
GEOMETRIC PROPERTIES OF

THE KAZHDAN-LUSZTIG SCHUBERT BASIS

CRISTIAN LENART, CHANGJIAN SU, KIRILL ZAINOULLINE, AND CHANGLONG ZHONG

Abstract. We study classes determined by the Kazhdan-Lusztig basis of the Hecke algebra in
the K-theory and hyperbolic cohomology theory of flag varieties. We first show that, in K-theory,
the two different choices of Kazhdan-Lusztig bases produce dual bases, one of which can be inter-
preted as characteristic classes of the intersection homology mixed Hodge modules. In equivariant
hyperbolic cohomology, we show that if the Schubert variety is smooth, then the class it determines
coincides with the class of the Kazhdan-Lusztig basis; this property was known as the Smoothness
Conjecture. For Grassmannians, we prove that the classes of the Kazhdan-Lusztig basis coincide
with the classes determined by Zelevinsky’s small resolutions. These properties of the so-called
KL-Schubert basis show that it is the closest existing analogue to the Schubert basis for hyperbolic
cohomology; the latter is a very useful testbed for more general elliptic cohomologies.
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1. Introduction

Let G be a split semisimple linear algebraic group with a fixed Borel subgroup B and a maximal
torus T ⊂ B. Let P be a parabolic subgroup containing the Borel subgroup B. The varieties
G/P and G/B are called flag varieties, and they are among the most concrete objects in algebraic
geometry, because of the Bruhat decompositions. For instance, the equivariant cohomology (Chow
group) of flag varieties is freely spanned by the classes of Schubert varieties X(w). Similarly, the
equivariant K-theory of flag varieties is spanned by the structure sheaves of Schubert varieties. The
field of studying intersection theory of these classes is called Schubert calculus, and is related to
combinatorics, representation theory, and enumerative geometry.

Due to the failure of Schubert varieties being smooth, the present paper deals with two different
directions in generalizing classical Schubert calculus. The first one is concerned with the Chern
classes. Although the classical Chern class theory does not work for the singular Schubert varieties,
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there are generalizations to this case, which are called Chern-Schwartz-MacPherson (CSM) classes
[M74, S65a, S65b] in homology and motivic Chern (MC) classes in K-theory [BSY10, AMSS19,
FRW21]. These generalized Chern classes of Schubert cells are closely related to the corresponding
stable bases of the cotangent bundle T ∗G/B, defined by Maulik and Okounkov in their study
of quantum cohomology/K-theory of Nakajima quiver varieties [MO19, O17]. These classes are
permuted by various Demazure-Lusztig operators [AM16, Su17, SZZ20, AMSS19, MNS20], and
are related to unramified principal series representations of the Langlands dual group over a non-
archimedean local field [SZZ20, AMSS19].

We focus on the Kazhdan-Lusztig bases of the Hecke algebra, which are related to the intersection
cohomology of Schubert varieties. Classically, there are two choices of Kazhdan-Lusztig bases. In
this paper, we consider the K-theory classes determined by these two collections of Kazhdan-Lusztig
bases. The cohomology case is studied in [MS20]. We first show that they are dual to each other in
Theorem 13 and 22. These dualities are closely related to the characteristic classes of mixed Hodge
modules, studied by Schürmann and his collaborators [S11, S17, BSY10]. Moreover, we interpret
one collection of these classes as the motivic Hodge Chern classes of the intersection homology
mixed Hodge modules of the Schubert varieties, which immediately implies that they are invariant
under the Serre-Grothendieck duality, see Proposition 17 and Corollary 19.

The other direction is to look at more general cohomology theories, namely the equivariant ori-
ented cohomology theories of Levine-Morel. They are those contravariant functors hT from the
category of smooth (quasi)-projective varieties to the category of commutative rings, such that for
any proper map of varieties, a push-forward of the cohomology groups is defined. One can then
define Chern classes, where the first Chern class of the tensor product of line bundles determines
a one-dimensional commutative formal group law. The structure of the equivariant oriented coho-
mology of flag varieties is studied in [CZZ16, CZZ19, CZZ15, LZZ20]. Roughly speaking, there is
an algebra generated by push-pull operators between hT (G/B) and hT (G/P ), called the formal
affine Demazure algebra DF , whose dual D∗F is isomorphic to hT (G/B).

Since Schubert varieties are not smooth in general, their fundamental classes are not defined
beyond the Chow group and K-theory. To resolve the singularities of a Schubert variety X(w),
one often uses the Bott-Samelson resolution, which is defined by fixing a reduced decomposition
of the Weyl group element w. For an oriented cohomology beyond singular cohomology/K-theory,
the classes determined by such resolutions depend on the choice of the reduced decomposition.
This corresponds to the fact that, for general hT , the push-pull operators do not satisfy the braid
relations [HMSZ14]. Because of this fact, there are no canonically defined Schubert classes.

Aiming for the definition of Schubert classes, in [LZ17, LZZ20], the authors consider the so-called
hyperbolic cohomology, denoted by h. This corresponds to a 2-parameter Todd genus, and is the
first interesting case after K-theory in terms of complexity. A Riemann-Roch type map is defined
from K-theory to the hyperbolic cohomology theory, which induces an action of the Hecke algebra
(considered on the K-theory side) on the hyperbolic cohomology of G/B. In this way, the action
of the Kazhdan-Lusztig basis defines classes KLw in hT (G/B), called KL-Schubert classes. In
[LZ17, LZZ20], there is a conjecture stating that, if the Schubert variety X(w) is smooth, then its
fundamental class coincides with the class KLw. It is proved in some special cases in [LZ17, LZZ20].
Our first main result proves this conjecture in full generality:

Theorem A (Theorem 28). If the Schubert variety X(w) is smooth, then the class determined by
X(w) in hT (G/B) coincides with the KL Schubert class KLw.

The idea of the proof is as follows: if X(w) is smooth, then all the Kazhdan-Lusztig polynomials
Py,w for any y ≤ w are equal to 1, so the Kazhdan-Lusztig basis for w is the sum of the Demazure-
Lusztig operators. As mentioned above, the MC classes of Schubert cells in K-theory are permuted
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by the Demazure-Lusztig operators. So the MC class of X(w) coincides with the KL class in K-
theory, and the restriction formula for the former is obtained in [AMSS19] by generalizing a result
of Kumar [K96]. By using the Riemann-Roch type map from K-theory to hyperbolic cohomology,
we compare the restriction formulas of the class KLw and of the class of the smooth Schubert
variety X(w), and prove the Smoothness Conjecture (Theorem A). For partial flag varieties, a
similar property is also proved.

As mentioned above, the Kazhdan-Lusztig basis defines classes in the K-theory of flag varieties,
but they do not coincide with the fundamental classes of Schubert varieties, whether smooth or not.
However, in hT (G/B), our Theorem A shows that, for smooth Schubert varieties, their fundamental
classes coincide with the classes defined by the Kazhdan-Lusztig basis. It is unclear to us why such
phenomena appear, and we hope to explore this in a future project.

Restricting to type A Grassmannians, we prove more geometric and combinatorial properties.
For example, Zelevinsky constructed small resolutions of all Schubert varieties [Z83]. Our second
main result is the following:

Theorem B (Theorem 42). The KL-Schubert classes for the Grassmannians coincide with the
hyperbolic cohomology classes determined by Zelevinsky’s small resolutions.

To prove this theorem, note that Zelevinsky’s small resolutions are similar to the Bott-Samelson
resolutions, except that, instead of using minimal parabolic subgroups, one considers more general
parabolic subgroups. So the small resolution classes can be computed by using relative push-
pull operators between hyperbolic cohomology of G/P and G/Q. These operators were studied
in [CZZ19]. On the other hand, in [KL00], a factorization of the Kazhdan-Lusztig basis elements
for Grassmannians is exhibited. By carefully transforming this factorization, one can write the
Kazhdan-Lusztig basis elements as products of “relative” Kazhdan-Lusztig elements. Finally, by
identifying the latter with the relative push-pull operators, one proves Theorem B. By the unique-
ness of the Kazhdan-Lusztig basis, it follows that all small resolution classes are the same.

There have been important developments in Schubert calculus for general cohomology theories.
More specifically, for elliptic cohomology, a stable basis in the cotangent bundle T ∗G/B was de-
fined (see [AO21, O20], which generalizes stable bases for cohomology and K-theory), and canonical
classes were associated with Bott-Samelson resolutions of Schubert varieties [RW20, KRW20]. The
elliptic cohomology used in the latter papers can be considered as the oriented cohomology the-
ory associated with a certain elliptic formal group law determined by the Jacobi theta functions;
meanwhile, the mentioned cohomology classes are elliptic analogues of the CSM classes in ordinary
cohomology and the MC classes in K-theory. On the other hand, the hyperbolic formal group
law we consider here comes from a singular cubic curve (in Weierstrass form), so it is a singular
elliptic formal group law, see [BB10]. The properties of the KL-Schubert basis proved in this paper
(namely, the Smoothness Conjecture and the interpretation in terms of the Zelevinsky small reso-
lutions) show that this basis is the closest existing analogue to the Schubert basis for hyperbolic
cohomology. Furthermore, the latter is a very useful testbed for more general elliptic cohomologies.

The paper is organized as follows. In Section 2, we recall the algebraic construction of the
equivariant oriented cohomology of flag varieties. In Section 3, we recall basic facts about the
Hecke algebra, MC classes, and the smoothness criterion. In Section 4, we use Kazhdan-Lusztig
bases to define the two collections of KL classes in KT (G/B) and KT (G/P ), and show that they
are dual to each other. We also give a geometric interpretation for one of them using mixed Hodge
modules. In Section 5, we recall the definition of KL-Schubert classes in hyperbolic cohomology,
and prove the Smoothness Conjecture. In Section 6, we prove Theorem 42, which connects small
resolutions for Grassmannians with the corresponding KL-Schubert classes.
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2. Formal affine Demazure algebra and its dual

We recall the definition of the formal affine Demazure algebra and its relation with equivari-
ant generalized (oriented) cohomology of flag varieties following [HMSZ14, CZZ16, CZZ19] and
especially the paper [CZZ15].

Notation. Let G be a semisimple simply connected linear algebraic group over C, and fix B a
Borel subgroup with a maximal torus T ⊂ B. Let X∗(T ) denote the character lattice of T . Let
W = NG(T )/T be the Weyl group.

Let Σ denote the set of associated roots and let Σ+ denote the subset of roots in B. For any
root α, let α > 0 (resp. α < 0) denote α ∈ Σ+ (resp. −α ∈ Σ+).

Let Π = {α1, . . . , αn} denote the set of simple roots. Let ` : W → Z denote the length function.
For any J ⊂ Π, denote by WJ the parabolic subgroup corresponding to J , by wJ its longest
element, and by W J (resp. JW ) the set of minimal length representatives of left (resp. right)
cosets W/WJ (resp. WJ\W ). Specifically, w0 := wΠ ∈ W is the longest element. More generally,

if J ′ ⊂ J ⊂ Π, denote wJ/J ′ := wJwJ ′ ∈ W J ′ (resp. wJ ′\J := wJ ′wJ), that is, wJ/J ′ (resp. wJ ′\J)

is the maximal element (in terms of the Bruhat order) in the set WJ ∩W J ′ (resp. WJ ∩ J ′W ).
Denote ΣJ := {α ∈ Σ|sα ∈WJ}, and Σ±J := ΣJ ∩ Σ±. Throughout the paper, we use the notation
‘\’ for right cosets, not set difference, which is denoted by ‘−’.

Formal group algebra. Let F be a one dimensional formal group law over a commutative unital
ring R. The formal group algebra R[[X∗(T )]]F is defined to be the quotient of the completion

R[[xλ|λ ∈ X∗(T )]]/JF ,

where JF is the closure of the ideal generated by 〈x0, F (xλ, xµ) − xλ+µ | λ, µ ∈ X∗(T )〉. For
simplicity it will be denoted by S. It can be shown that if {ω1, ..., ωn} is a basis of X∗(T ), then S
is (non-canonically) isomorphic to R[[ω1, . . . , ωn]].

Localized twisted group ring. Let Q = S
[

1
xα
|α > 0

]
, and QW = Q⊗R R[W ]. Denote the canonical

left Q-basis of QW by δw, w ∈W , and define a product on QW by

(pδw) · (p′δw′) := pw(p′)δww′ , p, p′ ∈ Q,w,w′ ∈W .

In particular, we have δvp = v(p)δv, p ∈ Q.

Push-pull elements. For each root α, define the formal push-pull element

Yα := (1 + δsα) 1
x−α
∈ QW .

For any reduced word w = si1 · · · sik , where si is the simple reflection corresponding to the ith
simple root in Π, define Iw = (i1, . . . , ik), and YIw = Yαi1 · · ·Yαik . The product YIw depends on
the choice of the reduced sequence, unless the formal group law F is of the form x+ y + βxy with
β ∈ R. For simplicity, denote δi := δsi , Yi := Yαi and x±i := x±αi .
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Formal affine Demazure algebra. Let DF be the subring of QW generated by elements of S and
push-pull elements Yi, i = 1, . . . , n. This is called the formal affine Demazure algebra. It is proved
in [CZZ16] that DF is a free left S-module with basis {YIw |w ∈W}.

Example 1. If R = Z and Fm(x, y) = x+ y − xy (multiplicative formal group law), then

S ∼= Z[X∗(T )]∧ , xα 7→ 1− e−α ,

where the completion is taken with respect to the kernel of the augmentation map eλ 7→ 1. The
ring DF is then isomorphic to the (completed) affine 0-Hecke algebra.

For J ′ ⊂ J ⊆ Π, denote

xJ/J ′ :=
∏

α∈Σ−J −Σ−
J′

xα , xJ := xJ/∅ .

Fixing a set of left coset representatives WJ/J ′ of WJ/WJ ′ , we define a push-pull element

(1) YJ/J ′ :=

 ∑
w∈WJ/J′

δw

 1

xJ/J ′
∈ QW , YJ := YJ/∅ =

 ∑
w∈WJ

δw

 1

xJ
.

Note that the definition of YJ/J ′ depends on the choice of WJ/J ′ , and in general YJ/J ′ might not be
in DF . Similarly, fixing a set of right coset representatives WJ ′\J of WJ ′\WJ , one can define YJ ′\J .
If J = Π, xΠ and YΠ are correspondingly defined. For instance, if J = {i}, then Y{i} = Yαi . Note
that in general YJ/J ′ ∈ QW , but YJ ∈ DF . We have

(2) YJ/J ′YJ ′ = YJ = YJ ′YJ ′\J .

There is an anti-involution ι of DF , defined by

(3) ι(pδv) := δv−1p
v(xΠ)

xΠ
= v−1(p)

xΠ

v−1(xΠ)
δv , p ∈ Q, v ∈W .

For example, it is easy to prove that ι(YJ) = YJ , and

(4) ι(YIw) = YI−1
w
,

if I−1
w is the sequence obtained from Iw by reversing the order.

Dual of the Demazure algebra. Let D∗F denote the S-linear dual HomS(DF , S) with the dual basis
Y ∗Iw , w ∈ W . One can also consider the Q-linear dual Q∗W = HomQ(QW , Q), which is isomorphic

to the set-theoretic Hom(W,Q). There is the dual basis fw, w ∈W of Q∗W such that fw(δv) = δKrw,v
and fw · fv = δKrw,vfw, where δKrw,v is the Kronecker symbol. It turns Q∗W into a commutative ring
with identity 1 =

∑
w fw. By definition, we have D∗F ⊂ Q∗W (where the former is a S-module, and

the latter is considered as a Q-module), and the product on Q∗W restricts to the product on D∗F .

Two actions on the dual. There are actions denoted ‘•’ and ‘�’ of the ring QW on its Q-linear dual
Q∗W defined as:

(5) (pδv) • (qfw) := qwv−1(p)fwv−1 and (pδv)� (qfw) := pv(q)fvw , v, w ∈W, p, q ∈ Q .

It follows from [LZZ20, §3] that the •-action is Q-linear, while the �-action is not, and the two
actions commute. We also have z • pte = ι(z) � pte. Moreover, the two actions induce (via the
embeddings DF ⊂ QW and D∗F ⊂ Q∗W ) corresponding actions of DF on D∗F . For homology and
K-theory, the • and � actions correspond to the right and left actions considered in [MNS20].
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The class of a point. For each w ∈W define the element

ptw := xΠ • fw = w(xΠ)fw ,

and call it the class of a point. From the definition, we have z • pte = ι(z) � pte, z ∈ QW , where
e ∈W denotes the identity element.

Generalized (oriented) cohomology. Given a formal group law F over R, let h be the corresponding
free algebraic generalized (oriented) cohomology theory obtained from the algebraic cobordism Ω
of Levine-Morel [LM07] by tensoring with F , i.e.

h(−) := Ω(−)⊗Ω(pt) R .

Here Ω(pt) is the Lazard ring, the coefficient ring of universal formal group law, and Ω(pt) → R
is the evaluation map defining F . Note that such theories are different from the usual general-
ized cohomology theories from algebraic topology, since the formal group laws do not need to be
Landweber exact (since the localization sequences are only right exact. See [LM07, $3.2]). We refer
to [LM07] for all the properties of such theories.

In particular, for the additive formal group law Fa(x, y) = x+ y one obtains the Chow ring and
for the multiplicative group law Fm one gets the usual K-theory.

Equivariant generalized cohomology. Let hT be the respective T -equivariant generalized (oriented)
cohomology theory of [CZZ15, §2]. Replacing hT if necessary by its characteristic completion (see
[CZZ15, §3]), the main result of [CZZ15] says that the formal affine Demazure algebra DF and its
dual D∗F are related to generalized cohomology hT (G/B) and hT (G/PJ) as follows:

(1) There is an isomorphism D∗F
∼= hT (G/B), which maps the element YI−1

w
• pte = YIw � pte

to the Bott-Samelson class determined by the sequence Iw.
(2) Via the above isomorphism, the map YΠ • : D∗F → (D∗F )W ∼= S coincides with the map

hT (G/B)→ hT (Spec(k)).
(3) The group W acts on D∗F by restriction of the •-action via the embedding W ⊂ DF . For

any subset J ⊂ Π, one has an isomorphism (D∗F )WJ ∼= hT (G/PJ), and the map YJ : D∗F →
(D∗F )WJ coincides with the push-forward map hT (G/B)→ hT (G/PJ). More generally, the
map YJ/J ′ • : Q∗W → Q∗W restricts to a map (D∗F )WJ′ → (D∗F )WJ , which corresponds to
hT (G/PJ ′)→ hT (G/PJ).

(4) The embedding D∗F → Q∗W coincides with the restriction to T -fixed points map hT (G/B)→
Q⊗S hT (W ), and the element ptw is mapped to the class ew of T -fixed point of G/B.

Remark 2. Observe that the localization axiom [CZZ15, A3] used to prove the above properties
can be replaced by a weaker CD-property of [NPSZ18, Def. 3.3] which holds for any hT defined
using the Borel construction (see [NPSZ18, Example 3.6]).

Generalized Bott-Samelson varieties. Let Pi, Qi, for i = 1, ...,m, be a collection of parabolic sub-
groups such that Qi ⊂ Pi ∩ Pi+1, and Qm := B. Define

Z = P1 ×Q1 P2 ×Q2 × · · · ×Qm−1 Pm.

There is a canonical map

π : Z/Qm → G/Qm, (p1, ..., pm) 7→ p1p2 · · · pm.
The following lemma will be used in §6 in identifying the small resolution of Zelevinsky with the
factorization of Grassmannian Kazhdan-Lusztig basis of Kirillov-Lascoux.

Lemma 3. Under the isomorphism hT (G/B) ∼= D∗F and viewing hT (G/P ) ∼= (D∗F )WP , we have

π∗(1) = (YPm/Qm−1
YPm−1/Qm−2

· · ·YP2/Q1
YP1) • pte .
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Proof. We use induction on m. If m = 1, then the map is π : P1/Q1 → G/Q1. We have the
following commutative diagram

P1/Q1

q

��

π // G/Q1

pP1/Q1

��

pt
i // G/P1.

Here i is the embedding of the identity point. Then

π∗(1) = π∗q∗(1) = (pP1/Q1
)∗i∗(1).

According to [CZZ15, Lemma 8.8], we see that i∗(1) = YP1 • pte, and p∗P1/∅ is the embedding

(D∗F )WP1 ↪→ (D∗F )WQ1 ⊂ D∗F . So it holds when m = 1.

Now denote Z ′ = P1 ×Q1 P2 ×Q2 · · · ×Pm−2 Qm−1. We then have the following commutative
diagram

Z ′ ×Qm−1 Pm/Qm
π //

q

��

G/Qm

pPm/Qm
��

Z ′/Qm−1

pPm/Qm−1
◦π′

// G/Pm

where π′ : Z ′/Qm−1 → G/Qm−1 is the map multiplying all components together. Then

π∗(1) = π∗q∗(1) = (pPm/Qm)∗(pPm/Qm−1
)∗π
′
∗(1).

From [CZZ15, p. 137], we see that (pPm/Qm−1
)∗ corresponds to YPm/Qm−1

• , and (pPm/Qm)∗ is just

the embedding (DF )WPm ↪→ (DF )WQm . The conclusion then follows from induction. �

Corollary 4. Via the isomorphism hT (G/B) ∼= D∗F , we have

π∗(1) = (YP1/Q1
· · ·YPm−1/Qm−1

YPm)� pte .

Proof. Note that YP/QYQ = YP for any P ⊃ Q, and YP • pte = YP � pte (see [LZZ20, (3.5), (3.8)]).
If m = 2, we have

π∗(1) = (YP2/Q1
YP1) • pte = YP2/Q1

• YP1 � pte = YP2/Q1
• YP1/Q1

� YQ1 � pte

= YP2/Q1
• YP1/Q1

� YQ1 • pte = YP1/Q1
� (YP2/Q1

YQ1) • pte = YP1/Q1
� YP2 � pte .

The general case then follows similarly. �

We prove a lemma that will be used later in Section 6:

Lemma 5. We have

YP1/Q1
YP2/Q2

· · ·YPm−1/Qm−1
YPm = YP1YQ1\P2

· · ·YQm−1\Pm .

Proof. This follows from recursive use of the identities (2) and the assumption that Qi ⊂ Pi∩Pi+1.
For example, one has

YPm−1/Qm−1
YPm = YPm−1/Qm−1

YQm−1YQm−1\Pm = YPm−1YQm−1\Pm .

By induction, the formula holds. �

3. Hecke algebra, motivic Chern class, and the smoothness criterion

In this section, we recall the definition of the Kazhdan-Lusztig basis and the motivic Chern (MC)
classes.
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The multiplicative case. Set R = Z[t, t−1, (t + t−1)−1], where t is a parameter. Definitions of
section 2 applied to the multiplicative formal group law Fm over R give the respective formal group
algebra and its localization:

Sm := R[[X∗(T )]]Fm , Qm := Sm

[
1
xα
|α > 0

]
;

the localized twisted group algebra and the formal affine Demazure algebra:

Qm,W := Qm ⊗R R[W ] , Dm := 〈Sm, Y1, . . . , Yn〉 ⊂ Qm,W .

The Demazure-Lusztig elements. Define the Demazure-Lusztig elements in Qm,W as

τi := Y m
i (t− t−1eαi)− t =

t−1 − t
1− e−αi

+
t− t−1e−αi

1− e−αi
δmi .

It can be shown that τi ∈ Dm, i = 1, ..., n satisfy the standard quadratic relation τ2
i = (t−1−t)τi+1,

and the braid relations. So they generate the Hecke algebra H over R.

Remark 6. Let y = −t−2. As operators on D∗m
∼= R⊗Z KT (G/B), then t−1τi � agrees with T Li

and t−1τi • agrees with T R,∨i , respectively, where the latter are notions from [MNS20, Section 5.3]
and [AMSS19].

The Kazhdan-Lusztig basis. Consider the involution of the Hecke algebra H → H, z 7→ z such that

(6) t = t−1, τi = τ−1
i .

There is a basis of H over R denoted by {γw}w∈W and called the Kazhdan-Lusztig basis. It is
invariant under this involution and satisfies

γw ∈ τw +
∑
v<w

tZ[t]τv .

We set tw = t`(w) and

γw =
∑
v≤w

twt
−1
v Pv,w(t−2)τv ,

where Pv,w are the Kazhdan-Lusztig polynomials. In addition to this, there is another canonical
basis defined by (see [KL79])

γ̃w :=
∑
v∈W

εwεvt
−1
w tvPv,w(t2)τv ∈ τw +

∑
v<w

t−1Z[t−1]τv ,

where εw is (−1)`(w). Since the Schubert variety X(wJ) ⊂ G/B is smooth, the Kazhdan-Lusztig
polynomials Pv,wJ = 1 for any v ≤ wJ . Thus, γwJ =

∑
v≤wJ twJ t

−1
v τv.

More generally, for J ′ ⊂ J ⊆ Π, denote

(7) γJ := γwJ , γJ/J ′ :=
∑

v∈WJ∩WJ′

twJ/J′ t
−1
v τv , γJ ′\J :=

∑
v∈WJ∩J′W

twJ′\J t
−1
v τv.

It is not difficult to see that

(8) γJ = γJ/J ′γJ ′ = γJ ′γJ ′\J .

If Q ⊂ P are the parabolic subgroups corresponding to J ′ ⊂ J , respectively, denote γP/Q = γJ/J ′ .
For γJ/J ′ and γJ ′\J , the analogue of Lemma 5 holds. It will be used in considering KL-Schubert
classes in hyperbolic cohomology of partial flag varieties below.
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Motivic Chern classes. We recall the definition of the motivic Chern classes, following [BSY10,
FRW21, AMSS19]. Let X be a non-singular quasi-projective complex algebraic variety with an
action of the torus T . Let GT0 (var/X) be the (relative) Grothendieck group of varieties over X. By
definition, it is the free abelian group generated by isomorphism classes [f : Z → X] where Z is a
quasi-projective T -variety and f is a T -equivariant morphism modulo the usual additivity relations

[f : Z → X] = [f : U → X] + [f : (Z − U)→ X] ,

for any T -invariant open subvariety U ⊂ Z.

Theorem 7. There exists a unique natural transformation MC−t−2 : GT0 (var/X) → KT (X)[t−2]
satisfying the following properties:

(1) It is functorial with respect to T -equivariant proper morphisms of non-singular, quasi-
projective varieties.

(2) It satisfies the normalization condition

MC−t−2 [idX : X → X] =
∑

(−1)it−2i[∧iT ∗X ] =: λ−t−2(T ∗X) ∈ KT (X)[t−2] .

The non-equivariant case is proved in [BSY10], and the equivariant case is shown in [AMSS19,
FRW21].

Let

D(−) := (−1)dimX RHomOX (−, ωX)

be the Serre-Grothendieck duality functor on KT (X), where ωX :=
∧dimX T ∗X is the canonical

bundle of X. Extend it to KT (X)[t±1] by setting D(ti) = t−i.

Definition 8. Let Z ⊂ X be a T -invariant subvariety.

(1) Define the motivic Chern class of Z to be

MC−t−2(Z) := MC−t−2([Z ↪→ X]) .

(2) Further assume that Z is pure-dimensional. Define the Segre motivic Chern class of Z as
follows (see [MNS20, Definition 6.2]),

SMC−t−2(Z) := t−2 dimZ · D(MC−t−2(Z))

λ−t−2(T ∗X)
.

Smoothness of Schubert varieties. Consider the variety of complete flags G/B. Let X(w)◦ :=

BwB/B and Y (w)◦ := B−wB/B be the Schubert cells. The closures X(w) := X(w)◦, Y (w) :=

Y (w)◦ are the Schubert varieties. Observe that u ≤ v with respect to the Bruhat order if and only if
X(u) ⊂ X(v). Let ptmw = w(xΠ)fmw ∈ Q∗m,W denote the class of the T -fixed point ew corresponding
to w ∈ W . Note that here fmw is the standard basis in Q∗m,W defined in §2, and the superscript m
is to indicate the multiplicative formal group law.

The key property of the motivic Chern classes of the Schubert cells that we need are listed below.

Theorem 9. (1) [MNS20, Theorem 7.6] For any w ∈W , we have

MC−t−2(X(w)◦) = t−1
w τw � ptme .

(2) [AMSS19, Theorem 9.1] For any u ≤ w ∈ W , the Schubert variety X(w) is smooth at eu if
and only if

MC−t−2(X(w))|u =
∏

α>0, usα�w

(1− euα)
∏

α>0, usα≤w
(1− t−2euα) ,

where MC−t−2(X(w))|u denotes the pullback of MC−t−2(X(w)) to the fixed point eu.
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Remark 10. (1) This theorem is used to prove the Bump, Nakasuji and Naruse’s conjectures
about Casselman basis in unramified principal series representations, see [BN11, BN19,
N14, AMSS19, Su19].

(2) The “only if” direction of part (2) follows directly from basic properties of motivic Chern
classes, and it holds in a much more general setting, see [AMSS19, §9.1].

Proof. The first part follows from the reference mentioned. The second one follows from the fact
δw0 � (MC−t−2(Y (w))) = MC−t−2(X(w0w)). �

Given w ∈W , define the coefficients aw,u ∈ Qm by the following formulas:

(9) Γw :=
∑
v≤w

t−1
v τv =

∑
u≤w

aw,uδ
m
u ∈ Qm,W .

Note that if the Schubert variety X(w) is smooth, then Pv,w = 1 for all v ≤ w, so Γw = t−1
w γw. It

is immediate to get the following corollary from Theorem 9.

Corollary 11. For any u ≤ w ∈ W , the Schubert variety X(w) is smooth at the fixed point eu if
and only if

aw,u =
∏

α>0, usα≤w

1− t−2euα

1− euα
.

Proof. By Theorem 9 (1) and (9), we have

MC−t−2(X(w)) =
∑
v≤w

MC−t−2(X(v)◦) =
∑
v≤w

t−1
v τv � ptme

=
∑
v≤w

aw,vδ
m
v � ptme =

∑
v≤w

aw,v
∏
α>0

(1− evα)fv .

Thus, we have

MC−t−2(X(w))|u = aw,u
∏
α>0

(1− euα) .

The corollary follows from this and Theorem 9 (2). �

4. Dual bases in K-theory and characteristic classes of mixed Hodge modules

In this section, we use the two Kazhdan-Lusztig bases of the Hecke algebra to define two collec-
tions of classes in K-theory, and show that they are actually dual to each other. We also give a
geometric interpretation of one of these collections using the intersection homology mixed Hodge
modules. These are also generalized to the partial flag variety case.

K-theory KL classes.

Definition 12. We define two collections of classes (called KL classes) in KT (G/B)[t±1] as follows:

Cw := γw � ptme , C̃w := γ̃w−1w0
• ptmw0

.

They form a basis of the localized K-theory Qm ⊗Sm KT (G/B).

Let 〈−,−〉 denote the usual non-degenerate tensor product pairing on KT (G/B)[t±1], i.e., 〈f, g〉 =
Y m

Π • (f · g), f, g ∈ KT (G/B)[t±1]. The first result of this section is the following.

Theorem 13. For any w, v ∈W , we have

〈Cw, C̃v〉 = δKrw,v
∏
α>0

(t− t−1e−α) .
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We first recall that the Segre motivic Chern classes of Schubert cells enjoy the following proper-
ties.

Lemma 14. (1) For any v ∈W , we have

(τw0v)
−1 • ptmw0

= tw0v

∏
α>0

(1− t−2e−α) SMC−t−2(Y (v)◦) .

(2) For any u, v ∈W , we have

〈MC−t−2(X(u)◦), SMC−t−2(Y (v)◦)〉 = δKru,v .

Proof. The first part follows from Remark 6 and [MNS20, Theorem 7.4], while the second one
follows from Theorem 7.1 of loc. cit.. �

Remark 15. By definition, (t−1τi)|t=∞ = Y m
i − 1. Thus, from Theorem 9(1), we get

MC−t−2(X(w)◦)|t=∞ =t−aw τw � ptme |t=∞ = [OX(w)(−∂X(w))] =: Iw ,

where ∂X(w) = ∪v<wX(v) is the boundary of the Schubert variety X(w), and Iw denotes its ideal
sheaf. On the other hand, (t−1τ−1

i )|t=∞ = Y m
i . Thus, the first part of the lemma gives

SMC−t−2(Y (v)◦)|t=∞ = (tw0vτw0v)
−1 • ptmw0

|t=∞ = [OY (v)] .

Therefore, setting t =∞ in the second part of the lemma, we get the classical fact〈
Iw, [OY (v)]

〉
= δKru,v .

Proof of Theorem 13. First of all, we have the following inversion formula for the Kazhdan-Lusztig
polynomials (see [KL79, Theorem 3.1]):∑

z

εyεzPx,zPw0y,w0z = δKrx,y .

Therefore,

(10)
∑
z

εxεzPw0z,w0xPz,y = δKrx,y .

By definition and Theorem 9 (1),

(11) Cw =
∑
u≤w

twt
−1
u Pu,w(t−2)τu � ptme =

∑
u≤w

twPu,w(t−2) MC−t−2(X(u)◦) .

On the other hand, since γ̃w is invariant under the involution, we get

γ̃w =
∑
v∈W

εwεvtwt
−1
v Pv,w(t−2)τ−1

v−1 .

Thus,

C̃w =γ̃w−1w0
• ptmw0

=
∑
v≥w

εwεvtw−1w0
t−1
v−1w0

Pv−1w0,w−1w0
(t−2)τ−1

w0v • ptmw0

=
∏
α>0

(1− t−2e−α)
∑
v≥w

εwεvtw−1w0
Pv−1w0,w−1w0

(t−2) SMC−t−2(Y (v)◦) ,(12)

where the last step follows from Lemma 14 (1).
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Therefore, we have

〈Cw, C̃y〉 =
∏
α>0

(1− t−2e−α)twty−1w0

∑
u

Pu,w
∑
v

εvεyPv−1w0,y−1w0
δKru,v

=
∏
α>0

(1− t−2e−α)twty−1w0

∑
u

Pu,wεuεyPw0u,w0y

=
∏
α>0

(t− t−1e−α)δKrw,y ,

where the first equality follows from Lemma 14 (2), the second follows from Pu,v = Pu−1,v−1 , and
the third one follows from (10).

An immediate corollary of the proof is the following.

Corollary 16. If the Schubert variety X(w) is smooth, then

Cw =
∑
u≤w

tw MC−t−2(X(u)◦) = tw MC−t−2(X(w)) ∈ KT (G/B)[t±1] .

Proof. It follows directly from (11) and the fact Pu,w = 1 for all u ≤ w. �

Characteristic classes of mixed Hodge modules. For any parabolic subgroup PJ , letK0(MHM(G/PJ , B))
denote its Grothendieck group of B-equivariant mixed Hodge modules. Recall there is a motivic
Hodge Chern transformation (see [S11, Definition 5.3 and Remark 5.5])

MHC−t−2 : K0(MHM(G/PJ , B))→ KB(G/PJ)[t±1] ' KT (G/PJ)[t±1] ,

such that for any [f : Z → G/PJ ] ∈ GB0 (var/(G/PJ)),

(13) MC−t−2([f : Z → G/PJ ]) = MHC−t−2([f!QHZ ]) ,

where [QHZ ] := [k∗QHpt] ∈ K0(MHM(Z,B)) and k : Z → pt is the structure morphism. The

construction also works for B−-equivariant mixed Hodge modules, where B− is the opposite Borel
subgroup. The natural transformation MC−t−2 commutes with the Serre-Grothendieck dual as
follows, see Corollary 5.19 of loc. cit.,

(14) MHC−t−2 ◦D = D ◦MHC−t−2 .

Here the first D is the dual of the mixed Hodge modules, and the second one is the Serre-
Grothendieck dual. Both are denoted by D, if no confusion is possible.

For any u ∈W , let iu : X(u)◦ ↪→ G/B and ju : Y (u)◦ ↪→ G/B be the inclusions. Then by (13)

MC−t−2(X(u)◦) = MHC−t−2([iu!QHX(u)◦ ]) ,

whereQHX(u)◦ is the constant mixed Hodge module on the Schubert cell X(u)◦. Since D◦jv! = jv∗◦D,

and

D(QHY (v)◦) = QHY (v)◦ [2 dimY (v)◦](dimY (v)◦) ,

where [2 dimY (v)◦] means shift by 2 dim Y (v)◦ and (dimY (v)◦) denotes the twist by the Tate

Hodge module QH(1)⊗ dimY (v)◦ , Equation (14) gives

SMC−t−2(Y (v)◦) =
MHC−t−2([jv∗QHY (v)◦ ])

λ−t−2(T ∗G/B)
.

Using these, Lemma 14(2) can also be proved using mixed Hodge modules by J. Schürmann. For
the analogue in equivariant homology, see [S17, Theorem 1.2].
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For any Schubert variety X(w), let [ICH
X(w)] ∈ K0(MHM(G/B,B)) denote the intersection ho-

mology Hodge module on X(w). Then it is well known that (see [KL80, T87, KT02]),

[ICH
X(w)] =

∑
u≤w

εwPu,w(t−2)[iu!QHX(u)◦ ] .

Thus,

MHC−t−2([ICH
X(w)]) =

∑
u≤w

εwPu,w(t−2) MC−t−2(X(u)◦) .

Comparing with (11), we get the following geometric interpretation of the KL classes Cw in Defi-
nition 12.

Proposition 17. For any w ∈W ,

Cw = twεw MHC−t−2([ICH
X(w)]) ∈ KT (G/B)[t±1] .

Remark 18. If X(w) is smooth or rationally smooth (i.e. [ICH
X(w)] = QHX(w)[dimX(w)]), then

Cw = twεw MHC−t−2([ICH
X(w)]) = tw MC−t−2(X(w)).

This is compatible with Corollary 16.

An immediate Corollary is the following.

Corollary 19. The canonical basis Cw is invariant under the Serre-Grothendieck duality, i.e.,

D(Cw) = Cw ∈ KT (G/B)[t±1] .

Proof. Since
D(ICH

X(w)) = ICH
X(w)(dimX(w)) ,

Equation (14) and Proposition 17 give

D(Cw) =D(twεw MHC−t−2([ICH
X(w)])) = t−1

w εw MHC−t−2(D([ICH
X(w)])) = Cw .

�

Parabolic case. In this subsection, we generalize the above results to the parabolic case. Let J ⊂ Π
be a subset of simple roots, with corresponding parabolic subgroup PJ . Schubert cells and varieties
and opposite Schubert cells and varieties of G/PJ are indicated by subscripts J . Recall there
exist parabolic Kazhdan-Lusztig polynomials (see [D79, KT02]), denoted by P Jv,w ∈ Z[t−2], where

v, w ∈W J . Here our P Jv,w is the u = −1 parabolic KL polynomials in [D79], which is also denoted

by P J,qv,w in [KT02, Remark 2.1]. We have the following property, which generalizes [D79, Proposition
3.4].

Lemma 20. [LZZ20, Proposition 5.19] For any w, v ∈W J and u ∈WJ ,

Pvu,wwJ = P Jv,w .

Let Qu,w := Pw0w,w0u denote the usual inverse KL polynomials, which satisfy∑
w

εuεwQu,wPw,v = δKru,v .

For any u,w ∈ W J , let QJu,w ∈ Z[t−2] denote the inverse parabolic KL polynomial (see [KT02]1).
Then

(15)
∑
w∈WJ

εuεwQ
J
u,wP

J
w,v = δKru,v .

1Our QJ
u,w is denoted by QJ,q

u,w in [KT02].
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Moreover, it is related to the usual Qu,w as follows, see [KT02, Proposition 2.6] or [S97]:

QJu,w =
∑
v∈WJ

εvεwJQuwJ ,wv .

Following Equations (11) and (12), we define the parabolic canonical bases in KT (G/PJ)[t±1] as
follows.

Definition 21. For any w ∈W J , let

CJw :=
∑

u∈WJ ,u≤w

twP
J
u,w(t−2) MC−t−2(X(u)◦J) ,

and
C̃Jw :=

∏
α∈Σ+−Σ+

J

(1− t−2e−α)
∑

v∈WJ ,v≥w

εwεvtwJw−1w0
QJw,v(t

−2) SMC−t−2(Y (v)◦J) .

Then if J = ∅, then C∅w = Cw, and C̃∅w = C̃w, as defined before.

Let 〈−,−〉J denote the non-degenerate tensor product pairing on KT (G/PJ). The parabolic
analog of Lemma 14(2) also holds (see [MNS20, Theorem 7.2]): for any u, v ∈W J ,

〈MC−t−2(X(u)◦J), SMC−t−2(Y (v)◦J)〉J = δKru,v .

Combining this with (15), we immediately get the following generalization of Theorem 13.

Theorem 22. For any u,w ∈W J ,

〈CJw, C̃Ju 〉J = δKru,w
∏

α∈Σ+−Σ+
J

(t− t−1e−α).

We now investigate the relation between KL classes of G/B and G/PJ . For any w ∈ W J ,
let us still use iu denote the inclusion X(u)◦J ↪→ G/PJ . Then the following identity holds in
K0(MHM(G/PJ , B)) (see [KT02, Corollary 5.1]),

[ICH
X(w)J

] =
∑

u∈WJ ,u≤w

εwP
J
u,w[iu!QHX(u)◦J

] .

Thus, we get the following parabolic analog of Proposition 17 and Corollary 19.

Proposition 23. For any w ∈W J ,

CJw = twεw MHC−t−2([ICH
X(w)J

]) .

Moreover, let DJ denote the Serre-Grothendieck duality functor on G/PJ . Then

DJ(CJw) = CJw.

Recall πJ : G/B → G/PJ denotes the natural projection. The relation between Cw and CJw is
given by the following proposition.

Proposition 24. Let PJ(t) =
∑

v∈WJ
tv be the Poincaré polynomial of WJ , then for any w ∈W J ,

πJ∗(CwwJ ) = t−1
wJ
PJ(t2)CJw ∈ KT (G/PJ)[t±1] .

Proof. By [AMSS19, Remark 5.5], for any u ∈W J and v ∈WJ ,

πJ∗(MC−t−2)(X(uv)◦) = t−2
v MC−t−2(X(u)◦J) ,

which also follows directly from the following identity about mixed Hodge modules

πJ !(iuv!QHX(uv)◦) = QHX(u)◦J
[−2`(v)](−`(v)) .
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Thus,

πJ∗(CwwJ ) =
∑

u∈WJ ,u≤w

∑
v∈WJ

twtwJPuv,wwJπJ∗MC−t−2(X(uv)◦)

=
∑

u∈WJ ,u≤w

twtwJP
J
u,w MC−t−2(X(u)◦J)

∑
v∈WJ

t−2
v

=CJw
∑
v∈WJ

t−2
v twJ = CJw

∑
v∈WJ

t−1
wJ
t2wJ t

−2
v = CJw

∑
v∈WJ

t−1
wJ
t2vwJ = CJwt

−1
wJ
PJ(t2) ,

where the second equality follows from Lemma 20. �

5. The smoothness conjecture for hyperbolic cohomology

In this section, we use the smoothness criterion to prove the Smoothness Conjecture. Since we
will be working with multiplicative and hyperbolic formal group laws in the same time, we add
superscripts or subscripts m (resp. t) in the multiplicative case (resp. hyperbolic case).

The hyperbolic case. Consider the hyperbolic formal group law over R = Z[t, t−1, µ−1]

Ft(x, y) := x+y−xy
1−µ−2xy

,

where µ = t + t−1. Note that R depends on only one parameter t. The definitions of Section 2
applied to Ft give the respective rings

St, Qt, Qt,W , Dt .

Consider a map of formal group laws

g : Ft → Fm , g(x) = (1−t2)x
x−(t2+1)

,

so that Fm(g(x), g(y)) = g(Ft(x, y)). It induces ring embeddings

ψ : Sm ↪→ St , ψ(f(xλ)) = f(g(xλ)), f(x) ∈ R[[x]] ,

and

(16) ψ : Qm ↪→ R
[

1
1−t2

]
⊗Qt .

Consequently, we have a ring embedding

ψ : Qm,W → R
[

1
1−t2

]
⊗R Qt,W , ψ(pδmw ) = ψ(p)δtw , p ∈ Qm , w ∈W .

It can be shown that

(17) ψ(τi) = µY t
i − t ∈ Dt ⊂ Qt,W .

Note that in (16), for the target, we have to invert t2−1, but for the one in (17), it is not necessary.

One of the most interesting properties of ψ is the following (see [LZZ20, Corollary 5.5 (2)]):

(18) µ−`(wJ/J′ )ψ(γJ/J ′)Y
t
J ′ = Y t

J .

In other words, ψ(γJ/J ′) behaves like a replacement of YJ/J ′ ; see [LZZ20, Remark 5.6]. In particular,
letting J ′ = ∅, one then has

µ−`(wJ )ψ(γwJ ) = Y t
J .

Let h denote the respective oriented cohomology theory for the hyperbolic formal group law Ft.

Definition 25. Define the KL-Schubert class for w ∈W J to be

KLJw := µ−`(wwJ )ψ(γwwJ )� ptte ∈ (D∗t )
WJ ∼= hT (G/PJ) .
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Remark 26. Following [LZZ20] one can define certain involution on some subset NJ := ψ(H) �
ptte ⊂ D∗t so that KLJv is invariant under such involution, similar to the parabolic Kazhdan-Lusztig
basis of Deodhar.

Writing the Kazhdan-Lusztig basis γw =
∑

v≤w bw,vδv, bw,v ∈ Sm, we then have in KT (G/B)

Cw = γw � ptme =
∑
v≤w

bw,vδv � (
∏
α>0

(1− eα)fme ) =
∑
v≤w

bw,vv(
∏
α>0

(1− eα))fmv .

On the other hand, inside hT (G/B), we have

KLw = µ−`(w)ψ(γw)� ptte = µ−`(w)
∑
v≤w

ψ(bw,v)v(
∏
α>0

x−α)f tv.

Here xα ∈ St. It would be interesting to compare the two classes in different cohomolgy theories.
Here is an example.

Example 27. We consider the SL3 case, so there are two simple roots α1, α2. Recall that in Sm,
we have xλ = 1 − e−λ. Denote x̂λ = t − t−1e−λ. For simplicity, denote x±i±j := x±αi±αj , and
x̂±i±j = x̂±αi±αj . Inside H ⊂ Qm,W , we have

γsi = (δsi + 1)
x̂−i
x−i

,

γs1s2 = (δs1s2 + δs2)
x̂−1−2x̂−2

x−1−2x−2
+ (δs1 + 1)

x̂−1x̂−2

x−1x−2
,

γs1s2s1 = (δs1s2s1 + δs1s2 + δs2s1 + δs1 + δs2 + 1)
x̂−1x̂−2x̂−1−2

x−1x−2x−1−2
.

Recall that ptme = x−1x−2x−1−2f
m
e ∈ D∗m. So inside D∗m

∼= KT (G/B)⊗Z R, we have

Ce = ptme ,

Cs1 = x̂−1x−2x−1−2f
m
e + x̂1x−2x−1−2f

m
s1

Cs1s2 = x̂−1x̂−2x−1−2f
m
e + x̂1x̂−1−2x−2f

m
s1 + x̂−1x̂2x−1−2f

m
s2 + x̂1x̂1+2x−2f

m
12,

Cs1s2s1 = x̂−1x̂−2x̂−1−2f
m
e + x̂1x̂−2x̂−1−2f

m
s1 + x̂−1x̂2x̂−1−2f

m
s2 ,

+ x̂1x̂1+2x̂−1−2f
m
s1s2 + x̂2x̂1+2x̂−1f

m
s2s1 + x̂1x̂2x̂1+2f

m
s1s2s1 .

Note that so far in this example all notations are in Sm, Qm,W or D∗m.

On the other hand, one can compute KLw ∈ hT (G/B) as follows: note that ψ( x̂ixi ) = µ
xi

(where

the first xi ∈ Sm and the second xi ∈ St). Then

KLe = ptte,

KLs1 = x−1x−1−2f
t
e + x−1−2x−2f

t
s1 ,

KLs1s2 = x−1−2f
t
e + x−2f

t
s1 + x−1−2f

t
s2 + x−2f

t
s1s2 ,

KLs1s2s1 = f te + f ts1 + f ts2 + f ts1s2 + f ts2s1 + f ts1s2s1 .

In this case, all Schubert varieties are smooth, and it is easy to verify that KLw coincide with the
Schubert classes.

We now prove the Smoothness Conjecture [LZZ20, Conjecture 5.14]. Several special cases were
proved in [LZ17, LZZ20], such as the case of w = wJ/J ′ for J ′ ⊂ J ⊆ Π (i.e., w has ‘relative’
maximal length), and that of Schubert varieties in complex projective spaces.

Theorem 28. If the Schubert variety X(w) is smooth, then the class determined by X(w) in
hT (G/B) coincides with the KL-Schubert class KLw.
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Proof. Since X(w) is smooth, Pv,w = 1 for any v ≤ w, see [BL00, 6.1.19]. Therefore,

γw =
∑
v≤w

twt
−1
v τv = tw

∑
v≤w

t−1
v τv = twΓw = tw

∑
v≤w

aw,vδ
m
v .

From the definition of ψ, it is easy to verify that

(19) ψ

(
1− t−2eα

1− eα

)
=
t−1µ

x−α
.

Then for any w ∈W , we have

KLw = µ−`(w)ψ(γw)� ptte

= µ−`(w)ψ

tw∑
v≤w

aw,vδ
m
v

� ptte

Cor. 11
= µ−`(w)tw

∑
v≤w

ψ

 ∏
α>0, vsα≤w

1− t−2euα

1− euα

 δtv � ptte

(5),(19)
= µ−`(w)tw

∑
v≤w

 ∏
α>0, vsα≤w

t−1µ

x−vα

 · v(xtΠ)f tv

=
∑
v≤w

v

( ∏
α<0 xα∏

α<0, vsα≤w xα

)
f tv

=
∑
v≤w

∏
α>0 x−α∏

α>0, sαv≤w x−α
f tv .

Here the fifth identity follows from the following well-known fact:

for any v ≤ w ∈W, if X(w) is smooth, |{α > 0 | sαv ≤ w}| = `(w) ,

and the last one is proved as follows: for any v ≤ w ∈W ,∏
α<0 xvα∏

α<0, vsα≤w xvα
=

∏
α>0, sαv<v

xα ·
∏
α>0, v<sαv

x−α∏
α>0, sαv<v

xα ·
∏
α>0, v<sαv≤w x−α

=

∏
α>0, sαv<v

x−α ·
∏
α>0, v<sαv

x−α∏
α>0, sαv<v

x−α ·
∏
α>0, v<sαv≤w x−α

=

∏
α>0 x−α∏

α>0, sαv≤w x−α
.

Comparing with the restriction formula of [X(w)] in [LZZ20, (5.6)], we see that KLw = [X(w)].
The proof is finished. �

We now look at the case of partial flag varieties. Let PJ be the parabolic subgroup with the
projection map πJ : G/B → G/PJ . Let wJ be the longest element in the subgroup WJ of W
determined by J , and W J ⊂ W be the set of minimal length representatives of W/WJ . Recall
X(w)J denotes the Schubert variety of G/PJ determined by w ∈W J .

For G/PJ , the definition of KL-Schubert class KLJw corresponding to w ∈W J is defined by using
the so-called parabolic Kazhdan-Lusztig basis. According to the paragraph right after [LZZ20,
Definition 5.9], via the embedding π∗J : hT (G/PJ)→ hT (G/B), we have

π∗J(KLJw) = KLwwJ .
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Corollary 29. Conjecture 5.14 of [LZZ20] holds for any partial flag variety G/PJ , that is, if the
Schubert variety X(w)J of G/PJ is smooth for w ∈ W J , then the KL-Schubert class KLJw of w
coincides with the fundamental class [X(w)J ].

Proof. We have the following commutative diagram:

π−1
J (X(w)J)

i′ //

πJ

��

G/B

πJ

��

X(w)J
i // G/PJ .

Moreover, π−1
J (X(w)J) = X(wwJ). Since X(w)J is smooth, X(wwJ) is also smooth. Thus,

Theorem 28 implies [X(wwJ)] = KLwwJ . On the other hand, we get the following by proper base
change:

π∗J [X(w)J ] = π∗J i∗[1X(w)J ] = i′∗π
∗
J [1X(w)J ] = i′∗[1X(wwJ )] = [X(wwJ)] ,

where the third equality follows from the fact that the pull-back π∗J preserves identity. Since

π∗J(KLJw) = KLwwJ and π∗J is injective, we get KLJw = [X(wwJ)] ∈ hT (G/PJ). �

6. KL-Schubert classes and small resolutions

In this section, we give a geometric interpretation of the KL-Schubert classes (for hyperbolic
cohomology) in the case of type A Grassmannians.

For subsets J ′ ⊂ J ⊆ Π, for hyperbolic cohomology, we will use relative push-pull elements Y t
J/J ′

defined in (1). For simplicity, we will skip the superscript t. Moreover, if Q ⊂ P are the parabolic
subgroups corresponding to J ′ ⊂ J , respectively, we will denote YP/Q = YJ/J ′ .

Consider the Grassmannian Grd(Cn−d) = SLn/PJ , where the set of simple roots Π is identified
with {1, . . . , n − 1} and J := Π − {d}. Fix a Schubert variety X(λ) of it, which is indexed by a
partition λ = (λ1 ≥ . . . ≥ λl > 0) contained inside the d× (n− d) rectangle; here we mean that λ
is identified with a Young diagram (in English notation), whose top left box is placed on the top
left box of the mentioned rectangle.

Alternatively, the Schubert variety X(λ) is indexed by a d-subset Iλ of [n] := {1, . . . , n}, which
is constructed as follows. Place the above d × (n − d) rectangle inside the first quadrant of the
xy-plane, such that its southwest corner is the origin. Label each horizontal (resp. vertical) unit
segment whose left (resp. bottom) endpoint is a lattice point (x, y) by x + y + 1. Consider the
lattice path from (0, 0) to (n− d, d) defining the southeast boundary of the Young diagram λ when
embedded into the d × (n − d) rectangle as stated above. Then Iλ consists of the labels on the
vertical steps of this path.

Yet another indexing of the Schubert variety X(λ) is by a Grassmannian permutation wλ in the
symmetric group W = Sn, which has its unique descent in position d. Written in one-line notation,
wλ consists of the entries in Iλ followed by the entries in [n] − Iλ, where both sets of entries are
ordered increasingly. Here we use ‘−’ for set difference. Thus, wλ belongs to the set W J of lowest
coset representatives modulo the parabolic subgroup WJ . Moreover, it has the following reduced
decomposition:

(20) wλ =

→∏
(i,j)∈λ

sd+j−i ;

here (i, j) is the box of the Young diagram λ in row i and column j, while in the product we scan
the rows of λ from bottom to top, and each row from right to left.
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Example 30. We use as a running example the same one as in [BL00, Example 9.1.11], namely
n = 10, d = 5, λ = (5, 5, 3, 2, 2), Iλ = {3, 4, 6, 9, 10}. In order to illustrate (20), we place the number
d+ j − i in the box (i, j) of λ, as follows:

(21)

5 6 7 8 9
4 5 6 7 8
3 4 5
2 3
1 2

.

Thus, we have

(22) wλ = [3, 4, 6, 9, 10, 1, 2, 5, 7, 8] = (s2s1)(s3s2)(s5s4s3)(s8s7s6s5s4)(s9s8s7s6s5) .

In [BL00, Section 9.1], the permutation wλ is identified with the d-subset Iλ, and they are
encoded into a 2×m matrix

(23)

(
k1 . . . km
a1 . . . am

)
,

which can be read off from the above lattice path as follows. The entries 0 < k1 < . . . < km ≤ n are
the labels of the last steps in consecutive sequences of vertical (unit) steps. The entries a1, . . . , am
are the lengths of these sequences. The numbers b0, . . . , bm−1 calculated in [BL00] are the lengths
of the sequences of horizontal steps, where we set b0 := 0 if l < d (i.e., if the lattice path starts
with a vertical step). Recall that we also set a0 = bm :=∞.

Now recall that the Schubert variety X(λ) has small resolutions, which were defined by Zelevin-
sky [Z83]. We briefly recall their construction following [BL00, Section 9.1]. This construction
starts with the choice of an index i, with 0 ≤ i < m, such that bi ≤ ai and ai+1 ≤ bi+1 (any such
choice can be made). While it is clear that such an index always exists, we avoid the choice of i = 0
if l < d. Then, a new permutation w2 is obtained from w1 := wλ via a certain procedure, which
can be rephrased as follows. Consider the i-th outer corner of λ (counting from 0), from southwest
to northeast, where the origin is an outer corner if and only if l < d. Consider the rectangle R1

(inside λ) whose southeast vertex is the mentioned outer corner, and which is maximal such that
its removal from λ still leaves a Young diagram. It is clear that the size of R1 is bi × ai+1. Then
w2 is the Grassmannian permutation corresponding to the Young diagram λ−R1.

The above procedure is then iterated. We thus tile the Young diagram λ with rectangles
R1, . . . , Rr. Let us denote by pi and qi the height and width of Ri, respectively. We also de-
fine the sequence of Grassmannian permutations w1, . . . , wr, such that the Young diagram of wi is
λi := λ − ρi−1, where ρj := R1 ∪ . . . ∪ Rj . In particular, the Young diagram of wr is Rr, and the
Schubert variety X(wr) is smooth. Note that r = m if l = d, and r = m− 1 if l < d.

Example 31. We continue Example 30. The encoding of wλ by the 2 ×m matrix (23) and the
successive choices of w1, w2, w3 based on it are described in detail in [BL00]. In our setup, the
tiling of λ with the corresponding rectangles R1, R2, R3 is illustrated below (the number in a box
is the index of the rectangle to which that box belongs).

3 3 2 2 2
3 3 2 2 2
3 3 1
3 3
3 3

In order to complete the construction of the Zelevinsky resolution, following [BL00, Section 9.1],
we need the stabilizer Pwλ of the Schubert variety X(λ) = X(wλ). This is the parabolic subgroup
corresponding to the subset Π − {k1, . . . , km}, cf. (23). More generally, consider the stabilizers
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Pi := Pwi , for i = 1, . . . , r, and Pr+1 := PJ ; for simplicity, we use the same notation for the
corresponding subsets of Π. Also let Qi := Pi ∩ Pi+1, for i = 1, . . . , r, both as parabolic subgroups
and subsets of Π. Then the Zelevinsky resolution of X(w) is expressed as follows:

(24) P1 ×Q1 P2 × . . .×Qr−2 Pr−1 ×Qr−1 X(wr) =: X̃(wλ)→ X(wλ) .

Therefore, by Corollary 4 and Corollary 29, the pushforward of the fundamental class of X̃(wλ)
inside hT (G/B) is the following element

(25) YP1/Q1
· · ·YPr/QrYJ � ptte .

Example 32. Continuing Example 31, the operator in (25) is written explicitly as follows:

Y(Π−{4,6})/(Π−{4,5,6}) Y(Π−{5})/(Π−{5,7}) Y(Π−{7})/(Π−{5,7}) YΠ−{5} .

Indeed, the parabolic subsets Pi for these examples were exhibited in [BL00], while they can also
be read off from the Young diagram of λ = (5, 5, 3, 2, 2) as indicated above.

We will now state the main technical result of this section, Theorem 34, which is interesting
itself, and is needed to make the connection with the KL-Schubert classes for the Grassmannian,
cf. [LZZ20]. To this end, we introduce more notation in the above setup. Given the rectangle Ri,
with its embedding into the Young diagram of λ and the first quadrant, let Ci and Di be the sets
of labels on its left vertical side and its top horizontal side, respectively. Let

ci := min Ci , di := max Di = ci + pi + qi − 1 , C ′i := Ci − {max Ci} , D′i := Di − {di} .

Finally, let Ji := Ci tD′i and J ′i := C ′i tD′i.
We also need to define the subsets K ′i ( Ki of Π, i = 1, . . . , r. First recall that above we

defined the shape ρi as the union of the rectangles R1, . . . , Ri. It is not hard to see that ρi is a
union of completely disjoint Young diagrams (i.e., they do not share even a single point), aligned
from southwest to northeast. Let Ci be set of indices j ∈ {1, . . . , i} such that the left side of Rj is
contained in the left boundary of a component of ρi. Similarly, let Di be set of indices k ∈ {1, . . . , i}
such that the top side of Rk is contained in the top boundary of a component of ρi. We now define

K ′i :=

⊔
j∈Ci

C ′j

 t
 ⊔
k∈Di

D′k

 , Ki := K ′i t {max Ci} .

Note that Ji ⊆ Ki and J ′i ⊆ K ′i.

Example 33. Continuing Example 32, we have

K ′1 = J ′1 = ∅ ( K1 = J1 = {5} , K ′2 = J ′2 = {6, 8, 9} ( K2 = J2 = {6, 7, 8, 9} ,
J ′3 = {1, 2, 3, 4, 6} ( J3 = {1, 2, 3, 4, 5, 6} , K ′3 = {1, 2, 3, 4, 6, 8, 9} ( K3 = {1, 2, 3, 4, 5, 6, 8, 9} .

As indicated above, all this information is easily read off from the Young diagram of λ = (5, 5, 3, 2, 2).

Theorem 34. In H ⊂ Qm,W , we have

(26) γwλwJ = γJ1/J ′1 . . . γJr/J ′rγJ = γK1/K′1
. . . γKr/K′rγJ .

In order to prove Theorem 34, we start by recalling some results from [KL00], related to the
factorization of Kazhdan-Lusztig elements for the Grassmannian. This paper introduces an element
Zwλ of the Hecke algebra, defined as a product of linear factors in the generators, which are
associated with the boxes of the Young diagram λ. Instead of recalling the precise definition, which
is not needed here, we will state a weaker form of the factorization, which turns out to be related
to factorizations in (26). We will use notation introduced above.
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The rectangle Ri corresponds to the following Grassmannian permutation, cf. (20) and Exam-
ple 30:

vi := (sci+qi−1 . . . sci)(sci+qi . . . sci+1) . . . (sci+pi+qi−2 . . . sci+pi−1) .

It is not hard to see that we have the following factorization of wλ, which corresponds to a reduced
decomposition of wλ obtained from (20) only by commuting simple reflections:

(27) wλ = v1 . . . vr .

Example 35. In our running example, the reduced decomposition corresponding to (27) (to be
compared with (22), cf. also (21)) is

wλ = [3, 4, 6, 9, 10, 1, 2, 5, 7, 8] = (s5)︸︷︷︸
v1

((s8s7s6)(s9s8s7))︸ ︷︷ ︸
v2

((s2s1)(s3s2)(s4s3)(s5s4)(s6s5))︸ ︷︷ ︸
v3

.

The factorization of Zwλ needed here is the following one, which corresponds to the factoriza-
tion (27) of wλ:

(28) Zwλ = Zv1Zw2 = Zv1 . . . Zvr .

See the proof of [KL00, Theorem 3] for details.

The connection between the element Zwλ and the corresponding parabolic Kazhdan-Lusztig basis
element is made in [KL00, Theorem 3].

Theorem 36. [KL00] In H ⊂ Qm,W , we have

ZwλγJ = γwλwJ .

The proof of Theorem 34 also relies on the following lemmas.

Lemma 37. Consider J ′ ⊂ J ⊆ Π, and assume that J ⊂ [a, b] with a, b ∈ Π. If A ⊆ Π−[a−1, b+1],
then we have

γJ/J ′ = γJtA/J ′tA ∈ Qm,W , YJ/J ′ = YJtA/J ′tA ∈ Qt,W .

Proof. As the sets of simple roots corresponding to J and A are orthogonal to each other, we have
Σ−JtA = Σ−J t Σ−A, WJtA = WJ ×WA, and similarly for J replaced by J ′. Therefore, we have

(29) wJ/J ′ := wJwJ ′ = wJwAwJ ′wA =: wJtA/J ′tA , xJ/J ′ = xJtA/J ′tA ,

and WJ/WJ ′ is in a natural bijection with WJtA/WJ ′tA. The stated equalities follow by plugging
these facts into (7) and the definition (1) of the relative push-pull operator. �

Lemma 38. (1) We have

K1 = J1 ) K ′1 = J ′1 ( K2 ) K ′2 ( . . . ( Kr ) K ′r ⊆ J .

(2) For every i = 1, . . . , r, we have

γJi/J ′i = γKi/K′i ∈ Qm,W , γJ ′i\Ji = γK′i\Ki ∈ Qm,W ,

YJi/J ′i = YKi/K′i ∈ Qt,W , YJ ′i\Ji = YK′i\Ki ∈ Qt,W .

Proof. It is clear that K ′r ⊆ J . Thus, in order to complete the first part, we need to prove
K ′i−1 ( Ki, for i = 2, . . . , r. This is obvious if the rectangle Ri is, by itself, a connected component

of the shape ρi. Other than this, there are three ways in which Ri can be attached to ρi−1, which
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are indicated below; the boxes of Ri are marked with ?, and the empty boxes form the relevant
component(s) of ρi−1.

(30)

? ?
? ?
? ?
? ?
? ?

? ? ? ?
? ? ? ?

? ? ? ?
? ? ? ?
? ? ? ?

Note that the height (respectively width) of Ri is strictly greater than the number of rows (respec-
tively columns) of the relevant Young diagram to its right (respectively at the bottom). It is also
useful to observe that all unit segments with the same label form a northwest to southeast staircase
shape, and the labels increase by 1 as we move northeast.

Let B denote the set of labels on the boundary of the rectangle Ri. Using the above notation,
in all three cases in (30), we have

B = Ci tDi = {ci, . . . , di} , Ki −B = K ′i−1 −B, Ki ∩B = Ci tD′i = B − {di} =: Ji .

On the other hand, we have di 6∈ K ′i−1; indeed, in the first and last case in (30), the label di is
on the left side of a rectangle Rj with j ∈ Ci−1, but di 6∈ C ′j , because it is the top label on the

mentioned side. We conclude that K ′i−1 ⊆ Ki. In fact, the inclusion is strict because we also have
ci + qi − 1 ∈ (Ki ∩B)−K ′i−1.

For the second part, we note that, in addition to the above facts, we have K ′i∩B = C ′itD′i =: J ′i
and ci − 1 6∈ Ki. For the latter part, note that, in the last two cases in (30), the label ci − 1 is on
the left side of a rectangle Rj with j ∈ Ci and j 6= i, but ci − 1 6∈ C ′j , because it is the top label on
the mentioned side. The proof is concluded by applying Lemma 37. �

Proof of Theorem 34. By using the analogue of Lemma 5 for γ, we have

γK2/K′2
. . . γKr/K′rγJ = γK2 γK′2\K3

. . . γK′r−1\Kr γK′r\J = γK′1γK′1\K2
γK′2\K3

. . . γK′r−1\Kr γK′r\J .
(31)

We now prove the theorem using induction on r, with base case r = 0, which is trivial. We have

γwλwJ
]1
= ZwλγJ

]2
= Zv1Zw2γJ

]3
= Zv1γw2wJ

]4
= Zv1 γJ2/J ′2 . . . γJr/J ′rγJ

]5
= Zv1 γK2/K′2

. . . γKr/K′rγJ

]6
= Zv1 γK′1 γK′1\K2

. . . γK′r−1\Kr γK′r\J

]7
= γK1 γK′1\K2

. . . γK′r−1\Kr γK′r\J

]8
= γK1/K′1

γK2/K′2
. . . γKr/K′rγJ

]9
= γJ1/J ′1γJ2/J ′2 . . . γJr/J ′rγJ .

Here ]1, ]3, ]7 are based on Theorem 36, ]2 on (28), ]4 on the induction hypothesis, ]5, ]9 on
Lemma 38 (2), ]6, ]8 on (31), and ]8 on (8); additionally, in ]7 we use the fact that

K1 = J1 = C1 tD′1 = {c1, . . . , d1 − 1} , K ′1 = J ′1 = C ′1 tD′1 = K1 − {max C1} ,
and thus we have v1wK′1 = wK1 . �

Remark 39. We could not have carried out the above proof by using only one of the pairs (Ji, J
′
i)

and (Ki,K
′
i). Indeed, the first pair does not satisfy the property in Lemma 38 (1), which is crucial

in the proof. On the other hand, the induction procedure cannot be applied based on the second
pair because the respective sets for λ1 = λ and λ2 (corresponding to w2) are different.

In order to relate Theorem 34 to the Zelevinsky resolution, and more specifically to the opera-
tor (25), we need the following result.
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Lemma 40. For every i = 1, . . . , r, we have

YJi/J ′i = YKi/K′i = YPi/Qi .

Proof. By using Lemma 38 (2), it suffices to prove YJi/J ′i = YPi/Qi . Moreover, it suffices to consider

i = 1, as we can just replace the partition λ1 = λ with λi. Recall that P1 is obtained by considering
the lattice path from (0, 0) to (n − d, d) defining the southeast boundary of λ1, and by excluding
from Π the last label in each sequence of vertical steps. Similarly, P2 corresponds to λ2 := λ−R1.

Let B denote the set of labels on the boundary of the rectangle R1; see the diagram below, where
the boxes of R1 are marked with ?.

? ? ?
? ? ?

Using the above notation, we have B = C1 tD1 = {c1, . . . , d1}. Based on the above interpretation
of P1 and P2, we deduce

P1 ∩B = C1 tD′1 =: J1 = B − {d1}, P2 ∩B = C ′1 tD1 =⇒ Q1 ∩B = C ′1 tD′1 =: J ′1,

P1 −B ⊂ P2 −B =⇒ P1 −B = Q1 −B .
Moreover, we have c1 − 1 6∈ P1 and d1 6∈ P1. Thus, we are under the hypotheses of Lemma 37, so
the conclusion follows. �

We now rephrase Theorem 34 as follows, via the map ψ.

Corollary 41. We have

(32) µ−`(wλwJ )ψ(γwλwJ ) = YP1/Q1
. . . YPr/QrYJ ∈ Dt .

Proof. We start by observing the following:

(33) wKi/K′i = wJi/J ′i = vi =⇒ `(wKi/K′i) = piqi = |Ri| ,

where |Ri| denotes the number of boxes of the rectangle Ri. Here the first equality is based on (29)
and the fact that this result can be applied to the pairs (Ji, J

′
i) and (Ki,K

′
i), as discussed in the

proof of Lemma 38; the second equality is clear by the definition of vi.

We now apply µ−`(wλwJ )ψ( · ) to the first and last part of (26). After doing this, the latter can
be written as follows:

µ−`(wλwJ )ψ(γK1/K′1
) . . . ψ(γKr/K′r)ψ(γJ)

]1
=
(
µ
−`(wK1/K

′
1
)
ψ(γK1/K′1

)
)
. . .
(
µ
−`(wKr/K′r )

ψ(γKr/K′r)
)(

µ−`(wJ )ψ(γJ)
)

]2
=
(
µ
−`(wK1/K

′
1
)
ψ(γK1/K′1

)
)
. . .
(
µ
−`(wKr/K′r )

ψ(γKr/K′r)
)
YJ

]3
=
(
µ
−`(wK1/K

′
1
)
ψ(γK1/K′1

)
)
. . .
(
µ
−`(wKr/K′r )

ψ(γKr/K′r)
)
YK′rYK′r\J

]4
=
(
µ
−`(wK1/K

′
1
)
ψ(γK1/K′1

)
)
. . . YKrYK′r\J

= . . .
]5
= YK1YK′1\K2

. . . YK′r\J
]6
=YK1/K′1

. . . YKr/K′rYJ
]7
= YP1/Q1

. . . YPr/QrYJ .
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Here ]1 is based on (33) and the fact that `(wλ) =
∑

i |Ri|, ]2, ]4 are based on (18), ]3 on (2),
]5 on the repeated use of an argument similar to ]3 followed by ]4, ]6 on Lemma 5 and ]7 on
Lemma 40. �

We now state the main result of this section.

Theorem 42. The KL-Schubert classes for the Grassmannian coincide with the hyperbolic coho-
mology classes of the corresponding Zelevinsky resolutions.

Proof. The result is now immediate by comparing the left- and right-hand sides of (32) with Defi-
nition 25 and (25), respectively. �

Remark 43. Theorem 42 implies that all the Zelevinsky resolutions of a Schubert variety in the
Grassmannian have the same class in hyperbolic cohomology (i.e., the corresponding KL-Schubert
class). This agrees with a result of Totaro’s [T00], which says that the algebraic theories in a larger
class (defined by Krichever [BB10]), which includes hyperbolic cohomology, are invariant under
small resolutions.
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Norm. Supér. (4), 53 (3):663-711, 2020.

[Su17] C. Su. Restriction formula for stable basis of the Springer resolution. Selecta Math. (N.S.), 23 (1):497-518,
2017.

[Su19] C. Su. Motivic Chern classes and Iwahori invariants of principal series, Proceedings of International
Congress of Chinese Mathematicians, to appear, 2019.

[T87] T. Tanisaki. Hodge modules, equivariant K-theory and Hecke algebras, Publications of the Research
Institute for Mathematical Sciences, 23:841-870, 1987.

[T00] B. Totaro. Chern numbers for singular varieties and elliptic homology, Ann. of Math., 151 (2):757-791,
2000.

[Z83] A. V. Zelevinski. Small resolutions of singularities of Schubert varieties, Functional Anal. Appl., 17:142-144,
1983.



26 C. LENART, C. SU, K. ZAINOULLINE, AND C. ZHONG

State University of New York at Albany, 1400 Washington Avenue, Albany, NY 12222

Email address : clenart@albany.edu

University of Toronto, 40 St. George St., Toronto, ON M5S 2E4, Canada

Email address : csu@math.toronto.edu

University of Ottawa, 150 Louis-Pasteur, Ottawa, ON, K1N 6N5, Canada

Email address : kirill@uottawa.ca

State University of New York at Albany, 1400 Washington Avenue, Albany, NY 12222

Email address : czhong@albany.edu


	1. Introduction
	2. Formal affine Demazure algebra and its dual
	3. Hecke algebra, motivic Chern class, and the smoothness criterion 
	4. Dual bases in K-theory and characteristic classes of mixed Hodge modules
	5. The smoothness conjecture for hyperbolic cohomology
	6. KL-Schubert classes and small resolutions
	References

