GEOMETRIC PROPERTIES OF THE KAZHDAN-LUSZTIG SCHUBERT BASIS

CRISTIAN LENART, CHANGJIAN SU, KIRILL ZAINOULLINE, AND CHANGLONG ZHONG

ABSTRACT. We study classes determined by the Kazhdan-Lusztig basis of the Hecke algebra in the K-theory and hyperbolic cohomology theory of flag varieties. We first show that, in K-theory, the two different choices of Kazhdan-Lusztig bases produce dual bases, one of which can be interpreted as characteristic classes of the intersection homology mixed Hodge modules. In equivariant hyperbolic cohomology, we show that if the Schubert variety is smooth, then the class it determines coincides with the class of the Kazhdan-Lusztig basis; this property was known as the Smoothness Conjecture. For Grassmannians, we prove that the classes of the Kazhdan-Lusztig basis coincide with the classes determined by Zelevinsky's small resolutions. These properties of the so-called KL-Schubert basis show that it is the closest existing analogue to the Schubert basis for hyperbolic cohomology; the latter is a very useful testbed for more general elliptic cohomologies.

Contents

1.	Introduction	1
2.	Formal affine Demazure algebra and its dual	4
3.	Hecke algebra, motivic Chern class, and the smoothness criterion	7
4.	Dual bases in K -theory and characteristic classes of mixed Hodge modules	10
5.	The smoothness conjecture for hyperbolic cohomology	15
6.	KL-Schubert classes and small resolutions	18
References		

1. Introduction

Let G be a split semisimple linear algebraic group with a fixed Borel subgroup B and a maximal torus $T \subset B$. Let P be a parabolic subgroup containing the Borel subgroup B. The varieties G/P and G/B are called flag varieties, and they are among the most concrete objects in algebraic geometry, because of the Bruhat decompositions. For instance, the equivariant cohomology (Chow group) of flag varieties is freely spanned by the classes of Schubert varieties X(w). Similarly, the equivariant K-theory of flag varieties is spanned by the structure sheaves of Schubert varieties. The field of studying intersection theory of these classes is called Schubert calculus, and is related to combinatorics, representation theory, and enumerative geometry.

Due to the failure of Schubert varieties being smooth, the present paper deals with two different directions in generalizing classical Schubert calculus. The first one is concerned with the Chern classes. Although the classical Chern class theory does not work for the singular Schubert varieties,

²⁰¹⁰ Mathematics Subject Classification. Primary 14M15, 55N20; Secondary 19L47, 20C08, 05E99.

 $Key\ words\ and\ phrases.$ Schubert calculus, flag variety, K-theory, hyperbolic cohomology, Hecke algebra, Kazhdan-Lusztig Schubert basis.

there are generalizations to this case, which are called Chern-Schwartz-MacPherson (CSM) classes [M74, S65a, S65b] in homology and motivic Chern (MC) classes in K-theory [BSY10, AMSS19, FRW21]. These generalized Chern classes of Schubert cells are closely related to the corresponding stable bases of the cotangent bundle T^*G/B , defined by Maulik and Okounkov in their study of quantum cohomology/K-theory of Nakajima quiver varieties [MO19, O17]. These classes are permuted by various Demazure-Lusztig operators [AM16, Su17, SZZ20, AMSS19, MNS20], and are related to unramified principal series representations of the Langlands dual group over a non-archimedean local field [SZZ20, AMSS19].

We focus on the Kazhdan-Lusztig bases of the Hecke algebra, which are related to the intersection cohomology of Schubert varieties. Classically, there are two choices of Kazhdan-Lusztig bases. In this paper, we consider the K-theory classes determined by these two collections of Kazhdan-Lusztig bases. The cohomology case is studied in [MS20]. We first show that they are dual to each other in Theorem 13 and 22. These dualities are closely related to the characteristic classes of mixed Hodge modules, studied by Schürmann and his collaborators [S11, S17, BSY10]. Moreover, we interpret one collection of these classes as the motivic Hodge Chern classes of the intersection homology mixed Hodge modules of the Schubert varieties, which immediately implies that they are invariant under the Serre-Grothendieck duality, see Proposition 17 and Corollary 19.

The other direction is to look at more general cohomology theories, namely the equivariant oriented cohomology theories of Levine-Morel. They are those contravariant functors \mathbf{h}_T from the category of smooth (quasi)-projective varieties to the category of commutative rings, such that for any proper map of varieties, a push-forward of the cohomology groups is defined. One can then define Chern classes, where the first Chern class of the tensor product of line bundles determines a one-dimensional commutative formal group law. The structure of the equivariant oriented cohomology of flag varieties is studied in [CZZ16, CZZ19, CZZ15, LZZ20]. Roughly speaking, there is an algebra generated by push-pull operators between $\mathbf{h}_T(G/B)$ and $\mathbf{h}_T(G/P)$, called the formal affine Demazure algebra \mathbf{D}_F , whose dual \mathbf{D}_F^* is isomorphic to $\mathbf{h}_T(G/B)$.

Since Schubert varieties are not smooth in general, their fundamental classes are not defined beyond the Chow group and K-theory. To resolve the singularities of a Schubert variety X(w), one often uses the Bott-Samelson resolution, which is defined by fixing a reduced decomposition of the Weyl group element w. For an oriented cohomology beyond singular cohomology/K-theory, the classes determined by such resolutions depend on the choice of the reduced decomposition. This corresponds to the fact that, for general \mathbf{h}_T , the push-pull operators do not satisfy the braid relations [HMSZ14]. Because of this fact, there are no canonically defined Schubert classes.

Aiming for the definition of Schubert classes, in [LZ17, LZZ20], the authors consider the so-called hyperbolic cohomology, denoted by \mathfrak{h} . This corresponds to a 2-parameter Todd genus, and is the first interesting case after K-theory in terms of complexity. A Riemann-Roch type map is defined from K-theory to the hyperbolic cohomology theory, which induces an action of the Hecke algebra (considered on the K-theory side) on the hyperbolic cohomology of G/B. In this way, the action of the Kazhdan-Lusztig basis defines classes KL_w in $\mathfrak{h}_T(G/B)$, called KL-Schubert classes. In [LZ17, LZZ20], there is a conjecture stating that, if the Schubert variety X(w) is smooth, then its fundamental class coincides with the class KL_w . It is proved in some special cases in [LZ17, LZZ20]. Our first main result proves this conjecture in full generality:

Theorem A (Theorem 28). If the Schubert variety X(w) is smooth, then the class determined by X(w) in $\mathfrak{h}_T(G/B)$ coincides with the KL Schubert class KL_w .

The idea of the proof is as follows: if X(w) is smooth, then all the Kazhdan-Lusztig polynomials $P_{y,w}$ for any $y \leq w$ are equal to 1, so the Kazhdan-Lusztig basis for w is the sum of the Demazure-Lusztig operators. As mentioned above, the MC classes of Schubert cells in K-theory are permuted

by the Demazure-Lusztig operators. So the MC class of X(w) coincides with the KL class in K-theory, and the restriction formula for the former is obtained in [AMSS19] by generalizing a result of Kumar [K96]. By using the Riemann-Roch type map from K-theory to hyperbolic cohomology, we compare the restriction formulas of the class KL_w and of the class of the smooth Schubert variety X(w), and prove the Smoothness Conjecture (Theorem A). For partial flag varieties, a similar property is also proved.

As mentioned above, the Kazhdan-Lusztig basis defines classes in the K-theory of flag varieties, but they do not coincide with the fundamental classes of Schubert varieties, whether smooth or not. However, in $\mathfrak{h}_T(G/B)$, our Theorem A shows that, for smooth Schubert varieties, their fundamental classes coincide with the classes defined by the Kazhdan-Lusztig basis. It is unclear to us why such phenomena appear, and we hope to explore this in a future project.

Restricting to type A Grassmannians, we prove more geometric and combinatorial properties. For example, Zelevinsky constructed small resolutions of all Schubert varieties [Z83]. Our second main result is the following:

Theorem B (Theorem 42). The KL-Schubert classes for the Grassmannians coincide with the hyperbolic cohomology classes determined by Zelevinsky's small resolutions.

To prove this theorem, note that Zelevinsky's small resolutions are similar to the Bott-Samelson resolutions, except that, instead of using minimal parabolic subgroups, one considers more general parabolic subgroups. So the small resolution classes can be computed by using relative pushpull operators between hyperbolic cohomology of G/P and G/Q. These operators were studied in [CZZ19]. On the other hand, in [KL00], a factorization of the Kazhdan-Lusztig basis elements for Grassmannians is exhibited. By carefully transforming this factorization, one can write the Kazhdan-Lusztig basis elements as products of "relative" Kazhdan-Lusztig elements. Finally, by identifying the latter with the relative push-pull operators, one proves Theorem B. By the uniqueness of the Kazhdan-Lusztig basis, it follows that all small resolution classes are the same.

There have been important developments in Schubert calculus for general cohomology theories. More specifically, for elliptic cohomology, a stable basis in the cotangent bundle T^*G/B was defined (see [AO21, O20], which generalizes stable bases for cohomology and K-theory), and canonical classes were associated with Bott-Samelson resolutions of Schubert varieties [RW20, KRW20]. The elliptic cohomology used in the latter papers can be considered as the oriented cohomology theory associated with a certain elliptic formal group law determined by the Jacobi theta functions; meanwhile, the mentioned cohomology classes are elliptic analogues of the CSM classes in ordinary cohomology and the MC classes in K-theory. On the other hand, the hyperbolic formal group law we consider here comes from a singular cubic curve (in Weierstrass form), so it is a singular elliptic formal group law, see [BB10]. The properties of the KL-Schubert basis proved in this paper (namely, the Smoothness Conjecture and the interpretation in terms of the Zelevinsky small resolutions) show that this basis is the closest existing analogue to the Schubert basis for hyperbolic cohomology. Furthermore, the latter is a very useful testbed for more general elliptic cohomologies.

The paper is organized as follows. In Section 2, we recall the algebraic construction of the equivariant oriented cohomology of flag varieties. In Section 3, we recall basic facts about the Hecke algebra, MC classes, and the smoothness criterion. In Section 4, we use Kazhdan-Lusztig bases to define the two collections of KL classes in $K_T(G/B)$ and $K_T(G/P)$, and show that they are dual to each other. We also give a geometric interpretation for one of them using mixed Hodge modules. In Section 5, we recall the definition of KL-Schubert classes in hyperbolic cohomology, and prove the Smoothness Conjecture. In Section 6, we prove Theorem 42, which connects small resolutions for Grassmannians with the corresponding KL-Schubert classes.

Acknowledgments: We would like to thank Samuel Evens, Leonardo Mihalcea, and Richard Rimányi for helpful conversations. C. L. acknowledges the partial support from the NSF grants DMS-1362627 and DMS-1855592. K. Z. acknowledges the partial support from the NSERC Discovery grant RGPIN-2015-04469, Canada. C. S. thanks J. Schürmann for useful discussions, and further to P. Aluffi, L. Mihalcea, H. Naruse and G. Zhao for related collaborations. We thank the anonymous referees for useful suggestions.

2. Formal affine Demazure algebra and its dual

We recall the definition of the formal affine Demazure algebra and its relation with equivariant generalized (oriented) cohomology of flag varieties following [HMSZ14, CZZ16, CZZ19] and especially the paper [CZZ15].

Notation. Let G be a semisimple simply connected linear algebraic group over \mathbb{C} , and fix B a Borel subgroup with a maximal torus $T \subset B$. Let $X^*(T)$ denote the character lattice of T. Let $W = N_G(T)/T$ be the Weyl group.

Let Σ denote the set of associated roots and let Σ^+ denote the subset of roots in B. For any root α , let $\alpha > 0$ (resp. $\alpha < 0$) denote $\alpha \in \Sigma^+$ (resp. $-\alpha \in \Sigma^+$).

Let $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ denote the set of simple roots. Let $\ell \colon W \to \mathbb{Z}$ denote the length function. For any $J \subset \Pi$, denote by W_J the parabolic subgroup corresponding to J, by w_J its longest element, and by W^J (resp. JW) the set of minimal length representatives of left (resp. right) cosets W/W_J (resp. $W_J \setminus W$). Specifically, $w_0 := w_\Pi \in W$ is the longest element. More generally, if $J' \subset J \subset \Pi$, denote $w_{J/J'} := w_J w_{J'} \in W^{J'}$ (resp. $w_{J' \setminus J} := w_J w_J$), that is, $w_{J/J'}$ (resp. $w_{J' \setminus J}$) is the maximal element (in terms of the Bruhat order) in the set $W_J \cap W^{J'}$ (resp. $W_J \cap J' W$). Denote $\Sigma_J := \{\alpha \in \Sigma | s_\alpha \in W_J \}$, and $\Sigma_J^{\pm} := \Sigma_J \cap \Sigma^{\pm}$. Throughout the paper, we use the notation '\' for right cosets, not set difference, which is denoted by '-'.

Formal group algebra. Let F be a one dimensional formal group law over a commutative unital ring R. The formal group algebra $R[[X^*(T)]]_F$ is defined to be the quotient of the completion

$$R[[x_{\lambda}|\lambda\in X^*(T)]]/\mathcal{J}_F$$
,

where \mathcal{J}_F is the closure of the ideal generated by $\langle x_0, F(x_\lambda, x_\mu) - x_{\lambda+\mu} \mid \lambda, \mu \in X^*(T) \rangle$. For simplicity it will be denoted by S. It can be shown that if $\{\omega_1, ..., \omega_n\}$ is a basis of $X^*(T)$, then S is (non-canonically) isomorphic to $R[[\omega_1, ..., \omega_n]]$.

Localized twisted group ring. Let $Q = S\left[\frac{1}{x_{\alpha}}|\alpha>0\right]$, and $Q_W = Q \otimes_R R[W]$. Denote the canonical left Q-basis of Q_W by $\delta_w, w \in W$, and define a product on Q_W by

$$(p\delta_w)\cdot(p'\delta_{w'}):=pw(p')\delta_{ww'}, \quad p,p'\in Q, w,w'\in W.$$

In particular, we have $\delta_v p = v(p)\delta_v$, $p \in Q$.

Push-pull elements. For each root α , define the formal push-pull element

$$Y_{\alpha} := (1 + \delta_{s_{\alpha}}) \frac{1}{x_{-\alpha}} \in Q_W.$$

For any reduced word $w=s_{i_1}\cdots s_{i_k}$, where s_i is the simple reflection corresponding to the ith simple root in Π , define $I_w=(i_1,\ldots,i_k)$, and $Y_{I_w}=Y_{\alpha_{i_1}}\cdots Y_{\alpha_{i_k}}$. The product Y_{I_w} depends on the choice of the reduced sequence, unless the formal group law F is of the form $x+y+\beta xy$ with $\beta\in R$. For simplicity, denote $\delta_i:=\delta_{s_i}, Y_i:=Y_{\alpha_i}$ and $x_{\pm i}:=x_{\pm\alpha_i}$.

Formal affine Demazure algebra. Let \mathbf{D}_F be the subring of Q_W generated by elements of S and push-pull elements Y_i , $i=1,\ldots,n$. This is called the formal affine Demazure algebra. It is proved in [CZZ16] that \mathbf{D}_F is a free left S-module with basis $\{Y_{I_w}|w\in W\}$.

Example 1. If $R = \mathbb{Z}$ and $F_m(x,y) = x + y - xy$ (multiplicative formal group law), then

$$S \cong \mathbb{Z}[X^*(T)]^{\wedge}, \qquad x_{\alpha} \mapsto 1 - e^{-\alpha},$$

where the completion is taken with respect to the kernel of the augmentation map $e^{\lambda} \mapsto 1$. The ring \mathbf{D}_F is then isomorphic to the (completed) affine 0-Hecke algebra.

For $J' \subset J \subseteq \Pi$, denote

$$x_{J/J'} := \prod_{\alpha \in \Sigma_J^- - \Sigma_{J'}^-} x_\alpha \,, \quad x_J := x_{J/\emptyset} \,.$$

Fixing a set of left coset representatives $W_{J/J'}$ of $W_J/W_{J'}$, we define a push-pull element

$$(1) Y_{J/J'} := \left(\sum_{w \in W_{J/J'}} \delta_w\right) \frac{1}{x_{J/J'}} \in Q_W, \quad Y_J := Y_{J/\emptyset} = \left(\sum_{w \in W_J} \delta_w\right) \frac{1}{x_J}.$$

Note that the definition of $Y_{J/J'}$ depends on the choice of $W_{J/J'}$, and in general $Y_{J/J'}$ might not be in \mathbf{D}_F . Similarly, fixing a set of right coset representatives $W_{J'\setminus J}$ of $W_{J'}\setminus W_J$, one can define $Y_{J'\setminus J}$. If $J=\Pi$, x_Π and Y_Π are correspondingly defined. For instance, if $J=\{i\}$, then $Y_{\{i\}}=Y_{\alpha_i}$. Note that in general $Y_{J/J'}\in Q_W$, but $Y_J\in \mathbf{D}_F$. We have

(2)
$$Y_{J/J'}Y_{J'} = Y_J = Y_{J'}Y_{J'\setminus J}$$
.

There is an anti-involution ι of \mathbf{D}_F , defined by

(3)
$$\iota(p\delta_v) := \delta_{v^{-1}} p \frac{v(x_{\Pi})}{x_{\Pi}} = v^{-1}(p) \frac{x_{\Pi}}{v^{-1}(x_{\Pi})} \delta_v \,, \quad p \in Q, \ v \in W \,.$$

For example, it is easy to prove that $\iota(Y_J) = Y_J$, and

$$\iota(Y_{I_w}) = Y_{I_w}^{-1},$$

if I_w^{-1} is the sequence obtained from I_w by reversing the order.

Dual of the Demazure algebra. Let \mathbf{D}_F^* denote the S-linear dual $\mathrm{Hom}_S(\mathbf{D}_F,S)$ with the dual basis $Y_{I_w}^*$, $w \in W$. One can also consider the Q-linear dual $Q_W^* = \mathrm{Hom}_Q(Q_W,Q)$, which is isomorphic to the set-theoretic $\mathrm{Hom}(W,Q)$. There is the dual basis $f_w, w \in W$ of Q_W^* such that $f_w(\delta_v) = \delta_{w,v}^{Kr}$ and $f_w \cdot f_v = \delta_{w,v}^{Kr} f_w$, where $\delta_{w,v}^{Kr}$ is the Kronecker symbol. It turns Q_W^* into a commutative ring with identity $\mathbf{1} = \sum_w f_w$. By definition, we have $\mathbf{D}_F^* \subset Q_W^*$ (where the former is a S-module, and the latter is considered as a Q-module), and the product on Q_W^* restricts to the product on \mathbf{D}_F^* .

Two actions on the dual. There are actions denoted ' \bullet ' and ' \odot ' of the ring Q_W on its Q-linear dual Q_W^* defined as:

$$(5) \quad (p\delta_v) \bullet (qf_w) := qwv^{-1}(p)f_{wv^{-1}} \quad \text{ and } \quad (p\delta_v) \odot (qf_w) := pv(q)f_{vw}, \quad v, w \in W, \ p, q \in Q.$$

It follows from [LZZ20, §3] that the \bullet -action is Q-linear, while the \odot -action is not, and the two actions commute. We also have $z \bullet \operatorname{pt}_e = \iota(z) \odot \operatorname{pt}_e$. Moreover, the two actions induce (via the embeddings $\mathbf{D}_F \subset Q_W$ and $\mathbf{D}_F^* \subset Q_W^*$) corresponding actions of \mathbf{D}_F on \mathbf{D}_F^* . For homology and K-theory, the \bullet and \odot actions correspond to the right and left actions considered in [MNS20].

The class of a point. For each $w \in W$ define the element

$$\operatorname{pt}_w := x_{\Pi} \bullet f_w = w(x_{\Pi}) f_w$$

and call it the class of a point. From the definition, we have $z \bullet \operatorname{pt}_e = \iota(z) \odot \operatorname{pt}_e, z \in Q_W$, where $e \in W$ denotes the identity element.

Generalized (oriented) cohomology. Given a formal group law F over R, let h be the corresponding free algebraic generalized (oriented) cohomology theory obtained from the algebraic cobordism Ω of Levine-Morel [LM07] by tensoring with F, i.e.

$$\mathbf{h}(-) := \Omega(-) \otimes_{\Omega(\mathrm{pt})} R$$
.

Here $\Omega(pt)$ is the Lazard ring, the coefficient ring of universal formal group law, and $\Omega(pt) \to R$ is the evaluation map defining F. Note that such theories are different from the usual generalized cohomology theories from algebraic topology, since the formal group laws do not need to be Landweber exact (since the localization sequences are only right exact. See [LM07, \$3.2]). We refer to [LM07] for all the properties of such theories.

In particular, for the additive formal group law $F_a(x,y) = x + y$ one obtains the Chow ring and for the multiplicative group law F_m one gets the usual K-theory.

Equivariant generalized cohomology. Let \mathbf{h}_T be the respective T-equivariant generalized (oriented) cohomology theory of [CZZ15, \S 2]. Replacing \mathbf{h}_T if necessary by its characteristic completion (see [CZZ15, §3]), the main result of [CZZ15] says that the formal affine Demazure algebra \mathbf{D}_F and its dual \mathbf{D}_{T}^{*} are related to generalized cohomology $\mathbf{h}_{T}(G/B)$ and $\mathbf{h}_{T}(G/P_{J})$ as follows:

- (1) There is an isomorphism $\mathbf{D}_F^* \cong \mathbf{h}_T(G/B)$, which maps the element $Y_{I_w}^{-1} \bullet \operatorname{pt}_e = Y_{I_w} \odot \operatorname{pt}_e$
- to the Bott-Samelson class determined by the sequence I_w . (2) Via the above isomorphism, the map $Y_{\Pi} \bullet_{-} : \mathbf{D}_F^* \to (\mathbf{D}_F^*)^W \cong S$ coincides with the map $\mathbf{h}_T(G/B) \to \mathbf{h}_T(\operatorname{Spec}(k)).$
- (3) The group W acts on \mathbf{D}_F^* by restriction of the \bullet -action via the embedding $W \subset \mathbf{D}_F$. For any subset $J \subset \Pi$, one has an isomorphism $(\mathbf{D}_F^*)^{W_J} \cong \mathbf{h}_T(G/P_J)$, and the map $Y_J : \mathbf{D}_F^* \to \mathbf{h}_T(G/P_J)$ $(\mathbf{D}_F^*)^{W_J}$ coincides with the push-forward map $\mathbf{h}_T(G/B) \to \mathbf{h}_T(G/P_J)$. More generally, the map $Y_{J/J'} \bullet : Q_W^* \to Q_W^*$ restricts to a map $(\mathbf{D}_F^*)^{W_{J'}} \to (\mathbf{D}_F^*)^{W_J}$, which corresponds to $\mathbf{h}_T(G/P_{J'}) \to \mathbf{h}_T(G/P_J).$
- (4) The embedding $\mathbf{D}_F^* \to Q_W^*$ coincides with the restriction to T-fixed points map $\mathbf{h}_T(G/B) \to$ $Q \otimes_S \mathbf{h}_T(W)$, and the element pt_w is mapped to the class \mathfrak{e}_w of T-fixed point of G/B.

Remark 2. Observe that the localization axiom [CZZ15, A3] used to prove the above properties can be replaced by a weaker CD-property of [NPSZ18, Def. 3.3] which holds for any \mathbf{h}_T defined using the Borel construction (see [NPSZ18, Example 3.6]).

Generalized Bott-Samelson varieties. Let P_i , Q_i , for i = 1, ..., m, be a collection of parabolic subgroups such that $Q_i \subset P_i \cap P_{i+1}$, and $Q_m := B$. Define

$$Z = P_1 \times^{Q_1} P_2 \times^{Q_2} \times \cdots \times^{Q_{m-1}} P_m.$$

There is a canonical map

$$\pi: Z/Q_m \to G/Q_m, \quad (p_1, ..., p_m) \mapsto p_1 p_2 \cdots p_m.$$

The following lemma will be used in §6 in identifying the small resolution of Zelevinsky with the factorization of Grassmannian Kazhdan-Lusztig basis of Kirillov-Lascoux.

Lemma 3. Under the isomorphism $\mathbf{h}_T(G/B) \cong \mathbf{D}_F^*$ and viewing $\mathbf{h}_T(G/P) \cong (\mathbf{D}_F^*)^{W_P}$, we have

$$\pi_*(1) = (Y_{P_m/Q_{m-1}} Y_{P_{m-1}/Q_{m-2}} \cdots Y_{P_2/Q_1} Y_{P_1}) \bullet \operatorname{pt}_e.$$

Proof. We use induction on m. If m=1, then the map is $\pi: P_1/Q_1 \to G/Q_1$. We have the following commutative diagram

$$P_1/Q_1 \xrightarrow{\pi} G/Q_1$$

$$\downarrow^q \qquad \qquad \downarrow^{p_{P_1/Q_1}}$$

$$pt \xrightarrow{i} G/P_1.$$

Here i is the embedding of the identity point. Then

$$\pi_*(1) = \pi_* q_*(1) = (p_{P_1/Q_1})^* i_*(1).$$

According to [CZZ15, Lemma 8.8], we see that $i_*(1) = Y_{P_1} \bullet \operatorname{pt}_e$, and $p_{P_1/\emptyset}^*$ is the embedding $(\mathbf{D}_F^*)^{W_{P_1}} \hookrightarrow (\mathbf{D}_F^*)^{W_{Q_1}} \subset \mathbf{D}_F^*$. So it holds when m = 1.

Now denote $Z' = P_1 \times^{Q_1} P_2 \times^{Q_2} \cdots \times^{P_{m-2}} Q_{m-1}$. We then have the following commutative diagram

$$Z' \times^{Q_{m-1}} P_m/Q_m \xrightarrow{\pi} G/Q_m$$

$$\downarrow^q \qquad \qquad \downarrow^{p_{P_m/Q_m}}$$

$$Z'/Q_{m-1} \xrightarrow{p_{P_m/Q_{m-1}} \circ \pi'} G/P_m$$

where $\pi': Z'/Q_{m-1} \to G/Q_{m-1}$ is the map multiplying all components together. Then

$$\pi_*(1) = \pi_* q_*(1) = (p_{P_m/Q_m})^* (p_{P_m/Q_{m-1}})_* \pi'_*(1).$$

From [CZZ15, p. 137], we see that $(p_{P_m/Q_{m-1}})_*$ corresponds to $Y_{P_m/Q_{m-1}} \bullet_{\neg}$, and $(p_{P_m/Q_m})^*$ is just the embedding $(\mathbf{D}_F)^{W_{P_m}} \hookrightarrow (\mathbf{D}_F)^{W_{Q_m}}$. The conclusion then follows from induction.

Corollary 4. Via the isomorphism $\mathbf{h}_T(G/B) \cong \mathbf{D}_F^*$, we have

$$\pi_*(1) = (Y_{P_1/Q_1} \cdots Y_{P_{m-1}/Q_{m-1}} Y_{P_m}) \odot \operatorname{pt}_e.$$

Proof. Note that $Y_{P/Q}Y_Q = Y_P$ for any $P \supset Q$, and $Y_P \bullet \operatorname{pt}_e = Y_P \odot \operatorname{pt}_e$ (see [LZZ20, (3.5), (3.8)]). If m = 2, we have

$$\pi_*(1) = (Y_{P_2/Q_1}Y_{P_1}) \bullet \operatorname{pt}_e = Y_{P_2/Q_1} \bullet Y_{P_1} \odot \operatorname{pt}_e = Y_{P_2/Q_1} \bullet Y_{P_1/Q_1} \odot Y_{Q_1} \odot \operatorname{pt}_e \\ = Y_{P_2/Q_1} \bullet Y_{P_1/Q_1} \odot Y_{Q_1} \bullet \operatorname{pt}_e = Y_{P_1/Q_1} \odot (Y_{P_2/Q_1}Y_{Q_1}) \bullet \operatorname{pt}_e = Y_{P_1/Q_1} \odot Y_{P_2} \odot \operatorname{pt}_e.$$

The general case then follows similarly.

We prove a lemma that will be used later in Section 6:

Lemma 5. We have

$$Y_{P_1/Q_1}Y_{P_2/Q_2}\cdots Y_{P_{m-1}/Q_{m-1}}Y_{P_m} = Y_{P_1}Y_{Q_1\backslash P_2}\cdots Y_{Q_{m-1}\backslash P_m}.$$

Proof. This follows from recursive use of the identities (2) and the assumption that $Q_i \subset P_i \cap P_{i+1}$. For example, one has

$$Y_{P_{m-1}/Q_{m-1}}Y_{P_m}=Y_{P_{m-1}/Q_{m-1}}Y_{Q_{m-1}}Y_{Q_{m-1}\backslash P_m}=Y_{P_{m-1}}Y_{Q_{m-1}\backslash P_m}.$$

By induction, the formula holds.

3. Hecke algebra, motivic Chern class, and the smoothness criterion

In this section, we recall the definition of the Kazhdan-Lusztig basis and the motivic Chern (MC) classes.

The multiplicative case. Set $R = \mathbb{Z}[t, t^{-1}, (t+t^{-1})^{-1}]$, where t is a parameter. Definitions of section 2 applied to the multiplicative formal group law F_m over R give the respective formal group algebra and its localization:

$$S_m := R[[X^*(T)]]_{F_m}, \qquad Q_m := S_m \left[\frac{1}{x_\alpha} | \alpha > 0 \right];$$

the localized twisted group algebra and the formal affine Demazure algebra:

$$Q_{m,W} := Q_m \otimes_R R[W], \qquad \mathbf{D}_m := \langle S_m, Y_1, \dots, Y_n \rangle \subset Q_{m,W}.$$

The Demazure-Lusztig elements. Define the Demazure-Lusztig elements in $Q_{m,W}$ as

$$\tau_i := Y_i^m(t - t^{-1}e^{\alpha_i}) - t = \frac{t^{-1} - t}{1 - e^{-\alpha_i}} + \frac{t - t^{-1}e^{-\alpha_i}}{1 - e^{-\alpha_i}}\delta_i^m.$$

It can be shown that $\tau_i \in \mathbf{D}_m$, i = 1, ..., n satisfy the standard quadratic relation $\tau_i^2 = (t^{-1} - t)\tau_i + 1$, and the braid relations. So they generate the Hecke algebra H over R.

Remark 6. Let $y = -t^{-2}$. As operators on $\mathbf{D}_m^* \cong R \otimes_{\mathbb{Z}} K_T(G/B)$, then $t^{-1}\tau_i \odot$ agrees with \mathcal{T}_i^L and $t^{-1}\tau_i \bullet$ agrees with $\mathcal{T}_i^{R,\vee}$, respectively, where the latter are notions from [MNS20, Section 5.3] and [AMSS19].

The Kazhdan-Lusztig basis. Consider the involution of the Hecke algebra $H \to H$, $z \mapsto \overline{z}$ such that

(6)
$$\overline{t} = t^{-1}, \quad \overline{\tau_i} = \tau_i^{-1}.$$

There is a basis of H over R denoted by $\{\gamma_w\}_{w\in W}$ and called the Kazhdan-Lusztig basis. It is invariant under this involution and satisfies

$$\gamma_w \in \tau_w + \sum_{v < w} t \mathbb{Z}[t] \tau_v$$
.

We set $t_w = t^{\ell(w)}$ and

$$\gamma_w = \sum_{v < w} t_w t_v^{-1} P_{v,w}(t^{-2}) \tau_v \,,$$

where $P_{v,w}$ are the Kazhdan-Lusztig polynomials. In addition to this, there is another canonical basis defined by (see [KL79])

$$\widetilde{\gamma}_w := \sum_{v \in W} \epsilon_w \epsilon_v t_w^{-1} t_v P_{v,w}(t^2) \tau_v \in \tau_w + \sum_{v < w} t^{-1} \mathbb{Z}[t^{-1}] \tau_v,$$

where ϵ_w is $(-1)^{\ell(w)}$. Since the Schubert variety $X(w_J) \subset G/B$ is smooth, the Kazhdan-Lusztig polynomials $P_{v,w_J} = 1$ for any $v \leq w_J$. Thus, $\gamma_{w_J} = \sum_{v \leq w_J} t_{w_J} t_v^{-1} \tau_v$.

More generally, for $J' \subset J \subseteq \Pi$, denote

(7)
$$\gamma_{J} := \gamma_{w_{J}}, \quad \gamma_{J/J'} := \sum_{v \in W_{J} \cap W^{J'}} t_{w_{J/J'}} t_{v}^{-1} \tau_{v} \quad , \gamma_{J' \setminus J} := \sum_{v \in W_{J} \cap J'W} t_{w_{J' \setminus J}} t_{v}^{-1} \tau_{v}.$$

It is not difficult to see that

(8)
$$\gamma_J = \gamma_{J/J'}\gamma_{J'} = \gamma_{J'}\gamma_{J'\setminus J}.$$

If $Q \subset P$ are the parabolic subgroups corresponding to $J' \subset J$, respectively, denote $\gamma_{P/Q} = \gamma_{J/J'}$. For $\gamma_{J/J'}$ and $\gamma_{J'\setminus J}$, the analogue of Lemma 5 holds. It will be used in considering KL-Schubert classes in hyperbolic cohomology of partial flag varieties below.

Motivic Chern classes. We recall the definition of the motivic Chern classes, following [BSY10, FRW21, AMSS19]. Let X be a non-singular quasi-projective complex algebraic variety with an action of the torus T. Let $G_0^T(var/X)$ be the (relative) Grothendieck group of varieties over X. By definition, it is the free abelian group generated by isomorphism classes $[f: Z \to X]$ where Z is a quasi-projective T-variety and f is a T-equivariant morphism modulo the usual additivity relations

$$[f:Z\to X]=[f:U\to X]+[f:(Z-U)\to X]\,,$$

for any T-invariant open subvariety $U \subset Z$.

Theorem 7. There exists a unique natural transformation $MC_{-t^{-2}}: G_0^T(var/X) \to K_T(X)[t^{-2}]$ satisfying the following properties:

- (1) It is functorial with respect to T-equivariant proper morphisms of non-singular, quasiprojective varieties.
- (2) It satisfies the normalization condition

$$MC_{-t^{-2}}[id_X: X \to X] = \sum (-1)^i t^{-2i} [\wedge^i T_X^*] =: \lambda_{-t^{-2}}(T_X^*) \in K_T(X)[t^{-2}].$$

The non-equivariant case is proved in [BSY10], and the equivariant case is shown in [AMSS19, FRW21].

Let

$$\mathcal{D}(-) := (-1)^{\dim X} \operatorname{RHom}_{\mathcal{O}_X}(-, \omega_X)$$

be the Serre-Grothendieck duality functor on $K_T(X)$, where $\omega_X := \bigwedge^{\dim X} T_X^*$ is the canonical bundle of X. Extend it to $K_T(X)[t^{\pm 1}]$ by setting $\mathcal{D}(t^i) = t^{-i}$.

Definition 8. Let $Z \subset X$ be a T-invariant subvariety.

(1) Define the motivic Chern class of Z to be

$$MC_{-t-2}(Z) := MC_{-t-2}([Z \hookrightarrow X])$$
.

(2) Further assume that Z is pure-dimensional. Define the Segre motivic Chern class of Z as follows (see [MNS20, Definition 6.2]),

$$\mathrm{SMC}_{-t^{-2}}(Z) := t^{-2\dim Z} \cdot \frac{\mathcal{D}(\mathrm{MC}_{-t^{-2}}(Z))}{\lambda_{-t^{-2}}(T_X^*)}.$$

Smoothness of Schubert varieties. Consider the variety of complete flags G/B. Let $X(w)^{\circ} := \frac{BwB}{B}$ and $Y(w)^{\circ} := B^{-}wB/B$ be the Schubert cells. The closures $X(w) := \overline{X(w)^{\circ}}$, $Y(w) := \overline{Y(w)^{\circ}}$ are the Schubert varieties. Observe that $u \leq v$ with respect to the Bruhat order if and only if $X(u) \subset X(v)$. Let $\operatorname{pt}_{w}^{m} = w(x_{\Pi})f_{w}^{m} \in Q_{m,W}^{*}$ denote the class of the T-fixed point \mathfrak{e}_{w} corresponding to $w \in W$. Note that here f_{w}^{m} is the standard basis in $Q_{m,W}^{*}$ defined in §2, and the superscript m is to indicate the multiplicative formal group law.

The key property of the motivic Chern classes of the Schubert cells that we need are listed below.

Theorem 9. (1) [MNS20, Theorem 7.6] For any $w \in W$, we have

$$MC_{-t^{-2}}(X(w)^{\circ}) = t_w^{-1}\tau_w \odot pt_e^m$$
.

(2) [AMSS19, Theorem 9.1] For any $u \leq w \in W$, the Schubert variety X(w) is smooth at \mathfrak{e}_u if and only if

$$MC_{-t^{-2}}(X(w))|_{u} = \prod_{\alpha>0, \ us_{\alpha}\nleq w} (1-e^{u\alpha}) \prod_{\alpha>0, \ us_{\alpha}\leq w} (1-t^{-2}e^{u\alpha}),$$

where $MC_{-t^{-2}}(X(w))|_{u}$ denotes the pullback of $MC_{-t^{-2}}(X(w))$ to the fixed point \mathfrak{e}_{u} .

- Remark 10. (1) This theorem is used to prove the Bump, Nakasuji and Naruse's conjectures about Casselman basis in unramified principal series representations, see [BN11, BN19, N14, AMSS19, Su19].
 - (2) The "only if" direction of part (2) follows directly from basic properties of motivic Chern classes, and it holds in a much more general setting, see [AMSS19, §9.1].

Proof. The first part follows from the reference mentioned. The second one follows from the fact $\delta_{w_0} \odot (MC_{-t^{-2}}(Y(w))) = MC_{-t^{-2}}(X(w_0w)).$

Given $w \in W$, define the coefficients $a_{w,u} \in Q_m$ by the following formulas:

(9)
$$\Gamma_w := \sum_{v \le w} t_v^{-1} \tau_v = \sum_{u \le w} a_{w,u} \delta_u^m \in Q_{m,W}.$$

Note that if the Schubert variety X(w) is smooth, then $P_{v,w} = 1$ for all $v \leq w$, so $\Gamma_w = t_w^{-1} \gamma_w$. It is immediate to get the following corollary from Theorem 9.

Corollary 11. For any $u \leq w \in W$, the Schubert variety X(w) is smooth at the fixed point \mathfrak{e}_u if and only if

$$a_{w,u} = \prod_{\alpha > 0, us_{\alpha} \le w} \frac{1 - t^{-2}e^{u\alpha}}{1 - e^{u\alpha}}.$$

Proof. By Theorem 9 (1) and (9), we have

$$\begin{split} \mathrm{MC}_{-t^{-2}}(X(w)) &= \sum_{v \leq w} \mathrm{MC}_{-t^{-2}}(X(v)^{\circ}) = \sum_{v \leq w} t_v^{-1} \tau_v \odot \mathrm{pt}_e^m \\ &= \sum_{v \leq w} a_{w,v} \delta_v^m \odot \mathrm{pt}_e^m = \sum_{v \leq w} a_{w,v} \prod_{\alpha > 0} (1 - e^{v\alpha}) f_v \,. \end{split}$$

Thus, we have

$$MC_{-t^{-2}}(X(w))|_{u} = a_{w,u} \prod_{\alpha>0} (1 - e^{u\alpha}).$$

The corollary follows from this and Theorem 9 (2).

4. Dual bases in K-theory and characteristic classes of mixed Hodge modules

In this section, we use the two Kazhdan-Lusztig bases of the Hecke algebra to define two collections of classes in K-theory, and show that they are actually dual to each other. We also give a geometric interpretation of one of these collections using the intersection homology mixed Hodge modules. These are also generalized to the partial flag variety case.

K-theory KL classes.

Definition 12. We define two collections of classes (called KL classes) in $K_T(G/B)[t^{\pm 1}]$ as follows:

$$C_w := \gamma_w \odot \operatorname{pt}_e^m, \quad \widetilde{C}_w := \widetilde{\gamma}_{w^{-1}w_0} \bullet \operatorname{pt}_{w_0}^m.$$

They form a basis of the localized K-theory $Q_m \otimes_{S_m} K_T(G/B)$.

Let $\langle -, - \rangle$ denote the usual non-degenerate tensor product pairing on $K_T(G/B)[t^{\pm 1}]$, i.e., $\langle f, g \rangle = Y_{\Pi}^m \bullet (f \cdot g), f, g \in K_T(G/B)[t^{\pm 1}]$. The first result of this section is the following.

Theorem 13. For any $w, v \in W$, we have

$$\langle C_w, \widetilde{C}_v \rangle = \delta_{w,v}^{Kr} \prod_{\alpha > 0} (t - t^{-1}e^{-\alpha}).$$

We first recall that the Segre motivic Chern classes of Schubert cells enjoy the following properties.

Lemma 14. (1) For any $v \in W$, we have

$$(\tau_{w_0 v})^{-1} \bullet \operatorname{pt}_{w_0}^m = t_{w_0 v} \prod_{\alpha > 0} (1 - t^{-2} e^{-\alpha}) \operatorname{SMC}_{-t^{-2}} (Y(v)^{\circ}).$$

(2) For any $u, v \in W$, we have

$$\langle \mathrm{MC}_{-t^{-2}}(X(u)^{\circ}), \mathrm{SMC}_{-t^{-2}}(Y(v)^{\circ}) \rangle = \delta_{u,v}^{Kr}$$

Proof. The first part follows from Remark 6 and [MNS20, Theorem 7.4], while the second one follows from Theorem 7.1 of $loc.\ cit.$.

Remark 15. By definition, $(t^{-1}\tau_i)|_{t=\infty} = Y_i^m - 1$. Thus, from Theorem 9(1), we get

$$\mathrm{MC}_{-t^{-2}}(X(w)^{\circ})|_{t=\infty} = t_w^{-a} \tau_w \odot \mathrm{pt}_e^m|_{t=\infty} = [\mathcal{O}_{X(w)}(-\partial X(w))] =: \mathcal{I}_w,$$

where $\partial X(w) = \bigcup_{v < w} X(v)$ is the boundary of the Schubert variety X(w), and \mathcal{I}_w denotes its ideal sheaf. On the other hand, $(t^{-1}\tau_i^{-1})|_{t=\infty} = Y_i^m$. Thus, the first part of the lemma gives

$$\mathrm{SMC}_{-t^{-2}}(Y(v)^{\circ})|_{t=\infty} = (t_{w_0v}\tau_{w_0v})^{-1} \bullet \mathrm{pt}_{w_0}^m|_{t=\infty} = [\mathcal{O}_{Y(v)}]$$

Therefore, setting $t = \infty$ in the second part of the lemma, we get the classical fact

$$\langle \mathcal{I}_w, [\mathcal{O}_{Y(v)}] \rangle = \delta_{u,v}^{Kr}.$$

Proof of Theorem 13. First of all, we have the following inversion formula for the Kazhdan-Lusztig polynomials (see [KL79, Theorem 3.1]):

$$\sum_{z} \epsilon_{y} \epsilon_{z} P_{x,z} P_{w_{0}y,w_{0}z} = \delta_{x,y}^{Kr}.$$

Therefore,

(10)
$$\sum_{z} \epsilon_{x} \epsilon_{z} P_{w_{0}z, w_{0}x} P_{z,y} = \delta_{x,y}^{Kr}.$$

By definition and Theorem 9(1),

(11)
$$C_w = \sum_{u \le w} t_w t_u^{-1} P_{u,w}(t^{-2}) \tau_u \odot \operatorname{pt}_e^m = \sum_{u \le w} t_w P_{u,w}(t^{-2}) \operatorname{MC}_{-t^{-2}}(X(u)^{\circ}).$$

On the other hand, since $\tilde{\gamma}_w$ is invariant under the involution, we get

$$\widetilde{\gamma}_w = \sum_{v \in W} \epsilon_w \epsilon_v t_w t_v^{-1} P_{v,w}(t^{-2}) \tau_{v^{-1}}^{-1}.$$

Thus,

$$\widetilde{C}_{w} = \widetilde{\gamma}_{w^{-1}w_{0}} \bullet \operatorname{pt}_{w_{0}}^{m}
= \sum_{v \geq w} \epsilon_{w} \epsilon_{v} t_{w^{-1}w_{0}} t_{v^{-1}w_{0}}^{-1} P_{v^{-1}w_{0},w^{-1}w_{0}}(t^{-2}) \tau_{w_{0}v}^{-1} \bullet \operatorname{pt}_{w_{0}}^{m}
= \prod_{\alpha > 0} (1 - t^{-2} e^{-\alpha}) \sum_{v \geq w} \epsilon_{w} \epsilon_{v} t_{w^{-1}w_{0}} P_{v^{-1}w_{0},w^{-1}w_{0}}(t^{-2}) \operatorname{SMC}_{-t^{-2}}(Y(v)^{\circ}),$$
(12)

where the last step follows from Lemma 14 (1).

Therefore, we have

$$\langle C_w, \widetilde{C}_y \rangle = \prod_{\alpha > 0} (1 - t^{-2} e^{-\alpha}) t_w t_{y^{-1} w_0} \sum_u P_{u,w} \sum_v \epsilon_v \epsilon_y P_{v^{-1} w_0, y^{-1} w_0} \delta_{u,v}^{Kr}$$

$$= \prod_{\alpha > 0} (1 - t^{-2} e^{-\alpha}) t_w t_{y^{-1} w_0} \sum_u P_{u,w} \epsilon_u \epsilon_y P_{w_0 u, w_0 y}$$

$$= \prod_{\alpha > 0} (t - t^{-1} e^{-\alpha}) \delta_{w,y}^{Kr},$$

where the first equality follows from Lemma 14 (2), the second follows from $P_{u,v} = P_{u^{-1},v^{-1}}$, and the third one follows from (10).

An immediate corollary of the proof is the following.

Corollary 16. If the Schubert variety X(w) is smooth, then

$$C_w = \sum_{u \le w} t_w \operatorname{MC}_{-t^{-2}}(X(u)^{\circ}) = t_w \operatorname{MC}_{-t^{-2}}(X(w)) \in K_T(G/B)[t^{\pm 1}].$$

Proof. It follows directly from (11) and the fact $P_{u,w} = 1$ for all $u \leq w$.

Characteristic classes of mixed Hodge modules. For any parabolic subgroup P_J , let $K^0(MHM(G/P_J, B))$ denote its Grothendieck group of B-equivariant mixed Hodge modules. Recall there is a motivic Hodge Chern transformation (see [S11, Definition 5.3 and Remark 5.5])

$$MHC_{-t^{-2}}: K^0(MHM(G/P_J, B)) \to K_B(G/P_J)[t^{\pm 1}] \simeq K_T(G/P_J)[t^{\pm 1}],$$

such that for any $[f: Z \to G/P_J] \in G_0^B(var/(G/P_J))$,

(13)
$$MC_{-t^{-2}}([f:Z \to G/P_J]) = MHC_{-t^{-2}}([f!\mathbb{Q}_Z^H]),$$

where $[\mathbb{Q}_Z^H] := [k^*\mathbb{Q}_{\mathrm{pt}}^H] \in K^0(\mathrm{MHM}(Z,B))$ and $k:Z\to\mathrm{pt}$ is the structure morphism. The construction also works for B^- -equivariant mixed Hodge modules, where B^- is the opposite Borel subgroup. The natural transformation $\mathrm{MC}_{-t^{-2}}$ commutes with the Serre-Grothendieck dual as follows, see Corollary 5.19 of $loc.\ cit.$,

(14)
$$MHC_{-t^{-2}} \circ \mathcal{D} = \mathcal{D} \circ MHC_{-t^{-2}}.$$

Here the first \mathcal{D} is the dual of the mixed Hodge modules, and the second one is the Serre-Grothendieck dual. Both are denoted by \mathcal{D} , if no confusion is possible.

For any $u \in W$, let $i_u : X(u)^\circ \hookrightarrow G/B$ and $j_u : Y(u)^\circ \hookrightarrow G/B$ be the inclusions. Then by (13)

$$\mathrm{MC}_{-t^{-2}}(X(u)^\circ) = \mathrm{MHC}_{-t^{-2}}([i_u!\mathbb{Q}^H_{X(u)^\circ}])\,,$$

where $\mathbb{Q}_{X(u)^{\circ}}^{H}$ is the constant mixed Hodge module on the Schubert cell $X(u)^{\circ}$. Since $\mathcal{D} \circ j_{v!} = j_{v*} \circ \mathcal{D}$, and

$$\mathcal{D}(\mathbb{Q}_{Y(v)^{\circ}}^{H}) = \mathbb{Q}_{Y(v)^{\circ}}^{H}[2\dim Y(v)^{\circ}](\dim Y(v)^{\circ}),$$

where $[2 \dim Y(v)^{\circ}]$ means shift by $2 \dim Y(v)^{\circ}$ and $(\dim Y(v)^{\circ})$ denotes the twist by the Tate Hodge module $\mathbb{Q}^H(1)^{\otimes \dim Y(v)^{\circ}}$, Equation (14) gives

$$SMC_{-t^{-2}}(Y(v)^{\circ}) = \frac{MHC_{-t^{-2}}([j_{v*}\mathbb{Q}_{Y(v)^{\circ}}^{H}])}{\lambda_{-t^{-2}}(T_{G/B}^{*})}.$$

Using these, Lemma 14(2) can also be proved using mixed Hodge modules by J. Schürmann. For the analogue in equivariant homology, see [S17, Theorem 1.2].

For any Schubert variety X(w), let $[IC_{X(w)}^H] \in K^0(MHM(G/B, B))$ denote the intersection homology Hodge module on X(w). Then it is well known that (see [KL80, T87, KT02]),

$$[IC_{X(w)}^{H}] = \sum_{u \le w} \epsilon_w P_{u,w}(t^{-2}) [i_{u!} \mathbb{Q}_{X(u)^{\circ}}^{H}].$$

Thus,

$$\mathrm{MHC}_{-t^{-2}}([\mathrm{IC}_{X(w)}^H]) = \sum_{u < w} \epsilon_w P_{u,w}(t^{-2}) \, \mathrm{MC}_{-t^{-2}}(X(u)^\circ) \, .$$

Comparing with (11), we get the following geometric interpretation of the KL classes C_w in Definition 12.

Proposition 17. For any $w \in W$,

$$C_w = t_w \epsilon_w \operatorname{MHC}_{-t^{-2}}([\operatorname{IC}_{X(w)}^H]) \in K_T(G/B)[t^{\pm 1}].$$

Remark 18. If X(w) is smooth or rationally smooth (i.e. $[IC_{X(w)}^H] = \mathbb{Q}_{X(w)}^H[\dim X(w)]$), then

$$C_w = t_w \epsilon_w \operatorname{MHC}_{-t^{-2}}([\operatorname{IC}_{X(w)}^H]) = t_w \operatorname{MC}_{-t^{-2}}(X(w)).$$

This is compatible with Corollary 16.

An immediate Corollary is the following.

Corollary 19. The canonical basis C_w is invariant under the Serre-Grothendieck duality, i.e.,

$$\mathcal{D}(C_w) = C_w \in K_T(G/B)[t^{\pm 1}].$$

Proof. Since

$$\mathcal{D}(\mathrm{IC}^H_{X(w)}) = \mathrm{IC}^H_{X(w)}(\dim X(w))\,,$$

Equation (14) and Proposition 17 give

$$\mathcal{D}(C_w) = \mathcal{D}(t_w \epsilon_w \operatorname{MHC}_{-t^{-2}}([\operatorname{IC}_{X(w)}^H])) = t_w^{-1} \epsilon_w \operatorname{MHC}_{-t^{-2}}(\mathcal{D}([\operatorname{IC}_{X(w)}^H])) = C_w.$$

Parabolic case. In this subsection, we generalize the above results to the parabolic case. Let $J \subset \Pi$ be a subset of simple roots, with corresponding parabolic subgroup P_J . Schubert cells and varieties and opposite Schubert cells and varieties of G/P_J are indicated by subscripts J. Recall there exist parabolic Kazhdan-Lusztig polynomials (see [D79, KT02]), denoted by $P_{v,w}^J \in \mathbb{Z}[t^{-2}]$, where $v, w \in W^J$. Here our $P_{v,w}^J$ is the u = -1 parabolic KL polynomials in [D79], which is also denoted by $P_{v,w}^{J,q}$ in [KT02, Remark 2.1]. We have the following property, which generalizes [D79, Proposition 3.4].

Lemma 20. [LZZ20, Proposition 5.19] For any $w, v \in W^J$ and $u \in W_J$,

$$P_{vu,ww_J} = P_{v,w}^J.$$

Let $Q_{u,w} := P_{w_0w,w_0u}$ denote the usual inverse KL polynomials, which satisfy

$$\sum_{w} \epsilon_{u} \epsilon_{w} Q_{u,w} P_{w,v} = \delta_{u,v}^{Kr}.$$

For any $u, w \in W^J$, let $Q_{u,w}^J \in \mathbb{Z}[t^{-2}]$ denote the inverse parabolic KL polynomial (see [KT02]¹). Then

(15)
$$\sum_{w \in W^J} \epsilon_u \epsilon_w Q^J_{u,w} P^J_{w,v} = \delta^{Kr}_{u,v}.$$

¹Our $Q_{u,w}^{J}$ is denoted by $Q_{u,w}^{J,q}$ in [KT02].

Moreover, it is related to the usual $Q_{u,w}$ as follows, see [KT02, Proposition 2.6] or [S97]:

$$Q_{u,w}^J = \sum_{v \in W_J} \epsilon_v \epsilon_{w_J} Q_{uw_J,wv} .$$

Following Equations (11) and (12), we define the parabolic canonical bases in $K_T(G/P_J)[t^{\pm 1}]$ as follows.

Definition 21. For any $w \in W^J$, let

$$C_w^J := \sum_{u \in W^J, u < w} t_w P_{u,w}^J(t^{-2}) \,\mathrm{MC}_{-t^{-2}}(X(u)_J^\circ) \,,$$

and

$$\widetilde{C}_w^J := \prod_{\alpha \in \Sigma^+ - \Sigma_J^+} (1 - t^{-2} e^{-\alpha}) \sum_{v \in W^J, v \geq w} \epsilon_w \epsilon_v t_{w_J w^{-1} w_0} Q_{w,v}^J(t^{-2}) \operatorname{SMC}_{-t^{-2}}(Y(v)_J^\circ).$$

Then if $J = \emptyset$, then $C_w^{\emptyset} = C_w$, and $\widetilde{C}_w^{\emptyset} = \widetilde{C}_w$, as defined before.

Let $\langle -, - \rangle_J$ denote the non-degenerate tensor product pairing on $K_T(G/P_J)$. The parabolic analog of Lemma 14(2) also holds (see [MNS20, Theorem 7.2]): for any $u, v \in W^J$,

$$\langle \mathrm{MC}_{-t^{-2}}(X(u)_J^{\circ}), \mathrm{SMC}_{-t^{-2}}(Y(v)_J^{\circ}) \rangle_J = \delta_{u,v}^{Kr}.$$

Combining this with (15), we immediately get the following generalization of Theorem 13.

Theorem 22. For any $u, w \in W^J$,

$$\langle C_w^J, \widetilde{C}_u^J \rangle_J = \delta_{u,w}^{Kr} \prod_{\alpha \in \Sigma^+ - \Sigma_J^+} (t - t^{-1} e^{-\alpha}).$$

We now investigate the relation between KL classes of G/B and G/P_J . For any $w \in W^J$, let us still use i_u denote the inclusion $X(u)_J^{\circ} \hookrightarrow G/P_J$. Then the following identity holds in $K^0(MHM(G/P_J, B))$ (see [KT02, Corollary 5.1]),

$$[\mathrm{IC}_{X(w)_J}^H] = \sum_{u \in W^J, u \le w} \epsilon_w P_{u,w}^J [i_u! \mathbb{Q}_{X(u)_J^{\circ}}^H].$$

Thus, we get the following parabolic analog of Proposition 17 and Corollary 19.

Proposition 23. For any $w \in W^J$,

$$C_w^J = t_w \epsilon_w \operatorname{MHC}_{-t^{-2}}([\operatorname{IC}_{X(w),I}^H]).$$

Moreover, let \mathcal{D}_J denote the Serre-Grothendieck duality functor on G/P_J . Then

$$\mathcal{D}_J(C_w^J) = C_w^J.$$

Recall $\pi_J: G/B \to G/P_J$ denotes the natural projection. The relation between C_w and C_w^J is given by the following proposition.

Proposition 24. Let $\mathcal{P}_J(t) = \sum_{v \in W_J} t_v$ be the Poincaré polynomial of W_J , then for any $w \in W^J$,

$$\pi_{J*}(C_{ww_J}) = t_{w_J}^{-1} \mathcal{P}_J(t^2) C_w^J \in K_T(G/P_J)[t^{\pm 1}].$$

Proof. By [AMSS19, Remark 5.5], for any $u \in W^J$ and $v \in W_J$,

$$\pi_{J*}(MC_{-t^{-2}})(X(uv)^{\circ}) = t_v^{-2} MC_{-t^{-2}}(X(u)_J^{\circ}),$$

which also follows directly from the following identity about mixed Hodge modules

$$\pi_{J!}(i_{uv!}\mathbb{Q}^{H}_{X(uv)^{\circ}}) = \mathbb{Q}^{H}_{X(u)^{\circ}_{I}}[-2\ell(v)](-\ell(v)).$$

Thus,

$$\begin{split} \pi_{J*}(C_{ww_J}) &= \sum_{u \in W^J, u \leq w} \sum_{v \in W_J} t_w t_{w_J} P_{uv,ww_J} \pi_{J*} \operatorname{MC}_{-t^{-2}}(X(uv)^\circ) \\ &= \sum_{u \in W^J, u \leq w} t_w t_{w_J} P_{u,w}^J \operatorname{MC}_{-t^{-2}}(X(u)_J^\circ) \sum_{v \in W_J} t_v^{-2} \\ &= C_w^J \sum_{v \in W_J} t_v^{-2} t_{w_J} = C_w^J \sum_{v \in W_J} t_{w_J}^{-1} t_{w_J}^2 t_v^{-2} = C_w^J \sum_{v \in W_J} t_{w_J}^{-1} t_{vw_J}^2 = C_w^J t_{w_J}^{-1} \mathcal{P}_J(t^2) \,, \end{split}$$

where the second equality follows from Lemma 20.

5. The smoothness conjecture for hyperbolic cohomology

In this section, we use the smoothness criterion to prove the Smoothness Conjecture. Since we will be working with multiplicative and hyperbolic formal group laws in the same time, we add superscripts or subscripts m (resp. t) in the multiplicative case (resp. hyperbolic case).

The hyperbolic case. Consider the hyperbolic formal group law over $R = \mathbb{Z}[t, t^{-1}, \mu^{-1}]$

$$F_t(x,y) := \frac{x+y-xy}{1-\mu^{-2}xy}$$
,

where $\mu = t + t^{-1}$. Note that R depends on only one parameter t. The definitions of Section 2 applied to F_t give the respective rings

$$S_t, Q_t, Q_{t,W}, \mathbf{D}_t$$

Consider a map of formal group laws

$$g: F_t \to F_m$$
, $g(x) = \frac{(1-t^2)x}{x-(t^2+1)}$

so that $F_m(g(x), g(y)) = g(F_t(x, y))$. It induces ring embeddings

$$\psi \colon S_m \hookrightarrow S_t$$
, $\psi(f(x_\lambda)) = f(g(x_\lambda))$, $f(x) \in R[[x]]$,

and

(16)
$$\psi \colon Q_m \hookrightarrow R\left[\frac{1}{1-t^2}\right] \otimes Q_t.$$

Consequently, we have a ring embedding

$$\psi: Q_{m,W} \to R\left[\frac{1}{1-t^2}\right] \otimes_R Q_{t,W}, \quad \psi(p\delta_w^m) = \psi(p)\delta_w^t, \quad p \in Q_m, w \in W.$$

It can be shown that

(17)
$$\psi(\tau_i) = \mu Y_i^t - t \in \mathbf{D}_t \subset Q_{t,W}.$$

Note that in (16), for the target, we have to invert $t^2 - 1$, but for the one in (17), it is not necessary.

One of the most interesting properties of ψ is the following (see [LZZ20, Corollary 5.5 (2)]):

(18)
$$\mu^{-\ell(w_{J/J'})}\psi(\gamma_{J/J'})Y_{J'}^t = Y_J^t.$$

In other words, $\psi(\gamma_{J/J'})$ behaves like a replacement of $Y_{J/J'}$; see [LZZ20, Remark 5.6]. In particular, letting $J' = \emptyset$, one then has

$$\mu^{-\ell(w_J)}\psi(\gamma_{w_J}) = Y_J^t.$$

Let \mathfrak{h} denote the respective oriented cohomology theory for the hyperbolic formal group law F_t .

Definition 25. Define the KL-Schubert class for $w \in W^J$ to be

$$\mathrm{KL}_w^J := \mu^{-\ell(ww_J)} \psi(\gamma_{ww_J}) \odot \mathrm{pt}_e^t \in (\mathbf{D}_t^*)^{W_J} \cong \mathfrak{h}_T(G/P_J).$$

Remark 26. Following [LZZ20] one can define certain involution on some subset $\mathcal{N}_J := \psi(H) \odot$ pt $_e^t \subset \mathbf{D}_t^*$ so that KL_v^J is invariant under such involution, similar to the parabolic Kazhdan-Lusztig basis of Deodhar.

Writing the Kazhdan-Lusztig basis $\gamma_w = \sum_{v < w} b_{w,v} \delta_v, b_{w,v} \in S_m$, we then have in $K_T(G/B)$

$$C_w = \gamma_w \odot \operatorname{pt}_e^m = \sum_{v \le w} b_{w,v} \delta_v \odot \left(\prod_{\alpha > 0} (1 - e^{\alpha}) f_e^m \right) = \sum_{v \le w} b_{w,v} v \left(\prod_{\alpha > 0} (1 - e^{\alpha}) \right) f_v^m.$$

On the other hand, inside $\mathfrak{h}_T(G/B)$, we have

$$\mathrm{KL}_w = \mu^{-\ell(w)} \psi(\gamma_w) \odot \mathrm{pt}_e^t = \mu^{-\ell(w)} \sum_{v \le w} \psi(b_{w,v}) v(\prod_{\alpha > 0} x_{-\alpha}) f_v^t.$$

Here $x_{\alpha} \in S_t$. It would be interesting to compare the two classes in different cohomology theories. Here is an example.

Example 27. We consider the SL_3 case, so there are two simple roots α_1, α_2 . Recall that in S_m , we have $x_{\lambda} = 1 - e^{-\lambda}$. Denote $\hat{x}_{\lambda} = t - t^{-1}e^{-\lambda}$. For simplicity, denote $x_{\pm i \pm j} := x_{\pm \alpha_i \pm \alpha_j}$, and $\hat{x}_{\pm i \pm j} = \hat{x}_{\pm \alpha_i \pm \alpha_j}$. Inside $H \subset Q_{m,W}$, we have

$$\begin{split} \gamma_{s_i} &= (\delta_{s_i} + 1) \frac{\hat{x}_{-i}}{x_{-i}}, \\ \gamma_{s_1 s_2} &= (\delta_{s_1 s_2} + \delta_{s_2}) \frac{\hat{x}_{-1 - 2} \hat{x}_{-2}}{x_{-1 - 2} x_{-2}} + (\delta_{s_1} + 1) \frac{\hat{x}_{-1} \hat{x}_{-2}}{x_{-1} x_{-2}}, \\ \gamma_{s_1 s_2 s_1} &= (\delta_{s_1 s_2 s_1} + \delta_{s_1 s_2} + \delta_{s_2 s_1} + \delta_{s_1} + \delta_{s_2} + 1) \frac{\hat{x}_{-1} \hat{x}_{-2} \hat{x}_{-1 - 2}}{x_{-1} x_{-2} x_{-1 - 2}}. \end{split}$$

Recall that $\operatorname{pt}_e^m = x_{-1}x_{-2}x_{-1-2}f_e^m \in \mathbf{D}_m^*$. So inside $\mathbf{D}_m^* \cong K_T(G/B) \otimes_{\mathbb{Z}} R$, we have

$$C_{e} = \operatorname{pt}_{e}^{m},$$

$$C_{s_{1}} = \hat{x}_{-1}x_{-2}x_{-1-2}f_{e}^{m} + \hat{x}_{1}x_{-2}x_{-1-2}f_{s_{1}}^{m}$$

$$C_{s_{1}s_{2}} = \hat{x}_{-1}\hat{x}_{-2}x_{-1-2}f_{e}^{m} + \hat{x}_{1}\hat{x}_{-1-2}x_{-2}f_{s_{1}}^{m} + \hat{x}_{-1}\hat{x}_{2}x_{-1-2}f_{s_{2}}^{m} + \hat{x}_{1}\hat{x}_{1+2}x_{-2}f_{12}^{m},$$

$$C_{s_{1}s_{2}s_{1}} = \hat{x}_{-1}\hat{x}_{-2}\hat{x}_{-1-2}f_{e}^{m} + \hat{x}_{1}\hat{x}_{-2}\hat{x}_{-1-2}f_{s_{1}}^{m} + \hat{x}_{-1}\hat{x}_{2}\hat{x}_{-1-2}f_{s_{2}}^{m},$$

$$+ \hat{x}_{1}\hat{x}_{1+2}\hat{x}_{-1-2}f_{s_{1}s_{2}}^{m} + \hat{x}_{2}\hat{x}_{1+2}\hat{x}_{-1}f_{s_{2}s_{1}}^{m} + \hat{x}_{1}\hat{x}_{2}\hat{x}_{1+2}f_{s_{1}s_{2}s_{1}}^{m}.$$

Note that so far in this example all notations are in S_m , $Q_{m,W}$ or \mathbf{D}_m^* .

On the other hand, one can compute $\mathrm{KL}_w \in \mathfrak{h}_T(G/B)$ as follows: note that $\psi(\frac{\hat{x}_i}{x_i}) = \frac{\mu}{x_i}$ (where the first $x_i \in S_m$ and the second $x_i \in S_t$). Then

$$\begin{aligned} \mathrm{KL}_{e} &= \mathrm{pt}_{e}^{t}, \\ \mathrm{KL}_{s_{1}} &= x_{-1}x_{-1-2}f_{e}^{t} + x_{-1-2}x_{-2}f_{s_{1}}^{t}, \\ \mathrm{KL}_{s_{1}s_{2}} &= x_{-1-2}f_{e}^{t} + x_{-2}f_{s_{1}}^{t} + x_{-1-2}f_{s_{2}}^{t} + x_{-2}f_{s_{1}s_{2}}^{t}, \\ \mathrm{KL}_{s_{1}s_{2}s_{1}} &= f_{e}^{t} + f_{s_{1}}^{t} + f_{s_{2}}^{t} + f_{s_{1}s_{2}}^{t} + f_{s_{2}s_{1}}^{t} + f_{s_{1}s_{2}s_{1}}^{t}. \end{aligned}$$

In this case, all Schubert varieties are smooth, and it is easy to verify that KL_w coincide with the Schubert classes.

We now prove the Smoothness Conjecture [LZZ20, Conjecture 5.14]. Several special cases were proved in [LZ17, LZZ20], such as the case of $w = w_{J/J'}$ for $J' \subset J \subseteq \Pi$ (i.e., w has 'relative' maximal length), and that of Schubert varieties in complex projective spaces.

Theorem 28. If the Schubert variety X(w) is smooth, then the class determined by X(w) in $\mathfrak{h}_T(G/B)$ coincides with the KL-Schubert class KL_w .

Proof. Since X(w) is smooth, $P_{v,w} = 1$ for any $v \leq w$, see [BL00, 6.1.19]. Therefore,

$$\gamma_w = \sum_{v \le w} t_w t_v^{-1} \tau_v = t_w \sum_{v \le w} t_v^{-1} \tau_v = t_w \Gamma_w = t_w \sum_{v \le w} a_{w,v} \delta_v^m.$$

From the definition of ψ , it is easy to verify that

(19)
$$\psi\left(\frac{1-t^{-2}e^{\alpha}}{1-e^{\alpha}}\right) = \frac{t^{-1}\mu}{x_{-\alpha}}.$$

Then for any $w \in W$, we have

$$\begin{aligned} \operatorname{KL}_{w} &= \mu^{-\ell(w)} \psi(\gamma_{w}) \odot \operatorname{pt}_{e}^{t} \\ &= \mu^{-\ell(w)} \psi\left(t_{w} \sum_{v \leq w} a_{w,v} \delta_{v}^{m}\right) \odot \operatorname{pt}_{e}^{t} \\ &\overset{\operatorname{Cor.}}{=} {}^{11} \mu^{-\ell(w)} t_{w} \sum_{v \leq w} \psi\left(\prod_{\alpha > 0, \ v s_{\alpha} \leq w} \frac{1 - t^{-2} e^{u \alpha}}{1 - e^{u \alpha}}\right) \delta_{v}^{t} \odot \operatorname{pt}_{e}^{t} \\ &\overset{(5),(19)}{=} \mu^{-\ell(w)} t_{w} \sum_{v \leq w} \left(\prod_{\alpha > 0, \ v s_{\alpha} \leq w} \frac{t^{-1} \mu}{x_{-v \alpha}}\right) \cdot v(x_{\Pi}^{t}) f_{v}^{t} \\ &= \sum_{v \leq w} v\left(\frac{\prod_{\alpha < 0} x_{\alpha}}{\prod_{\alpha < 0, \ v s_{\alpha} \leq w} x_{\alpha}}\right) f_{v}^{t} \\ &= \sum_{v \leq w} \frac{\prod_{\alpha > 0} x_{-\alpha}}{\prod_{\alpha > 0, \ s_{\alpha} v \leq w} x_{-\alpha}} f_{v}^{t}. \end{aligned}$$

Here the fifth identity follows from the following well-known fact:

for any
$$v \leq w \in W$$
, if $X(w)$ is smooth, $|\{\alpha > 0 \mid s_{\alpha}v \leq w\}| = \ell(w)$,

and the last one is proved as follows: for any $v \leq w \in W$,

$$\frac{\prod_{\alpha<0} x_{v\alpha}}{\prod_{\alpha<0, \ vs_{\alpha}\leq w} x_{v\alpha}} = \frac{\prod_{\alpha>0, \ s_{\alpha}v0, \ v0, \ s_{\alpha}v0, \ v

$$= \frac{\prod_{\alpha>0, \ s_{\alpha}v0, \ v0, \ s_{\alpha}v0, \ v

$$= \frac{\prod_{\alpha>0, \ s_{\alpha}v0, \ v0, \ s_{\alpha}v\leq w} x_{-\alpha}}.$$$$$$

Comparing with the restriction formula of [X(w)] in [LZZ20, (5.6)], we see that $KL_w = [X(w)]$. The proof is finished.

We now look at the case of partial flag varieties. Let P_J be the parabolic subgroup with the projection map $\pi_J: G/B \to G/P_J$. Let w_J be the longest element in the subgroup W_J of W determined by J, and $W^J \subset W$ be the set of minimal length representatives of W/W_J . Recall $X(w)_J$ denotes the Schubert variety of G/P_J determined by $w \in W^J$.

For G/P_J , the definition of KL-Schubert class KL_w^J corresponding to $w \in W^J$ is defined by using the so-called parabolic Kazhdan-Lusztig basis. According to the paragraph right after [LZZ20, Definition 5.9], via the embedding $\pi_J^*: \mathfrak{h}_T(G/P_J) \to \mathfrak{h}_T(G/B)$, we have

$$\pi_J^*(\mathrm{KL}_w^J) = \mathrm{KL}_{ww_J}$$
.

Corollary 29. Conjecture 5.14 of [LZZ20] holds for any partial flag variety G/P_J , that is, if the Schubert variety $X(w)_J$ of G/P_J is smooth for $w \in W^J$, then the KL-Schubert class KL_w^J of w coincides with the fundamental class $[X(w)_J]$.

Proof. We have the following commutative diagram:

$$\pi_J^{-1}(X(w)_J) \xrightarrow{i'} G/B$$

$$\downarrow^{\pi_J} \qquad \qquad \downarrow^{\pi_J}$$

$$X(w)_J \xrightarrow{i} G/P_J.$$

Moreover, $\pi_J^{-1}(X(w)_J) = X(ww_J)$. Since $X(w)_J$ is smooth, $X(ww_J)$ is also smooth. Thus, Theorem 28 implies $[X(ww_J)] = \mathrm{KL}_{ww_J}$. On the other hand, we get the following by proper base change:

$$\pi_J^*[X(w)_J] = \pi_J^* i_*[1_{X(w)_J}] = i_*' \pi_J^*[1_{X(w)_J}] = i_*'[1_{X(ww_J)}] = [X(ww_J)],$$

where the third equality follows from the fact that the pull-back π_J^* preserves identity. Since $\pi_J^*(\mathrm{KL}_w^J) = \mathrm{KL}_{ww_J}$ and π_J^* is injective, we get $\mathrm{KL}_w^J = [X(ww_J)] \in \mathfrak{h}_T(G/P_J)$.

6. KL-Schubert classes and small resolutions

In this section, we give a geometric interpretation of the KL-Schubert classes (for hyperbolic cohomology) in the case of type A Grassmannians.

For subsets $J' \subset J \subseteq \Pi$, for hyperbolic cohomology, we will use relative push-pull elements $Y^t_{J/J'}$ defined in (1). For simplicity, we will skip the superscript t. Moreover, if $Q \subset P$ are the parabolic subgroups corresponding to $J' \subset J$, respectively, we will denote $Y_{P/Q} = Y_{J/J'}$.

Consider the Grassmannian $Gr_d(\mathbb{C}^{n-d}) = SL_n/P_J$, where the set of simple roots Π is identified with $\{1, \ldots, n-1\}$ and $J := \Pi - \{d\}$. Fix a Schubert variety $X(\lambda)$ of it, which is indexed by a partition $\lambda = (\lambda_1 \ge \ldots \ge \lambda_l > 0)$ contained inside the $d \times (n-d)$ rectangle; here we mean that λ is identified with a Young diagram (in English notation), whose top left box is placed on the top left box of the mentioned rectangle.

Alternatively, the Schubert variety $X(\lambda)$ is indexed by a d-subset I_{λ} of $[n] := \{1, \ldots, n\}$, which is constructed as follows. Place the above $d \times (n-d)$ rectangle inside the first quadrant of the xy-plane, such that its southwest corner is the origin. Label each horizontal (resp. vertical) unit segment whose left (resp. bottom) endpoint is a lattice point (x,y) by x+y+1. Consider the lattice path from (0,0) to (n-d,d) defining the southeast boundary of the Young diagram λ when embedded into the $d \times (n-d)$ rectangle as stated above. Then I_{λ} consists of the labels on the vertical steps of this path.

Yet another indexing of the Schubert variety $X(\lambda)$ is by a Grassmannian permutation w_{λ} in the symmetric group $W = S_n$, which has its unique descent in position d. Written in one-line notation, w_{λ} consists of the entries in I_{λ} followed by the entries in $[n] - I_{\lambda}$, where both sets of entries are ordered increasingly. Here we use '-' for set difference. Thus, w_{λ} belongs to the set W^J of lowest coset representatives modulo the parabolic subgroup W_J . Moreover, it has the following reduced decomposition:

(20)
$$w_{\lambda} = \prod_{(i,j)\in\lambda} \stackrel{\rightarrow}{s_{d+j-i}};$$

here (i, j) is the box of the Young diagram λ in row i and column j, while in the product we scan the rows of λ from bottom to top, and each row from right to left.

Example 30. We use as a running example the same one as in [BL00, Example 9.1.11], namely n = 10, d = 5, $\lambda = (5, 5, 3, 2, 2)$, $I_{\lambda} = \{3, 4, 6, 9, 10\}$. In order to illustrate (20), we place the number d + j - i in the box (i, j) of λ , as follows:

Thus, we have

$$(22) w_{\lambda} = [3, 4, 6, 9, 10, 1, 2, 5, 7, 8] = (s_2 s_1)(s_3 s_2)(s_5 s_4 s_3)(s_8 s_7 s_6 s_5 s_4)(s_9 s_8 s_7 s_6 s_5).$$

In [BL00, Section 9.1], the permutation w_{λ} is identified with the d-subset I_{λ} , and they are encoded into a $2 \times m$ matrix

$$\begin{pmatrix} k_1 & \dots & k_m \\ a_1 & \dots & a_m \end{pmatrix},$$

which can be read off from the above lattice path as follows. The entries $0 < k_1 < ... < k_m \le n$ are the labels of the last steps in consecutive sequences of vertical (unit) steps. The entries $a_1, ..., a_m$ are the lengths of these sequences. The numbers $b_0, ..., b_{m-1}$ calculated in [BL00] are the lengths of the sequences of horizontal steps, where we set $b_0 := 0$ if l < d (i.e., if the lattice path starts with a vertical step). Recall that we also set $a_0 = b_m := \infty$.

Now recall that the Schubert variety $X(\lambda)$ has small resolutions, which were defined by Zelevinsky [Z83]. We briefly recall their construction following [BL00, Section 9.1]. This construction starts with the choice of an index i, with $0 \le i < m$, such that $b_i \le a_i$ and $a_{i+1} \le b_{i+1}$ (any such choice can be made). While it is clear that such an index always exists, we avoid the choice of i = 0 if l < d. Then, a new permutation w^2 is obtained from $w^1 := w_\lambda$ via a certain procedure, which can be rephrased as follows. Consider the i-th outer corner of λ (counting from 0), from southwest to northeast, where the origin is an outer corner if and only if l < d. Consider the rectangle R_1 (inside λ) whose southeast vertex is the mentioned outer corner, and which is maximal such that its removal from λ still leaves a Young diagram. It is clear that the size of R_1 is $b_i \times a_{i+1}$. Then w^2 is the Grassmannian permutation corresponding to the Young diagram $\lambda - R_1$.

The above procedure is then iterated. We thus tile the Young diagram λ with rectangles R_1, \ldots, R_r . Let us denote by p_i and q_i the height and width of R_i , respectively. We also define the sequence of Grassmannian permutations w^1, \ldots, w^r , such that the Young diagram of w^i is $\lambda^i := \lambda - \rho^{i-1}$, where $\rho^j := R_1 \cup \ldots \cup R_j$. In particular, the Young diagram of w^r is R_r , and the Schubert variety $X(w^r)$ is smooth. Note that r = m if l = d, and r = m - 1 if l < d.

Example 31. We continue Example 30. The encoding of w_{λ} by the $2 \times m$ matrix (23) and the successive choices of w^1 , w^2 , w^3 based on it are described in detail in [BL00]. In our setup, the tiling of λ with the corresponding rectangles R_1 , R_2 , R_3 is illustrated below (the number in a box is the index of the rectangle to which that box belongs).

3	3	2	2	2
3	3	2	2	2
3	3	1		
3	3			
3	3			

In order to complete the construction of the Zelevinsky resolution, following [BL00, Section 9.1], we need the stabilizer $P_{w_{\lambda}}$ of the Schubert variety $X(\lambda) = X(w_{\lambda})$. This is the parabolic subgroup corresponding to the subset $\Pi - \{k_1, \ldots, k_m\}$, cf. (23). More generally, consider the stabilizers

 $P_i := P_{w^i}$, for i = 1, ..., r, and $P_{r+1} := P_J$; for simplicity, we use the same notation for the corresponding subsets of Π . Also let $Q_i := P_i \cap P_{i+1}$, for i = 1, ..., r, both as parabolic subgroups and subsets of Π . Then the Zelevinsky resolution of X(w) is expressed as follows:

(24)
$$P_1 \times^{Q_1} P_2 \times \ldots \times^{Q_{r-2}} P_{r-1} \times^{Q_{r-1}} X(w^r) =: \widetilde{X}(w_{\lambda}) \to X(w_{\lambda}).$$

Therefore, by Corollary 4 and Corollary 29, the pushforward of the fundamental class of $\widetilde{X}(w_{\lambda})$ inside $\mathfrak{h}_{T}(G/B)$ is the following element

$$(25) Y_{P_1/Q_1} \cdots Y_{P_r/Q_r} Y_J \odot \operatorname{pt}_e^t.$$

Example 32. Continuing Example 31, the operator in (25) is written explicitly as follows:

$$Y_{(\Pi - \{4,6\})/(\Pi - \{4,5,6\})} \, Y_{(\Pi - \{5\})/(\Pi - \{5,7\})} \, Y_{(\Pi - \{7\})/(\Pi - \{5,7\})} \, Y_{\Pi - \{5\}} \, .$$

Indeed, the parabolic subsets P_i for these examples were exhibited in [BL00], while they can also be read off from the Young diagram of $\lambda = (5, 5, 3, 2, 2)$ as indicated above.

We will now state the main technical result of this section, Theorem 34, which is interesting itself, and is needed to make the connection with the KL-Schubert classes for the Grassmannian, cf. [LZZ20]. To this end, we introduce more notation in the above setup. Given the rectangle R_i , with its embedding into the Young diagram of λ and the first quadrant, let C_i and D_i be the sets of labels on its left vertical side and its top horizontal side, respectively. Let

$$c_i := \min C_i$$
, $d_i := \max D_i = c_i + p_i + q_i - 1$, $C'_i := C_i - \{\max C_i\}$, $D'_i := D_i - \{d_i\}$.
Finally, let $J_i := C_i \sqcup D'_i$ and $J'_i := C'_i \sqcup D'_i$.

We also need to define the subsets $K'_i \subsetneq K_i$ of Π , i = 1, ..., r. First recall that above we defined the shape ρ^i as the union of the rectangles $R_1, ..., R_i$. It is not hard to see that ρ^i is a union of completely disjoint Young diagrams (i.e., they do not share even a single point), aligned from southwest to northeast. Let C_i be set of indices $j \in \{1, ..., i\}$ such that the left side of R_j is contained in the left boundary of a component of ρ^i . Similarly, let \mathcal{D}_i be set of indices $k \in \{1, ..., i\}$ such that the top side of R_k is contained in the top boundary of a component of ρ^i . We now define

$$K'_i := \left(\bigsqcup_{j \in \mathcal{C}_i} C'_j\right) \sqcup \left(\bigsqcup_{k \in \mathcal{D}_i} D'_k\right), \quad K_i := K'_i \sqcup \{\max C_i\}.$$

Note that $J_i \subseteq K_i$ and $J'_i \subseteq K'_i$.

Example 33. Continuing Example 32, we have

$$K'_1 = J'_1 = \emptyset \subsetneq K_1 = J_1 = \{5\}, \quad K'_2 = J'_2 = \{6, 8, 9\} \subsetneq K_2 = J_2 = \{6, 7, 8, 9\},$$

 $J'_3 = \{1, 2, 3, 4, 6\} \subsetneq J_3 = \{1, 2, 3, 4, 5, 6\}, \quad K'_3 = \{1, 2, 3, 4, 6, 8, 9\} \subsetneq K_3 = \{1, 2, 3, 4, 5, 6, 8, 9\}.$

As indicated above, all this information is easily read off from the Young diagram of $\lambda = (5, 5, 3, 2, 2)$.

Theorem 34. In $H \subset Q_{m,W}$, we have

(26)
$$\gamma_{w_{\lambda}w_{J}} = \gamma_{J_{1}/J'_{1}} \dots \gamma_{J_{r}/J'_{r}} \gamma_{J} = \gamma_{K_{1}/K'_{1}} \dots \gamma_{K_{r}/K'_{r}} \gamma_{J}.$$

In order to prove Theorem 34, we start by recalling some results from [KL00], related to the factorization of Kazhdan-Lusztig elements for the Grassmannian. This paper introduces an element $Z_{w_{\lambda}}$ of the Hecke algebra, defined as a product of linear factors in the generators, which are associated with the boxes of the Young diagram λ . Instead of recalling the precise definition, which is not needed here, we will state a weaker form of the factorization, which turns out to be related to factorizations in (26). We will use notation introduced above.

The rectangle R_i corresponds to the following Grassmannian permutation, cf. (20) and Example 30:

$$v^{i} := (s_{c_{i}+q_{i}-1} \dots s_{c_{i}})(s_{c_{i}+q_{i}} \dots s_{c_{i}+1}) \dots (s_{c_{i}+p_{i}+q_{i}-2} \dots s_{c_{i}+p_{i}-1}).$$

It is not hard to see that we have the following factorization of w_{λ} , which corresponds to a reduced decomposition of w_{λ} obtained from (20) only by commuting simple reflections:

$$(27) w_{\lambda} = v^1 \dots v^r.$$

Example 35. In our running example, the reduced decomposition corresponding to (27) (to be compared with (22), cf. also (21)) is

$$w_{\lambda} = [3, 4, 6, 9, 10, 1, 2, 5, 7, 8] = \underbrace{(s_5)}_{v^1} \underbrace{((s_8s_7s_6)(s_9s_8s_7))}_{v^2} \underbrace{((s_2s_1)(s_3s_2)(s_4s_3)(s_5s_4)(s_6s_5))}_{v^3}.$$

The factorization of $Z_{w_{\lambda}}$ needed here is the following one, which corresponds to the factorization (27) of w_{λ} :

$$(28) Z_{w_{\lambda}} = Z_{v^1} Z_{w^2} = Z_{v^1} \dots Z_{v^r}.$$

See the proof of [KL00, Theorem 3] for details.

The connection between the element $Z_{w_{\lambda}}$ and the corresponding parabolic Kazhdan-Lusztig basis element is made in [KL00, Theorem 3].

Theorem 36. [KL00] In $H \subset Q_{m,W}$, we have

$$Z_{w_{\lambda}}\gamma_{J}=\gamma_{w_{\lambda}w_{J}}.$$

The proof of Theorem 34 also relies on the following lemmas.

Lemma 37. Consider $J' \subset J \subseteq \Pi$, and assume that $J \subset [a,b]$ with $a,b \in \Pi$. If $A \subseteq \Pi - [a-1,b+1]$, then we have

$$\gamma_{J/J'} = \gamma_{J\sqcup A/J'\sqcup A} \in Q_{m,W}, \quad Y_{J/J'} = Y_{J\sqcup A/J'\sqcup A} \in Q_{t,W}.$$

Proof. As the sets of simple roots corresponding to J and A are orthogonal to each other, we have $\Sigma_{J \sqcup A}^- = \Sigma_J^- \sqcup \Sigma_A^-$, $W_{J \sqcup A} = W_J \times W_A$, and similarly for J replaced by J'. Therefore, we have

(29)
$$w_{J/J'} := w_J w_{J'} = w_J w_A w_{J'} w_A =: w_{J \sqcup A/J' \sqcup A}, \quad x_{J/J'} = x_{J \sqcup A/J' \sqcup A},$$

and $W_J/W_{J'}$ is in a natural bijection with $W_{J\sqcup A}/W_{J'\sqcup A}$. The stated equalities follow by plugging these facts into (7) and the definition (1) of the relative push-pull operator.

Lemma 38. (1) We have

$$K_1 = J_1 \supseteq K_1' = J_1' \subseteq K_2 \supseteq K_2' \subseteq \ldots \subseteq K_r \supseteq K_r' \subseteq J$$
.

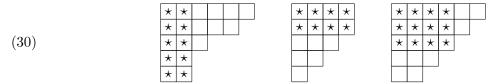
(2) For every i = 1, ..., r, we have

$$\gamma_{J_i/J_i'} = \gamma_{K_i/K_i'} \in Q_{m,W}, \quad \gamma_{J_i' \setminus J_i} = \gamma_{K_i' \setminus K_i} \in Q_{m,W},$$

$$Y_{J_i/J_i'} = Y_{K_i/K_i'} \in Q_{t,W}, \quad Y_{J_i' \setminus J_i} = Y_{K_i' \setminus K_i} \in Q_{t,W}.$$

Proof. It is clear that $K'_r \subseteq J$. Thus, in order to complete the first part, we need to prove $K'_{i-1} \subseteq K_i$, for i = 2, ..., r. This is obvious if the rectangle R_i is, by itself, a connected component of the shape ρ^i . Other than this, there are three ways in which R_i can be attached to ρ^{i-1} , which

are indicated below; the boxes of R_i are marked with \star , and the empty boxes form the relevant component(s) of ρ^{i-1} .



Note that the height (respectively width) of R_i is strictly greater than the number of rows (respectively columns) of the relevant Young diagram to its right (respectively at the bottom). It is also useful to observe that all unit segments with the same label form a northwest to southeast staircase shape, and the labels increase by 1 as we move northeast.

Let B denote the set of labels on the boundary of the rectangle R_i . Using the above notation, in all three cases in (30), we have

$$B = C_i \sqcup D_i = \{c_i, \ldots, d_i\}, \quad K_i - B = K'_{i-1} - B, \quad K_i \cap B = C_i \sqcup D'_i = B - \{d_i\} =: J_i.$$

On the other hand, we have $d_i \notin K'_{i-1}$; indeed, in the first and last case in (30), the label d_i is on the left side of a rectangle R_j with $j \in \mathcal{C}_{i-1}$, but $d_i \notin \mathcal{C}'_j$, because it is the top label on the mentioned side. We conclude that $K'_{i-1} \subseteq K_i$. In fact, the inclusion is strict because we also have $c_i + q_i - 1 \in (K_i \cap B) - K'_{i-1}$.

For the second part, we note that, in addition to the above facts, we have $K'_i \cap B = C'_i \sqcup D'_i =: J'_i$ and $c_i - 1 \not\in K_i$. For the latter part, note that, in the last two cases in (30), the label $c_i - 1$ is on the left side of a rectangle R_j with $j \in C_i$ and $j \neq i$, but $c_i - 1 \not\in C'_j$, because it is the top label on the mentioned side. The proof is concluded by applying Lemma 37.

Proof of Theorem 34. By using the analogue of Lemma 5 for γ , we have (31)

 $\gamma_{K_2/K_2'} \dots \gamma_{K_r/K_r'} \gamma_J = \gamma_{K_2} \gamma_{K_2' \setminus K_3} \dots \gamma_{K_{r-1}' \setminus K_r} \gamma_{K_r' \setminus J} = \gamma_{K_1'} \gamma_{K_1' \setminus K_2} \gamma_{K_2' \setminus K_3} \dots \gamma_{K_{r-1}' \setminus K_r} \gamma_{K_r' \setminus J}.$

We now prove the theorem using induction on r, with base case r = 0, which is trivial. We have

$$\gamma_{w_{\lambda}w_{J}} \stackrel{\sharp_{1}}{=} Z_{w_{\lambda}}\gamma_{J} \stackrel{\sharp_{2}}{=} Z_{v^{1}}Z_{w^{2}}\gamma_{J} \stackrel{\sharp_{3}}{=} Z_{v^{1}}\gamma_{w^{2}w_{J}}$$

$$\stackrel{\sharp_{4}}{=} Z_{v^{1}}\gamma_{J_{2}/J'_{2}} \dots \gamma_{J_{r}/J'_{r}}\gamma_{J} \stackrel{\sharp_{5}}{=} Z_{v^{1}}\gamma_{K_{2}/K'_{2}} \dots \gamma_{K_{r}/K'_{r}}\gamma_{J}$$

$$\stackrel{\sharp_{6}}{=} Z_{v^{1}}\gamma_{K'_{1}}\gamma_{K'_{1}\setminus K_{2}} \dots \gamma_{K'_{r-1}\setminus K_{r}}\gamma_{K'_{r}\setminus J}$$

$$\stackrel{\sharp_{7}}{=} \gamma_{K_{1}}\gamma_{K'_{1}\setminus K_{2}} \dots \gamma_{K'_{r-1}\setminus K_{r}}\gamma_{K'_{r}\setminus J}$$

$$\stackrel{\sharp_{8}}{=} \gamma_{K_{1}/K'_{1}}\gamma_{K_{2}/K'_{2}} \dots \gamma_{K_{r}/K'_{r}}\gamma_{J} \stackrel{\sharp_{9}}{=} \gamma_{J_{1}/J'_{1}}\gamma_{J_{2}/J'_{2}} \dots \gamma_{J_{r}/J'_{r}}\gamma_{J}.$$

Here \sharp_1 , \sharp_3 , \sharp_7 are based on Theorem 36, \sharp_2 on (28), \sharp_4 on the induction hypothesis, \sharp_5 , \sharp_9 on Lemma 38 (2), \sharp_6 , \sharp_8 on (31), and \sharp_8 on (8); additionally, in \sharp_7 we use the fact that

$$K_1 = J_1 = C_1 \sqcup D_1' = \{c_1, \dots, d_1 - 1\}, \quad K_1' = J_1' = C_1' \sqcup D_1' = K_1 - \{\max C_1\},$$
 and thus we have $v^1 w_{K_1'} = w_{K_1}$.

Remark 39. We could not have carried out the above proof by using only one of the pairs (J_i, J'_i) and (K_i, K'_i) . Indeed, the first pair does not satisfy the property in Lemma 38 (1), which is crucial in the proof. On the other hand, the induction procedure cannot be applied based on the second pair because the respective sets for $\lambda^1 = \lambda$ and λ^2 (corresponding to w^2) are different.

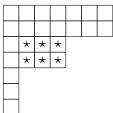
In order to relate Theorem 34 to the Zelevinsky resolution, and more specifically to the operator (25), we need the following result.

Lemma 40. For every i = 1, ..., r, we have

$$Y_{J_i/J_i'} = Y_{K_i/K_i'} = Y_{P_i/Q_i}$$
.

Proof. By using Lemma 38 (2), it suffices to prove $Y_{J_i/J_i'} = Y_{P_i/Q_i}$. Moreover, it suffices to consider i = 1, as we can just replace the partition $\lambda^1 = \lambda$ with λ^i . Recall that P_1 is obtained by considering the lattice path from (0,0) to (n-d,d) defining the southeast boundary of λ^1 , and by excluding from Π the last label in each sequence of vertical steps. Similarly, P_2 corresponds to $\lambda^2 := \lambda - R_1$.

Let B denote the set of labels on the boundary of the rectangle R_1 ; see the diagram below, where the boxes of R_1 are marked with \star .



Using the above notation, we have $B = C_1 \sqcup D_1 = \{c_1, \ldots, d_1\}$. Based on the above interpretation of P_1 and P_2 , we deduce

$$P_1 \cap B = C_1 \sqcup D_1' =: J_1 = B - \{d_1\}, \quad P_2 \cap B = C_1' \sqcup D_1 \implies Q_1 \cap B = C_1' \sqcup D_1' =: J_1',$$

 $P_1 - B \subset P_2 - B \implies P_1 - B = Q_1 - B.$

Moreover, we have $c_1 - 1 \notin P_1$ and $d_1 \notin P_1$. Thus, we are under the hypotheses of Lemma 37, so the conclusion follows.

We now rephrase Theorem 34 as follows, via the map ψ .

Corollary 41. We have

(32)
$$\mu^{-\ell(w_{\lambda}w_{J})}\psi(\gamma_{w_{\lambda}w_{J}}) = Y_{P_{1}/Q_{1}}\dots Y_{P_{r}/Q_{r}}Y_{J} \in \mathbf{D}_{t}.$$

Proof. We start by observing the following:

(33)
$$w_{K_i/K_i'} = w_{J_i/J_i'} = v^i \implies \ell(w_{K_i/K_i'}) = p_i q_i = |R_i|,$$

where $|R_i|$ denotes the number of boxes of the rectangle R_i . Here the first equality is based on (29) and the fact that this result can be applied to the pairs (J_i, J'_i) and (K_i, K'_i) , as discussed in the proof of Lemma 38; the second equality is clear by the definition of v^i .

We now apply $\mu^{-\ell(w_{\lambda}w_{J})}\psi(\cdot)$ to the first and last part of (26). After doing this, the latter can be written as follows:

$$\mu^{-\ell(w_{\lambda}w_{J})}\psi(\gamma_{K_{1}/K'_{1}})\dots\psi(\gamma_{K_{r}/K'_{r}})\psi(\gamma_{J})$$

$$\stackrel{\sharp_{1}}{=}\left(\mu^{-\ell(w_{K_{1}/K'_{1}})}\psi(\gamma_{K_{1}/K'_{1}})\right)\dots\left(\mu^{-\ell(w_{K_{r}/K'_{r}})}\psi(\gamma_{K_{r}/K'_{r}})\right)\left(\mu^{-\ell(w_{J})}\psi(\gamma_{J})\right)$$

$$\stackrel{\sharp_{2}}{=}\left(\mu^{-\ell(w_{K_{1}/K'_{1}})}\psi(\gamma_{K_{1}/K'_{1}})\right)\dots\left(\mu^{-\ell(w_{K_{r}/K'_{r}})}\psi(\gamma_{K_{r}/K'_{r}})\right)Y_{J}$$

$$\stackrel{\sharp_{3}}{=}\left(\mu^{-\ell(w_{K_{1}/K'_{1}})}\psi(\gamma_{K_{1}/K'_{1}})\right)\dots\left(\mu^{-\ell(w_{K_{r}/K'_{r}})}\psi(\gamma_{K_{r}/K'_{r}})\right)Y_{K'_{r}}Y_{K'_{r}\setminus J}$$

$$\stackrel{\sharp_{4}}{=}\left(\mu^{-\ell(w_{K_{1}/K'_{1}})}\psi(\gamma_{K_{1}/K'_{1}})\right)\dots Y_{K_{r}}Y_{K'_{r}\setminus J}$$

$$=\dots\stackrel{\sharp_{5}}{=}Y_{K_{1}}Y_{K'_{1}\setminus K_{2}}\dots Y_{K'_{r}\setminus J}$$

$$\stackrel{\sharp_{6}}{=}Y_{K_{1}/K'_{1}}\dots Y_{K_{r}/K'_{r}}Y_{J}\stackrel{\sharp_{7}}{=}Y_{P_{1}/Q_{1}}\dots Y_{P_{r}/Q_{r}}Y_{J}.$$

Here \sharp_1 is based on (33) and the fact that $\ell(w_\lambda) = \sum_i |R_i|$, \sharp_2 , \sharp_4 are based on (18), \sharp_3 on (2), \sharp_5 on the repeated use of an argument similar to \sharp_3 followed by \sharp_4 , \sharp_6 on Lemma 5 and \sharp_7 on Lemma 40.

We now state the main result of this section.

Theorem 42. The KL-Schubert classes for the Grassmannian coincide with the hyperbolic cohomology classes of the corresponding Zelevinsky resolutions.

Proof. The result is now immediate by comparing the left- and right-hand sides of (32) with Definition 25 and (25), respectively.

Remark 43. Theorem 42 implies that all the Zelevinsky resolutions of a Schubert variety in the Grassmannian have the same class in hyperbolic cohomology (i.e., the corresponding KL-Schubert class). This agrees with a result of Totaro's [T00], which says that the algebraic theories in a larger class (defined by Krichever [BB10]), which includes hyperbolic cohomology, are invariant under small resolutions.

References

- [AO21] M. Aganagic, A. Okounkov. Elliptic stable envelopes, J. Amer. Math. Soc., 34 (1):79-133, 2021.
- [AM16] P. Aluffi and L. Mihalcea. Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds, Compositio Math., 152 (12):2603-2625, 2016.
- [AMSS17] P. Aluffi, L. Mihalcea, J. Schürmann, and C. Su. Shadows of characteristic cycles, Verma modules, and positivity of Chern-Schwartz-MacPherson classes of Schubert cells, arXiv:1709.08697, 2017.
- [AMSS19] P. Aluffi, L. Mihalcea, J. Schürmann, and C. Su. Motivic Chern classes of Schubert cells with applications to Casselman's problem, arXiv:1902.10101, 2019.
- [BL00] S. Billey and V. Lakshmibai. Singular Loci of Schubert Varieties, Progress in Mathematics, 182, Birkhäuser Boston Inc., Boston, MA, 2000.
- [BSY10] J. Brasselet, J. Schürmann, and S. Yokura. Hirzebruch classes and motivic Chern classes for singular spaces, J. Topol. Anal., 2 (1):1-55, 2010.
- [BB10] V. Buchstaber and E. Bunkova. Elliptic formal group laws, integral Hirzebruch genera and Krichever genera, arXiv:1010.0944, 2010.
- [BN11] D. Bump and M. Nakasuji. Casselman's basis of Iwahori vectors and the Bruhat order, *Canad. J. Math.*, 63 (6): 1238-1253, 2011.
- [BN19] D. Bump and M. Nakasuji. Casselman's basis of Iwahori vectors and Kazhdan-Lusztig polynomials, Canad. J. Math., 71 (6):1351-1366, 2019.
- [CZZ16] B. Calmès, K. Zainoulline, and C. Zhong. A coproduct structure on the formal affine Demazure algebra, Math. Z., 282 (3):1191-1218, 2016.
- [CZZ19] B. Calmès, K. Zainoulline, and C. Zhong. Push-pull operators on the formal affine Demazure algebra and its dual, Manuscripta Math., 160 (1-2):9-50, 2019.
- [CZZ15] B. Calmès, K. Zainoulline, and C. Zhong. Equivariant oriented cohomology of flag varieties, *Doc. Math.*, Extra Volume: Alexander S. Merkurjev's Sixtieth Birthday, 113-144, 2015.
- [CG09] N. Chriss and V. Ginzburg. Representation theory and complex geometry, Springer Science & Business, Media, 2009.
- [D79] V. Deodhar. On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, *J. Alqebra*, 111:483-506, 1979.
- [FRW21] L. Fehér, R. Rimányi, and A. Weber. Motivic Chern classes and K-theoretic stable envelopes, Proc. London Math. Soc., 122 (1):153-189, 2021.
- [HMSZ14] A. Hoffnung, J. Malagon-Lopez, A. Savage, and K. Zainoulline. Formal Hecke algebras and algebraic oriented cohomology theories, Selecta Math., 20 (4):1213-1245, 2014.
- [KT02] M. Kashiwara and T. Tanisaki. Parabolic Kazhdan-Lusztig polynomials and Schubert varieties, J. Algebra, 249 (2):306-325, 2002.
- [KL79] D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (2):165-184, 1979.
- [KL80] D. Kazhdan and G. Lusztig. Schubert varieties and Poincaré duality, Proc. Sympos. Pure Math., 36:185-203, 1980.

- [KL00] A. Kirillov and A. Lascoux. Factorization of Kazhdan-Lusztig elements for Grassmanians, Combinatorial Methods in Representation Theory, Adv. Stud. Pure Math., 28:143-154, 2000.
- [KK86] B. Kostant and S. Kumar. The nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Adv. Math., 62 (3):187-237,1986.
- [KK90] B. Kostant and S. Kumar. T-equivariant K-theory of generalized flag varieties, J. Differential Geom., 32 (2):549-603, 1990.
- [K96] S. Kumar. The nil Hecke ring and singularity of Schubert varieties, Invent. Math., 123 (3):471-506, 1996.
- [KRW20] S. Kumar, R. Rimányi, and A. Weber, Elliptic classes of Schubert varieties, Math. Ann., 378 (1-2):703-728, 2020.
- [LZ17] C. Lenart and K. Zainoulline. A Schubert basis in equivariant elliptic cohomology, New York J. Math., 23:711-737, 2017.
- [LZZ20] C. Lenart, K. Zainoulline, and C. Zhong. Parabolic Kazhdan-Lusztig basis, Schubert classes and equivariant oriented cohomology. J. Inst. Math. Jussieu, 19 (6):1889-1929, 2020.
- [LM07] M. Levine and F. Morel. Algebraic cobordism, Springer Monographs in Math., Springer, Berlin, 2007, xii+244 pp.
- [M74] R. MacPherson. Chern classes for singular algebraic varieties, Ann. Math. (2), 100:423-432, 1974.
- [MO19] D. Maulik and A. Okounkov. Quantum groups and quantum cohomology, Astérisque, 408, 2019.
- [MNS20] L. Mihalcea, H. Naruse and C. Su. Left Demazure-Lusztig operators on equivariant (quantum) cohomology and K-theory, Int. Math. Res. Not., to appear, arXiv:2008.12670, 2020.
- [MS20] L. Mihalcea and R. Singh. Mather classes and conormal spaces of Schubert varieties in cominuscule spaces, arXiv:2006.04842, 2020.
- [N14] H. Naruse. Schubert calculus and hook formula, Slides at 73rd Sém. Lothar. Combin., Strobl, Austria, 2014.
- [NPSZ18] A. Neshitov, V. Petrov, N. Semenov, and K. Zainoulline. Motivic decompositions of twisted flag varieties and representations of Hecke-type algebras, Adv. Math. 340:791-818, 2018.
- [O17] A. Okounkov. Lectures on K-theoretic computations in enumerative geometry, Geometry of Moduli Spaces and Representation Theory, volume 24 of IAS/Park City Mathematics Series, 251-380, 2017.
- [O20] A. Okounkov. Inductive construction of stable envelopes and applications, *Lett. Math. Phys.*, 111(6):1–56, 2021.
- [RW20] R. Rimányi and A. Weber. Elliptic classes of Schubert varieties via Bott-Samelson resolution, J. Topology, 13 (3):1139-1182, 2020.
- [S11] J. Schürmann. Characteristic classes of mixed Hodge modules, Topology of Stratified Spaces, MSRI Publications, 58:419-471, 2011.
- [S17] J. Schürmann. Chern classes and transversality for singular spaces, Singularities in Geometry, Topology, Foliations and Dynamics, 207-231, Trends Math., Birkhäuser/Springer, Cham, 2017.
- [S65a] M. Schwartz. Classes caractéristiques définies par une stratification d'une variété analytique complexe I, C. R. Acad. Sci. Paris, 260:3262-3264, 1965.
- [S65b] M. Schwartz. Classes caractéristiques définies par une stratification d'une variété analytique complexe II, C. R. Acad. Sci. Paris, 260:3535-3537, 1965.
- [S97] W. Soergel. Kazhdan-Lusztig polynomials and a combinatoric for tilting modules, Represent. Theory, 1:83-114, 1997.
- [SZZ20] C. Su, G. Zhao, and C. Zhong. On the K-theory stable bases of the Springer resolution, Ann. Sci. Éc. Norm. Supér. (4), 53 (3):663-711, 2020.
- [Su17] C. Su. Restriction formula for stable basis of the Springer resolution. Selecta Math. (N.S.), 23 (1):497-518, 2017.
- [Su19] C. Su. Motivic Chern classes and Iwahori invariants of principal series, *Proceedings of International Congress of Chinese Mathematicians*, to appear, 2019.
- [T87] T. Tanisaki. Hodge modules, equivariant K-theory and Hecke algebras, Publications of the Research Institute for Mathematical Sciences, 23:841-870, 1987.
- [T00] B. Totaro. Chern numbers for singular varieties and elliptic homology, Ann. of Math., 151 (2):757-791, 2000.
- [Z83] A. V. Zelevinski. Small resolutions of singularities of Schubert varieties, Functional Anal. Appl., 17:142-144, 1983.

State University of New York at Albany, 1400 Washington Avenue, Albany, NY 12222

 $Email\ address : \verb|clenart@albany.edu|$

University of Toronto, 40 St. George St., Toronto, ON M5S 2E4, Canada

 $Email\ address: \verb|csu@math.toronto.edu||$

University of Ottawa, 150 Louis-Pasteur, Ottawa, ON, K1N 6N5, Canada

 $Email\ address: {\tt kirill@uottawa.ca}$

State University of New York at Albany, 1400 Washington Avenue, Albany, NY 12222

 $Email\ address \colon {\tt czhong@albany.edu}$