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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Harmonization of methods is a priority 
in microplastics research. 

• FTIR and Raman microspectroscopy are 
common methods used to analyze 
microplastics. 

• Variables for successful identification 
using microspectroscopy were 
identified. 

• Particle characteristics and instrumental 
parameters influence identification 
success. 

• Technical method recommendations for 
using FTIR and Raman micro
spectroscopy are provided.  

A B S T R A C T   

Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics. 
These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method 
and found these to be complimentary. Within this work, metadata collected within an interlaboratory method validation study was used to determine which variables 
most influenced successful chemical identification of un-weathered microplastics in simulated drinking water samples using FTIR and Raman microspectroscopy. No 
variables tested had a strong correlation with the accuracy of chemical identification (r = ≤0.63). The variables most correlated with accuracy differed between the 
two methods, and include both physical characteristics of particles (color, morphology, size, polymer type), and instrumental parameters (spectral collection mode, 
spectral range). Based on these results, we provide technical recommendations to improve capabilities of both methods for measuring microplastics in drinking water 
and highlight priorities for further research. For FTIR microspectroscopy, recommendations include considering the type of particle in question to inform sample 
presentation and spectral collection mode for sample analysis. Instrumental parameters should be adjusted for certain particle types when using Raman micro
spectroscopy. For both instruments, the study highlighted the need for harmonization of spectral reference libraries among research groups, including the use of 
libraries containing reference materials of both weathered plastic and natural materials that are commonly found in environmental samples.   

1. Introduction 

The field of microplastics research has seen an exponential growth 
over the last two decades (Granek et al., 2020; Wootton et al., 2021), 
since this pressing environmental problem was first studied in the 
1970’s and microplastics were defined in 2004 (Carpenter and Smith, 
1972; Thompson et al., 2004). Our ability to measure and characterize 
microplastics has evolved with our continued understanding of this 
diverse and multifaceted environmental contaminant. Early in
vestigations relied primarily on counting and characterizing larger 
particles (>333 μm) based on their visual or tactile properties (e.g., 
Doyle et al., 2011; Eriksen et al., 2013; Hidalgo-Ruz et al., 2012; Lusher 
et al., 2020; Wang and Wang, 2018). These studies largely relied on 
optical microscopes (Shim et al., 2017; Wang and Wang, 2018). How
ever, research has since demonstrated that using microscopy alone re
sults in subjectivity and bias in microplastic estimates, often where small 
particles are missed, and natural particles are falsely identified as plastic 
(Isobe et al., 2019; Löder and Gerdts, 2015; Shim et al., 2017). 

The introduction of vibrational spectroscopic techniques such as 
Raman and FTIR microscopes allow for the chemical identification of 
suspected plastic particles. Vibrational characteristics of chemical 
functional groups are identified from a spectrum (Ricci et al., 2015). 
FTIR microspectroscopy generates a fingerprint of the material being 
analyzed by measuring the change of the dipole moment of the molecule 
excited by infrared radiation to produce a spectrum which can be used to 
identify materials. Raman microspectroscopy is another vibrational 
technique that provides information about the change of polarizability 
of the molecules via a sample spectrum which can be used to identify 
materials (Araujo et al., 2018; Ivleva et al., 2017). The use of micro
spectroscopy in microplastics research allows researchers to confirm the 
material type of particles (i.e., plastic or natural), increasing the reli
ability of particle count estimates from environmental samples (Brander 
et al., 2020; Cowger et al., 2020a; Kooi et al., 2021; Primpke et al., 
2017). Using polymer confirmation, researchers can also adjust their 

visual microscopy counts to better reflect their true representative 
number (De Frond et al., 2022a). Spectral data also provides researchers 
with critical information on specific polymer types found in a sample, 
which can be used to understand their relative abundances, flows and 
comparisons in different environmental matrices (Kooi et al., 2021), and 
trends in space and time. As researchers gain a greater understanding of 
the types of plastics in environmental samples, they will also understand 
their potential origins for more successful and targeted source reduction 
strategies. Similarly, polymeric data can be used to inform the design of 
laboratory experiments and ultimately risk assessments based on the 
toxicity of specific polymers and their documented abundance in the 
environment (Kögel et al., 2020). 

Despite their advantages, analyses using FTIR and Raman micro
spectroscopy still encounter challenges due to the unique and varied 
nature of microplastic particles (Rochman et al., 2019). Within current 
literature, the capabilities, and limitations of both FTIR and Raman 
microspectroscopy have been discussed in detail (Anger et al., 2018; 
Cabernard et al., 2018; Cowger et al., 2020b; Hidalgo-Ruz et al., 2012; 
Käppler et al., 2016; Löder and Gerdts, 2015; Prata et al., 2019; Shim 
et al., 2017; Song et al., 2015). However, a thorough comparison of 
performance for analyzing specific particle types has not yet been 
investigated quantitatively, particularly for particle sizes below 20 μm, 
for which only one study to date has measured and compared perfor
mance among the two methods (Müller et al., 2020). There is also no 
consensus on best practice for selecting instrument parameters and 
particle preparation methods to acquire the best spectra. 

Passed in 2018, State of California Senate Bill 1422 requires the 
development of standard methods to analyze microplastics in drinking 
water for monitoring purposes. Thus, it has become necessary to identify 
and optimize the capabilities and minimize limitations for the most 
promising spectroscopic methods so that their use can be further stan
dardized for monitoring and regulation. An interlaboratory method 
validation study was carried out from 2019 to 2021 to measure the 
performance of commonly used methods for identifying and 
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characterizing microplastics from drinking water. 
From the study’s overall results (De Frond et al., 2022b), it was 

concluded that both FTIR and Raman microspectroscopy had high ac
curacy in identifying plastic particles above 50 μm (95% and 91% ac
curacy respectively). Evaluation of the extensive metadata collected 
within this study presented additional opportunities to identify which 
experimental parameters were most influential for successful chemical 
identifications, to determine where methods could be improved to in
crease the likelihood of achieving accurate chemical identification re
sults for future research, and to improve limits of detection. 

Metadata collected within the interlaboratory method validation 
study (publicly available to download via: https://microplastics.sccwrp. 
org/) was utilized to determine the variables most correlated with ac
curacy of chemical identification when using FTIR and Raman micro
spectroscopy for the analysis of spiked microplastics in simulated 
drinking water. From the results, recommendations are provided to 
improve the performance of these techniques for the analysis of micro
plastics, and priorities for future research are identified. 

2. Methods 

The Southern California Water Research Project (SCCWRP) led an 
interlaboratory method validation study intending to measure the per
formance (accuracy and precision) of three commonly used methods in 
microplastic research; optical microscopy, FTIR microspectroscopy and 
Raman microspectroscopy (De Frond et al., 2022b). In total, 22 labo
ratories from six countries participated and submitted the clean water 
matrix results. All participating laboratories used optical microscopy for 
their analyses, and results for optical microscopy are discussed within 
Kotar et al. (2022), with recommendations for improving methods and 
reporting for future research and monitoring. Microspectroscopy was 
used by 20 laboratories to chemically identify suspected microplastics 
that were first counted using microscopy; 11 used FTIR micro
spectroscopy and nine used Raman microspectroscopy. The results and 
metadata from groups using microspectroscopy will be discussed here. 

2.1. Sample analysis 

Methods for sample preparation and processing are outlined in detail 
within (De Frond et al., 2022b). In brief: three spiked samples of simu
lated clean water and a laboratory blank were sent to each laboratory 
with a prescribed Standard Operating Procedure (SOP) for extraction, 
quantification, and characterization. Simulated clean water samples 
were spiked with a known amount of microparticles within four size 
fractions (1–20 μm, 20–212 μm, 212–500 μm, >500 μm), four polymer 
types (PE, PS, PVC, and PET) and several colors (clear, white, green, 
blue, red and orange), and morphologies (sphere, fragment and fiber). 
Plastics spiked into samples consisted of specifically designed soda 
capsules containing microplastics. These were produced by the Norwe
gian Institute of Water Research (NIVA) (further details regarding the 
creation of reference materials can be found within Martínez-Francés 
et al., in prep.). Plastics were sourced as raw plastic materials from 
Goodfellow and Cospheric LLC © in the form of PE, PS and PVC spheres, 
particles were sieved to obtain required size fractions. PET fibers 
(300–1000 μm) were generated at NIVA by collecting fibers released via 
washing PET fabric sourced from IKEA. In addition to the capsules, 
green PE spheres from Cospheric LLC © were manually added to sam
ples. All plastic particles used in the study were un-weathered (virgin 
plastic). ‘False positive’ particles (natural hair, fibers and shells) that 
may be mistaken for microplastics, were also added to each sample in 
known quantities. Sample processing involved multiple steps, including 
sample extraction using sieving and/or vacuum filtration, and particle 
counting, imaging, measurement and visual characterization using 
stereomicroscopy. Within the SOP, a subsampling procedure for 
microspectroscopy was outlined (S1), in which labs were required to 
select up to 30 particles of each color and morphology combination (e.g., 

30 orange fibers, 30 white fragments), within each size fraction. In cases 
where less than 30 particles were identified/recovered of a certain 
particle type, participants were instructed to subsample as many as were 
found for chemical identification (e.g., if only 8 orange fibers were 
counted, participants selected all 8 for microspectroscopy). Laboratories 
were asked to chemically identify all subsampled particles using FTIR 
and/or Raman microspectroscopy. Specific guidance was not provided 
for using microspectroscopy other than the particles to be identified and 
suggestions for particle preparation (e.g., small particles that cannot be 
manually picked may be analyzed directly from the filter surface). For 
novice labs that were using the instruments situated at SCCWRP, specific 
instructions were provided on how to operate each instrument to run 
manual particle by particle analyses. 

2.2. Data submission 

Data submission variables for the interlaboratory method validation 
study were chosen based on the ‘Microplastic Reporting Guidelines’ 
within Cowger et al. 2020a, and further refined through discussion 
among the participating laboratories. Data were submitted for each 
suspected plastic particle counted during microscopy, and analyzed by 
FTIR and/or Raman, which included: sample ID, particle ID, size frac
tion, particle color, morphology, chemical identification result and the 
instrument used to carry out chemical identification. Each lab reported 
the materials they used (e.g., filter or slide type), instrument settings, 
analysis parameters, the time taken to process each size fraction and 
sample using spectroscopy and self-reported experience level (Tables S3 
and S4). 

Following submission of results, further detail on methods used for 
microspectroscopy was acquired by completing a survey sent to 
participating laboratories (See Supplementary Information; Kotar et al., 
2022). Survey questions were composed by the working groups that 
were analyzing the metadata for each method (e.g., FTIR micro
spectroscopy or Raman microspectroscopy), and participating labora
tories were instructed to answer all relevant questions with as much 
detail as possible. In this work, survey responses were utilized to provide 
context to the patterns observed within the metadata. 

2.3. Data analysis 

2.3.1. Calculating bias in particle selection for chemical identification 
Due to logistical limitations such as time and personnel availability, 

largely influenced by the ongoing COVID-19 pandemic, several labora
tories were not able to follow the subsampling protocol for chemical 
identification, and thus the total number of particles chemically iden
tified by each lab was highly varied (De Frond et al., 2022b). These 
differences among laboratories were further investigated to determine 
how the particles selected for chemical identification impacted overall 
results. Bias in particle selection for chemical identification was calcu
lated using data from all reported particles. This includes any particles 
suspected to be plastic by participating laboratories, including false 
positive particles miscategorized as plastic, particles introduced to 
samples from laboratory contamination, and spiked particles that were 
miscategorized by color and/or morphology (discussed further in Kotar 
et al., 2022). These particles were included within the bias analyses as 
they still provide information on the potential selectivity that labora
tories have in analyzing particles with particular characteristics using 
microspectroscopy. Also, one laboratory used different size fractions to 
the SOP provided (20–250 μm and 250–500 μm). These results are 
included in the bias calculations, but these two size fractions are not 
included in other results due to low sample size. To calculate bias, first 
the total number of particles wad calculated of a given shape, size, and 
color visually identified as plastic and counted using microscopy. The 
total number of particles in each category was then divided by the 
number that were identified using either FTIR or Raman micro
spectroscopy. These metrics can be directly inferred as the probability of 
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a particle to be identified using Raman or FTIR in this study given its 
particle properties. 

2.3.2. Assessment of performance 
A fraction of the particles that were recovered, counted and chemi

cally identified by study participants were not spiked particles, but the 
result of laboratory contamination. In these cases, it was not possible to 
determine the true material type of these particles. Thus, to evaluate the 
performance of spectroscopy we used only results from spiked particles 
(including false positives) that were recovered and analyzed using 
microspectroscopy. To confirm which particles reported were spiked 
particles for this purpose, the submitted data from each lab was carefully 
reviewed by those involved in preparing the clean water samples. The 
specifications of the spiked standard particles were documented for the 
quality assurance checks. The particle image, when available, was firstly 
compared with a representative photo of the spiked standard material. 
Following this, if the visible appearance, size fraction, dimension values, 
morphology and color also matched that of one of the spiked particle 
type, then the reported particle ID was confirmed. If the particle ID was 
unable to be matched with the information of the reported image and 
data, a “ns” (representing ‘not sure’) was assigned to the reported par
ticle. Next, the reported material ID was checked to score the result as 
“y” for correct ID or “n” for incorrect ID. Within this refined dataset, any 
false positive particles that were counted and characterized (i.e., 
mistaken for plastic particles) in the study were included within the 
results and were used to determine accuracy for identifying natural 
particles using the methods investigated. 

Following checks to verify the spiked particles, data were then 
filtered using the quality assured dataset to include only recovered 
spiked particles (both plastic and natural) that were analyzed using 
microspectroscopy (either FTIR or Raman). With this refined dataset, we 
compared the true material of each spiked particle to the reported 
chemical assignment and calculated the proportion of accurate results 
for each method and particle type (no. accurate results/no. particles 
identified) (Fig. S1). This result was calculated both among and within 
labs. Data analysis was carried out in R software version 4.0.3 (R Core 
Team, 2020) using several packages (base packages: stats, graphics, 
grDevices, datasets, utils, methods, base. Other attached packages are 
stated in Appendix A, S.4). 

2.3.3. Determining influential variables for accurate chemical identification 
Results for the proportion of accurate chemical ID’s, data submission 

and survey response results were used to determine which variables (e. 
g., instrument settings, or particle characteristics) had the greatest 
correlation with the proportion of accurate chemical identification re
sults among laboratories. Strong correlations would be indicative of the 
predictive power of a variable on determining accurate spectral identi
fication. Here, we used the Cramers V statistic (bias corrected) which 
measures the correlation between two categorical variables. Each vari
able was measured for correlation to the accurate identification (TRUE, 
FALSE). All numeric variables were turned into categorical variables for 
this exercise because there was no clear way to derive a correlation 
metric that could be comparable between categorical-categorical and 
numeric-categorical relationships. Cramers V values were bootstrapped 
(resampling with replacement, n = 10,000) for every relationship to 
create 95% confidence intervals. From these results, the top five vari
ables that were most correlated with obtaining an accurate chemical ID 
were identified for each method and investigated further. 

Next, an investigation was performed to evaluate how differences in 
mean accuracy drove the correlations for accurate chemical identifica
tion. The mean probability of an accurate chemical identification result 
(0 = never accurate, 1 always accurate) was calculated and boot
strapped (resampling with replacement, n = 10,000) the 95% confi
dence intervals from the bootstrap distribution. Categories that did not 
have overlapping confidence intervals in their mean accuracy scores 
were said to be statistically different. For figures and results, this 

probability was converted into % accuracy of chemical identification by 
multiplying by 100. 

The top five most correlated variables with accuracy for each method 
were then compared among laboratories. Here, the proportion of accu
rate results for each laboratory was used to compare performance 
among labs using different method parameters. For example, where 
particle morphology was a highly correlated variable with accurate 
chemical identification using FTIR, we then compared accuracy for each 
lab with each particle morphology category. From these results, any 
trends within the data were identified and used to inform method 
recommendations. 

3. Results and discussion 

3.1. Selection of particles for chemical analysis 

Among laboratories using FTIR microspectroscopy, certain particle 
colors were selected for analysis less often than others (Fig. 1, Appendix 
A; Fig. S2, Appendix B). Of 819 white particles counted among labora
tories using microscopy, 43% of particles were identified. Further, 46% 
of 108 black particles and 49% of 53 multicolor particles that were 
counted were analyzed. Dark colors can reflect infrared radiation 
weakly (Andrade et al., 2020), which can explain potential bias against 
analysis of such colors. Among morphology categories, laboratories 
appeared to prioritize analysis of fiber bundles, with 88% of 26 fiber 
bundles counted. Laboratories showed a bias against analysis of particles 
categorized as pellets, where 20% of 20 particles counted were 
analyzed, and particles categorized as foam where 30% of 168 particles 
counted were analyzed. Particles with surface irregularities such as 
pellets and foam can be challenging to analyze using FTIR (Käppler 
et al., 2015), so this may be the cause of these particle selection biases. 
However, several spiked plastic particles were miscategorized by 
morphology (e.g., fragments miscategorized as foam, and spheres mis
categorized as pellets, discussed further in (Kotar et al., 2022)). Foams 
and pellets were therefore less common in general within the dataset, 
and thus any biases against selection of these categories appeared more 
obvious. Particles in larger size fractions were also selected for FTIR 
analysis more often than smaller particles. For example, 1054 particles 
in the >500 μm size fraction were counted and 65% were analyzed, 
however of 1003 particles were counted in the 20–212 μm size fraction, 
41% were analyzed. FTIR microspectroscopy can characterize particles 
down to 10–20 μm in size, but when using certain analysis modes such as 
ATR, analysis is limited to particles over approximately 100 μm in size. 
(Primpke et al., 2020a). As 75% of laboratories used ATR mode for 
spectral collection in at least some of their analyses, it is expected that 
the limit of detection led to more larger particles being analyzed. 

When using Raman microspectroscopy, the proportion of particles 
selected for analysis ranged from 62 to 100% among color categories, 
with green particles chosen least often for analysis (62%) (Fig. 2, Ap
pendix A; Fig. S3, Appendix B). Although particle analysis using Raman 
microspectroscopy can have issues with fluorescence from bright colors 
or shiny particles (e.g., gold or silver in color), 100% of particles counted 
that were categorized as silver, gold and purple in color were analyzed 
using Raman. Among particle morphology categories, the proportion 
analyzed ranged from 63 to 85%. Particles categorized as foam and 
spheres were selected the least (63 and 67% analyzed, respectively). 
Similar to FTIR microspectroscopy, as no foam particles were spiked it is 
likely that particles categorized as foam were miscategorized by 
participating laboratories, and therefore these particles were less com
mon overall. Among discussions with laboratories after the study, it was 
noted that the curved surface of the spheres caused difficulties in 
obtaining a spectrum from these particles, and thus it is possible that 
laboratories avoided selecting these particle types for analysis compared 
to other morphologies. Laboratories using Raman spectroscopy showed 
no bias against analysis of small particles, as 99% of particles counted in 
the 1–20 μm size fraction were analyzed. This is in line with previous 
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Fig. 1. Number of all recovered particles that were counted using microscopy, and the number that were chemically analyzed using FTIR microspectroscopy. 
Number of particles analyzed is summed among all participating laboratories for each category. 

Fig. 2. Number of all recovered particles that were counted using microscopy, and the number that were chemically analyzed using Raman microspectroscopy. 
Number of particles analyzed is summed among all participating laboratories for each category. 
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works demonstrating that Raman microspectroscopy accurately ana
lyzes smaller particles down to 1–10 μm in size, due to its good spatial 
resolution (Araujo et al., 2018; Cabernard et al., 2018; Oβmann et al., 
2018; Schymanski et al., 2018; Sobhani et al., 2020). 

Along with particle characteristics such as color, surface texture and 
size, it was noted by some participants that pattern recognition may 
have also contributed to lower rates of analysis for certain particle types. 
Although this is not general practise in the analysis of ‘real world’ 
samples, it was reported by some laboratories that considering the large 
numbers of particles required for analysis in this study, to increase 
efficieny of sample analysis certain patterns were noted and particles 
with the same characteristics were grouped together within results. For 
example, after analyzing 10 green spheres within a certain size range, 
one could be reasonably confident that other green spheres of the same 
size within test samples were likely to be of the same polymer type. In 
these cases, the remaining green spheres may not have been analyzed by 
a small number of participants. 

3.2. Influential variables for accurate chemical identification using 
microspectroscopy 

A strong positive correlation amongst certain variables was ex
pected, as has previously been presented in the scientific literature. 
However, our analysis found no variables to have a correlation greater 
than 0.63 (Cramers V) with accuracy of chemical identification using 
FTIR or Raman microspectroscopy (Figs. 3 and 4). For FTIR spectros
copy, the top five correlated variables with accuracy among laboratories 
were: Polymer type (e.g., Polypropylene or Polyethylene Terephthalate) 
(r = 0.52 + 0.08/-0.07), Material type (e.g., plastic or false positive) (r 
= 0.29 + 0.09/-0.09), particle morphology (r = 0.27 + 0.06/-0.07), 
spectral collection mode (r = 0.21 + 0.05/-0.04) and particle color (r =
0.21 + 0.07/-0.05) (Fig. 3). For Raman spectroscopy the top five 
correlated variables with accuracy were material type (r = 0.63 + 0.04/ 
0.05), polymer type (r = 0.51 + 0.03/-0.02), particle color (r = 0.47 +
0.03/-0.03), particle morphology (r = 0.42 + 0.04/-0.03), and spectral 
range (r = 0.30 + 0.02/-0.02) (Fig. 4). From these results, several 
notable findings can be derived to provide method recommendations 
and findings from the study related to using microspectroscopy for the 
analysis of microplastic particles (Appendix C). Trends among labora
tories for these top five correlated variables were investigated for each 
method, and notable findings are discussed below. 

4. Method recommendations for FTIR microspectroscopy 

4.1. Particle storage and presentation 

FTIR microspectroscopy is generally reported to have a size limita
tion for analysis of around 10 μm (Primpke et al., 2020a), therefore 
particle size was expected to be correlated with accuracy of chemical 
identification when using this method. Particle size was identified as one 
of the variables most correlated with accuracy (Fig. 3), likely due to 
decreased accuracy for particles <20 μm (De Frond et al., 2022b), 
however particle morphology and color were more strongly correlated 
with accuracy within this study. When compared across color and 
morphology categories, the lowest accuracy was achieved for red and 
orange fiber particles, with 88 and 66% accuracy respectively (Fig. S4, 
Fig. S5, Table S5). From the metadata obtained in the study, laboratories 
reported issues in analyzing small particles and fibers using FTIR not due 
to their color, but due to particle extraction and storage methods. 
Several laboratories stored all particles on a layer of double-sided tape 
between particle counting using microscopy, and analysis using FTIR 
microspectroscopy. Survey responses reported that fibers and particles 
smaller than 212 μm became coated with adhesive when stored on 
double-sided tape, making it more difficult to obtain a clean spectrum 
and risking damage to the diamond or germanium (softer and easier to 
damage) ATR tip. Laboratories reported successful analysis when par
ticles were presented to the instrument directly on a glass or gold slide or 
where particles were measured directly on the filter surface. The use of 
one substrate for storage and analysis is the least complex method and 
has the added benefits of minimized equipment costs, reduced time for 
sample processing, and minimal opportunities for particle loss. Alter
natively, particles that are more likely to be lost (such as fibers) can be 
either adhered to a glass slide using 2% dextrose solution (Ross et al., 
2021; Vassilenko et al., 2021) or stored between glass slides that are 
taped together. As fibers tend to bend in all three dimensions, they can 
be placed onto a filter or mirror and covered by an IR transparent 
window such as BaF2 for measurement by transmission (Primpke et al., 
2019) or reflection. For the application of chemical imaging approaches, 
particles can be assessed using polypropylene supported Anodisc filters 
(Löder and Gerdts, 2015) or silicone membranes (Käppler et al., 2015). 
These types of filters have been already used in various types of analysis 
and especially supported Anodisc filter provide a broad range of appli
cations ranging from sample storage for reanalysis towards analyses 
with other techniques like pyrolysis-GC/MS (Primpke et al., 2020c). 
Such an approach can be applied by all types of instruments and is 
already used in an increasing number of studies generating data which is 
well suitable for meta-analyses (Kooi et al., 2021). 

Fig. 3. Correlation between instrumental and particle characteristic variables with accuracy of chemical identification using FTIR microspectroscopy. The ten most 
correlated variables are shown here, and correlation values can be found within Table S1. 
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4.2. Spectral collection 

Spectral collection mode was also identified as a variable most 
correlated with accuracy when using FTIR spectroscopy for the analysis 
of microplastics (Fig. 3). Thus, combination of particle preparation ap
proaches and spectral collection mode tailored to the particle size and 
shape in question are important factors to consider for optimal results. 
Attenuated total reflection (ATR) allows greater precision in differenti
ating among similar materials compared to other modes of spectral 
collection (Comnea-Stancu et al., 2017), and should be the preferred 
method of spectral analysis where particle size or shape is not limiting. 
Laboratories that used a combination of spectral collection modes, (ATR 
in combination with reflectance or transmission modes) had comparably 
accurate results (Fig. S6) and reported the least amount of issues with 
particle analysis (Detailed within survey responses, (Kotar et al., 2022). 
To avoid sticking or breaking of smaller particles during analysis, it is 
recommended to use ATR and/or reflectance for particles >200 μm, and 
reflectance or transmission for particles <200 μm. If using Focal Plane 
Array (FPA) based systems, particles in the range 500 to 200 μm are 
recommended to be measured in transmission (Löder et al., 2017). 
Alternatively, if losing the particle on the tip is a possibility because it is 
small, one can conduct reflectance/transmission first as a back-up, and 
then proceed to ATR. Thus, if the particle cannot be retrieved following 
ATR, the spectroscopic data have not been completely lost. 

FTIR microspectroscopy has been described as an accessible easy to 
use technique for the analysis of microplastics (Tagg et al., 2015; Zhang 
et al., 2020), yet it was still expected that more experienced users would 
obtain greater accuracy in results compared to novice laboratories. In 
this work, experience level was not identified as a variable strongly 
correlated with accuracy using FTIR, which indicates that even novice 
researchers can obtain accurate results using this instrument. Other 
instrumental parameters such as spectral resolution and number of scans 
were also not strongly correlated with accuracy using FTIR. Both set
tings can contribute to the length of time spent on analysis per particle, 
however the evidence in this work indicates that high resolution or 
multiple scans are not necessarily required to obtain accurate results. 
This is a promising outcome for using lower resolution mapping tech
niques which are becoming more widespread in the field (Primpke et al., 
2020c; Cowger et al., 2020a). In general, laboratories that obtained high 
accuracy using FTIR microspectroscopy did not spend longer than 10 
min per particle (Fig. S7). This length of time should be a rough guide to 
compare spending too much time analyzing each particle, without 
benefits in identification accuracy. 

4.3. Spectral matching 

Accuracy in using FTIR microscopy for chemical identification of 
spiked particles was high among labs (92%), however accuracy varied 
by polymer type (Fig. S8). It should also be noted that all plastic particles 
used in the study were un-weathered (virgin plastic). Analysis of 
weathered plastics introduces a higher likelihood of identification error 
due to physical and chemical changes to the particles (De Frond et al., 
2021; Fernández-González et al., 2021). Errors in identification were 
mostly observed for false positive particles (i.e., natural particles added 
intentionally at 65% accuracy), rather than plastic particles (95% ac
curacy). In particular, accuracy for identifying animal fur particles was 
14%. Most animal fur fibers that were incorrectly identified were still 
identified as natural particles, meaning FTIR microspectroscopy can 
reliably differentiate between fibers of plastic or natural origin. How
ever, laboratories reported difficulty in spectral matching due to the 
absence of fur and other keratin-based materials within reference li
braries. For example, different types of fur or hair (e.g., wool, pet fur, 
human hair) all match the spectra for keratin, limiting the specificity of 
the result. To improve results for such particles, reference libraries used 
for spectral matching should be specific to the types of materials, 
polymeric, semi-synthetic, and natural that are often found within 
environmental samples including commonly detected (Primpke et al., 
2018), and even weathered microplastics (De Frond et al., 2021; Munno 
et al., 2020). To encourage harmonization of methods among groups, 
where libraries of this kind are developed in-house that may be appli
cable to other laboratories and their samples, the libraries should be 
made open-access to minimize costs where possible. Examples of such 
libraries and their accessibility can be found via open-source programs 
such as Open Specy (Cowger et al., 2021) and siMPle (Primpke et al., 
2020b). 

The use of a minimum spectral matching threshold is often a 
consideration in microplastic analysis methods (Cowger et al., 2020b; 
Weisser et al., 2022). In this study, match threshold was not strongly 
correlated with accuracy (r = 0.19, Fig. 3), and when results are 
compared among the thresholds used, accuracy was lower for labora
tories using a minimum threshold of 70% Hit Quality Index, compared 
to laboratories that did not use a threshold at all (Fig. S9). Thus, we do 
not recommend a specific matching threshold to be used as standard 
because different research groups use different hit quality indices and 
different spectral matching libraries (commercial, open-access, or 
in-house) that affect spectral matching success. If in the future the use of 
spectral libraries is more harmonized among research groups, a stan
dardized spectral matching threshold may be appropriate. 

Fig. 4. Correlation between instrumental and particle characteristic variables with accuracy of chemical identification using Raman microspectroscopy. The ten most 
correlated variables are shown here, and correlation values can be found within Table S1. 
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5. Method recommendations for Raman microspectroscopy 

5.1. Spectral collection 

In this study, particle color was identified as an influential variable 
for chemical identification using Raman microspectroscopy. Current 
literature has noted that spectral interferences (Ivleva et al., 2017; Silva 
et al., 2018) resulting from fluorescence, additives, and pigments within 
plastic particles impede the likelihood of achieving an accurate identi
fication result (Ivleva et al., 2017; Prata et al., 2019; Sobhani et al., 
2019). Therefore it was expected that particle characteristics such as 
color would influence accurate chemical identification using Raman 
(Anger et al., 2018; Munno et al., 2020; Xu et al., 2019). When 
comparing accuracy across color categories, accuracy for red particles 
decreased to 5% (Fig. S10, Table S6). Among morphology categories, 
accuracy of chemical identification for fibers decreased to 30% 
(Fig. S11, Table S6). One laboratory misidentified numerous red cotton 
fibers as PET in this study, which likely influenced results. The cause of 
this specific misidentification could not be determined from the meta
data. However, in post-study discussions other laboratories that ach
ieved accurate results for dyed fibers reported adjusting settings based 
upon the particle in question according to its characteristics (color and 
morphology) to minimize spectral interference. For example, it is rec
ommended to use a lower laser power (e.g., 5 or 10 mW) for brightly 
colored particles to minimize particle fluorescence, or where darkly 
colored particles were identified as susceptible to burning (Xu et al., 
2019). 

Of other instrument settings, spectral range was identified as an 
influential variable for accurate identification of particles using Raman 
(Fig. 4). A typical molecular species will have vibrational transitions 
between 0 cm−1 and 4000 cm−1. Thus, it is desirable to capture the 
fingerprint (400 cm−1 to 2000 cm−1) and high frequency regions 
(>2700 cm−1) within spectra for accurate identification. In this study, 
all laboratories acquired spectra that included the fingerprint and high 
frequency regions, accessing the full spectral range available and rele
vant for polymer identification. The minimum spectral range employed 
that achieved the highest accuracy in this study was 800–3300 cm−1 

(Table S2) and this should be considered an acceptable spectral range for 
accurate polymer identification. Although an important consideration, 
high spectral resolution was not critical to accurate polymer identifi
cation with accurate results achieved with a minimum resolution of 1 
cm−1 (Table S2), indicating an opportunity possibly to save time during 
spectral acquisition where lower resolutions are used. 

5.2. Spectral processing 

Although often used prior to spectral matching, spectral processing 
variables were not vital for achieving accurate results using Raman 
microspectroscopy in this study. For example, a mixture of baseline 
correction methods was used (polynomial, automated, manual) how
ever there was no significant difference in accuracy among laboratories 
that did or did not use baseline correction (Fig. S12). Therefore, 
correction should be carried out to minimize spectral noise and inter
ference prior to spectral matching where appropriate, but it is not rec
ommended as an imperative step for all spectra. In addition to baseline 
correction, other methods to minimize spectral noise are also useful to 
aid accurate spectral matching e.g., spectral normalization and relative 
intensity correction. The results of this work show that these steps may 
not always be necessary, and it is recommended to minimize time spent 
on spectral processing, and rather focus on ensuring the appropriate 
settings are used for spectral acquisition. Accurate results can be ach
ieved when spending less than 10 min per particle (De Frond et al., 
2022b). 

5.3. Spectral matching 

Accuracy using Raman microspectroscopy was high among labs 
(83%) and varied across material types (Fig. S13). Although un- 
weathered particles were used in this study, it is unclear how accuracy 
would have differed for weathered particles, as results of how degra
dation can alter Raman spectra are mixed (Dong et al., 2020; Phan et al., 
2022). The greatest error in identification observed for false positive 
(natural) particles, specifically natural fibers animal fur, and dyed cel
lulose (cotton). Laboratories noted within post-study discussions that 
reference libraries containing spectra from dyed polymers and dyed 
anthropogenic particles (e.g. Munno et al., 2020) were useful where dye 
overlay was unavoidable in spectral acquisition, and inclusion of natural 
materials was useful for confident differentiation among polymers and 
natural particles. As with FTIR microspectroscopy, the inclusion of 
reference spectra that represent the types of particles that are often 
found in environmental samples (i.e., polymers, natural materials, and 
weathered particles) will benefit accurate identification. 

6. Recommendations for further research 

From the results of this work and the result of the interlaboratory 
method validation study (De Frond et al., 2022b), it can be concluded 
that both FTIR and Raman microspectroscopy are accurate techniques 
for the identification of microplastics in drinking water. Owing to the 
differences amongst the techniques, both methods can be considered 
complementary in agreement with how they are often described within 
published literature (Cabernard et al., 2018; Käppler et al., 2016). FTIR 
has the potential to be a relatively fast technique, with less adjustment of 
instrument settings per particle required to obtain a high-quality spec
trum. It is also a flexible technique, with different modes available for 
different particle types. Raman microspectroscopy requires less consid
eration for particle preparation of larger particles compared to FTIR and 
can more accurately identify small particles <20 μm in size (Table S5, 
Table S6). Some challenges and data gaps remain for both techniques 
which have been highlighted within this study. These will require 
further research and method development. 

The development of spectral libraries with a variety of materials 
commonly found in microplastics research is beneficial for accurate and 
confident spectral matching. To further minimize operational costs, 
open-access spectral libraries and open-source tools such as Open Specy 
(Cowger et al., 2021) provide the community with spectra, and will 
become more useful as more open-access libraries are included. In 
addition to the content of the reference libraries, options for researchers 
to distinguish between polymer groups or used harmonized nomencla
ture for identifying polymer groups (e.g, HDPE and LDPE being classi
fied together as Polyolefins) dependant on their research objectives will 
help researchers quickly interpret the outcome of spectral matches in a 
meaningful way and should be advanced for policy related groupings 
starting with work that has begun on the topic (e.g., Cowger et al., 2022; 
Wiesinger et al., 2021). 

In this study, particles were first visually sorted and identified using 
microscopy, an appropriate pre-screening method for particles >50 μm 
to minimize chances of false positive results (De Frond et al., 2022b; 
Kotar et al., 2022). Below this size, extracted particles are often identi
fied using microspectroscopy only, increasing the likelihood of both 
false positive and false negative chemical identification results. Raman 
microspectroscopy had high accuracy in identifying particles of all sizes 
including particles <20 μm such as those found in treated drinking water 
Oβmann et al. (2018); Pivokonsky et al., 2018; Schymanski et al. (2018); 
(Wyer et al., 2020). However, data was limited for the analysis of par
ticles below 20 μm in size for both FTIR and Raman techniques 
(Table S5, Table S6). Reliable methods that allow efficient but accurate 
identification of a variety of small particles (different materials, colors, 
morphologies) are imperative to gain a thorough understanding of how 
well we can detect, count, and identify such particles from a variety of 
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matrices. Thus, further data on the applicability of each method for 
analysis and accurate identification of particles <20 μm is needed and 
should be a priority for further research. This includes the applicability 
of methods to ensure the occurrence of both false positives and false 
negatives is kept to a minimum (e.g., Nile Red staining (Prata et al., 
2021), automated selection for particles on a filter (von der Esch et al., 
2020)). Analysis of these small particles that are often most numerous in 
the environment (Koelmans et al., 2022) can be time-consuming even 
with automated techniques, and several laboratories reported a limited 
capacity to complete this work during the COVID-19 pandemic. Small 
microplastics are not only more numerous in the environment (Collard 
et al., 2018; Käppler et al., 2016), but they are the particles most likely to 
enter biological blood systems and organs (Ma et al., 2022; Yuan et al., 
2022) and thus have been highlighted as a priority characteristic to 
consider in toxicological testing both for aquatic and human health ef
fects (Thornton Hampton et al., 2022). 

In this study, un-weathered (virgin plastic) particles were added to 
test samples. Weathering of microplastics can lead to both physical and 
chemical changes to the particles. Physical changes to particles may 
impede successful identification e.g., using ATR-FTIR on fragile or 
brittle particles that may be subject to fragmentation during analysis. 
Chemical changes to particles can alter the IR spectra of microplastics 
(De Frond et al., 2021; Fernández-González et al., 2021; Simon et al., 
2021), however this effect is less clear for spectra obtained using Raman 
microspectroscopy (Dong et al., 2020; Phan et al., 2022). In drinking 
water, particles are exposed to minimal weathering. However, when 
considering the use of these methods for monitoring microplastics in 
other environmental compartments (e.g., surface water, sediment and 
seafood) consideration of how results may change due to different par
ticle extraction procedures is vital. Additionally, investigation into how 
accuracy and thus appropriate methods may differ for the analysis of 
weathered particles is recommended, particularly for Raman micro
spectroscopy, where studies on this are currently limited. 

In many cases, including monitoring, efficiency of sample processing 
is vital, and subsampling of particles for chemical identification can 
minimize time expenditure. For results among studies to be comparable, 
subsampling methods do not necessarily need to be identical among 
laboratories, but they must be representative. To date, subsampling 
approaches for the automated analysis of small particles have been 
investigated (Brandt et al., 2021; Thaysen et al., 2020), although due to 
the heterogeneity of particle spread on the filter surface, further research 
is still required to recommend best practices. Further, subsampling ap
proaches for larger particles that can be manipulated using forceps have 
recently been recommended to reduce time for analysis where particle 
counts are high (De Frond et al., 2022a, Cowger et al., 2022 (in prep.)). 
The harmonization of such methods would not only improve efficiency 
of sample processing, but also the comparability of data and results 
among research groups. A further way to decrease time spent on analysis 
and subjectivity in the selection of particles for analysis is the devel
opment of rapid screening techniques, either through automated image 
analysis and mapping (e.g., Appendix C, methods used in this study) or 
through the development of new technologies (e.g. Su et al., 2022). 
Moreover, further research is required to determine the most appro
priate sample preparation methods for size fractionation. Questions 
regarding what size ranges of particles should be analyzed together, 
appropriate filter loadings, how to subsample from the sample matrix, or 
use size fractionation to minimize particle overlay on the filter for effi
cient and accurate automated analyses using microspectroscopy should 
be addressed. 

Recommendations for appropriate filter types for analysis are also 
required for both techniques. The choice of filter substrate differs 
depending on sample type, method of analysis and costs, but further 
testing will support the choice made by individual research groups. 
Studies can inform this for silicone, aluminum, gold, and black filters 
(Käppler et al., 2015; Oβmann et al., 2017), and the first direct com
parison on the effectiveness of each for the analysis of a variety of small 

microplastics has recently been published using FTIR microspectroscopy 
(Sukumaran et al., 2022; in prep.), with recommendations detailed 
within. 

7. Conclusion 

In this work the influence of both particle and instrumental variables 
were correlated with accuracy of chemical identification using micro
spectroscopy with the aim to identify method recommendations and 
priorities for future research. FTIR microspectroscopy is a versatile 
technique, and thus methods should be adjusted depending on the 
particle type (size and morphology) to provide the greatest likelihood of 
obtaining spectra of high quality. Raman spectroscopy is reliable for the 
analysis of a variety of particle types, although care should be taken to 
adjust instrument parameters to minimize chance of fluorescence and 
particle burning for dyed particles, and spectral processing methods may 
be utilized to improve spectral quality prior to matching with reference 
libraries. Further research should focus on testing and developing 
harmonized methods for the efficient but accurate analysis of particles 
below 20 μm, that are most challenging to analyze using these tech
niques, but are the most prominent and concerning particle types found 
in both drinking water and environmental samples. 
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