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Abstract—The Bayesian neural network (BNN) combines the
strengths of neural networks and statistical modeling in that it
simultaneously performs posterior predictions and quantifies the
uncertainty of the predictions. Integrated photonics has emerged
as a promising hardware platform of neural network accelera-
tors capable of energy-efficient, low latency, and parallel com-
puting. However, photonic neural networks demonstrated to date
are mostly deterministic network models. Here, we extend the
photonic neural network to a statistical model and proposed a
photonic Bayesian neural network (P-BNN) architecture based
on the integrated photonic platform and harnessing the inherent
optical noises. The Bayesian neuron is realized by controlling the
probability distribution of the signal-amplified spontaneous emis-
sion (signal-ASE) beat noise. We show the P-BNN’s advantages in
making predictions using the posterior distribution by simulating
a p-BNN to perform handwritten number classification tasks. The
simulation results show that the proposed P-BNN not only makes
successful predictions on the expected images from the test dataset
but also detects and rejects the unexpected images outside the train-
ing datasets. The P-BNN architecture is compatible with on-chip
optical amplifiers and can be scaled up using current and emerging
integrated photonics technologies, thus is promising for practical
neural network applications.

Index Terms—Integrated optics, neural network, optical
computing.

HE classical neural networks could universally approx-
T imate a continuous function deterministically while the
statistical models make predictions and generate data by spec-
ifying a set of statistical assumptions between parameters. The
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Bayesian neural network (BNN) combines the strengths of neu-
ral networks and statistical modeling by adopting the statistical
methodology and extending classical neural networks (such as
deep neural networks (DNNs)) with posterior inference. Unlike
classical DNNs, in the training phase, BNNs learn from the
observations and update the distribution of their parameters.
During the inference phase, BNNs generate a complete pos-
terior distribution and produce probabilistic guarantees on the
predictions [1]. It means that, in the parameter space, BNNs can
provide statistical insights into the nature and distribution of the
neural network’s learned parameters. These features make the
BNN highly attractive in applications such as medical diagnosis
[2], [3], junk mail filtering [4], environment modeling [5], traffic
flow forecasting [6], [7], and more [8], [9].

Integrated photonics provides a scalable analog computing
hardware platform that has significant advantages in power effi-
ciency, communication latency, and parallelism as compared to
its electronic counterpart. These advantages specifically match
the requirements of the neural network hardware accelerators,
hence integrated photonic neural networks recently have become
a focus of intense research and commercial interests [10], [11],
[12], [13]. However, photonic neural networks reported to date
are predominantly deterministic neural networks, such as DNNs
and convolutional neural networks (CNNs) [14], [15], [16],
[17], [43], [44], [45], [46], [47]. Stochastic networks, such as
the Bayesian network, have not been explored in the photonic
domain. Here, we propose an integrated photonic BNN (P-BNN)
architecture, which consists of two independent integrated pho-
tonic accelerators and utilizes the signal-ASE beat noise in the
optical amplifiers to construct a probabilistic Bayesian connec-
tion. The advantage of the P-BNN is demonstrated in simulation
by performing number classification inferences using inputs of
both the expected images from the training dataset and unex-
pected images out of the training datasets. The proposed P-BNN
architecture extends current photonic neural networks models to
a statistical BNN model and is compatible with the current in-
tegrated photonics technologies of large-scale photonic circuits
with wavelength division multiplexing (WDM) and integrated
semiconductor optical amplifiers [18], [19] (SOAs).

We build photonic Bayesian neurons with probabilistic con-
nections using signal-ASE beat noise. As shown in Fig. 1(a), a
conventional neuron in DNNs maps the input data x to the output
y following the equation y = f{w-x + b), where weight w and the
bias b are trainable but definite parameters, and fis a pre-defined
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Fig. 1. (a) and (b) Comparison between a classical neuron connection in a
DNN (a) and a Bayesian neuron connection in a BNN (b) Unlike the classical
neuron maps the input value to the output value deterministically, the Bayesian
neuron trims the input data distribution into the output distribution. The model
distribution parameters p and o are updated in a Bayesian neuron during training
rather than the single weight value w. (¢) Schematic of utilizing the signal-ASE
beat noise to build an optical Bayesian neuron. The optically filtered signal
and the ASE noise are mixed and then detected by photodetectors. After a
DC block, the random electrical signals are sampled by an oscilloscope. (d)
Histograms of signal-ASE beat noise distribution with a fixed time-averaging
ASE power when the signal power is 0.5 mW, 2 mW and 6 mW respectively. The
standard deviation o is increased with the increasing signal power. (e) The linear
dependence between the o and the field intensity of the input signal mimics the
Bayesian neuron connection.

nonlinear function. This mapping is deterministic in that once
the network parameters are fixed, a neuron will produce identical
output for the same input during every inference. In contrast,
the statistical nature of a BNN requires each trainable parameter
in a Bayesian neuron to have a probability distribution rather
than a constant, as illustrated in Fig. 1. More description of the
differences between the classical neural networks and BNNS is
included in the Supplementary Information. A Bayesian neuron
connection can also be described as y = f(w-x+b). However, the
parameters w and b are not constants. Instead, without loss of
generality, the weight w ~ N(u1, 01?) and the bias b ~ N( 12,
09?) are assumed to be probabilistic following specific statistical
models, which we assume Gaussian distributions in this work.
Therefore, the output y of the Bayesian neuron is stochastic and
varies each time. During training, both the mean (u1, p12) and
the standard deviation (o1, o) of the Gaussian distributions are
optimized. The Bayesian neuron thus modifies the input data
distribution to the output distribution [20].

The linear component of the Bayesian neuron connection,
w-x+b, will have a Gaussian probability distribution
N(p1x+p2, o12x[*+02?). The mean value N(pq-x+pa,
0) is programmed using classical photonic neurons [12], [21],
[22]. We demonstrate programming the standard deviation
in the distribution N(0, o12-|x|*+02?) in a Bayesian neuron
utilizing the “signal-ASE beat noise”, which is a ubiquitous
noise source in optical communication systems where optical
amplifiers are needed [23]. In experiments, we generate the
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ASE noise from erbium-doped fiber amplifiers (EDFA) and
combine it with the input signal (Fig. 1(c)). The broadband
ASE noise and the monochromatic optical signal are optically
filtered and beat at photodetectors, generating baseband random
electrical photocurrents within the photodetector bandwidth.
The DC photocurrent is filtered by a DC block with a cut-off
frequency of 0.1 MHz, passing only the stochastic photocurrent
variances and sampled by an oscilloscope. Fig. 1(d) plots
the histograms of the measured signal-ASE beat probability
distribution when the time-averaged ASE power is fixed (at
0.04 mW) and the signal power is 0.5 mW, 2mW, and 6 mW,
respectively. The probability density function approximates
a zero-mean Gaussian distribution well, with the standard
deviation o proportionally increasing with the increasing signal
power. Therefore, we show that this signal-ASE beat noise
resembles the random distribution input needed in a Bayesian
neuron connection. The standard deviation of the signal-ASE
beat noise ogi.-asE is theoretically given by [24]:
0_2 _ 2}22PsigPASE
sig—ASE M )

where R is the responsivity of the photodetector, Pgj, and
Pasg are the optical signal power and the time-averaging ASE
noise power, respectively, and the M is a configuration constant
M = % determined by the optical filter bandwidth B and
the photodetector bandwidth By p. The resemblance between
the Bayesian neuron connection and the signal-ASE beat noise
allows us to encode the standard deviation o; of the weight
parameter w by tuning the time-averaging power of the ASE
noise power Pasr and encoding the input x to the P;,?. The
standard deviation o » of bias parameter b is added to the neuron
by combining the ASE-signal random noise with an additional
optical random number generator [25]. The linear dependence
between the o, ask and the Py, ''? agrees with the theory (see
Fig. 1(e)). The small intercept at zero P, shown in Fig. 1(e)
comes from other noise origins such as the ASE-ASE beat
noise and the shot noise [24], [26], [27]. It is neglected in
later discussion since it can be easily compensated in optical
neural network implementation by offsetting the input (see
Supplementary Information for detailed description).

The proposed P-BNN architecture consists of an input layer,
an output layer, and multiple hidden layers in between, as in
Fig. 2(a). The input received by the m;, Bayesian neuron in the
Jitn layer is calculated by applying the nonlinear function on a
weighted sum of the input signals from neurons in the previous
layer:

J — E J—1,.j—-1 J—1
ym - f wmn xn + b )
n

where 27! is the input to the n¢;, neuron in the previous layer,
uﬂ 1 is the weight connecting the myy, neuron in the ji;, layer
and the nyp, neuron in the previous layer, b1 is the bias. They
both have the Gaussian distributions:

i1 -1 _j-12
wmﬂ ~ N (Nm'ﬂ’ UT?Ln )

et (i, ).
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(a) General BNN architecture diagram. Each trainable parameter in the BNN has a probability distribution attached to it. The final prediction of BNN

is made by averaging over all individual sampled predictions. (b) Decomposition of one layer of the BNN. The input data is sent into two individual photonic
processors to program the mean value and the standard deviation individually. The output optical signals are then converted into the electrical domain using
photodetectors and combined. After post-processing with nonlinearity, the data is converted back into the optical domain and then transfer to the next layer. (c) The
schematic of the variance generator which aims to program neuron connection weight component following the distribution N (0, ¢7,2). A collector made from
the rings collects the input signals from the previous layer multiplexed to a bus waveguide. The optical input signals in the bus waveguide then are combined with
a broadband ASE noise source. A distributor demultiplexes signal and ASE of multiple wavelengths and distributed them into individual output neurons in this
layer. The corresponding joint signal-ASE beat random noise is detected by a single photodetector (PD). The coupling efficiency of each ring is used to encode the
standard deviation in each Bayesian neuron connection weight distribution. (d) The schematic of the mean calculator aims to program the mean of each Bayesian
neuron connection weight. The structure of this processor is similar to the processor shown in (c) The coupling efficiency of each ring in the distributor encodes

the mean value in each Bayesian neuron.

The weighted sum generates the data following the Gaussian
distribution

J g — E ’ J—1.,.0-1
N </Lm,7o'm ) =N :u’mnxn
n
J—1 Z §-12) -12 | _j-12
+Mb,n7 Omn |xn | +Ub,m
n

for a given input 27!, while the input value 27! varies at each
access following its probability distribution.

We propose a P-BNN architecture using two individual pho-
tonic processors, as shown in Fig. 2(b). The mean calculator
computes the mean value N (p,, 0),and the variation generator
generates random output with distribution N (0, o7, 2). The out-
put optical signals are separately measured using photodetectors
and combined to achieve the desired distribution of N(u/,,, 07, 2).
After post-processing with nonlinearity, the data is converted
back into the optical domain and then transferred to the next
layer. Fig. 2(c) plots the schematic of the variation generator

which programs the neuron connection weight component fol-
lowing the zero-mean Gaussian distribution N (0, ¢7,2). The
outputs from a previous layer in various wavelength channels
are coupled onto a bus waveguide using a WDM collector based
on a bank of micro-ring filters. The optical input signals in
the bus waveguide are combined with a broadband ASE noise
source, then demultiplexed and distributed to each neuron in
the same layer using WDM distributors based on micro-ring
filters. The center wavelength of each micro-ring in the distribu-
tor matches the wavelength of the corresponding wavelength
channel in the collector [28]. The coupling efficiency be-
tween the feeding waveguide and micro-ring controls the time-
averaged ASE power P sk and signal power Pg;, in each wave-
length channel, consequently controlling the standard deviation
of the signal-ASE beat random output. The standard deviation
o/, for each Bayesian neuron connection’s weight distribution
thus can be programmed by the coupling efficiency.

In practice, the coupling efficiency could be programmed by
controlling the gap between the ring and the bus waveguide in a
passive photonic processor or by using tunable micro-rings in a
state-of-the-art active photonic processor [21], [24], [29], [30].
The P-BNN supports both offline and online training modes.
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Fig. 3. Number classification using the photonic BNN. (a) The median of SoftMax probability scores of each class when using BNN to identify an image of “7”.

A total of 50 inferences were made using the same input image. The prediction is “undecided” if the maximum median score is smaller than the threshold (0.2).
In this demonstration, the class labeled as number “7” has the maximum median score of over 0.9. Inset: The input image of “7” for classification. (b) The output
probability score distribution of each class. Class 7 has high SoftMax probability scores (over 0.9) in 49 predictions over the total 50 inferences by the BNN, while
the other classes have near-zero output scores. (c) The confusion matrix for the MNIST test dataset using the photonic BNN. The overall accuracy is 95.91%.

In the offline training mode, all the parameters of P-BNN are
mapped to the device after being trained on a digital computer,
the coupling efficiency of each ring only needs to be set once.
While in the online training mode, all the parameters of P-BNN
are updated in real-time thus the tunable rings are necessary.
Since the center frequency differences between the micro-rings
are much larger than photodetector bandwidth, the signal-ASE
beat noise from each wavelength channel in the distributor is un-
correlated. Therefore, the summation of the noise from multiple
channels can be achieved using one single photodetector (see
Supplementary Information for detailed description). Fig. 2(d)
plots the schematic of the mean calculator. The structure of
the mean calculator is similar to the variance generator as
shown in Fig. 2(c). The coupling efficiency of each ring in
the distributor encodes the mean value y7, in each Bayesian
neuron (Fig. 2(d)).

For a demonstration, we simulate the performance of a two-
layer P-BNN and train it to classify hand-written numbers in
the MNIST dataset. The 28 x 28 pixels, 8-bit grayscale images
are fed into the input layer, connected to a hidden layer with
1024 nodes. The final output is a 10-element vector representing
the output SoftMax probability score for 10 classes (each class
labels a number from 0 to 9), respectively. Unlike a DNN which
only selects the class with the largest output score as the final
prediction from a single inference [14], [31], [32], [33], [34], the
BNN makes predictions by sampling the distribution of output
scores over multiple inferences and selecting the class with the
highest median SoftMax probability score. In our simulation,
we sample the network with the same input 50 times with the
network parameters varying each time following their probabil-
ity distribution. A threshold of 0.2 is set here for the maximum
medium score. The prediction is “undecided” if the maximum
median score is smaller than the threshold. Fig. 3(a) plots the
median of the SoftMax probability scores over 50 inferences
using the P-BNN to identify an image of “7”. The P-BNN
gives a correct prediction of class 7, as the outcome of class
7 has the maximum median score of over 0.9 while the median
score of other classes is close to 0.0. The prediction can also

be confirmed through the probability score distribution of each
class (see Fig. 3(b)). Class 7 has high SoftMax probability scores
(over 0.9) in 49 predictions over the total 50 inferences by the
BNN, while the other classes have near-zero output scores in
all 50 inferences. More MNIST number classification examples
could be found in Supplementary Information. The confusion
matrix for MNIST number classification is shown in Fig. 3(c),
the overall accuracy for our photonic BNN is 95.9%.

Conventional neural networks such as DNNs make determin-
istic predictions based on the prior knowledge learned from the
training dataset. They cannot make judgments about the origin
of the inputs and will give wrong predictions when the input is
out of the expected dataset. These wrong predictions from un-
expected input cannot be distinguished by post-processing. The
advantage of the BNN compared to the DNN is that it produces
probabilistic guarantees on predictions based on posteriors,
which allows the BNN to filter out unexpected input instead
of giving a wrong prediction. We demonstrate this advantage
by using the P-BNN which is trained for number classification
tasks to recognize the capital letter “A”. As shown in Fig. 4(a),
the median SoftMax probability scores of all classes are below
the threshold, the P-BNN thus gives the final prediction as
“undecided”. Moreover, more insights can be revealed through
the output probability score distribution of each class, as shown
in Fig. 4(c). Class 1, 5 and 7 have a higher probability to obtain
high output scores compared to other classes, indicating similar
sub-features extracted by the BNN between the letter “A” and
the numbers “17, “5”, and “7”. These similar sub-features are
intuitively highlighted in Fig. 4(b). More classification results
of unexpected inputs in our simulation could be found in Sup-
plementary Information.

In conclusion, we harness the signal-ASE beat noise in the
photonic system to construct a photonic BNN. In demonstra-
tions based on simulation, the P-BNN not only makes correct
predictions on the images from the test dataset but filters out the
unexpected images as “undecided” as well. Assuming a moder-
ate datarate of 10 Gbits/sec and 4 WDM channels, the computing
density of P-BNN can reach 10 TOPS/mm? (Tera-Operations

Authorized licensed use limited to: Duke University. Downloaded on August 16,2023 at 20:33:13 UTC from IEEE Xplore. Restrictions apply.



WU et al.: PHOTONIC BAYESIAN NEURAL NETWORK USING PROGRAMMED OPTICAL NOISES

(a)
10 T
o 08}
o
O
(]
2
£ o6l
£
©
Q
<
o
T 04l
©
g
threshold
Z 02
e x 100
g - -0-@-
OOIIII?,I,I,H
01234567809
Label
(c) Output Distribution
Counts
Wy T7lololal1al2]10]o]2] g0
ol (o € | om {1k ik Wl INo W ol ol ko
o 08 40
s ol [Fol[Bom [ For I il | Solt {1l Hot| [
[
2 o|loflofo|oflo]o|1|o]o0
=i 30
g olf (o [ Mo [l a1 "ol Kol Fo: [0
Q
2 ol (Rl |iko | iEoX koWl io i Rkl EoAlio
& 04 20
Col M N [T o ol o [ )
oz| 0|30 |1]ojojojofoft N
olf o[ o [Wom il | Mot oo
M 49 39| 50 49 42 82| 47 [35| 50 46

o (& ||2] i3 |4 5| 6] i8] o
Label

Fig.4. Image classification using the same P-BNN but with unexpected input.
(a) The median of SoftMax probability scores of each class when using the BNN
to identify animage of “A”. The BNN is the same as the network used in Fig. 3 and
is only designed for number classification. A total of 50 inferences were made
using the same input image of “A”. In this demonstration, the median scores of
all classes are below the threshold, thus the final prediction is “undecided”. The
scores are scaled up by a factor of 100 for visual clarity. Inset: The input image
of “A” for classification. (b) Schematic of the features of numbers 1, 5 and 7 that
could be extracted from the image of the “A”. (c) The output probability score
distribution of each class. Classes 1, 5 and 7 have a higher chance to obtain
a high probability score compared to other classes, indicating some similar
features between the image of “A” and the numbers 1, 5, and 7.

per second per mm?), significantly higher than that of state-
of-the-art digital processors [35]. The efficiency and speed of
P-BNN will further benefit from the hybrid photonic-electronic
system, which can optimally balance the energy advantages of
photonic systems while realizing flexible non-linearity, connec-
tivity, and training precision using integrated circuits. Increasing
the operation data rate will increase the signal-ASE beat noise
to the ASE-ASE beat noise ratio which helps to improve the
programming accuracy of the P-BNN. Meanwhile, the feasible
size of a cascaded ring resonator architecture of the P-BNN is
limited by the insertion loss of the ring resonators. Scaling up to
alarge network thus faces the challenge of optical power attenu-
ation unless using on-chip optical amplification, which is not yet
available [36]. On-chip optical amplification that is compatible
with silicon photonics requires co-integration of active optical

6100606

gain material on silicon photonic structures. Current approaches
toward scalable on-chip optical amplifiers involve either III-V
to silicon wafer bonding [37] (heterogeneous integration), or
co-packaging with precise assembly [38], [39] (hybrid integra-
tion). Quantum dots are potentially another promising approach
as they can be largely grown directly onto silicon [40], [41], [42].
Our proposed P-BNN architecture leverages intrinsic ASE noise
in on-chip optical amplifiers rationally and thus will show great
significance in practical photonic neural network applications
after overcoming the scaling challenge.
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