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ABSTRACT. We continue the study, begun in [KoNOS], of inverse Chevalley formulas for the
equivariant K-group of semi-infinite flag manifolds. Using the language of alcove paths, we
reformulate and extend our combinatorial inverse Chevalley formula to arbitrary weights in all
simply-laced types (conjecturally also for Eg).

1. INTRODUCTION.

Let G be a simply-connected simple algebraic group over C with Borel subgroup B = HN,
maximal torus H, unipotent radical N, Weyl group W, weight lattice P =}, _; Zw;, root lattice
Q = Y,c; Zay, and coroot lattice Q¥ = 3. Zay. The work [KoNOS] initiated the study of
inverse Chevalley formulas in the equivariant K-group Kpyxc+(QE") of the semi-infinite flag
manifold Q' associated with G, where the semi-infinite flag manifold Q* is a reduced ind-
scheme whose set of C-valued points is G(C((2)))/(H(C)-N(C((2)))) (see [Kat2] for details), with
the group C* acting on Q* by loop rotation; note that our K-group Kpxc+(QE") is a variant
of the Iwahori-equivariant K-group of Q' introduced in [KaNS]. The K-group Kpxc+(QRE")
has a topological Kprxc+(pt)-basis consisting of Schubert classes {[Oq(x)|}zew,,; indexed by
the affine Weyl group Wy = W x QV, where Ko+ (pt) = ZgH|[P], with Ky (pt) = R(H) =
Z[P] = Z[e* | A € P] the character ring of H and Kc«(pt) = R(C*) = Z[g*']; here ¢ €
R(C*) denotes the character of loop rotation. By an inverse Chevalley formula, we mean
a combinatorial formula for the product of an equivariant scalar e* € Ky (pt) = R(H) with a
Schubert class [Oq, ()], expressed as a Z[g=']-linear combination of the twisted Schubert classes
1Oqe (@) ()]} zew,e uep; here the twisted Schubert class [Oq,(x) ()] corresponds to the tensor
product sheaf [Oq,(x)] ® O(u), with O(u) the equivariant line bundle over Q" associated to
p € P. The results of [KoNOS] treat the case when A is a (not necessarily dominant) minuscule
weight and G is of simply-laced type.

This work is a sequel to [KoNOS]. Our main result is a combinatorial formula which general-
izes the inverse Chevalley formula of [KoNOS] to arbitrary weights A € P. An important feature
of our formula is that we formulate it using alcove paths, matching more closely existing results of
[LP1] on equivariant Chevalley formulas for finite-dimensional flag manifolds and those of [LNS]
regarding (non-inverse) Chevalley formulas in K+ (QE*). (We recall that, while the ordinary
and inverse Chevalley formulas for equivariant K-theory of finite-dimensional flag manifolds are
essentially identical, the two types of Chevalley formulas are genuinely different for semi-infinite
flag manifolds; see [KoNOS, Introduction].)

The ingredients in our combinatorial formula are roughly as follows (see §3.4 for details).
Given any weight A € P, any alcove path L@om the fundamental alcove A, to Ay = Ao +
A, and any w € W, we define a finite set QW ,,(I') of combinatorial objects (w,b) (called

decorated quantum walks) and various associated quantities: (—1)™-?) € {£1}, deg(w,b) € Z,
end(w) € W, wt(w) € P, qwt(w,b) € Q and qwt'(w,b) € QV. Informally, an element
(w,b) € (/;2\\_7/V/\7w(1“) consists of a walk w in the quantum Bruhat graph QBG(W) (i.e., a directed
path in QBG(W') with stationary steps allowed), which must begin at w € W and follow edges
prescribed by I', together with some additional information recorded by b at special stationary
steps in w.

Our main result then reads as follows:
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Theorem 1.1 (= Theorem 3.4). Assume that G is simply-laced, but not of type Es. Let A € P
be an arbitrary weight, and let I' be an arbitrary alcove path from Ao to Ayx. For any w € W,
the following equality holds in K c+(QE*Y):

et [OQG(W)] -

W eg(w ].1
ST (CD)TEGEEDOg it o) (0 (W) — wo qut(w, b)), ()
(w.b)EQW, ,,(I")

where w, denotes the longest element of W.

Here we mention that the sum on the right-hand side of (1.1) is an explicit finite sum,
described in terms of decorated quantum walks, while the finiteness itself is proved in [O]. Also,
we note that it suffices to consider only Schubert classes indexed by x = w € W, rather than
arbitrary @ € Wy, by virtue of the right action of translations {t¢}ecov C Was on QE*.

We expect that (1.1) also holds, as stated, in type Eg. To prove this, however, further
arguments will be necessary to handle the case of quasi-minuscule \; we plan to provide the
details of these arguments in a future work.

The first step in our proof of Theorem 1.1 is to reformulate the formula from [KoNOS], for
minuscule ), in terms of a particular (reduced) alcove path I' (see Proposition 3.6). Then, our
main efforts are devoted to establishing that the right-hand side of (1.1):

(1) is invariant under Yang-Baxter transformations (Theorem 3.12) and deletion procedures
(Theorem 3.14) on alcove paths, and

(2) respects additivity in A € P (Proposition 3.7).
In order to prove part (1), we establish the existence of a certain “sijection” (bijection between
signed sets in the sense of [FK]) between decorated quantum walks associated to two alcove
paths I'y, s from A, to Ay for A € P such that I'y is obtained from I'y by a Yang-Baxter
transformation or a deletion procedure. In [KoLN], it is shown that similar results hold for
a certain generating function of some statistics including weights over admissible subsets in
the quantum alcove model, which is closely related to the (non-inverse) Chevalley formula in
Kpwc+(QE"). However, since decorated quantum walks are completely different combinatorial
objects from admissible subsets, we need to construct the desired sijection for decorated quantum
walks from scratch. In addition, our results above are much more difficult to prove than the
corresponding results for admissible subsets in [KoLN] mainly because of the appearance of the
rather delicate term ¢9°8(") on the right-hand side of (1.1). By a result of [S] (see also [LP2]),
which asserts that an arbitrary A € P can be written as a sum of (not necessarily dominant)
minuscule weights in simply-laced types (except in type Fg), we are then able to deduce that
(1.1) holds for all A € P and all alcove paths I' from A, to Aj.

Here we should mention that in [Katl], Kato established a Z[P]-module isomorphism from
the (small) H-equivariant quantum K-theory QK (G/B) (see [ACT] for the finiteness result on
QK (G/B)) of the finite-dimensional flag manifold G/B onto the Z[P]-submodule (denoted by
K (Qg(e)) in this paper) of the specialization of Kpxc-(Q") at ¢ = 1 consisting of all finite
linear combinations of the Schubert classes [Oq, ()] for = € Wazf0 = Wx Q""" with coefficients in
Z[P), where Q¥F := %", Z>oey C Q¥ =3 ,c; Zoy/. This isomorphism sends each (opposite)
Schubert class in QK g (G/B) to the corresponding Schubert class in K (Qg/(e)); also, it respects
the quantum multiplication with the line bundle class [Og/p(—w;)] and the tensor product
with the line bundle class [Oq(e)(wow;)] for all @ € I. Since the quantum multiplication in
QK (G/B) is uniquely determined by its Z[P]-module structure and the quantum multiplication
with the line bundle classes [Oq/p(—w;)] for i € I (see [BCMP]), it follows that under Kato’s
Z[P]-module isomorphism above, the quantum multiplicative structure of QK (G/B) can be
described explicitly by means of (the specialization at ¢ = 1 of) our inverse Chevalley formula
(Theorem 1.1), together with (the specialization at ¢ = 1 of) the (non-inverse) Chevalley formula
in Kpxc+(QE*) for anti-dominant weights —;, obtained in [NOS]; recall that the (non-inverse)
Chevalley formula in Kpyc-(QE') for anti-dominant weights expresses an arbitrary twisted
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Schubert class [Oq, ) (—w:)] as an explicit finite linear combination of Schubert classes with
coefficients in Z[g*'][P] in terms of the quantum alcove model.
In Appendix B, we give a detailed example in type Ay of our inverse Chevalley formula (1.1).
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2. BASIC NOTATION.

2.1. Root systems. As above, let G be a simply-connected simple algebraic group over C. We
fix a maximal torus and Borel subgroup: H C B C G; let N denote the unipotent radical of B.
We set g := Lie(G) and b := Lie(H), and denote by (-, ) : b* x h — C the canonical pairing,
where h* := Home(h, C).

Let A C b* be the root system of g, AT C A the positive roots (corresponding to B), and
{ai}tier € AT the set of simple roots; we denote by oV € b the coroot corresponding to o € A.
For a« € A, we set sgn(a) := 1 (resp., sgn(a) := —1) if « is positive (resp., negative), and
la| := sgn(a)a € AT. We denote by 6§ € AT the highest root of A, and set p := (1/2) 3" ca+ @,
Q=Y c;Zaj, and QY := 3", ; Za'; also, we set QV'F =3 Zoa) C QY.

For i € I, let w; € h* be the i-th fundamental weight determined by (w;, oz;-/) = §;,; for
all j € I, where J;; denotes the Kronecker delta. The weight lattice P of g is defined by
P =3 ,.; Zw;; note that hy = R®z P = R ®z Q is a real form of h*. We denote by Z[P]
the group algebra of P, that is, the associative algebra generated by the formal exponentials e,
)\ € P, where e*e# := e M* for \, u € P.

For a € A, the corresponding reflection s, € GL(h*) is defined by so(\) :== X — (A, a¥)a for
A € b*; we write s; := sq, for i € I. Then the Weyl group W of g is the subgroup (s; | i € I) of
GL(h*) generated by {s;}ic;. We denote by ¢(w) the length of w € W with respect to {s;}ier,
and by < the Bruhat order on W. The following fact is well-known.

Lemma 2.1. Let w € W and a € A. Then,
WSe > w = L(ws,) > l(w) <= sgn(wa) = sgn(a),
WSe < W <= L(ws,) < l(w) <= sgn(wa) = —sgn(w).

Definition 2.2 (cf. [BFP, Definition 6.1]). The quantum Bruhat graph QBG(W) is the AT-
labeled directed graph whose vertices are the elements of W and whose (directed) edges are of
the following form: = < y, with z,y € W and a € A%, such that y = zs, and either of the
following holds: (B) £(y) = £(z) + 1, (Q) £(y) = €(z) — 2(p, aV) + 1. An edge satisfying (B)
(resp. (Q)) is called a Bruhat edge (resp. a quantum edge).

An integral weight A € P is said to be minuscule if (A, «V) € {—1,0,1} for all « € A. Remark
that if a minuscule weight is dominant, then it is a fundamental weight; for the list of minuscule
fundamental weights, see, e.g., [Hi, Chapter V, Section 2]. Also, if A € P is minuscule, then
every element in WA is also minuscule. Therefore, WA contains a unique fundamental minuscule
weight.

Now, let g.r := (g ® C[z, 27 !]) @ Cc @ Cd be the (untwisted) affine Lie algebra over C
associated to g, where c is the canonical central element and d is the scaling element, with
Cartan subalgebra h,s := h @ Cc® Cd. We denote by (-, -) : b x bar — C the canonical pairing.
Regarding A € b* as A € b} = Homgc(has, C) by setting (A, ¢) = (A, d) = 0, we have h* C b;
under this identification, we see that the canonical pairing (-, -) on b} X b extends that on

h* x b.
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We define § to be the unique element of b*; which satisfies (§, h) =0 for all h € b, (6, ¢c) =0,
and (0, d) = 1, and set ap := —60 4 6 € b’;. Then the root system A, of gas has simple roots
{aitier,, where e := I U {0}.

For a € A,¢, we have the corresponding reflection s, € GL(hat), defined as for g. Note that
for « € A C A,s, the restriction of the reflection s, defined on b, to b coincides with the
reflection s, defined on h. We set s; := s, for i € I,s. Then, the Weyl group of gur (called the
affine Weyl group) Wy is defined to be the subgroup of GL(h,¢) generated by {s;}icr,,, namely,
Was = (si | i € L). In [Hu, Section 4.2], it is shown that Was ~ Wix {t,v | a¥ € QV} ~ WK QY
where t,v is the translation element corresponding to oV € QV; we set I/Vazf0 = {wtyy | w e
W, oV € Q¥ =W x QV't C Wy

2.2. Alcove paths. For a € A and k € Z, we set

Hup:={vebg|(v,a’)=k}. (2.1)
Let 7o denote the affine reflection with respect to the affine hyperplane H, x; we have
Tak(V) =v— (v, a") —k)a = sqv+ka for v € bg. (2.2)

The affine reflections 7, , generate the affine Weyl group W2, = W x {to | € Q} W x Q.
The hyperplanes H, 1, o € A, k € Z, divide the real vector space by into open regions, called
alcoves; the fundamental alcove is defined as

As:={vebp |0<(v,a’) <1lforall aec At}

We say that two alcoves are adjacent if they are distinct and have a common wall. Given a pair
of adjacent alcoves A and B, we write A = B for a € A if the common wall is orthogonal to «,
and « points in the direction from A to B.

Definition 2.3 ([LP1]). An alcove path is a sequence of alcoves (Ag, A1, ..., A,) such that
A;_1 and A; are adjacent for j =1, 2,..., m. We say that an alcove path (Ag, A1, ..., Ap,) is
reduced if it has minimal length among all alcove paths from Ay to A,,.

Given an element x in W/, there is a well-known bijection between alcove paths (Ao, A1, ..., Am)

from the fundamental alcove Ay = Ao to A, = 2(As) and the decompositions © = s;, ... s;,, of
x (reduced or not), as products of the Coxeter generators of W/¢; see [Hu, Section 4.5], while
more details are given in [LP1, Lemma 5.3]. (Note that the element x € W/; corresponding
to A, is unique, by the simple transitivity of the action of W/ on alcoves.) The mentioned
bijection is explicitly given by A; = s;, ... s;,(Ao), for j =0,...,m. Moreover, the above alcove
path is reduced if and only if the corresponding decomposition is reduced. On another hand,
it is well-known that any two decompositions of an element of W/, are related by successively
applying the Coxeter relations in W/;; the corresponding elementary transformations relating
the respective alcove paths are indicated in [LNS, Remark 40].

Let A € P, and let ' = (Ag, 41, ..., Ayn) be an alcove path from the fundamental alcove A,
to Ay == Ao+ A If v1,72, ..., vm € A are such that

Ao =Ag 5 A B I A, = Ay (= Ao+ N), (2.3)

then we write I' = (71, ...,7m); this notation makes sense, as the above sequence of alcoves can

be recovered from the corresponding sequence of roots. For each 1 <t < m, let H,,;, be the
affine hyperplane between A;_1 and A, and set

li= (A7) =l (2.4)
Let AP()\) (resp., APeq(A)) denote the set of all alcove paths (resp., all reduced alcove paths)

from A, to Ay.
Let \,p € P,and let I' = (y1,...,vm) € AP(A), 2= (&1,...,&) € AP(u). The concatenation

F«Z:= 1, 0vm &1y, 6p) (2.5)

of I' with = is an alcove path from A, to Ayi,; namely, I' x & € AP(X + p). Let us briefly

explain this fact. We first consider the extended affine Weyl group ‘//I\/;f =Wwx{t,|veP}~
W x P, where t, is the translation element corresponding to v € P. It is clear (since affine
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transformations act as homeomorphisms) that /V[Z;f permutes the set of alcoves (transitively,
albeit not simply transitively); see [Hu, Sections 4.2 and 4.3]. Moreover, by the same reasoning,
given adjacent alcoves A % B and the weight A considered above, we have ty(A4) % t\(B).
Therefore, we can concatenate the sequence of alcoves corresponding to I" with the translation
by A of the sequence of alcoves corresponding to =, and we obtain the sequence of alcoves
corresponding to I' x =.

Remark 2.4. Keep the notation and setting above. For each 1 < ¢ < p, let He_, be the affine
hyperplane between the (¢ — 1)-th alcove and the ¢-th alcove in =Z. Then the affine hyperplane
between the (¢ — 1)-th alcove and the ¢-th alcove in I+ E is H,, ;, (vesp., He, | x eV yike,,)
for 1 <t <m (resp., m+1<t<m+p).

2.3. Simply-laced assumption. In this paper, we assume throughout that G is simply-laced.
As aresult, by means of the non-degenerate W-invariant symmetric bilinear form (-, -) : h*xbh* —
C, normalized so that (a,a) = 2 for all a € A, we can identify roots with coroots; note that
(v, @)y = (v,a) for v € h* and a € A. Under this identification, if & € A is of the form
o =Y, Cioy, with ¢; € Z for i € I, then we can write oY = Y., ¢y

3. MAIN RESULTS.

3.1. Semi-infinite flag manifolds. Recall (see [KaNS] or [Kat2]) that the semi-infinite flag
manifold QrGat associated to G is a pure ind-scheme of infinite type whose set of C-valued points
is G(C((2)))/(H(C) - N(C((2)))), defined as an inductive limit of copies of a (reduced) closed
subscheme Qg C [[;c;P(V(wi)[2]) of infinite type, where V(w;) denotes the irreducible G-
module with highest weight @;. A Schubert variety Qg (z) C Q2" is by definition the closure of
the orbit under the Twahori subgroup I = ev,1,(B) C G(C[z]) (where ev._g is the evaluation
map) through the (H x C*)-fixed point labeled by x € W,. The union of these I-orbits over
x € Wy exhausts QY, and the labeling of fixed points is determined as follows: for x = wt¢ €
W x QVF, the corresponding fixed point is the collection of lines (z(@# *w°5>V(wi)wwo(wi))iej,
where V(w;), C V(w;) denotes the p-weight space for € P; note that Qg(e) = Qg, where
e is the identity element of Wys. For each A = . ; m;w; € P, we also have a G(C[z]) x C*-
equivariant (with C* acting on G(C[z]) by loop rotation) line bundle O(\) on Q¢ given by the
restriction of the line bundle X;c;O(m;) on [ [;c; P(V (w;)[2]). This extends to a G(C((2))) x C*-
equivariant line bundle on Qf*. We note that we are following the conventions of [KaNS] for
indexing equivariant line bundles and Schubert varieties in Q3*.

3.2. K-groups. Let Kf(Qg‘t) denote the equivariant K-group of the semi-infinite flag manifold

Q' introduced in [KaNS, Section 6], where I =IxC* is the semi-direct product of the Iwahori
subgroup I and loop rotation C*. Correspondingly, K3(Qg&") is a module over Z[P]((¢~')), which
acts by equivariant scalar multiplication.

One has the following important classes in KT(QESW), for each z € Wy and A € P:

e Schubert classes [Oq (x)],
e equivariant line bundle classes [O()\)],
e classes [Oq(x)(A)] corresponding to the tensor product sheaves Oq () @ O(N).

Definition 3.1 ((H x C*)-equivariant K-groups of Q%" and Qg). Let Kpxc+(QE") denote the
Z[q**][P]-submodule of K7(Q) consisting of all convergent infinite Z[¢*!][P]-linear combina-
tions of Schubert classes [Oq,(x)] for © € Wyp, where convergence holds in the sense of [KaNS,
Proposition 5.11].

Similarly, we define Kpxc+(Qg) to be the Z[¢g*!][P]-submodule of K3(Qg&*) consisting of all

convergent infinite Z[g*!][P]-linear combinations of Schubert classes [Oq o(x)] for = € WaZfO_

The classes {{Oqg(x)}zew,; satisfy a notion of topological linear independence in K3(Qg")
given precisely by [KaNS, Proposition 5.11]. In particular, a convergent sum >, 1. ¢z [Oqg(2)]

with ¢, € Z[gT'][P] can equal 0 if and only if all ¢, = 0. Thus, the {[Oqg @) }zew,; form a
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topological Z[q'][P]-basis of Kpxc+ (Qf*) since they are linearly independent in this way and
cach element of Kp.c+(QE") is, by definition, a convergent Z[qT'][P]-linear combination of
them. Also, one has [Oqz)(A)] € Kuxc:(QE") for any 2 € Wy and A € P, thanks to the
Chevalley formulas for dominant weights [KaNS] and anti-dominant weights [NOS]. Similar (in

fact, equivalent) assertions hold for Ky «c+(Qgq).

Definition 3.2. Define K C Kpxc+(Q%3Y) to be the Zg*!]-submodule consisting of all finite
Z[q**]-linear combinations of the classes {[Oq (x)(A)]}zew.r, rep-

By definition, K is only a Z[¢g*=!]-submodule of Kp«c+(Q%'). But, as shown in [O, Theo-
rem 5.1], K is indeed a Z[g*!][P]-submodule of Kpryc+(QL'); here we recall the identification
Kpxc-(pt) ~ Z[g*'][P]. We note that the classes {{Oqz)(A)]}zew,;, rcp are linearly indepen-
dent over Z[g*!], again by the Chevalley formula of [KaNS].

To summarize, we have the following chain of Z[g='][P]-modules (and K7(Qg&') is in fact a
Z[P]((g~1))-module):

K C Kpxc-(QE") C K3(QE).

3.3. Inverse K-Chevalley formula for minuscule weights. In this subsection, we review
the inverse Chevalley formula for minuscule weights, obtained in [KoNOS, Theorem 3.14]. As-
sume that g is simply-laced, but not of type Eg; in this subsection, we identify ;. ; c;o; € Q with
> ier iy € @Y, as mentioned in Section 2.3. Let A € P be a (not necessarily dominant) minus-
cule weight, with wy, the unique minuscule fundamental weight contained in WA. Let x € W be
the unique minimal-length element of W such that A = zwy, and let y € W be the (unique) el-
ement such that yx is the unique minimal-length element in {w eW | wwyg = wowk}; it is easy
to verify that ¢(yx) = £(y) + ¢(z). We fix reduced expressions « = s;, ---sj, and y = s;, - -+ S, ,
and define

Br = 8j,Sjur " Sjr 1, € AT for 1 <r <a,
Vs = SiySiy_ g Sigy Oy € AT for 1 <s<b.
We set
7= sMm) = (Bas -5 B1y Y15 -5 W), (3.1)
where m = a4+ b. For w € W, let QWIMU denote the set of sequences (wg, w1, ..., wy) such
that
® Wy = W,

e w; € {wt_l, smwt_l} forall 1 <t <m;
e for 1 < ¢t < m such that wy = sy, wi—1, wi—1 — wy = sy, w;—1 is an edge (labeled by
|wt__11’yt\ = |w; 'y|) in the quantum Bruhat graph QBG(W).
Given w = (wg, w1, ..., wy) € QW&M, let S~(w)! denote the set of steps ¢, for 1 < t < a,
such that w; = w;—; and (p, wtillnt) =1 (or equivalently, wt:llnt is a simple root). Similarly, let
S*(w)! denote the set of steps ¢, for a < t < m, such that w; = w;_1 and (p,w; ;) = —1 (or
—~1

equivalently, —w;_17; is a simple root). Let S(w)! = S~ (w)! U S*(w)!, and define QwW, , to
consist of all pairs (w,b) where w € QWf\jw and b is a {0, 1}-valued function on S(w)!. For

1
(w,b) € QW ,,, we define

o= I o I o I Coeo.

1<t<a a<t<m teS(w)!
Wt <Wt—1 Wt >Wt—1

and
wto(w,b)l :=0,

~b(t)wew; i, ift € S™(w)l,
wt (W, b)I = th_l(w,b)I + wow;_llm if wy < w1, forl1<t<a

0 otherwise,
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b(t)wew; Yy if t € ST(w)T,
wts(w, b)l := wty_1(w,b)l + wow; My if wy < wi—q, fora <t <m;
0 otherwise,
define wt(w,b)! := wt,(w,b)!, and set ds(w,b) := wt;(w,b)! — wt;_1(w,b)! for 1 < ¢ < m.
Then we define
degy (w,b)l =0,
(dt(w7 b)? dt(W, b))
2
deg; (w,b)" = deg; (w,b)" + (—wow; ', wto(w, b)")
dt(W, b), dt(W, b))
2

deg; (w,b)l = deg; ,(w,b)! + + (de(w,b),wt;_1(w,b)}) for1<t<a

deg;" (w,b)l = deg/ | (w,b) + ( + (d(w,b), wts_1 (w, b)) for a <t < m;

define deg(w,b)! = deg/ (w,b)! € Z.
Theorem 3.3 ([KoNOS, Theorem 3.14]). For any minuscule A € P and w € W, we have in
K - KHX(C* (Qgt);
et [Oqqw)] =
W eg(w I —
> MO0ty (TWowa A+ WHW D)L (3:2)
(Wb)eQW,, ,,
3.4. Inverse K-Chevalley formula for arbitrary weights. Let A € P, and
D:Ao=Ag 5 A B ... I 4, = A,

be an alcove path from the fundamental alcove A, to Ay; for 1 < ¢t < m, let H,,;, be the
affine hyperplane between A; 1 and A;. For w € W, let QW, , = QW ,(I') denote the set of
sequences (wo, W1, ..., Wy,) such that
® Wy = W,
o w; € {wt_l, s%wt_l} forall 1 <t <m;
e for 1 <t < m such that w; = s, wi—1, wi—1 — wy = s,,w—1 is an edge in the quantum
Bruhat graph QBG(W); note that the label of this edge is |w; Y y:| = |[w; ).

For w = (wo, w1, ..., wm) € QW ,,, we define
end(w) 1= wyy, (3.3)
T(w):={1<t<m|w =sy,w1}, (3.4)
T (w):={1<t<m|w—1>w} CT(w), (3.5)
S(w):={1<t<m|w =w-_y and —w; ' is a simple oot }. (3.6)

We set
QW, ., = QW, ,(I) := {(w,b) | w € QW, ,(T") and b : S(w) — {0,1}}. (3.7)
For (w,b) € ﬁf}\’w, we define

end(w,b) := end(w), (3.8)
(00 = I 0 I] o IT 0"
1<t<m 1<t<m teS(w)
TEAT neAt
Wt—1>Wt W—1 <Wt
= I o I <o*®= JI v I =nP®, (3.9)
teT(w) teS(w) teT(w) teS(w)

wy ' peAt wy 'y €A



8 C. LENART, S. NAITO, D. ORR, AND D. SAGAKI

awty(w.b) = 3 g+ Y (—bluywy ') for 0<t<m,
1<u<t 1<u<t

ueT ™ (w) ueS(w) (3 10)
 awt(w, b) := qwt,, (W, b),

qwt) (w,b) := Z wy Myl + Z (=b(u)w,1yY) for 0 <t <m,
1<u<t 1<u<t
ueT ™ (w) ueS(w) (3.11)

qwt¥ (w, b) = qwty, (w, b),

To(w) = w1,
ri—1 (W) ift € T(w), (3.12)
ri(w) == At 1) (w) for 1 <t <m,
—1(w) otherwise,

wty (W) := 1 (W)A =1 (w)A for 1 <t <m,

- (3.13)
WH(W) i= P (WA = D wty(w),  wt(w,b) = wt(w),
t=0
deg(w, b) = %(qwt(w,b), aqwt” (w, b)) + deg/(w, b), (3.14)

where
deg’(w, b) Z (wty(w), qwty’ (w, b)) — Z sgn(y:)! Z b(t)l;. (3.15)
t=1 teT—(w) tes(w

The main result of this paper is the following inverse K-Chevalley formula in K C Kgxce+ (Qg}t),
which generalizes Theorem 3.3 to the case that A € P is an arbitrary weight (see also Section 4
below).

Theorem 3.4. Assume that g is simply-laced, but not of type Fs. Let A € P be an arbitrary
weight, and T € AP(X). For w € W, the following equality holds in K C Kpxc+(QfE"):

e [OQG(W)] =
=:G(w,b)
w eg(w 3.16
S (FDOEGEI0G i (0wt W) — woqut(w, b)) 316)
(w,b)eQW, ,,(I)
::F)\,w(r)

An example in type As is given in Appendix B.

Remark 3.5. The degree function deg defined in (3.14) and (3.15) may seem ad hoc to the
reader. In fact, it arises naturally from commutation relations in the g-Heisenberg algebra used
in [KoNOS].

3.5. Outline of the proof of Theorem 3.4. Keep the setting of Theorem 3.4. Using Theo-
rem 3.3, we first prove the following.

Proposition 3.6 (to be proved in Section 4). Assume that A € P is a minuscule weight. Then,
there exists I' € APyeq(N) for which Theorem 3.4 holds.

For a minuscule weight A € P, let AP, 4(\) denote the subset of AP.q(\) consisting of those
elements for which Theorem 3.4 holds.
Next we prove the following.
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Proposition 3.7 (to be proved in Section 5). Let A\, u € P, and I' € AP(\), Z € AP(p).
Assume that both of the equalities e - [Oqs )] = Faw(l) and e - [Oqw)] = Fuw(E) hold
in K C Kgxc(Q3Y) for all w € W. Then we have e # [Oqew)] = Farpw(l * Z) in
K C Kpxc(QEY) for allw € W.

Here we know the following fact from [S] (see also [L, Theorem 2.1]); recall that g is simply-
laced, but not of type FEs.

Proposition 3.8. For each A € P, there exist minuscule weights vy,v9,...,Vs € P such that
A=vi+1ro+ -+ v

For A\ € P, we define m(\) to be the set of all finite sequences (v1,v9,...,v5), s > 0, of
minuscule weights in P such that A =v1 + 15 + -+ + v, and set

AP*(\) := U {Ty%-- Ty | Ty € APpq(v), 1 <u < s}y (3.17)
(v1,v2,...,vs)EM(A)
notice that AP*(\) # 0 by Propositions 3.6 and 3.8. Combining Propositions 3.6 and 3.7, we
obtain the following.
Corollary 3.9. Theorem 3.4 holds for arbitrary A\ € P and T' € APy(\).
Also, we know the following fact from the proof of [LP2, Lemma 9.3].

Proposition 3.10. Let A\ € P. Let I' € APyq(A) and TV € AP(X). Then, T’ can be obtained
from ' by repeated application of the following procedures (YB) and (D):
(YB) for a, B € A such that (o, 8Y) <0, or equivalently, (3, aV) <0, one replaces a segment
a, 503, 8aS8Q, ..., sga, B by B, sga, ..., $a830, a3, a;
(D) one deletes a segment of the form a, —« for a € A.

Remark 3.11. Since g is simply-laced, if a, 3 € A satisfy (o, 8Y) < 0, or equivalently (3, ") < 0,
then either of the following holds:

(a) (a, BY) = (B, a") =0,  (b) (a, BY) = (B, ") = ~L.
If (a) (resp., (b)) holds, then (YB) is just the following replacement:
a, BB, o (resp, a, at B, B B, a+ B, )

Theorem 3.12 (to be proved in Section 7). Let A € P and w € W. Let T'E € AP()), and
assume that Z is obtained from T' by (YB) in Proposition 3.10. Then, there exist a subset
@/NE\OL(F) of @JV)W(F) and a subset ﬁfg?) (2) of Q\\_?\//'Nw(E) such that the following hold :
(1) There exists a bijection YB : WE\OL(F) — (SVV(AOL(E) satisfying the conditions that for
(w,b) € QW (D),
(—1)YBW:b) — (_1)(Wb), end(YB(w, b)) = end(w, b),
qwt(YB(w, b)) = qwt(w, b), qwt(YB(w, b)) = qwt¥(w, b), (3.18)
wt(YB(w, b)) = wt(w, b), deg(YB(w, b)) = deg(w, b).
(2) There exists an involution YB on 6{/7\7/\710(1“) \ 6{/7\75\030(1“) satisfying the conditions that
)

for (w,b) € QW, (1) \ QW (1),
(=1)YBW:b) — _(—1)(W:P)  end(YB(w,b)) = end(w, b),
qwt(YB(w, b)) = qwt(w, b), qwt" (YB(w, b)) = qwt¥(w, b), (3.19)
wt(YB(w, b)) = wt(w, b), deg(YB(w, b)) = deg(w, b).

— —(0
(3) There exists an involution YB on QW/\,w(E)\QWg’zU(E) satisfying the same conditions
as in (3.19).
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Corollary 3.13. Let A€ P and w € W. Let I')= € AP(X). If Z is obtained from T" by (YB),
then Fy ,(T') = F) ,(E) holds in K C Kpxc+(QE").

Theorem 3.14 (to be proved in Section 6). Let A € P and w € W. Let I''E € AP()),
and assume that Z is obtained from T' by (D) in Proposition 3.10. Then, there exists a subset
—(1 —

QWE\L(F) of QW (') such that the following hold :

(1) There exists a bzyectwn D: QW&?U( r) — (/Q\\/N/\M(E) satisfying the conditions that for

(w,b) € QWA,w( )
(—1)Pw:b) — (1)Wb), end(D(w,b)) = end(w, b),
qwt(D(w, b)) = qwt(w, b), qwt"(D(w, b)) = qwt¥(w, b), (3.20)

wt(D(w, b)) = wt(w, b), deg(D(w, b)) = deg(w, b).

— (1
(2) There exists an involution D on QW (') \ QW;L(F) satisfying the conditions that
(1)

for (w.b) € QW,,, (1) \ QW (I),
(—1)PW:b) — _ (1)Wb), end(D(w, b)) = end(w, b),
qwt(D(w, b)) = qwt(w, b), qwt"(D(w, b)) = qwt¥(w, b), (3.21)
wt(D(w, b)) = wt(w, b), deg(D(w, b)) = deg(w, b).

Corollary 3.15. Let A € P and w € W. Let I''E € AP(X\). If E is obtained from I' by (D),
then F ,(T') = F) (2) holds in K C Kpgxc+(QE").

Let I' € AP*()\) and = € AP.q4(A). By Proposition 3.10, there exists a sequence I' =
o, I'y,...,T) = E of elements in AP(X) such that I'; is obtained from I';—; by (YB) or (D)
for each 1 < ¢ < p. By making use of Corollaries 3.13 and 3.15 repeatedly, we deduce that
F)w(I') = Fyu(Z) holds in K. Since e - [Oq,(u)] = Faw() in K by Corollary 3.9, we obtain
the following.

Corollary 3.16. Theorem 3.4 holds for arbitrary X\ € P and T' € APyeq(N).

Finally, let I' € AP()\) and E € APred(/\). By the same argument as above, we deduce that
F)w(I') = F),(Z) holds in K. Since e*:[Oq, ()] = Fw(E) in K by Corollary 3.16, we conclude
that Theorem 3.4 holds for arbitrary A € P and I' € AP()\).

3.6. A few technical remarks about the proof. Keep the notation and setting of Section 3.4.
Let w € QW ,(I'). Let 0 <t < m, and let t; < t3 < --- < t. be the elements of T'(w) (see
(3.4)) less than or equal to ¢t. Then we have

?t(w))\ = w_l?’ytplﬂ e ?'thvltc ()\)

~

_ 1=

=w T"/tlaltl T T’ytcil7ltcil (S'th)\ + ltc’th)

R PN ~

=W Ty by T b (S, Sy A T oSy Ve e Ve )

=w sy, - Sy At l ls, s (3.22)
- Ttq tC Vte ta W Y1 Vta—1 Yto- .

Using this formula, we can show that for 1 <t < m,

—lw; if t € T(w),
Whe(w) = 73 (W)A — Tt (W)A = {o W1 1 (w) (3.23)

otherwise.
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Indeed, if t ¢ T'(w), then it is obvious that wt:(w) = 0 since 73(w) = 731 (w). Assume that
t € T(w); note that in this case, t. = t, and w_ls.w1 S Sy Ve = w;ll%. We see that

wty (W) = (W)X = T (W) = w;l)\ - wtill)\ + ltw;llw
= w5y A — wih A+ Lw e = = (O w4 Lwy
= —léwtill'yt.

This proves (3.23), as desired.

4. PROOF OF PROPOSITION 3.6.

In this section, we assume that A € P is a (not necessarily dominant) minuscule weight; as in
Section 3.3, let wy be the unique minuscule fundamental weight contained in WA, and let x € W
be the unique minimal-length element of W such that A = xwy. Also, let y € W be the (unique)
element such that yx is the unique minimal-length element in {w eEW | wwyg = wowk}; recall
that (yx) = £(y) + {(x). Let x = s, --- 55, and y = sy, - - - 55, be reduced expressions for z and
Yy, respectively, and set

Be = 8j,* Sjos g, € AT for1<c<a,
Cdlzsib-~-8id+1aid€A+ for 1 <d<hb.

Lemma 4.1 (cf. (3.1)). In the notation and setting above,

I'=(=Ba,- -, =B1,C15- -, () € APrea(A). (4.1)

Moreover, for 1 < ¢ < a, the affine hyperplane between the (¢ — 1)-th alcove and the c-th alcove
inT is H_g, 0, and for 1 < d < b, the affine hyperplane between the (a + d — 1)-th alcove
and the (a + d)-th alcove in I' is H¢, 1.

Proof. Consider a dominant weight p, and an element w in the set W# of minimal(-length)
coset representatives modulo the stabilizer of u, denoted W, (as a parabolic subgroup). In the
extended affine Weyl group, we have the following length-additive factorization of the translation
element £,

tuwp = w(t,w™h). (4.2)

Indeed, this follows from the well-known equality ¢(t,,) = £(t.) (see, for example, [M, (2.4.1)])
and the fact that

(™) = b(wt_,,) = L(t_,) — L(w) = L(t,) — L(w).

The first and last equalities above are obvious, while the second one is the straightforward
extension to the extended affine Weyl group of the corresponding result in [LS, Lemma 3.3];
indeed, the hypothesis of the mentioned lemma is satisfied, as —p is anti-dominant and w € WH.

Now consider the following reduced alcove paths: A from A, to wA,, and E from A, to
w~ ! A, + p. The reduced alcove paths A and wZ can be concatenated (as sequences of alcoves),
and we obtain in this way the alcove path A xwZ= in AP(wpu). In fact, A x w= is in APyeq(wp),
due to the length-additive factorization (4.2).

We now specialize u = wy and w = z, so we obtain A x 2= in APyq(A\). The reduced
alcove path A, written as a sequence of roots, can be obtained from the reduced decomposition
x = Sj, ...sj as needed; see [Hu, Theorem 4.5].

It remains to analyze the reduced alcove path x=. Upon translation by —\ = —xwy and rever-
sal, we obtain a reduced alcove path from A, to 2(A, —wy). We claim that A, —wy, = [w. | Ao,
where |u] € W%k denotes the minimal(-length) coset representative of uW, . Therefore, we
have (A, — wy) = z|ws | ~1A, = y~'A,. We conclude that, as a sequence of roots, the alcove
path zZ is obtained from the reduced decomposition y~* = S;, - - . 8, by reversing the sequence
of roots given by [Hu, Theorem 4.5].

Finally, we address the claim that A, — wy = LwoJ_IAO. Using the assumption that oy is
a minuscule fundamental weight, we have A, — wp = vA, for some v € W. Indeed, for any
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positive root 3, we have precisely (wy, 8Y) hyperplanes separating A, and A, — wy, that is,
either 0 or 1; in the second case, the respective hyperplane is Hgo. On another hand, we have

(wy, BYY #0 <= B¢ A+\A;k — [ € Inv(wowZ*);

here, A;k denotes the positive roots corresponding to the parabolic subgroup Wy, , ws’* denotes
the longest element of W, , and Inv(u) denotes the inversion set of u, namely A* Nu~1(—AT).
We conclude that the hyperplanes separating A, from vA, are precisely those Hg ( for which 3 €
Inv(|ws]). But it is well-known that these hyperplanes correspond to Inv(v=1). As Weyl group
elements are uniquely determined by their inversion sets (see, for example, [HL, Proposition 2.1]
or [M, (2.2.6)]), we deduce v = [w,|~!. This concludes the proof. O

We write the I'' in Lemma 4.1 as I' = (y1,. .., Yatb), 1€

F = (717" '77a+b) = (_6a7"'7_ﬁ17<-17"'7<.b)'
For 1 <t <a+b,let H,,, be the affine hyperplane between the (¢ — 1)-th alcove and the ¢-th
alcove in T recall that I} = (\, /) — I for 1 <t < a +b. Then we see that
(ll,.. la la+1,...,la+b):(0,...,0,1,...,1),
( ""lil’ a+1,...,iH_b):(l,...,l,O,...,O).
Let w € W. We see that the sets QW, , = QW ,(I') and C/ZVV/\,LU = ai/N,\,w(F) agree
1
with QWf\’w and QW, ,, (defined by using 7 = (Ba,...,01,(1,---,C)), respectively. Let
w = (W0, W1, -, Wa, Wartl,-- - Warh) € QW .. Then we deduce from Lemma 4.1 and (3.22)
that wt(w) = w,;'\. Also, we see that the set S(w) agrees with S(w)!, and that qwt(w,b)
(and qwt"(w, b)) is identical to —w, wt(w, b)! for (w,b) € QW) ,; remark that qwt(w,b) =

qwt”(w, b) under the identification of roots and coroots, mentioned in Section 2.3.
We will show that the degree function deg(w,b) defined by (3.14) agrees with deg(w,b)!.

Fix (w,b) € 6{/7\7)\71”. We set

Z Au, Z By,

ueT— ueS(w
where
a-+b
A, ::Z(th w), [wy ) for u e T™(w),
t=u
a+b
By = —b(u) S (whi(w), wylnY)  foru e S(w),
t=u
so that
a+b
> (wti(w), qwt) (w, b))
t=1
a+b a+b
=3 S ), oy )+ S0 S (b)) wt(w), wp )
t=1 1<u<t t=1 1<u<t
ueT ™ (w) ueS(w)
—éu =By
a+b a+b
= D > wti(w), Jwg MY+ DD (=b(w) Y (wti(w), wy )
u€T— (w) t=u ueS(w) t=u
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By (3.23), we observe that wt;(w) = 0 for all a < ¢t < a + b since I} = 0 for such a ¢t. Hence we
have

A, =0 forueT (w)such that a <u <a+b,
B, =0 forue S(w) such that a <u < a+b.

Since Iy = 0 for all 1 <t < a, we see by (3.22) that 7(w)\ = w; ') for 0 < t < a. Hence, for
u €T (w) with 1 <wu < a, we have

a+b a
Ay = (wte(w), Jwy yul) =D (Wi (w), fwy M yalY)
t=u t=u

= (Ta(W)A = Pum1(W)A, |wy 'yl )
= (wy '\, Jwy yulY) = (wit A, Jwg tyalY).

Here we note that v, € A~ for all 1 < u < a, which implies that w1y, € A~ for all u € T~ (w)
with 1 < u < a. Therefore,

Ay = (wi '\, Jwy Myl V) A+ (wi A wy )
= (w "\, Jwy vy = O 7)) = (Wi, oy t|Y) — 1
= (wy '\, Jwy ' valY) + sgn(va),

Z Ay = Z Ay = Z (wa '\, Jwy My V) + Z sgn(vy)

and hence

ue€T— (w) ueT ™ (w) u€T ™ (w) ueT ™ (w)
1<u<a 1<u<a 1<u<a
= Z (wg ' A, ’w;17U‘v> + Z sgn(Yu)ly-
u€T ™ (w) u€T—(w)
1<u<a

Similarly, for u € S(w) with 1 < u < a, we have
a+b a

B, = —b(w) Y (whi(w), wy ) = —b(u) Y (wte(w), wy'y,)

= —b(u) (Fa(W)A = Fum1 (WA, wy ) = =b(w) ((wg "X, wi ) — (Wl A, wy ')
—b(u)(
—b(u)(

and hence

(w7 '\, w )y — (A, 7)) (note that w, 1 = w,, since u € S(w))
(

we A, wy ) = 1) (since (A, 1)) = (N —Biyp) = 1),

Z B, = Z B, = Z (wy '\, —b(uw)wy ) + Z b(u

ueS(w) uesS(w) uesS(w) u€S(w)
1<u<a 1<u<a 1<u<a
= Z <w;1)‘7 _b( w ’Yu Z b
ueS(w) ueS(w)
1<u<a 1<u<a

Putting all this together, we deduce that deg’(w,b) = (w; '\, qwtY(w, b)), and hence that
1
deg(w,b) = _(qwt(w,b), qwt"(w, b)) + (wg '\, qwty(w, b))

= 2 (awt(w,b), awt(w, b)) + (17X, awt, (w, b)),

which agrees with deg(w, b)I, as desired. Therefore, by Theorem 3.3, we conclude that Theo-
rem 3.4 holds for I' € AP,eq(A) of the form (4.1). This completes the proof of Proposition 3.6.
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5. PROOF OF PROPOSITION 3.7.

Recall the notation and setting of Proposition 3.7, equation (2.5), and Remark 2.4. We write
I' e AP(A\) and = € AP(u) as: I' = (v1,...,7m) and = = (&1, ...,&p), respectively. If we set
Ve i=E&—m for m+1 <t < m+ p, then

I'«== (’Yl?"'a’}/’maglv"wgp) = (717"‘7fym+p)'

For 1 <t < m, let H,,, be the affine hyperplane between the (¢ — 1)-th alcove and the ¢-th
alcove in I'. Similarly, for 1 < ¢ < p, let He_ 1, be the affine hyperplane between the (¢ — 1)-th
alcove and the ¢-th alcove in Z. Then the affine hyperplane between the (¢ —1)-th alcove and the
t-th alcove in I'«E is H.,, ;, (resp., H§t7m7<>\7£;/,m>+kt7m) for 1 <t <m(resp., m+1 <t < m+p);
we set I := (N, &) + kt—m for m +1 <t < m + p. Also, we set

=M\ +u )l for 1 <t <m+p,
=\ —Ul for 1 <t <m, (5.1)
k:; = <:U’7 5(\1/> - kq = <:U’7 77\?L+q> - lm+q for 1 < q < p.

For w = (wp,...,wn) € QW) ,(T') and v = (vo,v1,...,9) € QW s qw)(E) (note that
end(w) = w,, ), we set

Wk V= (W0, - ey Win, V1,5 Vp) € QW (T % E); (5.2)
if we set wg := vg—pm for m +1 < ¢ < m + p, then we can write w * v as:
WV = (W0, ..., Wn,V1,...,0p) = (W0, ., W, W1, Wntp);

note that S(w *v) C [1,m + p|]. We see that S(wxv) = S(w)U{m+q|qe S(v)}. For
b:S(w)—{0,1} and c: S(v) — {0,1}, we define bxc: S(w*v) — {0,1} by

(b v c)() i— {b(t) if t € S(w), 53)
o c(t—m) ifte{m+q|qgeSv)}. '

Then it follows that

—~ (W7b) € Q_Wfk,w(l—‘%
QW ;0 *Z) = ¢ (Wxv,bxc) . (5.4)

(V,C) € QWu,end(w) (E)
By the assumption, we have in K C Kpxc+(Q&E"),

M- [Oqe w)]

_ Z (_1)(w,b)qdeg(w,b)eu . [OQc(end(w)tqwmw,b)) (—wo wt(W) — we qwt(w, b))]

- 3 > (=1)(wb) (—1)(Ve)

(W7b)€é\v/vz\,w (F) (ch)eé\v/vp,end(w) (E)

qdeg(w,b)ereg(v,c)Jr<wt(v)+qwt (v,c),qwt" (w,b)) %

[OQG(end(V)tqwt\/(w,b)+qwtv(v,c))(_wo wt(w) — wo qwt(w, b) — we wt(v) — we qwt(v, ¢))]

—: (&)
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We can easily verify that
(_1)(w,b)(_1)(v,c) — (_1)(w*c,b*c)’
qwt(w,b) + qwt(v,c) = qwt(w * c,b * c),

(5.5)
qwt¥(w,b) + qwt¥(v,c) = qwt¥(w x ¢, b * ¢),
end(v) = end(w * v).
First we claim that
wt(w) + wt(v) = wt(w x v). (5.6)
Let w = (wo, w1, ...,wn) € QW) ,, and v = (vo, v1,...,vp) € QW cnq(w)- If we write
Tw)={1<t<m|w1#w}={ti <ty < <t}
T(v)={1<q<plug1#v}={q <q<-<dq},
then we see by (3.22) that
(&
Wt(W) = wils’Ytl Sy S, A+ Z ltaw*137t1 S Sy Vtas
=1
=wnl=end(w)-1 ¢
and that
d
—1 -1
Wt(V) = wm S£q1 e qud71 qudu + Z kawm Séql e SEqb,ISQb
b=1
d
—1 -1
=w S'Yt1 e S'th Sftn e qudl‘b + Z k%w S"/t1 e S'th qul T qub_lgqb'
b=1
Also, we deduce from Remark 2.4 and (3.22) that
wt(w* v) = w_ls%l T Sy Sty St (A p)
c d
+ Z ltaw_ls%l Sy, Ma Tt Z(O‘v g‘}/b> + k%)w_ls%l TSy SEgy SEqb_lglIb'
a=1 b=1
Since
d
Sty St A = A= D € dse, s, Sa
b=1
we obtain (5.6), as desired.
Next we claim that
deg(w,b) + deg(v,c) + (wt(v) + qwt(v,c), qwt” (w, b)) = deg(w * v, b * c). (5.7)

We use qwt(w*v, bxc) = qwt(w, b)+qwt(v, c) and qwt” (w*v, bxc) = qwt¥(w, b)+qwt" (v, ¢)
to obtain

1
§<qwt(w *v,bxc), qwt'(w * v,b x c))

= %(qwt(w,b), qwt¥ (w, b)) + %(qwt(v,c), aqwt’ (v, c)),

+ 5 {awt(v, ), awt” (w, b)) + (awt(w, b), awt’(v, <)),

=(qwt(v,c),qwtY (w,b)) since g is simply-laced
which enables us to simplify (5.7) as:
deg/(w * v, b x ¢) = deg’(w, b) + deg’ (v, c) + (wt(v), qwt’(w, b)). (5.8)
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Thus, what we need to show is:

m-+p

Z (wte(w * v), qwt) (w x v,b*c)) — Z sgn(y)ly — Z (bxc)(t)l}
t=1 tes(

teT— (wxv) *V)

:Z<th( ), qwty (w, b)) Z sgn(ye)l Z b(t)l;

t=1 teT—(w) teS(w) (5.9)

P
+Z ), qwt, ( Z sgn(&y)k Z c(q)ky

q=1 qeT—(v) qeS(v)

+ (wt(v), qwt’(w, b)).
Let us write a part (i.e., the first sum) of deg’(w * v, b * c) as follows:

m—+p

Z(th(w*v), qwt, (w*v,bxc)) = Z A, + Z By,

t=1 u€T— (wxv) u€S(wxv)

where

m+p
Ay = Z(wtt(w*v), lwy, v Y) for u e T™(w*v),
t=u
m+p
B, := —(bxc)(u) Z(th(w*v), wy, 1Y) for u € S(w xv).

t=u
For m <t < m + p, we have
lél = <)‘ + W, &;lfm> - (kt—m + <)‘7 é.zlfm» = <M7 §2/7m> - kt—m = kllffn’w (510)
and hence
~Ww iy ift € T(wxv),

wty(w* v) = by (3.23)
0 otherwise

—k_ vyt 1 bem it —m e T(v),

0 otherwise
= Wti—m (V).
Therefore, we deduce that
m—+p p
Au =Y (wt(wxv), [wyal) = D (wte(v), [t pbu-ml”)
t=u t=u—m
for u € T~ (w x v) with m < u < m + p, and that
m+p p
By =—(bxc)(u) Y (wh(wxv), w, ') = —clu—m) Y (wt(v), v, }.&/ )
t=u t=u—m

for u € S(w x v) with m < u < m + p. Here we remark that

p

Z(wtq( ), qwt, ( Z Al + Z B!,

q=1 u€T—(v) ueS(v
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where
p
Al = (wty(v), o ulY)  for ue T (v),
t=u
p
B = —c(u) > (wti(v), v, '&])  forue S(v).
t=u

Since A, = Al,_,, forueT (wxv)N{m+1m+2,....m+p}={m+u | v €T (v)}, and
since B, = B),_,, forue S(wxv)N{m+1,m+2,.... m+p}={m+u | v € S(v)}, it follows
that

P

> Aut Y Bu=) (wiy(v), qwt) (v, c)).

ueT ™~ (Wxv) u€S(wxv) q=1
m<u<m+p m<u<m—+p

Thus, equation (5.9) (which we need to show) is equivalent to:

Yoo Aut D> Bu— > sswli— Y. (bro)0lf
teS(wkv)

u€T ™ (Wxv) ueS(wxv) teT— (wxv)
1<u<m 1<u<m

zm:wtt , qwt) (w, b)) — Z sgn ()l Z b(t)l; (5.11)

t=1 teT— (w) teS(w

— ) sen(&)ky— Y @)kl + (wt(v), qwt”(w, b)).

qeT—(v) qeS(v)
If 1 <t < m, then we have
=Mt mn) == 0 %) =+ () =1+ (), (5.12)

and hence

—Uw;t ifteT
Wt (W *v) = W MHEE ‘(W *v), by (3.23)
0 otherwise

) )wihve it e T(w),
0 otherwise

= wty(w) +w, e — w

Therefore, we have

m+p m m+p
Zwtt(w*v):Zth(w*v)—i— Z Wt (W * V)
t=u t=u t=m+1 _—

=Wtt—m (V)

=w, 'ty —w, ! 1,u+Zvvtt )+ wt(v) —w,

t=u
Hence we deduce that
m
A = (—wy by fwg Myl V) + D (wte(w), [wy yul”) + (wh(v), [wy  yal)
t=u

m

= sgn(yu) (1, 1) + D (wte(w), [wy Myl ) + (wt(v), [yl )

t=u
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for u € T~ (w*v) with 1 <wu <'m, and that

m

By =b(u)(p, 7)) — b(u) > (wty(w), w, 7)) — b(u)(wt(v), w, 7))

t=u
for u € S(w x v) with 1 <u < m. Here we remark that

m

D (wte(w), qwty (w, b)) = > AL+ Y B
t=1 ueT— (w) uesS(w)
where
A= (wty(w), [wy ' vlY)  for w e T (w),
t=u
Bl = Z (wts(w), wy ) for u € S(w).
t=u

Since A, = A" +sgn(v,){u, v.) + (wt(v), |wy ty,|Y) foru € T-(wxv)N{1,2,...,m} =T~ (w),
and since B, = B +b(u)(i, 7) —b(u)(wt(v), w;vY) foru € S(w*v)N{1,2,...,m} = S(w),
it follows that

Z Ay + Z B, =

u€T ™ (wxv) ueS(wxv) t
1<usm 1<um

(wte(w), awt; (w, b))

Ms

1

Y (sen(y) i ) + (wt(v), Jwy )

weT ™ (W*v)
1<u<m

+ Y (b(u) () — blu)(wi(v), wy )

ueS(wv)
1<u<m

Z (wti(w), qwt) (w, b)) + (wt(v), qwt" (w, b))
t=1

+ Y sen(w){mn) + Y, b ).

weET ™ (Wxv) ueS(wv)
1<u<m 1<um

Thus, equation (5.11) (which we need to show) is equivalent to:

S sen(v)(m )+ D> bu)(p, )

ueT ™ (wxv) u€eS(wxv)
1<u<m 1<u<m
- Z sgn(y)ly — Z (b xc) (1)l (5.13)
teT— (wxv) teS(wxv)
=— Y se(wl— Y b®)li— Y sen(&)ky— Y cl@)kl
teT—(w) teS(w) qeT—(v) geS(v)

We see by (5.1) and (5.10) that
S sen(v) i w) = D sen(wl =— D sen(w)li— Y sen(&)k),

u€T ™ (Wxv) teT— (wxv) teT—(w) qeT—(v)
1<um
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> b ) — > (bxo)(t - Y bl— > clokl

ueS(wxv) teS(wxv) teS(w) qeS(Vv)
1<usm

This proves (5.13), and hence (5.7), as desired.
Substituting (5.5), (5.6), and (5.7) into (#), we conclude that

(W) = Z (—1)(wrvibse) deg(wevbre)
(w*v,b*c)EQW)&#’w(F*E)
[OQG(end(w*v)tqwtww*v’b*c)) (—wo Wt(W * V) — wo qwt(w * v, b x ¢))]
=Fy 0 *2).
This completes the proof of Proposition 3.7.

6. PROOF OF THEOREM 3.14.

Let A € P be an arbitrary weight, and let

D:Ac=Ag 5 A B . I A = A, (6.1)
be an alcove path from the fundamental alcove A, to Ay = Ao + A. Assume that v; = q,
Ys41 = —a for some « € A and 1 < s <m —1, ie.,

L A S A T A S A
note that As_1 = As41. We define Z = (B1, ..., Bs—1, Bs+2, - - - Bm), where [ := vy, for 1 <k <
m with k # s,s + 1. Then, = is an alcove path from A, to Ay of the form:
E:Ao:AOL"'%;)Asfles+1%—+2>A3+2%—+3> jﬁ%—)Am:A/\ (62)

Now, let (w,b) € (/Q\V/VMU(I‘), with w = (wo, w1, ..., wm) € QW ,(T). In the following, we
will define D(w, b).

Case 1. Assume that (w,b) satisfies ws_1 = ws = wgy1; observe that S(w) N {s,s + 1} = 0,
{s}, or {s+1}.

Subcase 1.1. Assume that S(w) N {s,s+1} =0, or S(w)N{s,s+ 1} # 0 and b(¢t) = 0 for
t € S(w)N{s,s+ 1}. In this case, we set

Vg = Wy for 0 < k <m with k # s,s+ 1.

We see that v = (vo, v1,...,Vs-1,Vs42,- -, Um) € QW ,(E); notice that S(v) = S(w)\ {s,s+
1}. We set c(t) := b(t) for t € S(v). Then, D(w,b) := (v,c) € QW/\M(E) satisfies (3.20).
Indeed, we can easily show the equalities in (3.20), except for deg(v,c) = deg(w, b). In order to

show deg(v,c) = deg(w,b), it suffices to show that deg’(v,c) = deg’(w,b). For this equality,
we claim that

Xi= Y (wt(w), qwt) (w,b)) - > sgn(y)l — > bl (6.3)

t=s,5+1 teT—(w)N{s,s+1} teS(w)N{s,s+1}

is equal to 0. Indeed, since wts(w) = wtgr1(w) =0, T-(w) N {s,s+ 1} = 0, and b(¢) = 0 for
t e S(w)n{s,s+ 1}, we obtain X = 0, as desired.

Subcase 1.2 (to be paired with Case 4 below). Assume that S(w)N{s,s+1} # 0, and b(t) =
for t € S(w) N {s, s+ 1}. We deduce that |w, ',/ is a simple root. Hence it follows that

|w;_11a| ‘w;—110‘|
Ws—1 > SqWs—1 > Ws—1;

notice that one of these edges is a Bruhat edge, and the other is a quantum edge. We set

{vk::wk for 0 < k < m with k # s,s+ 1,

Vs i= SqWs—1, Vs4+1 = Ws—1-
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We see that v = (v, V1, ..., Vs—1, Vs, Ust1, Vs 42, - - -, Um) € QW ,(I'); notice that S(v) N {s,s+
1} =0, and S(v) = S(w) \ {s,s + 1}. We set c(t) := b(t) for t € S(v). Then, D(w,b) =
(v,c) € 6‘7/V/\7w(1“) satisfies (3.21). Indeed, we can easily show the equalities in (3.21), except
for deg(v,c) = deg(w,b). In order to show that deg(v,c) = deg(w,b), it suffices to show that
deg/(v,c) = deg’(w,b). For this equality, we claim that X in (6.3) is equal to

Yi= ) (wh(v), awty (v, ¢)) - > se(y)ly — Y el (6.4)
t=s,5+1 teT—(v)N{s,s+1} teS(v)N{s,s+1}
Since I, = —I, and wts(v) = —lLw, ' a, wts1(v) = Lw, ! a = — wts(v), we deduce that
Z <th(V), thX(V?C» = <l;w;_11a, 58+1€T_(V)‘w;—11a|v>7
t=s,s+1

where for a statement P, we define dp := 1 (resp., := 0) if P is true (resp., false). We see that
53+1€T—(v)|w;_11a|v = st1eT(v) sgn(a)w, ' . Hence it follows that
D (whi(v), awty (v, €)) = 20, 1e7-(vls sen(a).
t=s,s+1
Also, we see that

Z sgn(ve)l; = sgn(a)l, and Z c(t)l; = 0.

teT—(v)n{s,s+1} teS(v)N{s,s+1}
Hence it follows that Y = (20517 (v) — 1)lssgn(a). As for X, we have
> (wty(w), qwty (w, b)) = > sgn(y)l; = 0.
t=s,s+1 teT—(w)N{s,s+1}

Also, we deduce that
seS(w) <= s+1eT (vijanda€ A, ors+1¢T (v)and a € AT,
s+l1eSw) < s+1eT (v)anda€ AT, ors+1¢T (v)anda € A™,
which implies that
X =- Z b(t)li = (2054 1e7-(v) — 1)l sgn(a).
teS(w)n{s,s+1}
This proves X =Y, as desired.

-1
Case 2 (to be paired with Case 3 below). Assume that (w, b) satisfies ws_1 M Wy = Wet1-
We set
Vg 1= W for 0 < k < m with k # s,s+ 1,

w2y
Ws—1 —— 7 SqWs—1 = Ws = Ws41 -
S~~~ ~
=Vs—1=Us =Us+1
We see that v = (vo,v1, ..., Vs—1, Vs, Us+1,Vs42, - - -, Um) € QW ,(I'); notice that

S(w)N{s,s+1} =0 (resp., = {s+ 1}) if and only if S(v) N {s,s + 1} =0 (resp., = {s}).
We set c(t) := b(t) for t € S(v) \ {s,s+ 1} = ,g(jz) \ {s,s + 1}, and c(s) := b(s + 1) if
S(v)N{s,s +1} = {s}. Then, D(w,b) = (v,c) € QW (') satisfies (3.21). For the equality
deg(v,c) = deg(w,b), let us show that X in (6.3) is equal to Y in (6.4). We compute

X =) (wh(w), qwt; (w,b)) - > ssu(y)ly— Y b

t=s,s+1 teT— (w)N{s,s+1} teS(w)N{s,s+1}

= (wts(w), qwt;/(w, b)) — 5s€T*(w) sgn('ys)lls - 5s+1eS(w)b<3 + 1)l;+1

= <Wt5(W), th;/(W, b)) - 55+1€T*(v) Sgn(75+1)l;+l + 5SES(V)C(8)ZIS7

Y = (wtst1(v), thZ-;—l(V, c)) — 58+1€T—(v) sgn(%ﬂ)l;H - 5seS(v)C(5)l;-
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Here,

<Wt8(w)v th;/(Wa b)) = <_l;w;—11787 thZ—l(Wa b) + 5s€T—(w)|ws_178|\/>v

(Wtst1(v), thZJrl (v,c))

= (= ligav5 s, @ty (V. ©) 4 0rer- v Ve | —dseswe(s) v575)
—

—1 — \% — . —1
:llsw5717s —ths—l (W7b) :5seT* (w) |w5 175 |\/ _ws—l'yg/

= (wts(w), qwt, (w, b)) + 20.e5(v)c(5)ls-
Combining these equalities, we obtain X =Y, as desired.

-1

Case 3 (to be paired with Case 2). Assume that (w,b) satisfies ws_1 = ws M SqWs =
Wst1. We set

Vg 1= W for 0 < k < m with k # s,s+ 1,

wetyal
Ws—1] = Wg — SqWs = Ws41] -
—_——— —_—
=VUs—1 =Us=Us+1
We see that v = (vo,v1, ..., Vs—1,Vs, Vs 41, Ust2, - - -, Um) € QW ,(['); notice that
S(w)N{s,s+1} =0 (resp., = {s}) if and only if S(v) N {s,s+1} =0 (resp., = {s+ 1}).
We set c(t) := b(t) for t € S(v) \ {s,s+ 1} = S(w) \ {s,s+ 1}, and c(s + 1) := w(s) if
S(v)N{s,s +1} = {s+ 1}. Then, D(w,b) = (v,c) € QW ,(I') satisfies (3.21); we can show
the equalities in (3.21) in exactly the same way as in Case 2.
. . : [wstyal [wityal

Case 4 (to be paired with Subcase 1.2). Assume that (w,b) satisfies ws_1 W
wg11; note that we1 = ws_1. Also, notice that S(w) N {s,s +1} = 0, and |w,',a| is a simple
root. We set

V1= Wy for 0 < k <m with k # s,s + 1,
Ws—1 = Vs—1 = Vs = VUs41-

We see that v = (vo, V1, ..., Vs—1,Vs, Vs 41, Vs+2, - - -, Um) € QW ,(['); notice that S(v)\ {s,s +
1} = S(w)\ {s,5 + 1}, and that S(v) N {s,s + 1} is either {s} or {s + 1} since |w; ' a| is a
simple root. We set

(1) = b(t) forte S(v)\{s,s+1},
av= 1 fort € S(v)N{s,s+1}.

Then, D(w,b) = (v,c) € (/Q\Wf)\’w(lﬂ) satisfies (3.21); we can show the equalities in (3.21) in
exactly the same way as in Subcase 1.2.
Now, we set
——(1) —— —_
QW/\,w(F) = {(W7b) € QWA,w(F) ‘ D(Wvb) S QW/\,w(‘:)}'

We can easily verify that the map (w,b) — D(w,b) gives a bijection from a\_?\//'/\,w(f‘) \

QWE\L(F) onto QW ,,(Z) satisfying (3.20), and also an involution on QWE\L(F) satisfying

(3.21). This completes the proof of Theorem 3.14.

7. PROOF OF THEOREM 3.12.

In what follows, we indicate that an edge w — ws, in QBG(W) is a quantum edge (resp.,
Bruhat edge) by writing w %> wsq (resp., w % WSg).
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7.1. In type As. We give a proof of Theorem 3.12 in the case that (o, 8Y) = (8, aV) = —1
(see Remark 3.11). Assume that I' € AP(\) is of the form

T:Ao=Ag 5 4, B ... I AL = Ay, (7.1)
with Vs+1 = &, Vs42 = & + /85 Vs+3 = B) i'e°a
CD Ay Ag 2 A D Ay S (D).

Then, = = (B1,...,0m), where By := v for 1 <k < m with k # s+1,s+2,s+3, and fs+1 = 5,
Bs+2 = a+ B, Bs+3 = a; note that = is an alcove path from A, to Ay of the form:

S Ae=Ag o 2 A, BB O By O Ay T AL — Ay (7.2)

for some alcoves Bsy1 and Bya; observe that (the closure of ) AgUAg1UAg2UAg30Bs11UBs12
forms a “hexagon” lying in Ra ® R C bi. For 1 <t < m, let H,,;, (vesp., Hg, x,) be the affine
hyperplane between the (¢ — 1)-th alcove and the ¢-th alcove in T" (resp., Z). Then we see that
ly=Fk foralll1 <t<mwitht#s+1,s+2,s+ 3, and that
ks+3 = ls+17 ks—l—l = ls+37 ls+2 = ls-{—l + ls+3 = ks+1 + ks-i-?) = ks+2- (7-3)
Recall that I} = (X, v)/) — I for 1 <t < m. Set kj := (\, B)) — k¢ for 1 < ¢ < m. We see that
I, =k forall 1 <t <m witht# s+1,s+ 2,5+ 3, and that
Kors = loy1, Ko = liyss livo = lopr + s = ko +kyyg = ko (7.4)
Now, for w = (wo, w1, ..., wm) € QW , ('), we set
Vp = Wy for 0 <k <mwithk+#s+1,s+ 2. (7.5)

In the following, we will define vs;1 and vgyo in such a way that v := (vg,v1,...,0m) €
QW, (I U QW, ,(E). Note that S(w)\ {s+ 1,5 +2,5+3} = S(v)\ {s + 1,5+ 2,5+ 3}.
Also, for b : S(w) — {0,1}, we will define ¢ : S(v) — {0,1} in such a way that

Cl5(v)\{s+1,542,54+3} = Pls(w)\{s+1,54+2,5+3}5 (7.6)

and YB(w,b) := (v,c) € C/)Y/V/\,w(F) L 6{/7\7/\@(5). Then we set

QW (T) = {(w,b) € QW, ,(I) | YB(w,b) € QW, ,(5)}. (7.7)

Case 1. Assume that ws = ws11 = Wwsya = Wwsys. Then we set wy = Vg = V41 = Vg2 = Vsp3 =
wsy3. It is obvious that v = (vo,v1,...,vm) € QW ,(Z).

We see that S(w)N{s+1,s+2,s+3} isone of O, {s+1}, {s+2}, {s+3}, and {s+1,s+3},
and that

Sw)N{s+1,s+2,5s+3} =0 (resp., {s+ 1}, {s+2}, {s+3}, {s+1,5s+3})
<— Sv)N{s+1,s+2,s+3} =0 (resp., {s+ 3}, {s+2}, {s+ 1}, {s+1,s+3}).

Hence we can define c(t) := b(2s+4 —t) for t € S(v)N{s+ 1,5+ 2,s + 3}. In this case,
YB(w,b) = (v,c) € QW, ,(E) satisfies (3.18). Indeed, we can easily show the equalities in
(3.18), except for deg(v,c) = deg(w,b). In order to show that deg(v,c) = deg(w, b), it suffices
to show that deg’(v,c) = deg’(w, b). For this equality, we claim that

=:X1

X = Z (wte(w), qwty (w, b))
t=s+1,5+2,5+3

- > sgn (vl — > b(t)l;

teT— (w)N{s+1,5+2,s+3} teS(w)N{s+1,s+2,s+3}

(7.8)

:?3(2 =:X3
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is equal to
=Y
Y = Z <th(V), thIY(V7C)>

t=s+1,54+2,54+3

- > sgn(Be)k; — > c(t)k; -

teT—(v)N{s+1,5+2,5+3} teS(v)N{s+1,s+2,s+3}

=:Ys =:Y3

We see that X; =Y, = 0. Also, it is easily verified by (5.12) that Xo = Y5 and X3 = Y3. This
proves X =Y, as desired.

Case 2. Assume that wy M'—) SaWs = Wey] = Wgt2 = Wgt3. Then, we define vgyy and vgqo
by the following directed path in QBG(W):

‘Us+2a|
(Ws =) Vs = Vsy1 = Vsp2 —— SaUsy2 = Vs13 (= Wsy3).

It is easily checked that v = (vo,v1,...,vm) € QW) ,(Z).
We see that S(w)N{s+1,s+ 2,5+ 3} is one of (}, {s + 2}, and {s + 3}, and that
Sw)n{s+1,s+2,s+3} =0 (resp., {s + 2}, {s+3})
— Sv)N{s+1,s+2,s+3} =0 (resp., {s+ 1}, {s+2}).

Hence we can define c(t) :==b(t+1) for t € S(v)N{s+1,s+2,s+3}. In this case, YB(w,b) =
(v,c) € QW ,(E) satisfies (3.18). Indeed, we can easily show the equalities in (3.18), except
for deg(v,c) = deg(w,b). In order to show that deg(v,c) = deg(w,b), it suffices to show that
deg/(v,c) = deg’(w,b). For this equality, we claim that X in (7.8) is equal to Y in (7.9). We
have

Xy = (whep1(w), qwtyy; (w, b)) = (=l ywi  s11, qwty (w, b) + 55+1€T*(w)‘w;:1’78+1|v>

= <_l/s+1w;1aa th;/(W, b)> + <—l;+1w;1a, 55+1ET*(W)’w;1a‘v>7

Y1 = (wtey3(v), qwt,3(v,c))
= (- s+3”s+258+37 th (v,c)) + (- s+3”s+258+37 s+3€T—(v) |Us+3/65+3‘ )

- <—ks+3vs+25s+3, dst1eswic(s + v s+1ﬁs+1 + ds42es(v)C(5 + 2)v s+26;/+2>

= (—lwy e, qwty (w, b)) + (—1L w e, Ssr1e7— (w)ylwy falY)
- <_lls+1ws_1057 6S+1ES(V)C(5 + 1) 15 + 53—1—265 v)C(S + 2)’(1] (a + 5)V>
= <_lf9+1ws_10‘7 qwt, (w, b)) + <—l;+1w @, O 167 (w) Wy fal¥)

- 55+1€5(V)C(8 + 1)lg+1 + 53+2€S( )€ (S + 2) s+1»
and hence
Yi=X1— 6S+1€S(V)C(S + 1)l/s+1 + 5s+265(v) (S + 2)ls+1
Also, we have
Xo = 0g1er-(w) S8 (Vs+ 1)1 = Ssyser—(v) S80(Bs+3)ksig = Yo,
and
X3 = 5s+265(w)b(8 + 2)l +2 + 58+3€S(w)b(s + 3)ls+3>
V3 = 0g1e5(v)€(s + DAy 4 dspoestv)C(s + 2)kg 0.
Therefore, we deduce that
Y=Y1-Ys-Y;
= X1 — 5s+1eS(v)C(5 + 1)l;+1 + 5s+265( )€ c(s+ 2)ls+l Xo
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—Osr1esiC(s + 1)kl — Osroes(v)c(s + 2)ki o
= X1 = Osp2esw)b(5 + 2)l5 11 + 05 3e5w)b(s +3)lg 1 — Xo
- 55+265(w)b(8 + 2)l;+3 - 55+3€S(w)b(8 + 3)1;4—2
=X1—Xo—X3=X,
as desired.

—1
ws P
Case 3. Assume that ws; = wsy1 = Wsto g 58Wet2 = Wsy3. Then, we define vsy; and

vst2 by the following directed path in QBG(W):

o5 ']
(ws :) Vg — SqUs = VUg4+1 = VUs+2 = VUs+3 (: ws+3)-

It is easily checked that v = (vo,v1,...,vm) =v € QW ,(Z).
We see that S(w)N{s+1,s+ 2,5+ 3} is one of (}, {s + 1}, and {s + 2}, and that

Sw)Nn{s+1,s+2,s+3} =0 (resp., {s+ 1}, {s + 2})
— Sv)N{s+1,s+2,s+3} =0 (resp., {s+ 2}, {s+ 3}).

Hence we can define c(t) := b(t — 1) for t € S(v)N{s+1,s+ 2,5+ 3}. As in Case 2, we can
show that YB(w,b) = (v,c) € QW (E) satisfies (3.18).

ey (a+5)] 1
Case 4. Assume that wy, = wep1 —————— Sq48Ws1 = Wsy2 = W, 3; nNote that wsH(a +
B) = w;la+w; 1B, and (w;ta, w;lBY) = (wilB, wilaV) = —1. Also, since 'LUS__:I"}/S+1 =w;la
and w;i3’ys+3 = w; 80108 = —w; Lo, we see that S(w)N{s+1,s+2,s+3} is one of O, {s+1},
and {s + 3}.

Subcase 4.1 (to be paired with Subcase 6.1 below). Assume that (w,b) satisfies either

Sw)n{s+1,s+2,5s+3} ={s+1} (ie, —w; 'a is a simple root),

| —1 (7-10)
_1 _ ws+1(0‘+5)|
b(S + 1) = ]., Wy ,8 €A N and Wg+1 T Sa+BWs+1 = Ws+2,
or
S(w)N{s+1,s+2,5+3}={s+3} (ie, w;'a is a simple root),
_ A1)
1 (a4 (7
b(s+3)=1, w;'Be A", and ws W Sa4BWst1 = Wsy2-

It follows from Lemma A.1 (applied to ws, w; ‘o, and w; ! 3) that

ws ol w3 '] w3 'al .
Wy SaWs Sat+BSalWs —— S3Sa+pSaWs in QBG(W),
~~ Q ~—~— Q —_———— Q —————
=Us =Vs+1 =542 =Ws43=Vs+3

and that
sgn(w; o) = sgn(w; ' B) = sgn(w; '(a + B)) = —sgn(a) = —sgn(B) = —sgn(a + B).

We see that v = (vg,v1,...,0m) € QW ,(I'); notice that S(v) N {s+ 1,542,543} = (), and
hence c is defined only by (7.6). Since sgn(w;'a) = sgn(w;'B) = sgn(w; (o + B)), we have
(=1)WP) = —(—1)(V©), In this case, YB(w,b) := (v,c) € (/Q‘\V/V)\w(l“) satisfies (3.19). Indeed,
we can easily show the equalities in (3.19), except for deg(v,c) = deg(w,b). In order to show
that deg(v,c) = deg(w,b), it suffices to show that deg’(v,c) = deg/(w,b). For this equality,
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we claim that X of (7.8) is equal to
=71
Z:= Y {(wh(v), awt)(v,¢))

t=s+1,54+2,5+3

- > sen(y,)lf — > c(t)l}.

teT—(v)N{s+1,5+2,5+3} teS(v)N{s+1,s+2,s+3}

(7.12)

:?,Zg =:Z3

We give a proof only in the case that (7.10) holds; the proof in the case that (7.11) holds is
similar. We have

X1 = (whea(w), qwty,o(w, b))

{
{
{
{

g+2w5__&17s+27 qwt;/(w, b) + ”ws__&z’}’s#—?‘v - ws__&l'Y;/H)
ows (a+ B), qwty (w,b) + [w (e + 8)|¥ —w;'aY)
Lrows (a+ B), awty (w, b)) + 20 o + Il 4,

’ /
Xo = ls+27 X3 = ls-f-l?

—l
—l
—l

and hence
X=X - Xo— X3 = (-l ow; (a+8), qwt) (w, b)) + 20,5 — I}, ;.
Also, we have
Z1 = (Wts1(v), awt 1 (v, €)) + (Weia(V), awto(v, €)) + (Wtsys(v), awti (v, c))
= (=1l 1v7 g1, awty (v,c) + ‘7);:1’Ys+1\v>
+ (v Yer2, Wty (v ©) + o e + usiyrssal”)
(=l 30 o Ysr3, awty (v, €) + o Yert Y A+ [0y o vsr2l Y A+ [0, g 7s43] )
= (—l;st_la, qwt! (w,b) —w; 'aV)
+ (=l w8, qwt) (w, b) —w taY — w1 BY)
sla)

= (U ow; (o + B), qwty (w, b)) + 2, + I, 5 + 31,3,

+ <—l’s+3w;1a, qwt) (w,b) — w;locv — w;lﬁv —w

Zy =lq + lio + liys, Z3 =0,
and hence

Z =7y — Zy— Z3 = (—lyyw; (a+ B), qwty (w, b)) + Iy + 20, 5.
Since 20, o — Ul 1 =2(l, y + 1, 3) — Uiy =1, + 205, we obtain X = Z, as desired.
Subcase 4.2 (to be paired with Subcase 6.2 below). Assume that (w,b) satisfies either
Sw)n{s+1,s+2,5+3} ={s+1} (ie., —w; 'a is a simple root),

b(s+1)=1, w;'Be A", a,B€A™, and

(7.13)
lwiti (a+B)]
Ws+1 T Sa4pWs+1 = Ws+2,
or
Sw)n{s+1,s+2,5+3} ={s+3} (ie, w; ' is a simple root),
b(s+3)=1, w;'BcA~, a,Bc A", and (7.14)

lw i (o)
Ws+1 T Sa—i—ﬁws—i-l = Ws42-
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It follows from Lemma A.2 (applied to ws, w; ‘e, and w; ' 3) that

lws o lws ' B lw ol .
Wy S SaWs e Sa+85aWs T) $8Sa+BSaWs in QBG(W),
=Us =Us+1 =VUs42 =Ws4+3=Vs+3

and that

sgn(w; ') = —sgn(w; ' f) = —sgn(w; " (a + B)) = sgn(a) = sgn(B) = sgn(a + 5).

We see that v = (vo, v1,...,0m) € QW ,(I'); notice that S(v) N {s+ 1,5+ 2,5+ 3} = (), and

hence c is defined only by (7.6). In this case, YB(w,b) := (v,c) € 6{/7\7/\#}(1“) satisfies (3.19),
which we can verify in exactly the same way as in Subcase 4.1.

Subcase 4.3 (to be paired with Subcase 6.3 below). Assume that (w,b) satisfies either
Sw)n{s+1,s+2,5s+3} ={s+1} (ie, —w;ta is a simple root),

b(s+1)=1, w;'feA*, acAt, and

(7.15)
i (atB)]
Ws41 T Sa+BWs+1 = Ws42,
or
Sw)Nn{s+1,s+2,5s+3} ={s+3} (ie., w;'a is a simple root),
b(s+3)=1, w;'B€A~, acA~, and (7.16)
lwfy (a+8)|
Wsp1 == SakpWsil = Way:
It follows from Lemma A.4 that
lwi Bl lws ol lws ' 8| :
s > SgWs SatpSpWs —— SaSatpSpws  in QBG(W),
~~ Q B ~—— B —_——
=Us =iUs41 =Us42 =Ws43=Vs+3

and that

sen(w; ') = —sgn(w; ') = —sgn(w; ! (a + B)) = —sgn(a) = sgn(B) = sgula + A).

We see that v = (vo,v1,...,0m) € QW ,,(E); notice that S(v) N {s+ 1,5+ 2,5 +3} =0, and

hence c is defined only by (7.6). In this case, YB(w,b) := (v,c) € C/ﬁ/?\/')\7w(5) satisfies (3.18),
which we can verify in exactly the same way as in Cases 1 and 2.

Subcase 4.4 (to be paired with Subcase 6.4 below). Assume that (w,b) satisfies either
S(w)n{s+1,s+2,5s+3} ={s+1} (ie.,, —w; ' is a simple root),

b(s+1)=1, w;'BecAt, acA~, BecAt, and

(7.17)
lwi iy (a+B)]
Ws+1 T Sa+pWs+1 = Ws42,
or
Sw)n{s+1,s+2,s+3} ={s+3} (ie, w; ' is a simple root),
b(s+3)=1, w;'B€A™, acAt, Be€A~, and (7.18)
i} (atB)|
Ws+1 T Sa4pWs+1 = Ws2-
It follows from Lemma A.5 that
—1 —1 -1
W . Al SWs hws e Sa+BSaWs M SaSat+pspws in QBG(W),
B — B —_——— Q ——_———

=Us =Vs41 =Us42 =Ws4+3=Vs+3
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and that

sgn(w; 'a) = —sgn(w; ) = —sgn(w; (o + B)) = sgn(a) = —sgn(B) = sgna + A).

We see that v = (vo,v1,...,0m) € QW) ,(Z); notice that S(v) N {s+ 1,5+ 2,5+ 3} = (), and

hence c is defined only by (7.6). In this case, YB(w,b) := (v,c) € QTVAM(E) satisfies (3.18),
which we can verify in exactly the same way as in Cases 1 and 2.

Subcase 4.5 (to be paired with Subcase 6.5 below). Assume that (w, b) satisfies
Sw)n{s+1,s+2,5+3} ={s+1} (ie., —w; 'a is a simple root),

ot (a+) (7.19)
b(s+1)=1, ac€A™, and ws4 T) SatpWst1 = Wst2,
or
S(w)n{s+1,s+2,5s+3} ={s+3} (ie.,, w;lais a simple root),
. 7.20)
lwl (a+8)| (
b(s+3)=1, ac€ A", and wsi1 %) Sa+BWst1 = Wst2-
It follows from Lemma A.6 that
w5 al w5 B w5 'al .
W, SqWs Sa+BSaWs —— 58Sa+85aWs  in QBG(W),
B ~—— B —_—— Q A S ——
=Us =Ws+1 =542 =Ws43=Vs+3

and that
sgn(a) = sgn(w; 'a) = —sgn(f) and sgn(a+ B) = sgn(w; ' (a + B)) = sgn(w; ' B).
We see that v = (vo, v1,...,vm) € QW ,,(I'); notice that S(v) N {s+ 1,5+ 2,5+ 3} = (), and

hence c is defined only by (7.6). In this case, YB(w,b) := (v,c) € QWMU( ) satisfies (3.19),
which we can verify in exactly the same way as in Subcase 4.1.

Subcase 4.6 (to be paired with Subcase 6.6 below). Assume that (w,b) satisfies

Sw)n{s+1,s+2,8+3}={s+1} (ie.,, —w; ' is a simple root),
wili (a+B)| (7.21)
b(s+1)=1, peA™, and ws Ty SapWstl = Wy,
or
S(w)N{s+1,s+2,s+3} = {s+3} (i.e, w;la is a simple root),
. 7.22)
lwiti (a+B)| (
b(S + 3) =1, pe A+, and  wsy1 %} SatfWs+1 = Wst2.
It follows from Lemma A.7 that
|ws o |ws ] [ws "ol :
W > SqWs Sat+BSalWs —— S3Sa+8SaWs in QBG(W),
-~ Q =~ B Z°° B ="
=Vs =Vs+1 =Ug42 =Ws43=Vs+3

and that

sgn(a) = —sgn(w; 'a) = —sgn(B) and sgn(a+ B) = sgn(w; '(a + B)) = sgn(w; ' B).
We see that v = (vg,v1,...,0m) € QW) ,(T'); notice that S(v) N {s+1,5+ 2,5+ 3} =0, and
hence c is defined only by (7.6). In this case, YB(w,b) := (v,c) € Q\V/VAM(F) satisfies (3.19),
which we can verify in exactly the same way as in Subcase 4.1.

Subcase 4.7 (to be paired with Subcase 6.7 below). Assume that (w,b) satisfies

Sw)n{s+1,s+2,5s+3} ={s+1} (ie, —w;'a is a simple root),

lwi i (a+8)| (7.23)
b(s+1)=1, a,8€ A", and wsiq T Sa4BWst1 = Wsy2,



28 C. LENART, S. NAITO, D. ORR, AND D. SAGAKI

or
S(w)N{s+1,s+2,s+3} = {s+ 3} (i.e., w;la is a simple root),

—1 (7.24)
_ [w ) (a4-B)]
b(s+3)=1, €A™, and ws4 T> Sa+BWst1 = Ws42.
It follows from Lemma A.3 that

~1 —1 —1

W hos Al SaWs hws e Sat+BSAWs M SaSat+pspws in QBG(W),
B —— Q —— B —_——

=Us =Vs+1 =Vs+42 =Ws+4+3=Vs+3

and that

sgn(w; ') = —sgn(w; ' B) = —sgn(w; (o + ) = —sgn(a) = —sgn(B) = —sgn(a + B).
We see that v = (vo, v1,...,0m) € QW) ,(E); notice that S(v) N {s+ 1,5+ 2,5+ 3} = (), and
hence c is defined only by (7.6). In this case, YB(w,b) := (v,c) € (5\\7/V)\7M(E) satisfies (3.18),
which we can verify in exactly the same way as in Cases 1 and 2.
Subcase 4.8. Assume that (w,b) does not satisfy any of equations (7.10)—(7.24); notice that

Sw)nN{s+1,s+2,s+3} =0orb(t)=0fort € S(w)N{s+1,s+2,s+3}. Then, we define
vs+1 and vsyo by the following directed path in QBG(W):

it (a45)]
(Ws =) Vs =Vsp1 ——— Sa+fVs+1 = VUst2 = Ust3 (= Wst3)-
We see that v = (vo,v1,...,vm) € QW ,(Z). If S(v) N {s+ 1,5+ 2,5+ 3} # 0, then we set
c(t)=0fort € S(v)N{s+1,s+2,s+3}. In this case, YB(w,b) := (v,c) € (3\\7/V)\7W(E) satisfies
(3.18), which we can verify in exactly the same way as in Cases 1 and 2.
Case 5. Assume that #{s +1<t<s+3|w1 # wt} = 2; then the sequence

. —1 —1 —1
(ws, Ws41, Ws+2, Ws+3 5 Wy Vs+15 Wgy17s+2, ws+275+3) (725)

is identical to one of the following:
- -1 —~1,.3. _

(a) (ws, SaWs, Sat+8SaWs, Sat+8SaWs; W, «, wy B, wy «); note that w3 = sa53wWs.
1

(D) (ws, Ws, SatpWss S58a+pWs; Wy ta, wyl(a+ B), —w;ta); note that wsis = sa85wWs.

(€) (ws, SaWs, SaWs, S3SaWs ; w; e, wilB, wil(a + B)); note that w3 = $85aWs.

1

In Case 5, we make frequent uses of a fundamental fact about the existence and uniqueness of
a label-increasing or label-decreasing directed path in the quantum Bruhat graph with respect
to a fixed reflection order; see, for example, [LNS?, Theorem 7.3].

Subcase 5.1. Assume that sgn(w; o) = sgn(w;3). We fix a reflection order <t on A* such

that |w;lal < |w;(a+ B)] < |w; 4|

(5.1a). If the sequence in (7.25) is of the form (a), then we have the label-increasing directed
path

s al w5 Bl
Wy ——— SqWs —— Sq43SaWs = SaS3Ws, (7.26)

where S(w) N {s+ 1,5+ 2,s + 3} is either ) or {s + 3}. It follows that there exists a unique
label-decreasing directed path from ws to ws43, which is of the form:

—1 —1
Wi M SpWs M SaSaWs = Wey3 (7.27)
or ) )
lws ™ (a+p)] lws ' al
Wy —— T SatpWs ML IN 58504 fWs = Wt 3. (7.28)

If (7.27) holds, then we define (vs,vst1,Vs12, Usy3) = (Ws, SgWs, SpWs, SaSgws). We see that
v = (vo,v1,...,Um) € QW ,(E), and that

Sw)N{s+1,s+2,s+3} =0 (resp., {s+ 3})
< S(v)Nn{s+1,s+2,s+3} =0 (resp., {s+2}).
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If Sv)Nn{s+1,s+2,s+ 3} = {s + 2}, then we define c(s + 2) := b(s + 3). In this case,
YB(w,b) := (v,c) € (/Q\V/VAM(E) satisfies (3.18). Indeed, we can easily show the equalities in
(3.18), except for deg(v,c) = deg(w,b). In order to show that deg(v,c) = deg(w, b), it suffices
to show that deg/(v,c) = deg/(w,b). For this equality, we claim that X in (7.8) is equal to Y’
in (7.9). We set € := sgn(w; 'a) = sgn(w; ! 3). Recall that p = 1 (resp., = 0) if a statement P
is true (resp., false). We have

X1 = (wtep1(w), qwt/ (W, b)) + (Whspo(W), qwty, o(w, b))
= (U wi  Ysr1, qwty (w,b) + 65+1€T—(w)‘w;—0}1'7s+1|\/>
+ <—l;+2ws_+1175+27 qwty (w,b) + 58+1€T*(w)|ws_—i}175+1’v + 53+2€T*(w)‘ws_-&27s+2‘v>
= (—lwy o, qwty (w,b) + 6s+1€T*(w)’w;1a‘v>
+ (—lgowy ' B, qwt) (w,b) + 55+1€T*(w)|w;1a|v + Oy y2er—(wylws ' BIY)
= (i ta =l w B, qwt) (w, b))

— 2051 1e7- (w)elsi1 + Osrer- (w)€lsr2 — 2051267 (w)€lst2,

Xo = 5s+1eT—(w) Sgn(a)léﬂ + 5s+zeT—(w) sgn(a + f) /s+27
X3 =0543es(w)b(s + 3)lyss
recall that X = X7 — Xy — X3. Also, we have
Y1 = (Wher1(v), awtyiq (v, €)) + (Whers(v), awt 3(v, c))
= (—kl v, ' Bss1, awty (v, c) + 65+16T*(V)|'U5_-|}168+1|V>
+ (ke ysviiaBsrs, awt) (v, ©)+
55+1€T*(v)‘”£&155+1’v + 55+3€T*(v) ’US__&353+3|V - 5s+2€S(v)C(3 + 2)”;&25;/+2>
= (—kyqws ' B, awt] (v, €) + dgprer- (v lws BlY)
+ (ks (a + B), awty (v, e)+
55+16T*(v)‘w;16|v + 58+3€T*(v)|w;1(a + B = dgr2es(vye(s + 2)w; ')
= (—Kpwy '8 — ki gwi (a4 ), qwty (v, ¢))

= 20si 167 (v) €kt — Osyier—(v) €Kity — 2051 3e7- (v)€hsrs + Osroes(v)C(s + 2)kis,

Yo = 0y 1e7- (v) S80(B) kst + sp3er—(v) sgn(a)kyy s,
Y3 = 0spaesv)€(s + 2)k o3
recall that Y = Y] — Y5 — V3. Here we note that qwt, (w,b) = qwtY (v, c). By (7.4), we see that
(—lipwsta =l owi' B, qwt) (w, b)) = (kw8 — ki wy (o + B), qwty (v, ¢)),
—0s13e5(w)P(5 + 3) 513 = dsroes(v)C(5 + 2)ki 3 — dsroesv)C(s + 2)ky o
Hence, in order to show that X =Y, we need to show that
Osirer—(w)(—2€lsyq + €elio —sgn(@)lgyy) + Oy poer—(w)(—2¢€l5 o — sgn(a + )l o)
= 5s+1eT—(v)(*2€k{e+1 - ek:;+3 - sgn(ﬁ)k:;_H) + 53+3€T—(v)(*26k‘;’+3 —sgn(a) ;+3)- (7.29)
Since both the label-increasing directed path (7.26) and the label-decreasing directed path (7.27)
are shortest directed paths from w; to sasgws = sgsatpws in QBG(W), the sum of the labels of

quantum edges in (7.26) is identical to that in (7.27); see, for example, [LNS?, Proposition 8.1].
From this fact, together with the assumption that sgn(w; 'a) = sgn(w;!3), we deduce that

T-(w)N{s+1,s+2,s+3} =0, {s+2}, or {s+1,s+ 2},
T (v)N{s+1,s+2,s+3} =0, {s+1}, or {s+3},
and that
T-(w)N{s+1,s+2,5s+3} =0 (resp., {s+ 2}, {s+1,s+2})
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— T - (v)N{s+1,s+2,s+3} =0 (resp., {s+ 1}, {s+ 3}).

We show (7.29) in the case that e =1 and T~ (w)N{s+1,s+2,s+ 3} = {s+ 2}; the proofs in
the other cases are similar or simpler. In this case, note that 6, 1c7-(w) =0, dgp2er-(w) = 1,
dst1er—(v) = 1, and O,y 3e7-(v) = 0. Also, since (sqws) a4+ B) = wylp € AT and the edge

SaWs ﬂ Sa+B85aWs is a quantum edge, we deduce from Lemma 2.1 that a + f € A7, and
hence sgn(a+ 3) = —1. Similarly, since w; '3 € AT and the edge w; % sgws is a quantum

edge, we deduce from Lemma 2.1 that € A7, and hence sgn(f) = —1. Thus, equation (7.29)
(which we need to show) follows from these equalities and (7.4).

If (7.28) holds, then we define (vs, Vst1,Vs42,V543) = (Ws, Ws, Sq+fWs, S3Sa+aWs). We see
that v = (vo,v1,...,vm) € QW ('), and that

Sw)N{s+1,s+2,s+3} =0 (resp., {s+3})
— S(v)Nn{s+1,s+2,s+3} =0 (resp., {s+1}).
If Sv)Nn{s+1,s+2,s+ 3} = {s+ 1}, then we define c(s + 1) := b(s + 3). In this case,
YB(w,b) := (v,c) € QW ,(I') satisfies (3.19). Indeed, we can easily show the equalities in
(3.19), except for deg(v,c) = deg(w,b). In order to show that deg(v,c) = deg(w, b), it suffices

to show that deg/(v,c) = deg’(w,b). For this equality, we claim that X in (7.8) is equal to Z
n (7.12). As above, we have

Xy = (~l qwla— 1w '8, qwt! (w,b))
- 268+1€T*(w)ds+1 + 58+1€T*(w)d5+2 - 268+2€T*(w)€lg+27
X2 = 051167 (w) sgn(a )l;+1 + 05127~ (w) sgn(a + /8)l;+27
X3 = 0gy3es(w)b(s + 3) 543
recall that X = X; — Xy — X3. By computations similar to the above, we have
Zy = (i (@ + B) + lwy e, qwt ) (v, €))
- 255+2€T‘(W)6l;+2 + ds11es(v)€ c(s+ 1)l5+2
+ 0gp2er- (v)€lits + 2051 3em- (v)elsys — 205 11e5(v)C(s + 1)l s,
Zy = bgpaer-(v) S80(a + Bl o + dsser—(v) 580(B) 13,
Z3 = dsy1estvic(s + Dl y;
recall that Z = Z; — Zy — Z3. Note that

< ls+1w o — ll+2w 157 thV(W b)) < l;+2w;1(a + 5) + l/s+3w;1a7 th;/(Vv C)>7

— dst3es(w)P(s +3)liis
= dsp1e5(v)€(8 + Dlgys — 20 11e5(v)e(s + 1)lits = derresvye(s + iy
Hence, in order to show that X = Z, we need to show that
Osi1er—(w) (=26l g + €l g —sgn(a)liy ) 4 0 poer—(w)(—2€lg o — sgn(a + B)lg o)
= Ogpoer—(w) (—2€li o +elgy s —sgn(a + B)li o) + dsyser—(v)(2€lirs — sgn(B)li4s).  (7.30)

Since both the label-increasing directed path (7.26) and the label-decreasing directed path (7.28)
are shortest directed paths from w to sosgws = sgsq+pw,s in QBG(W), the sum of the labels of

quantum edges in (7.26) is identical to that in (7.28); see, for example, [LNS3, Proposition 8.1].

From this fact, together with the assumption that sgn(w; 'a) = sgn(w;!3), we deduce that

T-(w)N{s+1,s+2,s+3} =0, {s+1}, or {s+1,s+2},
T-(v)N{s+1,s+2,5s+3} =0, {s+3}, or {s+2},
and

T-(w)N{s+1,s+2,5s+3} =0 (resp., {s+ 1}, {s+1,s+2})
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— T -(v)N{s+1,s+2,s+3} =0 (resp., {s+ 3}, {s+2}).
We show (7.30) in the case that e =1 and T~ (w)N{s+1,s+2,s+ 3} = {s+ 1}; the proofs in
the other cases are similar or simpler. In this case, note that d,1c7-(w) = 1, dsq2e7-(w) = 0,

Osi2er(v) = 0, and 6 3e7—(v) = 1. Also, since w;'a € AT and the edge w A SqWs is

a quantum edge, we deduce from Lemma 2.1 that « € A~ and hence sgn(«) = —1. Similarly,
since (sq4pws) H(B) = —w;la € A™ and the edge Sqsws M $8Sa+pWs 1S a quantum

edge, we deduce from Lemma 2.1 that 8 € AT, and hence sgn(3) = 1. Thus, equation (7.30)
(which we need to show) follows from these equalities and (7.4).

(5.1b). If the sequence in (7.25) is of the form (b), then we have the label-decreasing directed
path

w3 ! (a+8)| w5 'al
Ws ————7 Sa+4Ws — S3Sa+pWs = Ws+3,

where S(w) N {s+ 1,5+ 2,s + 3} is either ) or {s + 1}. It follows that there exists a unique
label-increasing directed path from wg to wsy3, which is of the form:

lws tal lws '8
Wy ——— SqWs ——— Sq43SaWs = Wet3. (7.31)
If we define (vg,Vst1,Vs42,0543) = (Ws, SaWs, Sa+B5aWs, Sa+35aWs), then we see that v =

(vo,v1, .., vm) € QW ('), and that
Sw)n{s+1,s+2,5s+3} =0 (resp., {s+1})
— S(v)Nn{s+1,s+2,s+3} =0 (resp., {s+3}).

If Sv)Nn{s+1,s+2,s+ 3} = {s + 3}, then we define c(s + 3) := b(s + 1). In this case,
YB(w,b) := (v,c) € QW ,(I') satisfies (3.19).

(5.1c). If the sequence in (7.25) is of the form (c), then we have the label-increasing directed
path

lws ol lws ! (a+B)|
Ws ——— SqWs —————— 535qWs = W3,

where S(w) N {s+ 1,5+ 2,s + 3} is either ) or {s + 2}. It follows that there exists a unique
label-decreasing directed path from w;s to wsy3, which is of the form:

|ws '] s 'al
Wg — SpWs — Sa+B58Ws = Ws43- (732)

If we define (v, Usy1,Vst2,Vs43) = (Ws, SBWs, Sa+BS8Ws, Sa+3SaWs), then we see that v =
(vo,v1, ..., vm) € QW ,(E), and that
Sw)N{s+1,s+2,s+3} =0 (resp., {s+2})
<~ S(v)N{s+1,54+2,s+3} =0 (resp., {s+ 3}).
IfSv)n{s+1,5s+2,s 2,5+ 3} = {s+ 3}, then we define c(s + 3) := b(s + 2). In this case,
YB(w,b) :=(v,c) € QWAw( ) satisfies (3.18).

Subcase 5.2. Assume that sgn(w; 'a) = —sgn(w;!3) = sgn(w;(a + (). We fix a reflection
order <1 on A% such that |w;!(a+ B)| < |w;tal < |w; 1B

(5.2a). If the sequence in (7.25) is of the form (a), then we have the label-increasing directed
path

lws 'l lws ' Bl
W —— SqWs ——— Sq+BSaWs = SaS8Ws,

where S(w) N {s+ 1,5+ 2,s+ 3} is either § or {s + 3}. It follows that there exists a unique
label-decreasing directed path from w;, to wsy3, which is of the form:

-1
wy 20 6o Msasﬁws_w8+3 (7.33)
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Define (vs, Vst1,Vs+2,Vs+3) = (Ws, SaWs, SgWs, SaSgws). We see that v = (vp,v1,...,vm) €
QW, ,,(Z), and that
Sw)N{s+1,s+2,s+3} =0 (resp., {s+3})
<~ S(v)N{s+1,5+2,s+3} =0 (resp., {s+2}).
If S(v) N {s+1,s+2,s+3} = {s+ 2}, then we define c(s + 2) := b(s + 3). In this case,
YB(w,b) := (v,c) € QW ,(E) satisfies (3.18).

(5.2b). If the sequence in (7.25) is of the form (b), then we have the label-increasing directed
path

lws ™ (a+8)] lws o
Wg —————— Saq+pWs — > $8Sq+pWs = Ws43,

where S(w) N {s+ 1,5+ 2,s+ 3} is either @ or {s + 1}. It follows that there exists a unique
label-decreasing directed path from w;s to wsy3, which is of the form:

—1 —1
Wi M S3Ws Ml'—) SaSaWs = Wey3. (7.34)
Define (vs, Vst1,Vs42, Us43) = (Ws, S5Ws, S3Ws, SaSgws). We see that v = (vo,v1,...,vm) €

QW, ,,(E), and that
Sw)n{s+1,s+2,5s+3} =0 (resp., {s+1})
— S(v)N{s+1,s+2,s+3} =0 (resp., {s+2}).
If S(v)n{s+1,s +2,5+ 3} = {s + 2}, then we define c(s + 2) := b(s + 1). In this case,
YB(w,b) := (v,c) € QW ,,(Z) satisfies (3.18).

(5.2c). If the sequence in (7.25) is of the form (c), then we have the label-decreasing directed
path

lws "o lws " (a+8)|
Ws — SqWs — > $3SqWs = Ws43,

where S(w) N {s+1,s+2,s+ 3} is either ) or {s + 2}. It follows that there exists a unique
label-increasing directed path from ws to wsy3, which is of the form:

|ws" (atB)| w3 Bl
Wg ————— SqfWs — SaSat+pWs = Wsy3. (7.35)
Define (vs, Vs11, Us42, Us43) = (Ws, Ws, SatBWs, SaSa+sWs). 1t is easily seen that v = (vg, v1,...,vm) €

QW, ,,(E), and that
Sw)N{s+1,5s+2,s+3} =0 (resp., {s+2})
— S(v)N{s+1,s+2,s+3} =0 (resp., {s+1}).
If Sv)n{s+1,s +2,5+ 3} = {s + 1}, then we define c(s + 1) := b(s + 2). In this case,
YB(w,b) := (v,c) € QW ,(E) satisfies (3.18).

Subcase 5.3. Assume that sgn(w; 'a) = —sgn(w; 1) = —sgn(w; *(a+B)). We fix a reflection
order < on AT such that |w;(a+ 8)| < |ws 8] < |wy tal.

(5.3a). If the sequence in (7.25) is of the form (a), then we have the label-decreasing directed
path

lws "l lws B .
Ws ——— SqWs —— Sq4+85aWs = SaSaWs,

where S(w) N {s+ 1,5+ 2,s+ 3} is either § or {s + 3}. It follows that there exists a unique
label-increasing directed path from ws to wsy3, which is of the form:

|ws ! (atB)| jwi "l
Wyg ————— SqfWs ——— SBSa4+pWs = Wsy3. (7.36)
Define (vs, Vs11, Us42, Vs43) 1= (Ws, Ws, Sqt8Ws, S3Sa+aWs). 1t is easily seen that v = (vg, vi,...,vm) €

QW, ('), and that
Sw)N{s+1,s+2,s+3} =0 (resp., {s+3})
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— S(v)N{s+1,s+2,s+3} =0 (resp., {s+1}).

If Sv)Nn{s+1,s+2,s+ 3} = {s+ 1}, then we define c(s + 1) := b(s + 3). In this case,
YB(w,b) := (v,c) € QW ,(I') satisfies (3.19).

(5.3b). If the sequence in (7.25) is of the form (b), then we have the label-increasing directed
path

lws ™ (a+8)] lws "o
Wg ——————— Saq4+fWs — > $8Sq+pWs = Ws43,

where S(w) N {s+ 1,5+ 2,s+ 3} is either @ or {s + 1}. It follows that there exists a unique
label-decreasing directed path from w;, to wsy3, which is of the form:

—1
Wi M SaWs % Sa+BSaWs = SqSaWs (7.37)
or
W |ws B| Sﬁ |w5 (a+8)] Sasﬁws = Weps. (738)

If (7.37) holds, then we define (vs,v5+1,vs+2,v5+3) = (Ws, SaWs, Sat+8SaWs, Sa+BSaWs). We see
that v = (vo,v1,...,vm) € QW ,(T'), and that
Sw)N{s+1,s+2,s+3} =0 (resp., {s+1})
— S(v)Nn{s+1,s+2,s+3} =0 (resp., {s+3}).
If Sv)Nn{s+1,s+2,s+ 3} = {s+ 3}, then we define c(s + 3) := b(s + 1). In this case,
YB(w,b) := (v,c) € QW ,(I') satisfies (3.19).
If (7.38) holds, then we define (v, Usy1, Vst2, Vs43) = (Ws, SpWws, Spws, SaSgws). We see that
v = (vo, v1, .. vm) € QW, ,(Z), and that
Sw)N{s+1,s+2,s+3} =0 (resp., {s+1})
<~ S(v)N{s+1,5+2,s+3} =0 (resp., {s+2}).
IfSv)n{s+1,s+2s 2,5 + 3} = {s + 2}, then we define c(s + 2) := b(s + 1). In this case,
YB(w,b) :=(v,c) € QWAw( ) satisfies (3.18).

(5.3c). If the sequence in (7.25) is of the form (c), then we have the label-decreasing directed
path

lwy ol lws " (a+8)]
W — SqWs — > $8SqWs = W43,

where S(w) N {s+ 1,5+ 2,s+ 3} is either § or {s + 2}. It follows that there exists a unique
label-increasing directed path from ws to wsy3, which is either of the form:

lws ! (a+B)| lws ' B
Wy ———> Saq+pWs — > SaSa+fWs = Ws+3 (7.39)
or
lws 18 lws ol
W —— SpWs — Sa+B88Ws = Ws43. (7.40)

If (7.39) holds, then we define (vs, Vs41,Vs42, Us+3) := (W, Ws, SatWs, SaSa+sWs). We see that
v = (vo,v1,.-.,Um) € QW ,(E), and that

Sw)N{s+1,s+2,s+3} =0 (resp., {s+2})
— S(v)N{s+1,s+2,s+3} =0 (resp., {s+1}).
If Sv)n{s+1,s+2,s+ 3} = {s+ 1}, then we define c(s + 1) := b(s + 2). In this case,
YB(w,b) := (v,c) € QW ,,(Z) satisfies (3.18).

If (7.40) holds, then we define (vs, Vst1,Vs+2,Vs43) = (Ws, SWs, Sat+8S5Ws, Sa+55Ws). We
see that v = (vo,v1,...,vm) € QW) ,(E), and that

Sw)yNn{s+1,s+2,s+3} =0 (resp., {s +2})
— S(v)Nn{s+1,s+2,s+3} =0 (resp., {s+3}).
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If Sv)Nn{s+1,s+2,s+ 3} = {s + 3}, then we define c(s + 3) := b(s + 2). In this case,
YB(w,b) := (v,c) € QW ,(E) satisfies (3.18).

Case 6. Assume that #{8 +1<t<s+3|we_1 # wt} =3, i.e., Wy # W1 F Wst2 F Wst3.
Subcase 6.1 (to be paired with Subcase 4.1). Assume that (w,b) satisfies

|w;1a| |ws Bl lws "o
Wg T> aWs T> Sa+BSaWs T> SpSa+pBSaWs-

It follows from Lemma A.1 that

W % Sa+pWs = Wsy3  in QBG(W),

lw;lal is a simple root, and

sgn(w; o) = sgn(w; ' B) = sgn(w; ! (o + B)).
If we set vs11 1= ws and vsi2 1= SaqpWs, then we see that v = (vo,v1,...,vm) € QW ,(T).
Also, we have
(v) = {s+1} if —w;'a is a simple root,
| {s+3} if w;'ais a simple root.
We set c(t) :=1fort € S(v)N{s+1,s+ 2,5+ 3}. Then, YB(w,b) := (v,c) € 6\_7\/7)\@@)
satisfies (3.19).

Subcase 6.2 (to be paired with Subcase 4.2). Assume that (w,b) satisfies

lwi ol lws " B lws " af
W, T> aWs T> SatBSaWs —> $8Sa+pSaWs and  L(sqypws) < L(wg).

It follows from Lemma A.2 that

-1
Wg W++B)|> Sa+BWs = Ws43 in QBG(W)’

lw;lal is a simple root, and

sgn(w; ') = —sgn(w; ') = —sgn(w; ' (a + B)).

If we set vsy1 1= ws and vsy2 1= SaqpWs, then we see that v = (vo,v1,...,vm) € QW ,(T).
Also, we have
S(v) = {{3 +1} if —w; e is a simple root,
{s+3} if w;la is a simple root.
We set c(t) :=1for t € S(v)N{s+1,s+ 2,5+ 3}. Then, YB(w,b) := (v,c) € a/V)Hw(F)
satisfies (3.19).

Subcase 6.3 (to be paired with Subcase 4.3). Assume that (w,b) satisfies

lws *al lws B lws ol
Wy T> aWs —> SatBSaWs —> $8Sa+BSaWs and L(Sqqpws) < L(wy).

It follows from Lemma A.4 that

W % SatpWs = Wsyz  in QBG(W),

|w; 1| is a simple root, and

sgn(w; ') = —sgn(w;'B) = sgn(w; ' (a + B)).
If we set vs41 1= ws and Vsi2 1= Sa4pWs, then we see that v = (vo,v1,...,0m) € QW ,(Z).
Also, we have
S(v) = {{s +1} if —w; !B is a simple root,
{s+3} if w 1B is a simple root.
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We set c(t) :=1fort € S(v)N{s+1,s+2,s+3}. Then, YB(w,b) := (v,c) € C/QR/N)\’W(E)
satisfies (3.18).
Subcase 6.4 (to be paired with Subcase 4. 4) Assume that (w,b) satisfies

lws "ol lws " B lws " af
W, T> aWs —> SatBSaWs T> $8Sa+8SaWs and  L(sqypws) < L(wg).

It follows from Lemma A.5 that

Ws |ws++5)‘> Sa+pWs = Ws+3 in QBG(W)’

|w; 1| is a simple root, and

sgn(w; ') = —sgn(w;'B) = sgn(w; ! (a + B)).

If we set vsy1 1= ws and vsi2 1= SqqpWs, then we see that v = (v, v1,...,vm) € QW ,(E).
Also, we have

S(v) {s+1} if —w !B is a simple root,
V)=
{s+3} ifw;!B is a simple root.
We set c(t) :=1fort € S(v)N{s+1,s+2,s+3}. Then, YB(w,b) := (v,c) € C/QR/N)\’w(E)
satisfies (3.18).
Subcase 6.5 (to be paired with Subcase 4. 5) Assume that (w,b) satisfies

lws "ol lws " B lws " af
W, T> aWs —> SatBSaWs T> $8Sa+8SaWs and  L(sqypws) > L(wg).

It follows from Lemma A.6 that

Ws M} SatpWs = Wsy3 In QBG(W),

lw; | is a simple root, and

sgn(w; ') = sgn(wy (o + ).
If we set vs11 1= ws and vsi2 1= SaqpWs, then we see that v = (vo,v1,...,vm) € QW ,(T).
Also, we have

S(v) {s+1} if —w;!B is a simple root,

V)=
{s+3} ifw;!B is a simple root.

We set c(t) :=1fort € S(v)N{s+1,s+ 2,5+ 3}. Then, YB(w,b) := (v,c) € (5\\7/V)\7w(1“)
satisfies (3.19).

Subcase 6.6 (to be paired with Subcase 4.6). Assume that (w, b) satisfies

lwi ol lws " B lwi ol
W, T> aWs —> SatBSaWs —> $8Sa+pSaWs and  L(sqypws) > L(wy).

It follows from Lemma A.7 that

Ws M SatpWs = Wsy3 1IN QBG(W),

lw; | is a simple root, and

sgn(w; ') = sgn(w; (o + B)).
If we set vs11 1= w,s and vs12 1= Sa4pWs, then we see that v = (00, V1, ..., Um) € QWA,w(F)-
Also, we have
S(v) = {s+1} if —w; !B is a simple root,
B {s+3} if w !B is a simple root.
We set c(t) :=1fort € S(v)N{s+ 1,5+ 2,5+ 3}. Then, YB(w,b) := (v,c) € (5\\7/\7)\710@)
satisfies (3.19).
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Subcase 6.7 (to be paired with Subcase 4.7). Assume that (w,b) satisfies

lws "ol lws " B lws " af
W, T> aWs —Q—> SatBSaWs —> $8Sa+pSaWs and  L(sqypgws) > L(wg).

It follows from Lemma A.3 that

ws M SatpWs = Wst3  In QBG(W),

lw;1B| is a simple root, and

sgn(w; ' 8) = sgn(wy ' f) = sgn(wit(a + B)).

If we set vsy1 1= ws and vsi2 1= SaqpWs, then we see that v = (v, v1,...,vm) € QW ,(Z).
Also, we have

S(v) = {s+1} if —w !B is a simple root,
{s+3} if w 1B is a simple root.

We set ¢(t) :=1fort € S(v)N{s+ 1,5+ 2,5+ 3}. Then, YB(w,b) := (v,c) € WA7w(E)
satisfies (3.18).
Subcase 6.8 (to be paired with Subcase 6.9 below). Assume that (w,b) satisfies

lws ol lws ' Bl lws tal
It follows from Lemma A.9 that

w3 B ws ' |ws 8]
Wg ——?——) SpWs —Q——) Sa+BSaWs —B——> SaSa+BSsWs,

and that
sgn(w; 'a) = sgn(w; ' B) = sgn(w; ' (a + B)) = sgn(a) = —sgn(B) = —sgn(a + B).
If we set vs11 := sgws and Vsi2 = Sa4gSaWs, then we see that v = (vo, v1, ..., vm) € QW ,(E);

notice that S(v) N {s + 1,5+ 2,5+ 3} = (), and hence c is defined only by (7.6). In this case,
YB(w,b) := (v,c) € QW/\w( ) satisfies (3.18).
Subcase 6.9 (to be paired with Subcase 6.8). Assume that (w,b) satisfies

lws ol lws ' Bl lws Lol
ws Q a S T> Sa+ﬁ8aws —> Sﬁ8a+ﬁsaws
It follows from Lemma A.9 that

w8l [ws "o w8l
Wg ———> SpWs T> Sa+BSaWs T> SaSa+pBSpWs,

and that
sgn(w; 'a) = sgn(w; ' B) = sgn(w; ' (a + B)) = —sgn(a) = sgn(B) = —sgn(a + B).
If we set vs11 := sgws and Vs42 := Say8SaWs, then we see that v = (vo, v1, ..., vm) € QW ,(E);

notice that S(v) N {s + 1,5+ 2,5+ 3} = 0, and hence c is defined only by (7.6). In this case,
YB(w,b) := (v,c) € QWAw( ) satisfies (3.18).

Subcase 6.10. Assume that (w,b) satisfies

|w;1a| |ws Bl |lws "al
Ws T> aWs —> Sa+BSaWs —> SBSa+pBSaWs-

It follows from Lemma A.10 that
lws 8] lws ol lws ' Bl
W, T 58Ws T Sa+8SaWs T SaSa+B58Ws,
and that

sgn(w; o) = sgn(w; ' f) = sgn(w; ' (e + f)) = sgn(a) = sgn(B) = sgn(a + f).
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If we set vs11 := sgws and Vg2 := SaygSaWs, then we see that v = (vo, v1, ..., vm) € QW ,(E);
notice that S(v) N {s+1,s+2,s+ 3} = 0, and hence c is defined only by (7.6). In this case,
YB(w,b) := (v,c) € QW ,,(Z) satisfies (3.18).

Thus we have defined YB(w, b) for (w, b) € QW ,(T'). Also, we define YB(v,c) € QW,_,(T")Ll
(5\\/7\5\@(5) for (v,c) € (5\\/7\7/\@(5) by interchanging o and (3 in Cases 1-6, and then define

——(0

QW;L(E) as in (7.7) (with I" replaced by E). We can verify that these subsets and the map
(w,b) — YB(w, b) satisfy conditions (1)—(3). This completes the proof of Theorem 3.12 in the
case that (a, 8Y) = (8, aV) = —1.

7.2. In type A; x A;. We give a proof of Theorem 3.12 in the case that (a, 8Y) = (3, a") = 0.
Assume that I' € AP()) is of the form

T:Ao=A4) 5 A4 2. I A, = A,

with 7511 = o, Y542 = B3, i.e.,

C Ay A D Ags 2 A (i D).

Then, E = (B1,...,5m), where S := v, for 1 < k < m with k # s+ 1,5+ 2, and Bs+1 = S,
Bs+2 = «; note that = is an alcove path from A, to Ay of the form:

—_ s Ys+3 m
iAo =Ag o D A P B Y A T AL = A

for some alcove Bgy1.
Now, for w = (wo, w1, ..., wm) € QW , ('), we set

Vg = W for 0 < k <m with k # s+ 1,

and define vs41 as follows:

(i) if ws = wsy1 = wst2, then we define vs41 by vs = V541 = Vst2;

_ —1
(i) if ws M) SqWs = Wst1 = Wsy2, then we define vgy1 by vs = vsy1 M SaUst1 =
Vs42; )
(iii) if ws = wg41 M 58Wst1 = Wet2, then we define veq1 by v, M> 58Vs = Vg1 =
Vs42; )
(iv) if ws M SaWs = W1 M) SgWst1 = Wst2, then we define vgq by v o6l
|U;i10“

58Vs = Vg1 —— SqUst1 = Ust2.

Then it follows that v := (vo,v1,...,vm) € QW ,(E). Also, for b : S(w) — {0,1}, we define
c: S(v) — {0,1} as follows. Noting that S(w)\ {s+ 1,s+2} = S(v) \ {s+ 1,5+ 2}, we set

C|S(v)\{s+1,s+2} = b|S(w)\{s+1,s+2}' (741)

Notice that s +1 € S(w)N{s+1,s+ 2} if and only if s +2 € S(v) N {s+ 1,s + 2}; in this
case, we set c(s + 2) := b(s + 1). Similarly, notice that s +2 € S(w) N {s + 1,s + 2} if and
only if s+ 1 € S(v) N{s+1,s+ 2}; in this case, we set c(s + 1) := b(s + 2). Then we see that
YB(w,b) := (v,c) € QW ,(Z).

As in the case that (o, 8Y) = (8, a¥) = —1, we can verify that the map YB is a bijection

from QW&L(F) = QW, ,(I) to QW;L(E) = QW, ,(E) satisfying (3.18). This completes

the proof of Theorem 3.12 in the case that (o, V) = (8, a¥) = 0.
Thus we have established Theorem 3.12.
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APPENDIX A. TECHNICAL LEMMAS.

In this section, we assume that g is simply-laced, and that «, 3 € A are such that (a, 8Y) =

(B, V) = —1.
Lemma A.1. Let w € W. Then,

«@ B a
w % WSg % WS4 %) WSa 535

if and only if the following conditions (1)—(3) hold:
(1) |e| is a simple Toot;
(2) sgn(e) = sgn(f);
(3) we have the quantum edge w % WS4 in QBG(W).

In this case,
sgn(wa) = sgn(wp) = sgn(w(a + B)) = —sgn(a) = —sgn(B) = —sgn(a + B).
Proof. We may assume that o € AT, since

(, BY) = (B, a¥) = =1 = (—a, =f") = (=B, —a") = —1;

|ex] ] |l
W —— WSq — WSaS3 — WSaS35q
Q Q Q
= w % WS_q % WS_aS_3 % WS_aS5_3S_qa; (A1)

condition (1) (resp., (2), (3)) holds for « and 3

<= condition (1) (resp., (2), (3)) holds for —a and —p.

\
We set v := wsa5854 = WSa4 3.
We first prove the “only if” part. We have

E(U) = €<w) - 2(,0, a\/> +1- 2<107 |6’v> +1- 2<,0, av> +1

= {(w) — 2(p, 2" +|8]") + 3. (A.2)
Also, we have
(v) = Uwsarp) 2 L(w) = Lsarp) = L(w) = 2{p, la + B]) + 1. (A.3)
Combining (A.2) and (A.3), we obtain
(s la+ 1Y) — {p, 207 +(8]Y) +1> 0. (A1)

Suppose, for a contradiction, that 5 is negative. If az+ 3 is positive, then we see by (A.4) that
{p, —a¥ +2BY)+1 > 0, which contradicts the inequalities (p, @) > 1 and (p, ") < —1. If a+f3
is negative, then we see by (A.4) that (p, —3a¥) + 1 > 0, which also contradicts the inequality
{p, V) > 1. Hence § is positive, which shows (2). We see by (A.4) that —(p, a¥)+1 > 0, which
shows (1). In addition, since equality holds in the inequality —(p, @) +1 > 0, we deduce that
the inequality in (A.3) is, in fact, equality, which implies (3). This proves the “only if” part.

Next we prove the “if” part. Recall that « € A", and hence 8 € A" by (2). It follows from
(3) that

l(v) = U(wsarp) = L(w) = 2p, o’ + BY) + 1. (A.5)
Also, we see that
U(v) = L(wsasssa) > L(wsasg) — 2(p, @) + 1
> Uwsqe) — 2(p, BY) +1—2(p, a’) +1
> l(w) —2(p, ¥y +1—=2{p, BV +1—2(p, a¥) +1
= l(w) — 2(p, 20" + BY) + 3. (A.6)
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Combining (A.5) and (A.6), we obtain
(p, ¥ +BY) —{p, 2a¥ +BY) +1 <0; (A.7)

the left-hand side of (A.7) is equal to —(p, @") + 1, which is equal to 0 by (1). Hence the
inequality in (A.7) is equality. Therefore, we see that all the inequalities in (A.6) are, in fact,
equalities. This proves the “if” part.

|al

Since w ? ws, and a € AT, it follows from Lemma 2.1 that wa € A~. Similarly, since

WSaSg % WSaSse and a € AT, it follows from Lemma 2.1 that w3 = wsesp(a) € A™.

Hence we obtain sgn(wa) = sgn(wf) = —sgn(a) = —sgn(5). This completes the proof of the
lemma. d

By arguments similar to those for Lemma A.1, we can prove the following lemmas.

Lemma A.2. Let w € W. Then,

w |:| WSy IZ' wSasﬁ%wSasﬁsa and £(wsa+5)<£(’w)

if and only if the following conditions (1)—(3) hold:
(1) || is a simple root;
(2) sgn(a) = sgn(wa) = —sgn(B) = sgn(wf);

loa+8]

(3) we have the quantum edge w g Wats in QBG(W).

In this case,
() = — sen(B) = — sen(a + B) = sgn(wa) = sgn(wp) = sgn(wa + §)).
Lemma A.3. Let w e W. Then,
w % wsg % WSZSa % wspsesg  and  L(wsqqp) > L(w)
if and only if the following conditions (1)—(3) hold:
(1) || is a simple root;
(2) sgn(a) = —sgn(wa) = —sgn(wp);

3) we have the Bruhat edge w M WSatrs n QBG(W).
B B

In this case,
sgn(a) = —sgn(B) = —sgn(a + §) = —sgn(wa) = — sgn(wp) = — sgn(w(a + 8)).
Lemma A.4. Let w € W. Then,

w % wsg % Wsgsq % wspsasg  and  L(wsqqp) < L(w)
if and only if the following conditions (1)—(3) hold:
(1) || is a simple root;
(2) sgn(a) = — sgn(B) = — sgn(wo) ;

lo+8

(3) we have the quantum edge w g Wats in QBG(W).

In this case,
sgn(a) = —sgn(8) = — sgn(a + B) = — sgn(wa) = sgn(wp) = sgn(w(a + B)).
Lemma A.5. Let w € W. Then,

w % wsg % wWSZSa % wspsasg  and  L(wseip) < L(w)

if and only if the following conditions (1)—(3) hold:
(1) |e| is a simple root;
(2) sen(a) = — sgn(B) = sgn(wa)
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(3) we have the quantum edge w ‘aQi> WS4 in QBG(W).

In this case,
sgn(a) = —sgn(f) = —sgn(a + ) = sgn(wa) = —sgn(wf) = sgn(w(a + B)).
Lemma A.6. Let w € W. Then,

w % WSq iZL WSaSg % WSaSaSa  and U(wsayp) > L(w)

if and only if the following conditions (1)—(3) hold:
(1) |e| s a simple root;
(2) sgn(a) = sgn(wa);
la+8]

(3) we have the Bruhat edge w g WSa+p in QBG(W).

In this case,
sgn(wa) = sgn(a) = —sgn(wp) and  sgn(w(a + ) = sgn(a + #) = sgn(B).
Lemma A.7. Let w € W. Then,

w lgl > WSq |§| WS4 % wsaspsa  and  L(wsatg) > L(w)

if and only if the following conditions (1)—(3) hold:
(1) |o| is a simple Toot;
(2) sgn(a) = sgn(wp);
(3) we have the Bruhat edge w % wsqyg m QBG(W).

In this case,
sgn(wa) = —sgn(a) = —sgn(wpf) and  sgn(w(a+ B)) = sgu(a + B) = sgn(B).
Lemma A.8. For any w € W, we do not have the following directed path in QBG(W):

w |g—‘> WSq %) (NEPER % WS4 S35 (A.8)

Lemma A.9. Let w e W. Then,

w % WS ‘:%“ (NEPER % WSaS3Sa
if and only if

w —E'—) wsg % WSESq —|§—> WSESaSH-

In this case,
sgn(a) = sgn(8) = sgn(a + B) = sgn(wa) = —sgn(wh) = —sgn(w(a + B)).
Lemma A.10. Let w € W. Then,

« B «
w % WSq % WSa 83 % WSaS835q
if and only if
18] |a| 18]
w ? wsg ? WSBSw ? WSBSaSB-
In this case,

sgn(a) = sgn(B) = sgn(a + B) = sgn(wa) = sgn(wp) = sgn(w(a + 3)).
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APPENDIX B. AN EXAMPLE.

In this appendix, we assume that g is of type Ag, i.e., g = sl3(C). Applying Theorem 3.4
to the case that A = wy + wa, I' = (0, a2,0,a1) € APyeq(w1 + w2), and w = w,, we obtain in
K C KHX(C* (ngt)a

e 2 [0q (we)] = [0 (we) (—T1 — @2)]

+ @ ([Oac(p) (@1 + 2)] = [Oag(ety) (@1 +=2)]

— [0qe(sitpv) (@1 + @2)] + [Oqe (sasityv) (F1 + @2)]

+ [Oag(isstgn) (@1 + 2)] = [OQq ety (@1 + w2)])
+4[Oqqg(sasit,y) (@1 = 2w2)] = 4lO0qg (wot,y) (w1 — 202)]
+4l0qg(sisat,y) (201 + @2)] = 4lOQq (wot ) (— 21 + w2)]

+ 4[0qe (1)) — 110Qe (sasitgv)) — AUOQe (s152t9v)] T UOQe (wotgv))- (B.1)
Indeed, observe that
Lh=lh=1,13=2,l4=1, =1L hL=1=1=0
for the definitions of I; and [}, see Section 2.2. Also, we see that

QWW1+W2,wo =
{wl = (Wo, Wo, Wo, Wo, Wo ), Wa = (Wo,€,e,€,€), Wg = (wo, €, S2, 52, $2),
wy = (wo, €, S2, $251, $251), W5 = (Wo, €, S2, S251, Wo), Wg = (Wo, €, S2, S2, 5152),
w7 = (wo, €,e,€,81), Wg = (Wo, Wo, $152, $152, $152), W9 = (Wo, Wo, $152, 51, 51),
w10 = (Wo, Wo, 8182, 51, €), W11 = (Wo, Wo, Wo, €,€), Wig = (Wo, Wo, Wo, €, S1),
W13 = (Wo, Wo, Wo, W, $251) },

and that

2,4} ifj=1,

By iti=s

S(w;) = {4} it =0,

(2} ifj=11,12,13,

0 otherwise;

observe that #(5\/7\7 =1 +wewe = 21, which is greater than 15, the number of terms on the right-

hand side of (B.1). Here, recall the definition of G(w, b) for (w,b) € Q_VVAM from Theorem 3.4.
Let us first compute G(w, b) for w = wig, wi1. Note that S(wi) = 0 and S(w11) = {2}. We
have

(_1)(W1o,®) =1, (_1)(W11,2H0) =1, (_1)(W11,2'—>1) —1,

qwt(wig, 0) = 207 + g, qwt(wi1,2—=0) =6, qwt(wi1,2— 1) =201 + ag,
wt(w) = wo_l(wl + wq) for w = wig, Wiy,
deg(wig, 0) = 3, deg(wi1,2+—0) =1, deg(wi1,2+— 1) = 3.

Therefore,
G(wi1,2=0) = q[Oqg ()], Glwi, 2= 1) = _q3[OQG(t2aY+a§/)(_w1 + 2w2));

notice that G(wig, ) + G(wi1,2+— 1) =0.
Next, let us compute G(w,b) for w = wg, wia. Note that S(wg) = {4} and S(wi2) = {2}.

We have

(_1)(Wg,4'—>0) —1 (_1)(W9,4»—)1) -1

) )

(_1)(W12,2I—>0) — _1’ (_1)(W12,2I—>1) — 1

Y
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qwt(wg, 4 +— 0) =6, qwt(wg, 4 — 1) = 21 + ao,
th(ng, 21— 0) 0, th(le, 2+ 1) =201 + g,
wt(w) = w, 1(w1 + wq) for w = wy, wio,
deg(wg, 4 +— 0) = deg(wg,4 +— 1) =3,
deg(ng, 2 O) deg(ng, 2 1) = 3.
Therefore,
G(W974 = 0) = Q[OQG(tG\/)]7 G(W974 = 1) = _q3[OQg(t2aY+a§/)(_wl + 2@2)])
G(wi2,2—0) = —q[Oqs ), G(Wi2,2= 1) = qg[OQG(tQQY+a¥)(_w1 + 2w2));

notice that G(wg,4 — 0) + G(w12,2 — 0) =0 and G(wg,4 — 1) + G(w12,2+— 1) = 0.
By similar computations, we deduce that

G(Wl, 2 0, 4 — O) = [OQG(wo)(_wl — ?DQ)],

G(Wla 21,4 O) _q[OQg(wotalv)(_2wl + W2)],
G(Wl, 2 07 4 1) _q[OQg(wotaé/)(wl - 2w2)]7
( )

Gwi,2—~1,4—1) = [OQG(wotev)]’
G(w3,0) = ¢*[Oqq (1) (@1 + =2)]; G(w3,0) = =¢°[0qq (sst,) (@1 + 2)],
(W47 @) =q [OQG(S281t9V)(w1 + WQ)]v G(W57 @) = _q2[OQG(wot9V)(w1 + wz)]’
(Wﬁa @) q [OQG(Slszte\/)(wl + WZ)]a G(W77 (Z)) = qQ[OQG(SltGV)(wl + w2)]’

G(Wg, 3~ 0) = q[OQG(SISQtalv)(—le -+ WQ)], G(Wg, 3~ 1) = _q[OQG(5152t9V)]7
G(ng, 2 0) = Q[OQg(5251ta2v)(w1 - 2w2)]7 G(W137 2 1) = _q[OQg(32$1t9\/)]'
Thus we obtain (B.1), as desired.
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