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GRAPHICAL ABSTRACT

e Harmonization of methods is a priority
in microplastics research.
e FTIR and Raman microspectroscopy are
common methods used to analyze —
microplastics.
e Variables for successful identification
using microspectroscopy were
identified.
e Particle characteristics and instrumental
parameters influence identification
success.
e Technical method recommendations for
using FTIR and Raman
spectroscopy are provided.
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ABSTRACT

Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics.
These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method
and found these to be complimentary. Within this work, metadata collected within an interlaboratory method validation study was used to determine which variables
most influenced successful chemical identification of un-weathered microplastics in simulated drinking water samples using FTIR and Raman microspectroscopy. No
variables tested had a strong correlation with the accuracy of chemical identification (r = <0.63). The variables most correlated with accuracy differed between the
two methods, and include both physical characteristics of particles (color, morphology, size, polymer type), and instrumental parameters (spectral collection mode,
spectral range). Based on these results, we provide technical recommendations to improve capabilities of both methods for measuring microplastics in drinking water
and highlight priorities for further research. For FTIR microspectroscopy, recommendations include considering the type of particle in question to inform sample
presentation and spectral collection mode for sample analysis. Instrumental parameters should be adjusted for certain particle types when using Raman micro-
spectroscopy. For both instruments, the study highlighted the need for harmonization of spectral reference libraries among research groups, including the use of
libraries containing reference materials of both weathered plastic and natural materials that are commonly found in environmental samples.

1. Introduction

The field of microplastics research has seen an exponential growth
over the last two decades (Granek et al., 2020; Wootton et al., 2021),
since this pressing environmental problem was first studied in the
1970’s and microplastics were defined in 2004 (Carpenter and Smith,
1972; Thompson et al., 2004). Our ability to measure and characterize
microplastics has evolved with our continued understanding of this
diverse and multifaceted environmental contaminant. Early in-
vestigations relied primarily on counting and characterizing larger
particles (>333 pm) based on their visual or tactile properties (e.g.,
Doyle et al., 2011; Eriksen et al., 2013; Hidalgo-Ruz et al., 2012; Lusher
et al., 2020; Wang and Wang, 2018). These studies largely relied on
optical microscopes (Shim et al., 2017; Wang and Wang, 2018). How-
ever, research has since demonstrated that using microscopy alone re-
sults in subjectivity and bias in microplastic estimates, often where small
particles are missed, and natural particles are falsely identified as plastic
(Isobe et al., 2019; Loder and Gerdts, 2015; Shim et al., 2017).

The introduction of vibrational spectroscopic techniques such as
Raman and FTIR microscopes allow for the chemical identification of
suspected plastic particles. Vibrational characteristics of chemical
functional groups are identified from a spectrum (Ricci et al., 2015).
FTIR microspectroscopy generates a fingerprint of the material being
analyzed by measuring the change of the dipole moment of the molecule
excited by infrared radiation to produce a spectrum which can be used to
identify materials. Raman microspectroscopy is another vibrational
technique that provides information about the change of polarizability
of the molecules via a sample spectrum which can be used to identify
materials (Araujo et al., 2018; Ivleva et al., 2017). The use of micro-
spectroscopy in microplastics research allows researchers to confirm the
material type of particles (i.e., plastic or natural), increasing the reli-
ability of particle count estimates from environmental samples (Brander
et al., 2020; Cowger et al., 2020a; Kooi et al., 2021; Primpke et al.,
2017). Using polymer confirmation, researchers can also adjust their

visual microscopy counts to better reflect their true representative
number (De Frond et al., 2022a). Spectral data also provides researchers
with critical information on specific polymer types found in a sample,
which can be used to understand their relative abundances, flows and
comparisons in different environmental matrices (Kooi et al., 2021), and
trends in space and time. As researchers gain a greater understanding of
the types of plastics in environmental samples, they will also understand
their potential origins for more successful and targeted source reduction
strategies. Similarly, polymeric data can be used to inform the design of
laboratory experiments and ultimately risk assessments based on the
toxicity of specific polymers and their documented abundance in the
environment (Kogel et al., 2020).

Despite their advantages, analyses using FTIR and Raman micro-
spectroscopy still encounter challenges due to the unique and varied
nature of microplastic particles (Rochman et al., 2019). Within current
literature, the capabilities, and limitations of both FTIR and Raman
microspectroscopy have been discussed in detail (Anger et al., 2018;
Cabernard et al., 2018; Cowger et al., 2020b; Hidalgo-Ruz et al., 2012;
Kappler et al., 2016; Loder and Gerdts, 2015; Prata et al., 2019; Shim
et al., 2017; Song et al., 2015). However, a thorough comparison of
performance for analyzing specific particle types has not yet been
investigated quantitatively, particularly for particle sizes below 20 pm,
for which only one study to date has measured and compared perfor-
mance among the two methods (Miiller et al., 2020). There is also no
consensus on best practice for selecting instrument parameters and
particle preparation methods to acquire the best spectra.

Passed in 2018, State of California Senate Bill 1422 requires the
development of standard methods to analyze microplastics in drinking
water for monitoring purposes. Thus, it has become necessary to identify
and optimize the capabilities and minimize limitations for the most
promising spectroscopic methods so that their use can be further stan-
dardized for monitoring and regulation. An interlaboratory method
validation study was carried out from 2019 to 2021 to measure the
performance of commonly used methods for identifying and
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characterizing microplastics from drinking water.

From the study’s overall results (De Frond et al., 2022b), it was
concluded that both FTIR and Raman microspectroscopy had high ac-
curacy in identifying plastic particles above 50 pm (95% and 91% ac-
curacy respectively). Evaluation of the extensive metadata collected
within this study presented additional opportunities to identify which
experimental parameters were most influential for successful chemical
identifications, to determine where methods could be improved to in-
crease the likelihood of achieving accurate chemical identification re-
sults for future research, and to improve limits of detection.

Metadata collected within the interlaboratory method validation
study (publicly available to download via: https://microplastics.sccwrp.
org/) was utilized to determine the variables most correlated with ac-
curacy of chemical identification when using FTIR and Raman micro-
spectroscopy for the analysis of spiked microplastics in simulated
drinking water. From the results, recommendations are provided to
improve the performance of these techniques for the analysis of micro-
plastics, and priorities for future research are identified.

2. Methods

The Southern California Water Research Project (SCCWRP) led an
interlaboratory method validation study intending to measure the per-
formance (accuracy and precision) of three commonly used methods in
microplastic research; optical microscopy, FTIR microspectroscopy and
Raman microspectroscopy (De Frond et al., 2022b). In total, 22 labo-
ratories from six countries participated and submitted the clean water
matrix results. All participating laboratories used optical microscopy for
their analyses, and results for optical microscopy are discussed within
Kotar et al. (2022), with recommendations for improving methods and
reporting for future research and monitoring. Microspectroscopy was
used by 20 laboratories to chemically identify suspected microplastics
that were first counted using microscopy; 11 used FTIR micro-
spectroscopy and nine used Raman microspectroscopy. The results and
metadata from groups using microspectroscopy will be discussed here.

2.1. Sample analysis

Methods for sample preparation and processing are outlined in detail
within (De Frond et al., 2022b). In brief: three spiked samples of simu-
lated clean water and a laboratory blank were sent to each laboratory
with a prescribed Standard Operating Procedure (SOP) for extraction,
quantification, and characterization. Simulated clean water samples
were spiked with a known amount of microparticles within four size
fractions (1-20 pm, 20-212 pm, 212-500 pm, >500 pm), four polymer
types (PE, PS, PVC, and PET) and several colors (clear, white, green,
blue, red and orange), and morphologies (sphere, fragment and fiber).
Plastics spiked into samples consisted of specifically designed soda
capsules containing microplastics. These were produced by the Norwe-
gian Institute of Water Research (NIVA) (further details regarding the
creation of reference materials can be found within Martinez-Frances
et al., in prep.). Plastics were sourced as raw plastic materials from
Goodfellow and Cospheric LLC © in the form of PE, PS and PVC spheres,
particles were sieved to obtain required size fractions. PET fibers
(300-1000 pm) were generated at NIVA by collecting fibers released via
washing PET fabric sourced from IKEA. In addition to the capsules,
green PE spheres from Cospheric LLC © were manually added to sam-
ples. All plastic particles used in the study were un-weathered (virgin
plastic). ‘False positive’ particles (natural hair, fibers and shells) that
may be mistaken for microplastics, were also added to each sample in
known quantities. Sample processing involved multiple steps, including
sample extraction using sieving and/or vacuum filtration, and particle
counting, imaging, measurement and visual characterization using
stereomicroscopy. Within the SOP, a subsampling procedure for
microspectroscopy was outlined (S1), in which labs were required to
select up to 30 particles of each color and morphology combination (e.g.,
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30 orange fibers, 30 white fragments), within each size fraction. In cases
where less than 30 particles were identified/recovered of a certain
particle type, participants were instructed to subsample as many as were
found for chemical identification (e.g., if only 8 orange fibers were
counted, participants selected all 8 for microspectroscopy). Laboratories
were asked to chemically identify all subsampled particles using FTIR
and/or Raman microspectroscopy. Specific guidance was not provided
for using microspectroscopy other than the particles to be identified and
suggestions for particle preparation (e.g., small particles that cannot be
manually picked may be analyzed directly from the filter surface). For
novice labs that were using the instruments situated at SCCWRP, specific
instructions were provided on how to operate each instrument to run
manual particle by particle analyses.

2.2. Data submission

Data submission variables for the interlaboratory method validation
study were chosen based on the ‘Microplastic Reporting Guidelines’
within Cowger et al. 2020a, and further refined through discussion
among the participating laboratories. Data were submitted for each
suspected plastic particle counted during microscopy, and analyzed by
FTIR and/or Raman, which included: sample ID, particle ID, size frac-
tion, particle color, morphology, chemical identification result and the
instrument used to carry out chemical identification. Each lab reported
the materials they used (e.g., filter or slide type), instrument settings,
analysis parameters, the time taken to process each size fraction and
sample using spectroscopy and self-reported experience level (Tables S3
and S4).

Following submission of results, further detail on methods used for
microspectroscopy was acquired by completing a survey sent to
participating laboratories (See Supplementary Information; Kotar et al.,
2022). Survey questions were composed by the working groups that
were analyzing the metadata for each method (e.g., FTIR micro-
spectroscopy or Raman microspectroscopy), and participating labora-
tories were instructed to answer all relevant questions with as much
detail as possible. In this work, survey responses were utilized to provide
context to the patterns observed within the metadata.

2.3. Data analysis

2.3.1. Calculating bias in particle selection for chemical identification
Due to logistical limitations such as time and personnel availability,
largely influenced by the ongoing COVID-19 pandemic, several labora-
tories were not able to follow the subsampling protocol for chemical
identification, and thus the total number of particles chemically iden-
tified by each lab was highly varied (De Frond et al., 2022b). These
differences among laboratories were further investigated to determine
how the particles selected for chemical identification impacted overall
results. Bias in particle selection for chemical identification was calcu-
lated using data from all reported particles. This includes any particles
suspected to be plastic by participating laboratories, including false
positive particles miscategorized as plastic, particles introduced to
samples from laboratory contamination, and spiked particles that were
miscategorized by color and/or morphology (discussed further in Kotar
et al., 2022). These particles were included within the bias analyses as
they still provide information on the potential selectivity that labora-
tories have in analyzing particles with particular characteristics using
microspectroscopy. Also, one laboratory used different size fractions to
the SOP provided (20-250 pm and 250-500 pm). These results are
included in the bias calculations, but these two size fractions are not
included in other results due to low sample size. To calculate bias, first
the total number of particles wad calculated of a given shape, size, and
color visually identified as plastic and counted using microscopy. The
total number of particles in each category was then divided by the
number that were identified using either FTIR or Raman micro-
spectroscopy. These metrics can be directly inferred as the probability of
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a particle to be identified using Raman or FTIR in this study given its
particle properties.

2.3.2. Assessment of performance

A fraction of the particles that were recovered, counted and chemi-
cally identified by study participants were not spiked particles, but the
result of laboratory contamination. In these cases, it was not possible to
determine the true material type of these particles. Thus, to evaluate the
performance of spectroscopy we used only results from spiked particles
(including false positives) that were recovered and analyzed using
microspectroscopy. To confirm which particles reported were spiked
particles for this purpose, the submitted data from each lab was carefully
reviewed by those involved in preparing the clean water samples. The
specifications of the spiked standard particles were documented for the
quality assurance checks. The particle image, when available, was firstly
compared with a representative photo of the spiked standard material.
Following this, if the visible appearance, size fraction, dimension values,
morphology and color also matched that of one of the spiked particle
type, then the reported particle ID was confirmed. If the particle ID was
unable to be matched with the information of the reported image and
data, a “ns” (representing ‘not sure’) was assigned to the reported par-
ticle. Next, the reported material ID was checked to score the result as
“y” for correct ID or “n” for incorrect ID. Within this refined dataset, any
false positive particles that were counted and characterized (i.e.,
mistaken for plastic particles) in the study were included within the
results and were used to determine accuracy for identifying natural
particles using the methods investigated.

Following checks to verify the spiked particles, data were then
filtered using the quality assured dataset to include only recovered
spiked particles (both plastic and natural) that were analyzed using
microspectroscopy (either FTIR or Raman). With this refined dataset, we
compared the true material of each spiked particle to the reported
chemical assignment and calculated the proportion of accurate results
for each method and particle type (no. accurate results/no. particles
identified) (Fig. S1). This result was calculated both among and within
labs. Data analysis was carried out in R software version 4.0.3 (R Core
Team, 2020) using several packages (base packages: stats, graphics,
grDevices, datasets, utils, methods, base. Other attached packages are
stated in Appendix A, S.4).

2.3.3. Determining influential variables for accurate chemical identification

Results for the proportion of accurate chemical ID’s, data submission
and survey response results were used to determine which variables (e.
g., instrument settings, or particle characteristics) had the greatest
correlation with the proportion of accurate chemical identification re-
sults among laboratories. Strong correlations would be indicative of the
predictive power of a variable on determining accurate spectral identi-
fication. Here, we used the Cramers V statistic (bias corrected) which
measures the correlation between two categorical variables. Each vari-
able was measured for correlation to the accurate identification (TRUE,
FALSE). All numeric variables were turned into categorical variables for
this exercise because there was no clear way to derive a correlation
metric that could be comparable between categorical-categorical and
numeric-categorical relationships. Cramers V values were bootstrapped
(resampling with replacement, n = 10,000) for every relationship to
create 95% confidence intervals. From these results, the top five vari-
ables that were most correlated with obtaining an accurate chemical ID
were identified for each method and investigated further.

Next, an investigation was performed to evaluate how differences in
mean accuracy drove the correlations for accurate chemical identifica-
tion. The mean probability of an accurate chemical identification result
(0 = never accurate, 1 always accurate) was calculated and boot-
strapped (resampling with replacement, n = 10,000) the 95% confi-
dence intervals from the bootstrap distribution. Categories that did not
have overlapping confidence intervals in their mean accuracy scores
were said to be statistically different. For figures and results, this
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probability was converted into % accuracy of chemical identification by
multiplying by 100.

The top five most correlated variables with accuracy for each method
were then compared among laboratories. Here, the proportion of accu-
rate results for each laboratory was used to compare performance
among labs using different method parameters. For example, where
particle morphology was a highly correlated variable with accurate
chemical identification using FTIR, we then compared accuracy for each
lab with each particle morphology category. From these results, any
trends within the data were identified and used to inform method
recommendations.

3. Results and discussion
3.1. Selection of particles for chemical analysis

Among laboratories using FTIR microspectroscopy, certain particle
colors were selected for analysis less often than others (Fig. 1, Appendix
A; Fig. S2, Appendix B). Of 819 white particles counted among labora-
tories using microscopy, 43% of particles were identified. Further, 46%
of 108 black particles and 49% of 53 multicolor particles that were
counted were analyzed. Dark colors can reflect infrared radiation
weakly (Andrade et al., 2020), which can explain potential bias against
analysis of such colors. Among morphology categories, laboratories
appeared to prioritize analysis of fiber bundles, with 88% of 26 fiber
bundles counted. Laboratories showed a bias against analysis of particles
categorized as pellets, where 20% of 20 particles counted were
analyzed, and particles categorized as foam where 30% of 168 particles
counted were analyzed. Particles with surface irregularities such as
pellets and foam can be challenging to analyze using FTIR (Képpler
et al., 2015), so this may be the cause of these particle selection biases.
However, several spiked plastic particles were miscategorized by
morphology (e.g., fragments miscategorized as foam, and spheres mis-
categorized as pellets, discussed further in (Kotar et al., 2022)). Foams
and pellets were therefore less common in general within the dataset,
and thus any biases against selection of these categories appeared more
obvious. Particles in larger size fractions were also selected for FTIR
analysis more often than smaller particles. For example, 1054 particles
in the >500 pm size fraction were counted and 65% were analyzed,
however of 1003 particles were counted in the 20-212 pm size fraction,
41% were analyzed. FTIR microspectroscopy can characterize particles
down to 10-20 pm in size, but when using certain analysis modes such as
ATR, analysis is limited to particles over approximately 100 pm in size.
(Primpke et al., 2020a). As 75% of laboratories used ATR mode for
spectral collection in at least some of their analyses, it is expected that
the limit of detection led to more larger particles being analyzed.

When using Raman microspectroscopy, the proportion of particles
selected for analysis ranged from 62 to 100% among color categories,
with green particles chosen least often for analysis (62%) (Fig. 2, Ap-
pendix A; Fig. S3, Appendix B). Although particle analysis using Raman
microspectroscopy can have issues with fluorescence from bright colors
or shiny particles (e.g., gold or silver in color), 100% of particles counted
that were categorized as silver, gold and purple in color were analyzed
using Raman. Among particle morphology categories, the proportion
analyzed ranged from 63 to 85%. Particles categorized as foam and
spheres were selected the least (63 and 67% analyzed, respectively).
Similar to FTIR microspectroscopy, as no foam particles were spiked it is
likely that particles categorized as foam were miscategorized by
participating laboratories, and therefore these particles were less com-
mon overall. Among discussions with laboratories after the study, it was
noted that the curved surface of the spheres caused difficulties in
obtaining a spectrum from these particles, and thus it is possible that
laboratories avoided selecting these particle types for analysis compared
to other morphologies. Laboratories using Raman spectroscopy showed
no bias against analysis of small particles, as 99% of particles counted in
the 1-20 pm size fraction were analyzed. This is in line with previous
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works demonstrating that Raman microspectroscopy accurately ana-
lyzes smaller particles down to 1-10 pm in size, due to its good spatial
resolution (Araujo et al., 2018; Cabernard et al., 2018; Ofmann et al.,
2018; Schymanski et al., 2018; Sobhani et al., 2020).

Along with particle characteristics such as color, surface texture and
size, it was noted by some participants that pattern recognition may
have also contributed to lower rates of analysis for certain particle types.
Although this is not general practise in the analysis of ‘real world’
samples, it was reported by some laboratories that considering the large
numbers of particles required for analysis in this study, to increase
efficieny of sample analysis certain patterns were noted and particles
with the same characteristics were grouped together within results. For
example, after analyzing 10 green spheres within a certain size range,
one could be reasonably confident that other green spheres of the same
size within test samples were likely to be of the same polymer type. In
these cases, the remaining green spheres may not have been analyzed by
a small number of participants.

3.2. Influential variables for accurate chemical identification using
microspectroscopy

A strong positive correlation amongst certain variables was ex-
pected, as has previously been presented in the scientific literature.
However, our analysis found no variables to have a correlation greater
than 0.63 (Cramers V) with accuracy of chemical identification using
FTIR or Raman microspectroscopy (Figs. 3 and 4). For FTIR spectros-
copy, the top five correlated variables with accuracy among laboratories
were: Polymer type (e.g., Polypropylene or Polyethylene Terephthalate)
(r = 0.52 + 0.08/-0.07), Material type (e.g., plastic or false positive) (r
= 0.29 + 0.09/-0.09), particle morphology (r = 0.27 + 0.06/-0.07),
spectral collection mode (r = 0.21 + 0.05/-0.04) and particle color (r =
0.21 + 0.07/-0.05) (Fig. 3). For Raman spectroscopy the top five
correlated variables with accuracy were material type (r = 0.63 + 0.04/
0.05), polymer type (r = 0.51 + 0.03/-0.02), particle color (r = 0.47 +
0.03/-0.03), particle morphology (r = 0.42 + 0.04/-0.03), and spectral
range (r = 0.30 + 0.02/-0.02) (Fig. 4). From these results, several
notable findings can be derived to provide method recommendations
and findings from the study related to using microspectroscopy for the
analysis of microplastic particles (Appendix C). Trends among labora-
tories for these top five correlated variables were investigated for each
method, and notable findings are discussed below.

Number of Scans [ —+—
AccessoriesUsed [ ——

Time for Measurement [ ———

Matching Threshold [ —34—

Size Fraction [ ——
Particle Color [ —3—
Spectral Collection Mode ——
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4. Method recommendations for FTIR microspectroscopy
4.1. Particle storage and presentation

FTIR microspectroscopy is generally reported to have a size limita-
tion for analysis of around 10 pm (Primpke et al., 2020a), therefore
particle size was expected to be correlated with accuracy of chemical
identification when using this method. Particle size was identified as one
of the variables most correlated with accuracy (Fig. 3), likely due to
decreased accuracy for particles <20 pm (De Frond et al.,, 2022b),
however particle morphology and color were more strongly correlated
with accuracy within this study. When compared across color and
morphology categories, the lowest accuracy was achieved for red and
orange fiber particles, with 88 and 66% accuracy respectively (Fig. 54,
Fig. S5, Table S5). From the metadata obtained in the study, laboratories
reported issues in analyzing small particles and fibers using FTIR not due
to their color, but due to particle extraction and storage methods.
Several laboratories stored all particles on a layer of double-sided tape
between particle counting using microscopy, and analysis using FTIR
microspectroscopy. Survey responses reported that fibers and particles
smaller than 212 pm became coated with adhesive when stored on
double-sided tape, making it more difficult to obtain a clean spectrum
and risking damage to the diamond or germanium (softer and easier to
damage) ATR tip. Laboratories reported successful analysis when par-
ticles were presented to the instrument directly on a glass or gold slide or
where particles were measured directly on the filter surface. The use of
one substrate for storage and analysis is the least complex method and
has the added benefits of minimized equipment costs, reduced time for
sample processing, and minimal opportunities for particle loss. Alter-
natively, particles that are more likely to be lost (such as fibers) can be
either adhered to a glass slide using 2% dextrose solution (Ross et al.,
2021; Vassilenko et al., 2021) or stored between glass slides that are
taped together. As fibers tend to bend in all three dimensions, they can
be placed onto a filter or mirror and covered by an IR transparent
window such as BaF; for measurement by transmission (Primpke et al.,
2019) or reflection. For the application of chemical imaging approaches,
particles can be assessed using polypropylene supported Anodisc filters
(Loder and Gerdts, 2015) or silicone membranes (Kappler et al., 2015).
These types of filters have been already used in various types of analysis
and especially supported Anodisc filter provide a broad range of appli-
cations ranging from sample storage for reanalysis towards analyses
with other techniques like pyrolysis-GC/MS (Primpke et al., 2020c).
Such an approach can be applied by all types of instruments and is
already used in an increasing number of studies generating data which is
well suitable for meta-analyses (Kooi et al., 2021).

FTIR

Particle Morphology [ ——+4—i
Materialtype [ +——74——

Polymer type

——

0.4 0.6 0.8 1
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Fig. 3. Correlation between instrumental and particle characteristic variables with accuracy of chemical identification using FTIR microspectroscopy. The ten most
correlated variables are shown here, and correlation values can be found within Table S1.
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Fig. 4. Correlation between instrumental and particle characteristic variables with accuracy of chemical identification using Raman microspectroscopy. The ten most
correlated variables are shown here, and correlation values can be found within Table S1.

4.2. Spectral collection

Spectral collection mode was also identified as a variable most
correlated with accuracy when using FTIR spectroscopy for the analysis
of microplastics (Fig. 3). Thus, combination of particle preparation ap-
proaches and spectral collection mode tailored to the particle size and
shape in question are important factors to consider for optimal results.
Attenuated total reflection (ATR) allows greater precision in differenti-
ating among similar materials compared to other modes of spectral
collection (Comnea-Stancu et al., 2017), and should be the preferred
method of spectral analysis where particle size or shape is not limiting.
Laboratories that used a combination of spectral collection modes, (ATR
in combination with reflectance or transmission modes) had comparably
accurate results (Fig. S6) and reported the least amount of issues with
particle analysis (Detailed within survey responses, (Kotar et al., 2022).
To avoid sticking or breaking of smaller particles during analysis, it is
recommended to use ATR and/or reflectance for particles >200 pm, and
reflectance or transmission for particles <200 pm. If using Focal Plane
Array (FPA) based systems, particles in the range 500 to 200 pm are
recommended to be measured in transmission (Loder et al., 2017).
Alternatively, if losing the particle on the tip is a possibility because it is
small, one can conduct reflectance/transmission first as a back-up, and
then proceed to ATR. Thus, if the particle cannot be retrieved following
ATR, the spectroscopic data have not been completely lost.

FTIR microspectroscopy has been described as an accessible easy to
use technique for the analysis of microplastics (Tagg et al., 2015; Zhang
et al., 2020), yet it was still expected that more experienced users would
obtain greater accuracy in results compared to novice laboratories. In
this work, experience level was not identified as a variable strongly
correlated with accuracy using FTIR, which indicates that even novice
researchers can obtain accurate results using this instrument. Other
instrumental parameters such as spectral resolution and number of scans
were also not strongly correlated with accuracy using FTIR. Both set-
tings can contribute to the length of time spent on analysis per particle,
however the evidence in this work indicates that high resolution or
multiple scans are not necessarily required to obtain accurate results.
This is a promising outcome for using lower resolution mapping tech-
niques which are becoming more widespread in the field (Primpke et al.,
2020c; Cowger et al., 2020a). In general, laboratories that obtained high
accuracy using FTIR microspectroscopy did not spend longer than 10
min per particle (Fig. S7). This length of time should be a rough guide to
compare spending too much time analyzing each particle, without
benefits in identification accuracy.

4.3. Spectral matching

Accuracy in using FTIR microscopy for chemical identification of
spiked particles was high among labs (92%), however accuracy varied
by polymer type (Fig. S8). It should also be noted that all plastic particles
used in the study were un-weathered (virgin plastic). Analysis of
weathered plastics introduces a higher likelihood of identification error
due to physical and chemical changes to the particles (De Frond et al.,
2021; Fernandez-Gonzalez et al., 2021). Errors in identification were
mostly observed for false positive particles (i.e., natural particles added
intentionally at 65% accuracy), rather than plastic particles (95% ac-
curacy). In particular, accuracy for identifying animal fur particles was
14%. Most animal fur fibers that were incorrectly identified were still
identified as natural particles, meaning FTIR microspectroscopy can
reliably differentiate between fibers of plastic or natural origin. How-
ever, laboratories reported difficulty in spectral matching due to the
absence of fur and other keratin-based materials within reference li-
braries. For example, different types of fur or hair (e.g., wool, pet fur,
human hair) all match the spectra for keratin, limiting the specificity of
the result. To improve results for such particles, reference libraries used
for spectral matching should be specific to the types of materials,
polymeric, semi-synthetic, and natural that are often found within
environmental samples including commonly detected (Primpke et al.,
2018), and even weathered microplastics (De Frond et al., 2021; Munno
et al., 2020). To encourage harmonization of methods among groups,
where libraries of this kind are developed in-house that may be appli-
cable to other laboratories and their samples, the libraries should be
made open-access to minimize costs where possible. Examples of such
libraries and their accessibility can be found via open-source programs
such as Open Specy (Cowger et al., 2021) and siMPle (Primpke et al.,
2020b).

The use of a minimum spectral matching threshold is often a
consideration in microplastic analysis methods (Cowger et al., 2020b;
Weisser et al., 2022). In this study, match threshold was not strongly
correlated with accuracy (r = 0.19, Fig. 3), and when results are
compared among the thresholds used, accuracy was lower for labora-
tories using a minimum threshold of 70% Hit Quality Index, compared
to laboratories that did not use a threshold at all (Fig. S9). Thus, we do
not recommend a specific matching threshold to be used as standard
because different research groups use different hit quality indices and
different spectral matching libraries (commercial, open-access, or
in-house) that affect spectral matching success. If in the future the use of
spectral libraries is more harmonized among research groups, a stan-
dardized spectral matching threshold may be appropriate.
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5. Method recommendations for Raman microspectroscopy
5.1. Spectral collection

In this study, particle color was identified as an influential variable
for chemical identification using Raman microspectroscopy. Current
literature has noted that spectral interferences (Ivleva et al., 2017; Silva
et al., 2018) resulting from fluorescence, additives, and pigments within
plastic particles impede the likelihood of achieving an accurate identi-
fication result (Ivleva et al., 2017; Prata et al., 2019; Sobhani et al.,
2019). Therefore it was expected that particle characteristics such as
color would influence accurate chemical identification using Raman
(Anger et al.,, 2018; Munno et al., 2020; Xu et al., 2019). When
comparing accuracy across color categories, accuracy for red particles
decreased to 5% (Fig. S10, Table S6). Among morphology categories,
accuracy of chemical identification for fibers decreased to 30%
(Fig. S11, Table S6). One laboratory misidentified numerous red cotton
fibers as PET in this study, which likely influenced results. The cause of
this specific misidentification could not be determined from the meta-
data. However, in post-study discussions other laboratories that ach-
ieved accurate results for dyed fibers reported adjusting settings based
upon the particle in question according to its characteristics (color and
morphology) to minimize spectral interference. For example, it is rec-
ommended to use a lower laser power (e.g., 5 or 10 mW) for brightly
colored particles to minimize particle fluorescence, or where darkly
colored particles were identified as susceptible to burning (Xu et al.,
2019).

Of other instrument settings, spectral range was identified as an
influential variable for accurate identification of particles using Raman
(Fig. 4). A typical molecular species will have vibrational transitions
between 0 cm ™! and 4000 cm™'. Thus, it is desirable to capture the
fingerprint (400 cm™! to 2000 cm ') and high frequency regions
(>2700 cm ™) within spectra for accurate identification. In this study,
all laboratories acquired spectra that included the fingerprint and high
frequency regions, accessing the full spectral range available and rele-
vant for polymer identification. The minimum spectral range employed
that achieved the highest accuracy in this study was 800-3300 cm ™!
(Table S2) and this should be considered an acceptable spectral range for
accurate polymer identification. Although an important consideration,
high spectral resolution was not critical to accurate polymer identifi-
cation with accurate results achieved with a minimum resolution of 1
em ™! (Table S2), indicating an opportunity possibly to save time during
spectral acquisition where lower resolutions are used.

5.2. Spectral processing

Although often used prior to spectral matching, spectral processing
variables were not vital for achieving accurate results using Raman
microspectroscopy in this study. For example, a mixture of baseline
correction methods was used (polynomial, automated, manual) how-
ever there was no significant difference in accuracy among laboratories
that did or did not use baseline correction (Fig. S12). Therefore,
correction should be carried out to minimize spectral noise and inter-
ference prior to spectral matching where appropriate, but it is not rec-
ommended as an imperative step for all spectra. In addition to baseline
correction, other methods to minimize spectral noise are also useful to
aid accurate spectral matching e.g., spectral normalization and relative
intensity correction. The results of this work show that these steps may
not always be necessary, and it is recommended to minimize time spent
on spectral processing, and rather focus on ensuring the appropriate
settings are used for spectral acquisition. Accurate results can be ach-
ieved when spending less than 10 min per particle (De Frond et al.,
2022b).
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5.3. Spectral matching

Accuracy using Raman microspectroscopy was high among labs
(83%) and varied across material types (Fig. S13). Although un-
weathered particles were used in this study, it is unclear how accuracy
would have differed for weathered particles, as results of how degra-
dation can alter Raman spectra are mixed (Dong et al., 2020; Phan et al.,
2022). The greatest error in identification observed for false positive
(natural) particles, specifically natural fibers animal fur, and dyed cel-
lulose (cotton). Laboratories noted within post-study discussions that
reference libraries containing spectra from dyed polymers and dyed
anthropogenic particles (e.g. Munno et al., 2020) were useful where dye
overlay was unavoidable in spectral acquisition, and inclusion of natural
materials was useful for confident differentiation among polymers and
natural particles. As with FTIR microspectroscopy, the inclusion of
reference spectra that represent the types of particles that are often
found in environmental samples (i.e., polymers, natural materials, and
weathered particles) will benefit accurate identification.

6. Recommendations for further research

From the results of this work and the result of the interlaboratory
method validation study (De Frond et al., 2022b), it can be concluded
that both FTIR and Raman microspectroscopy are accurate techniques
for the identification of microplastics in drinking water. Owing to the
differences amongst the techniques, both methods can be considered
complementary in agreement with how they are often described within
published literature (Cabernard et al., 2018; Kappler et al., 2016). FTIR
has the potential to be a relatively fast technique, with less adjustment of
instrument settings per particle required to obtain a high-quality spec-
trum. It is also a flexible technique, with different modes available for
different particle types. Raman microspectroscopy requires less consid-
eration for particle preparation of larger particles compared to FTIR and
can more accurately identify small particles <20 pm in size (Table S5,
Table S6). Some challenges and data gaps remain for both techniques
which have been highlighted within this study. These will require
further research and method development.

The development of spectral libraries with a variety of materials
commonly found in microplastics research is beneficial for accurate and
confident spectral matching. To further minimize operational costs,
open-access spectral libraries and open-source tools such as Open Specy
(Cowger et al., 2021) provide the community with spectra, and will
become more useful as more open-access libraries are included. In
addition to the content of the reference libraries, options for researchers
to distinguish between polymer groups or used harmonized nomencla-
ture for identifying polymer groups (e.g, HDPE and LDPE being classi-
fied together as Polyolefins) dependant on their research objectives will
help researchers quickly interpret the outcome of spectral matches in a
meaningful way and should be advanced for policy related groupings
starting with work that has begun on the topic (e.g., Cowger et al., 2022;
Wiesinger et al., 2021).

In this study, particles were first visually sorted and identified using
microscopy, an appropriate pre-screening method for particles >50 pm
to minimize chances of false positive results (De Frond et al., 2022b;
Kotar et al., 2022). Below this size, extracted particles are often identi-
fied using microspectroscopy only, increasing the likelihood of both
false positive and false negative chemical identification results. Raman
microspectroscopy had high accuracy in identifying particles of all sizes
including particles <20 pm such as those found in treated drinking water
Opmann et al. (2018); Pivokonsky et al., 2018; Schymanski et al. (2018);
(Wyer et al., 2020). However, data was limited for the analysis of par-
ticles below 20 pm in size for both FTIR and Raman techniques
(Table S5, Table S6). Reliable methods that allow efficient but accurate
identification of a variety of small particles (different materials, colors,
morphologies) are imperative to gain a thorough understanding of how
well we can detect, count, and identify such particles from a variety of
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matrices. Thus, further data on the applicability of each method for
analysis and accurate identification of particles <20 pm is needed and
should be a priority for further research. This includes the applicability
of methods to ensure the occurrence of both false positives and false
negatives is kept to a minimum (e.g., Nile Red staining (Prata et al.,
2021), automated selection for particles on a filter (von der Esch et al.,
2020)). Analysis of these small particles that are often most numerous in
the environment (Koelmans et al., 2022) can be time-consuming even
with automated techniques, and several laboratories reported a limited
capacity to complete this work during the COVID-19 pandemic. Small
microplastics are not only more numerous in the environment (Collard
etal., 2018; Kappler et al., 2016), but they are the particles most likely to
enter biological blood systems and organs (Ma et al., 2022; Yuan et al.,
2022) and thus have been highlighted as a priority characteristic to
consider in toxicological testing both for aquatic and human health ef-
fects (Thornton Hampton et al., 2022).

In this study, un-weathered (virgin plastic) particles were added to
test samples. Weathering of microplastics can lead to both physical and
chemical changes to the particles. Physical changes to particles may
impede successful identification e.g., using ATR-FTIR on fragile or
brittle particles that may be subject to fragmentation during analysis.
Chemical changes to particles can alter the IR spectra of microplastics
(De Frond et al., 2021; Fernandez-Gonzalez et al., 2021; Simon et al.,
2021), however this effect is less clear for spectra obtained using Raman
microspectroscopy (Dong et al., 2020; Phan et al., 2022). In drinking
water, particles are exposed to minimal weathering. However, when
considering the use of these methods for monitoring microplastics in
other environmental compartments (e.g., surface water, sediment and
seafood) consideration of how results may change due to different par-
ticle extraction procedures is vital. Additionally, investigation into how
accuracy and thus appropriate methods may differ for the analysis of
weathered particles is recommended, particularly for Raman micro-
spectroscopy, where studies on this are currently limited.

In many cases, including monitoring, efficiency of sample processing
is vital, and subsampling of particles for chemical identification can
minimize time expenditure. For results among studies to be comparable,
subsampling methods do not necessarily need to be identical among
laboratories, but they must be representative. To date, subsampling
approaches for the automated analysis of small particles have been
investigated (Brandt et al., 2021; Thaysen et al., 2020), although due to
the heterogeneity of particle spread on the filter surface, further research
is still required to recommend best practices. Further, subsampling ap-
proaches for larger particles that can be manipulated using forceps have
recently been recommended to reduce time for analysis where particle
counts are high (De Frond et al., 2022a, Cowger et al., 2022 (in prep.)).
The harmonization of such methods would not only improve efficiency
of sample processing, but also the comparability of data and results
among research groups. A further way to decrease time spent on analysis
and subjectivity in the selection of particles for analysis is the devel-
opment of rapid screening techniques, either through automated image
analysis and mapping (e.g., Appendix C, methods used in this study) or
through the development of new technologies (e.g. Su et al., 2022).
Moreover, further research is required to determine the most appro-
priate sample preparation methods for size fractionation. Questions
regarding what size ranges of particles should be analyzed together,
appropriate filter loadings, how to subsample from the sample matrix, or
use size fractionation to minimize particle overlay on the filter for effi-
cient and accurate automated analyses using microspectroscopy should
be addressed.

Recommendations for appropriate filter types for analysis are also
required for both techniques. The choice of filter substrate differs
depending on sample type, method of analysis and costs, but further
testing will support the choice made by individual research groups.
Studies can inform this for silicone, aluminum, gold, and black filters
(Kappler et al., 2015; Opmann et al., 2017), and the first direct com-
parison on the effectiveness of each for the analysis of a variety of small
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microplastics has recently been published using FTIR microspectroscopy
(Sukumaran et al., 2022; in prep.), with recommendations detailed
within.

7. Conclusion

In this work the influence of both particle and instrumental variables
were correlated with accuracy of chemical identification using micro-
spectroscopy with the aim to identify method recommendations and
priorities for future research. FTIR microspectroscopy is a versatile
technique, and thus methods should be adjusted depending on the
particle type (size and morphology) to provide the greatest likelihood of
obtaining spectra of high quality. Raman spectroscopy is reliable for the
analysis of a variety of particle types, although care should be taken to
adjust instrument parameters to minimize chance of fluorescence and
particle burning for dyed particles, and spectral processing methods may
be utilized to improve spectral quality prior to matching with reference
libraries. Further research should focus on testing and developing
harmonized methods for the efficient but accurate analysis of particles
below 20 pm, that are most challenging to analyze using these tech-
niques, but are the most prominent and concerning particle types found
in both drinking water and environmental samples.
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