 400 448 B 1
Cambricon-X 450 KB 25 2 KB 16
SCNN N/A 25 20 KB 16
SparTen N/A 400 1.25 KB 1
316 KB Row GLB 1 B Act. Buffer
Ours 180 KB Col GLB 400 1 B Weight Buffer 1

2 KB Output GLB 3 B Accum. Buffer

For the design’s GLBs and off-chip memory access, energy
costs of SRAM and DRAM, respectively, are estimated with
CACTI 7.0 [1]. Specifically, energy consumption of the mem-
ory subsystem is modelled by computing the buffer leakage
power and multiplying the number of accesses by the unit-
energy cost of a read or write.

We evaluate the performance of DyNNamic by modify-
ing the cycle-accurate simulator, SCALE-Sim [24]. We
retrieve DNN weights after training on PyTorch [22] and
pre-process the coefficient matrices to generate the pro-
posed compression format. The resulting weights are then
fed into the simulator, thus producing cycle-accurate per-
formance measurements. Column Combining is modelled
similarly. We simulate DianNao and Eyeriss performance
using Timeloop [20]. Likewise, we simulate SCNN using
DNNSim [13]. Lastly, neither Cambricon-X nor SparTen
have a published open-source simulator. Instead, we closely
follow the description of the original papers to reproduce
and validate in-house cycle-accurate simulators. To safely
compare across the various simulators, we unify the model-
ling methodology of registers, on-chip and off-chip memory
for all simulators. For example, all simulations assume dou-
ble-buffered on-chip memories; also, each MAC unit is set
to execute in one cycle while on-chip buffers and multi-hop
NoCs induce per-hop cycle penalty. These modifications
are consistent with Timeloop’s simulation methodology
that highlights dataflow impact rather than the low-level
micro-architecture. Switching energy of baseline designs is
conservatively estimated by assuming a per-MAC cost of
0.081 pJ], which is obtained via synthesizing one MAC mod-
ule in DC.

7 EXPERIMENTAL RESULTS

7.1 Array-Aware Sparsity Evaluation

The results obtained by array-aware coefficient pruning is
displayed in Table 3. “Param. Spar.” presents the portion of
zero-valued weights after decomposition. ‘AA-Spar.” stands
for accelerator-aware sparsity after decomposition, also
interpretable as chunk-wise sparsity; here, we only count
the sub-rows with zero-valued weights. Specifically, AA-
Spar equals the number of all-zero sub-rows divided by the
total number of sub-rows in the filter tensors. Note that we
consider the sub-rows in the last chunk as part of the com-
putation, which may result in “AA-Spar.” being larger than
‘Param. Spar.’” if the last chunk has a width smaller than
arr,. On CIFAR10, we can achieve more than 90% sparsity
on all evaluated models. For the relatively large models like
VGG and ResNet-18, the pruned models have even higher

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from I[EEE Xplore. Restrictions apply.

HANSON ET AL.: DYNNAMIC: DYNAMICALLY RESHAPING, HIGH DATA-REUSE ACCELERATOR FOR COMPACT DNNS

889

D DianNao

1@ Cambricon-X
DSparTen
B0urs-D

B Ours

DlEyeriss

ESCNN

BVanilla Systolic Array
BEOurs-A

F12

VGG16 ResNet18 MobileNetv2 VGG16 GeoMean

ResNet50
T
ImageNet

MobileNetv2 |

T
CIFAR-10

@ DianNao

B Cambricon-X
30 mSparTen
DOOurs-D

DEyeriss
B|SCNN

D Vanilla Systolic Array
@Oours-A

Norm. Speedup
N
3

ResNet18 ResNet50 GeoMean
T T

CIFAR-10 ImageNet

MobileNetv2
I

Fig. 8. Normalized energy efficiency and speedup of all accelerators.

accuracy since the coefficient pruning works like regulariza-
tion and prevents overfitting. For the compact model Mobi-
leNetV2, although the accuracy loss rises to 0.7%, we can
still maintain over 93.3% accuracy while pruning more than
90% of parameters.

On ImageNet, we also achieve high sparsity relative to
accuracy loss on the VGG and ResNet-50 models. Perfor-
mance on MobileNetV2 is particularly impacted since it is
already a compact model; obtaining a high sparsity on such a
model is difficult without sacrificing significant accuracy.
ImageNet’s higher complexity causes the model to be more
sensitive to this effect, explaining the performance gap
between the datasets. These reasons combined are why com-
pression works avoid pruning MobileNetV2, but we include
the results to show the effectiveness of our approach.

7.2 Accelerator Performance

Fig. 8 shows the energy efficiency and speedup of the accel-
erators on the evaluated models. All values are normalized
to DianNao.

First, we will discuss the energy efficiency results com-
pared to competing accelerators. Energy efficiency is defined
as the number of inferences per unit energy. Fig. 8 shows that
DyNNamic consumes the least amount of energy per DNN
inference and offers energy efficiency improvements ranging
from 4.8x to 18.1x compared to DianNao. Compared to
SparTen, the most competitive accelerator among those eval-
uated, DyNNamic improves energy efficiency between 1.1x
and 4.8 x . Unlike SCNN and SparTen, both of which skip
zeros at a fine granularity via fine-grained indexing, DyN-
Namic leverages the decomposed convolutional layer format
and chunk-granularity sparsity with significantly lower
indexing overhead. In most cases, Cambricon-X is more effi-
cient than SCNN because its unified buffer allows all PEs to
fetch shared activation data without incurring redundant off-
chip access; SparTen avoids this issue by pinning spatial posi-
tions to individual CUs and avoiding additional inter-CU
communication related to the computation’s inner-join.
SCNN and SparTen perform worse under the WA and SKC
stages, respectively, due to how the workload dimensions
are split across their CUs, so we compare against the accelera-
tors using the recomposed convolutional layers for stronger

€ Column Combining
&£Column Combining w/ Ours-A
|Ours,

H
Norm. Speedup

CIFAR10 ImageNet

CIFAR10

ImageNet

Fig. 9. Comparison to Column Combining on VGG-19.

baselines. DyNNamic performs particularly well on Mobile-
NetV2 because the model heavily uses compact layer types
depthwise and pointwise, which DyNNamic’s reshaping PE
array handles particularly well. These significant energy
improvements are the result of DyNNamic’s heavy data-
reuse during the SKC stage and efficient coefficient matrix
compression during the WA stage, revealed by comparing
‘Ours-A’ to ‘Vanilla Systolic Array’. Additionally, the
dynamic PE array further boosts energy efficiency by avoid-
ing array shapes that adversely affect data-reuse. ‘Ours-D’
actually performs worse than the ‘Vanilla Systolic Array’
baseline because the array is configured to dynamically
reshape for optimal speedup, not energy efficiency.

Now, we discuss the latency speedup results. DyNNamic
has significant speedup compared to the baseline accelerators
and is comparable to SparTen. As shown in Fig. 8, DyNNamic
achieves a speedup ranging from 7.3x to 29.1x compared to
DianNao. DyNNamic reaches comparable or higher speedup
than all baselines, with the exception of SparTen on VGG-16
(CIFAR-10) and on the ResNet models. ResNet models
heavily employ Pointwise and Residual layers, which
SparTen excels at computing because it pins each spatial posi-
tion to a CU; additionally, SparTen exploits activation sparsity
for an added advantage to runtime speedup. Meanwhile,
DyNNamic’s speedup is mainly attributed to directly sup-
porting the decomposed convolutional operation format, the
significant chunk sparsity of the coefficient matrix during the
WA stage, as shown by ‘Ours-A’. The heightened utilization
of the PE array from dynamic reshaping then allows the accel-
erator to exploit the compact filters generated by ‘Ours-A’.

7.3 Comparison to Column Combining

Because Column Combining is a co-designed approach, we
first compare its sparsity to ours. As shown in Table 3, on
both CIFAR-10 and ImageNet, our VGG-19 models are
sparser by 7.14% and 2.72%, respectively. By exploiting
low-rank decomposition to reduce parameter size and
expose the easily-prunable coefficient matrix, we achieve
higher sparsity with comparable accuracy compared to Col-
umn Combining, despite structured pruning methods typi-
cally producing less sparse models.

Fig. 9 shows the relative energy and runtime of an infer-
ence task on VGG-19. As shown, DyNNamic is only able to
improve energy cost by up to 5% due to the inherently
lower data-reuse available using the partitioned convolu-
tion operation. Meanwhile, DyNNamic can improve overall
runtime by up to 1.9x thanks to the lower parameter count
and superior compression of Ours-A. We also show the
result of directly using Ours-A on Column Combining. Col-
umn Combining cannot efficiently support the compact
SKC stage, so its energy efficiency is degraded. However,

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from IEEE Xplore. Restrictions apply.

890

TABLE 5
On-Chip Area and Energy Breakdown

Module Area (um?) Area % Energy (uJ) Energy %
PE Array 522648 88.68 1142.773 86.25
PE-SA (x4) 130320 22.11 285.158 21.45
RC (x3) 261 0.04 0.571 0.04
CCavg. (x3) 195 0.03 0.429 0.03
KR & AR 4952 0.84 10.856 0.82
Multicast Router 41421 7.03 81.218 6.13
Act., Norm., & Pooling 7840 1.33 18.979 1.43
Control 12472 212 71.157 5.37
Total 589333 100.0 1324.987 100.0

Ours-A can reduce Column Combining’s runtime by up to
1.5x via the reduced parameter count and computation
footprint.

7.4 Power, Area, and Energy Breakdown

Table 5 displays the synthesized area and energy breakdowns
of DyNNamic for an inference on ResNet-50, excluding on-
and off-chip memory. A significant portion of the on-chip area
and energy are due to the PE array, equating to roughly 89%
and 86%, respectively. Most of the PE array’s footprint comes
from the PE-SAs while the RCs and CCs have negligible foot-
prints of less than 0.05%. Meanwhile the area and energy over-
heads of the circular reuse blocks total less than 1%.

7.5 Utilization of Dynamic Array

This section evaluates the effectiveness of the proposed
dynamic array shaping on the SKC and WA stages. Fig. 10
displays the decomposed layer-wise throughput of a static
systolic array and of our dynamic array, evaluated on
ResNet-18. Note that each convolutional layer with non-unit
kernel dimensions is decomposed to two stages, which we
visualized as decomposed ‘sub-layers’. The peak throughput
of a 400 PE array at 300 MHz is 240 GFLOPS. On average, the
static and dynamic arrays have an average throughput of
125 (52 %) and 195 (81 %) GFLOPS (utilization), respectively.
The SKC stage cripples the throughput and utilization of the
static PE array because of its depthwise nature. The dynamic
PE array solves this issue by adjusting its dimensions, thus
achieving high utilization on both stages.

7.6 Ablation Study
Fig. 11 showcases the impact of isolating each approach
described in this work. Figs. 11a and 11b display the impact of

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 3, MARCH 2023

E 2E+11

9

156411

H

Fg 1E+11

2 seao e S1ATIC

= === [Iynamic

o

1 3 5 7 9 1113 15 17 19 21 23 25 27 79 31 33 35 37

Decomposed Sub-Layer ID

Fig. 10. Static vs. dynamic PE array on decomposed layers.

each approach given differing layer types, normalized to the
most-performant combination of techniques. The evaluated
layer types include: First Layer (FL), Bottleneck Down-Scaling
(BNDS) and Up-Scaling (BNUS), 3 x 3 Convolution (Conv3),
Residual (Resid), Depthwise (DSC), and Pointwise (PW).

Due to the small number of channels for FL and DyN-
Namic optimizing for speedup, data-reuse is sacrificed for
speedup compared to vanilla systolic arrays; DianNao also
suffers on FL because it depends on channel-wise parallel-
ism. Results for BNDS, BNUS, Resid, and PW are mostly con-
sistent due to their similarity in employing 1 x 1 kernels.
Conv3 is similarly influenced by the proposed techniques,
but is more performant on DianNao and the vanilla systolic
array due to its larger kernel dimensions. DSC layers serve to
be the biggest issue for the proposed techniques, but does
not form a computation bottleneck. This is because the pro-
posed algorithm relies on 4-D filters to decompose into SKC
and WA stages. Because DSC layers do not have any interac-
tion across the channels, the large WA stage incurs computa-
tion overhead. These results show that directly applying the
dynamic PE array without the algorithm is preferred on DSC
layers.

Figs. 11c and 11d showcase the overall contribution of
each approach on efficiency and speedup, respectively. The
contributions of the approaches are ranked as follows. On
MobileNetV2, dynamic PE array, algorithm, buffer sharing,
and circular reuse. The order of significance is slightly dif-
ferent on ResNet-50: algorithm, dynamic PE array, buffer
sharing, and circular reuse. ResNet-50 is primarily com-
posed of Conv3, BNDS, BNUS, and Resid layers, which
makes it a compelling target for the algorithm and compres-
sion methods. Meanwhile, MobileNetV2 is composed of
compact DSC and PW layers, causing the dynamic PE array
to be of greater importance.

7.7 Optimal Number of PEs
Larger PE count typically improves throughput of the chip,
but overhead of the dynamic PE array is not negligible if the

1l

BNDS Comv3 BNUS

Total (MobsleNetv2]

@Diankao]

0 Algarithm
Evanilla Systolic Amray || |
2 4

D Dynamsc Array

B Static Arvay + Algo

BNDS

Conv3 BNUS Resid Total (ResNe1S0) DsC
1L
T

B Ovnaenic Array + Mgo Restierso [N ::':’1':;:;"‘“::":
B Oynamic Array + Algo » Buffer Share
BCircular Reuse + Algo o 20% A% [Ao 100%
A3 Technigues (c)

]
oy MovikeNerv2 ['
R e e I N T R R I i
O 0ynamic Array + Mgo 0 Circular Rewse
BOynamic Array + Ago + Buffer Share % 20% 4% 0% B8 100%
@ circular Reuse + Ngo {d}

WA Technigues

W Total (MabileNetv2)
]
T

ResNet-50 Layers MobileNetV2 Layers

Fig. 11. Isolated techniques. (a) Layer-Wise Efficiency, (b) Layer-Wise Speedup, (c) Efficiency Contribution, and (d) Speedup Contribution.
Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from IEEE Xplore. Restrictions apply.

HANSON ET AL.: DYNNAMIC: DYNAMICALLY RESHAPING, HIGH DATA-REUSE ACCELERATOR FOR COMPACT DNNS 891

16

w

e Speedup 4.65
== Area

= EnErgy

&

=
n
Norm, Area/Energy

w

]

Norm. Speedup
-
L

-

2

1600 PEs

100 PEs 400 PEs

Fig. 12. Varying PE array size.

PE count gets too large. One clear parameter that defines the
set of possible array sizes is arry .. As discussed in Sec-
tion 5.2, we choose arry mi» = 5 to maximize utilization of
the SKC stage for the common case (i.e., 3 x 3 kernels). Given
the minimum array width and the dependency with the
array’s dimensions discussed in Section 5.2, the set of possi-
ble array sizes is limited to 25, 100, 400, 1600, and so on.
Fig. 12 shows the relative speedup, area, and energy of the
dynamic PE array with various possible array sizes. Note
that speedup is relative to a static array while area and
energy are relative to the GLBs’ cumulative area and energy;
we compare to the GLBs here because they form the on-chip
area and power bottleneck. Thus, it is important that the PE
array’s area and energy footprints do not approach the GLBs’
footprints. This figure shows the dynamic PE array generates
the most speedup with 400 or 1600 PEs. Additionally, the
energy and area footprints are both significantly less than
that of the GLBs for PE counts less than 1600. Larger PE
counts will generate unacceptable area and energy consump-
tion from the PE array and dynamic shaping controllers;
also, as PE count grows, dynamically reshaping the PE array
provides limited throughput improvement. This limited
improvement is caused by the array’s dimensions being too
large to fully utilize its range of possible configurations. For
example, the most unbalanced configuration of the array
with 6400 PEs is 5 x 1280. On ResNet-18 using CIFAR-10, the
maximum OFM size is 1024 while the maximum layer width
is 512, neither of which are equal-to or larger than 1280. In
conclusion, we observe that a PE array size 400 (i.e., four 20 x
5 PE-SAs) is optimal for the target partitioned convolution
operation.

8 RELATED WORKS

DNN applications are heavily data-centric and typically
involve many memory transactions. To minimize the
impact of data transfers, recent accelerators like DianNao [3]
incorporate multi-level memory, which reduces the cost of
frequently accessed weight and activation data via temporal
locality. Other accelerators opt to avoid redundant memory
accesses via systolic array processing, which heavily
exploits spatial locality. TPU [14] boasts up to 20x higher
throughput and 80x higher energy efficiency when com-
pared to contemporary GPUs and CPUs; however, it suffers
from low utilization due to a lack of reconfigurability. Guo
et al. [9] combine systolic array processing with a GPU to
improve processing flexibility and efficiency of the underly-
ing hardware. DyHard-DNN [23] determines the best con-
figuration of a systolic array and dynamically configures
the architecture to reduce latency and energy cost. Liu ef al.

[19] propose a flexible computation mapping and dataflow
scheme. These methods address underutilization of systolic
arrays; however, they do not modify the algorithm to better
leverage the hardware characteristics.

9 CONCLUSION

This paper presents DyNNamic, a DNN inference accelera-
tor. DyNNamic leverages characteristics of kernel-wise
decomposition by partitioning the convolution operation
into two stages: Shared Kernels Convolution (SKC) and
Weighted Accumulation (WA); this greatly enhances execu-
tion energy efficiency and latency. We map the two-stage
convolution operation onto the dynamic PE array, which
accommodates the vastly different dimensional constraints
of each stage. We then aggressively compress the large coef-
ficient matrix of the WA stage using using a structured com-
pressed format. Lastly, we analyze and exploit data-reuse
opportunities exposed by the SKC stage. Experiments show
that DyNNamic outperforms recent state-of-the-art acceler-
ators, with on average 8.4x energy efficiency and 12.3x
speedup.

REFERENCES

[11 CACTILan integrated cache and memory access time, cycle time,
area, leakage, and dynamic power model, [EB/OL], 2013. [Online].
Available: https://github.com/HewlettPackard/cacti

[2] A. Aimar et al., “Nullhop: A flexible convolutional neural network
accelerator based on sparse representations of feature maps,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 30, no. 3, pp. 644656, 2019.

[3] T.Chen et al., “Diannao: A small-footprint high-throughput accel-
erator for ubiquitous machine-learning,” ACM SIGARCH Comput.
Archit. News, vol. 42, no. 1, pp. 269284, 2014.

[4] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE]. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017.

[5] Y.-H. Chen, T.-]. Yang,]J. Emer, and V. Sze, “Eyeriss v2: A flexible
and high-performance accelerator for emerging deep neural
networks,” IEEE]. Emerg. Sel. Top. Circuits Syst., vol. 9, no. 2,
pp- 292-308, Jun. 2019.

[6] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 1251-1258.

[71]. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248-255.

[8] A.Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“Sparten: A sparse tensor accelerator for convolutional neural
networks,” in Proc. 52nd Ann. IEEE/ACM Int. Symp. Microarchit.,
2019, pp. 151-165.

[91 C.Guoetal., “Balancing efficiency and flexibility for DNN acceler-

ation via temporal GPU-systolic array integration,” in Proc. 57th

ACMJIEEE Des. Automat. Conf., 2020, pp. 1-6.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-

ing deep neural networks with pruning, trained quantization and

huffman coding,” 2015, arXiv:1510.00149.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-

nit., 2016, pp. 770-778.

Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via

geometric median for deep convolutional neural networks accel-

eration,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,

pp- 4340-4349.

isakedo, isakedo/dnnsim, [EB/OL], 2020. [Online]. Available: https://

github.com/isakedo/ DNNsim

N. P. Jouppi ef al., “In-datacenter performance analysis of a tensor

processing unit,” SIGARCH Comput. Archit. News, vol. 45, no. 2,

pp- 1-12, Jun. 2017.

A. Krizhevsky et al., “Learning multiple layers of features from tiny

images,” Univ. Toronto, Toronto, Ontario, Canada, Tech. Rep., 2009.

[10]

[11]

[12]

[13]

[14]

[15]

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from IEEE Xplore. Restrictions apply.

892

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

H. Kung, B. McDanel, and S. Q. Zhang, “Packing sparse convolu-
tional neural networks for efficient systolic array implementations:
Column combining under joint optimization,” in Proc. 24th Int. Conf.
Archit. Support Program. Lang. Operating Syst., 2019, pp. 821-834.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning filters for efficient convnets,” 2016, arXiv:1608.08710.

S. Li, E. Hanson, H. Li, and Y. Chen, “PENNI: Pruned kernel sharing
for efficient CNN inference,” Proc. 37th Int. Conf. Mach. Learn., vol. 119,
pp. 5863-5873, 2020. [Online]. Available: http://proceedings.mlr.
press/v119/1i20d . html

B. Liu et al., “Addressing the issue of processing element under-utili-
zation in general-purpose systolic deep learning accelerators,” in
Proc. 24th Asia South Pacific Des. Automat. Conf., 2019, pp. 733-738.

A. Parashar et al., “Timeloop: A systematic approach to DNN
accelerator evaluation,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw., 2019, pp. 304-315.

A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. ACM/IEEE 44th Annu.
Int. Symp. Comput. Archit., 2017, pp. 27-40.

A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp- 8026-8037.

M. Putic, S. Venkataramani, S. Eldridge, A. Buyuktosunoglu,
P. Bose, and M. Stan, “Dyhard-DNN: Even more DNN acceleration
with dynamic hardware reconfiguration,” in Proc. 55th Annu. Des.
Automat. Conf., 2018.

A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“SCALE-sim: Systolic CNN accelerator simulator,” 2018, arXiv:
1811.02883.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510-4520.

K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, arXiv:1409.1556.
A. Stillmaker and B. Baas, “Scaling equations for the accurate pre-
diction of CMOS device performance from 180nm to 7nm,” Inte-
gration, VLSI ., vol. 58, pp. 74-81, 2017.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning struc-
tured sparsity in deep neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 2074-2082.

B. Wu et al., “Shift: A zero flop, zero parameter alternative to spa-
tial convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2018, pp. 9127-9135.

S. Zhang et al., “Cambricon-x: An accelerator for sparse neural
networks,” in Proc. 49th Annu. IEEE[ACM Int. Symp. Microarchit.,
2016, pp. 1-12.

Edward Hanson received the BS degree in com-
puter engineering from the University of Mary-
land, Baltimore County (UMBC) in 2019 and was
awarded the Meyerhoff Premier Scholarship. He
is currently working towards the PhD degree in
computer rngineering with Duke University under
the supervision of Prof. Yiran Chen. His research
interests are in machine learning system acceler-
ation and computer architecture.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 3, MARCH 2023

Shiyu Li received the BEng degree in automation
from Tsinghua University, Beijing, China, in 2019.
He is currently working toward the PhD degree with
the Department of Electrical and Computer Engi-
neering, Duke University, Durham, NC, USA,
supervised by Prof. Yiran Chen. His research inter-
ests include computer architecture, algorithm-hard-
ware co-design of deep learning systems, and
neural architecture search.

Xuehai Qian received the PhD degree from the
University of lllinois Urbana Champaign. He is cur-
rently an assistant professor with the University of
Southern California. His research interests include
domain-specific systems and architectures, perfor-
mance tuning and resource management of cloud
systems, and parallel computer architectures. He
is the recipient of W.J Poppelbaum Memorial Award
at UIUC, NSF CRIl and CAREER Award, and the
inaugural ACSIC Rising Star Award.

Hai (Helen) Li (Fellow, IEEE) received the PhD
degree from Purdue University in 2004. She is cur-
rently a professor with the Department of Electrical
and Computer Engineering, Duke University. Her
current research interests include neuromorphic
computing systems, machine learning and deep
neural networks, and memory design and architec-
ture. She is a recipient of the NSF Career Award
(2012), DARPA Young Faculty Award (2013), TUM-
IAS Hans Fischer Fellowship from Germany
(2017), and ELATE Fellowship (2020).

Yiran Chen (Fellow, IEEE) received the PhD
degree from Purdue University, in 2005. He is now
a professor with the Department of Electrical and
Computer Engineering, Duke University and serv-
ing as the director with the NSF Al Institute for
Edge Computing Leveraging the Next-generation
Networks (Athena) and the NSF Industry—Univer-
sity Cooperative Research Center (IUCRC) for

Alternative Sustainable and Intelligent Computing
: (ASIC), and the co-director with Duke Center for
Computational Evolutionary Intelligence (CEl). He
is an ACM Fellow.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:27:27 UTC from IEEE Xplore. Restrictions apply.

