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Correlated rigidity percolation in fractal lattices
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Rigidity percolation (RP) is the emergence of mechanical stability in networks. Motivated by the experi-
mentally observed fractal nature of materials like colloidal gels and disordered fiber networks, we study RP
in a fractal network where intrinsic correlations in particle positions is controlled by the fractal iteration.
Specifically, we calculate the critical packing fractions of site-diluted lattices of Sierpiński gaskets (SG’s) with
varying degrees of fractal iteration. Our results suggest that although the correlation length exponent and fractal
dimension of the RP of these lattices are identical to that of the regular triangular lattice, the critical volume
fraction is dramatically lower due to the fractal nature of the network. Furthermore, we develop a simplified
model for an SG lattice based on the fragility analysis of a single SG. This simplified model provides an upper
bound for the critical packing fractions of the full fractal lattice, and this upper bound is strictly obeyed by the
disorder averaged RP threshold of the fractal lattices. Our results characterize rigidity in ultralow-density fractal
networks.
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I. INTRODUCTION

Soft disordered solids are ubiquitous; they exist in many
forms, such as colloidal gels, fiber networks, colloidal glasses,
emulsions, aerogels, polymer melts, and foams. These classes
of materials make up biological tissues, food products, cos-
metic products, and materials like paper and nonwoven fabric.
Some of these soft materials need only a very low density
of solid particles to become rigid. In particular, colloidal gels
can exhibit nonzero shear rigidity at a wide range of volume
fractions [1–8], which can be below 1% in the case of blood
clots [6].

Classical RP problems are concerned with the emergence
of rigidity in discrete mechanical networks. They have been
studied in a number of lattices as models of rigidity transitions
in soft matter. In these models one typically starts with an
empty lattice and populates bonds or sites randomly while ob-
serving the emergence of a percolating cluster that can carry
stress. In comparison with percolation (sometimes called “ge-
ometric percolation”), rigidity percolation not only requires
the emergence of an infinite cluster, but also requires that
stress can be transmitted from edge to edge of the whole lattice
via this infinite cluster. For example, on a two-dimensional
site-diluted triangular lattice, the percolation threshold is 1/2,
and the rigidity percolation threshold is about 69.8% in terms
of the fraction of site occupancy [9].

Classical RP transitions are associated with high values of
critical volume fractions φc for a material to be rigid (typically
much greater than 10%) [9–13], so how can these ultralow-
density materials exhibit rigidity? Previous work suggested
that the answer to this question lies in how the particles are
spatially correlated to each other—the Warren truss, for exam-
ple, transmits stress very efficiently and can achieve rigidity at
φc = 0 when viewed as a two- or three-dimensional structure
[13]. While colloids will not spontaneously form in Warren

trusses (as that involves an unrealistic amount of correlation),
moderate correlation strength is still successful in lowering φc.
While the type of correlation used in Ref. [13] was not enough
for describing rigidity in ultralow-density solids, it suggested
that there may be another sort of spatial correlation that is
both physically realistic and allows the system to achieve an
arbitrarily low value of φc. We conjecture that a recursive
correlation (which generates a fractal network) would be a
promising candidate for describing rigidity at ultralow den-
sities because (i) fractals are low density while still being
connected, and they can be rigid, and (ii) experimental evi-
dence suggests that low density disordered solids (coagulated
blood, for example) can indeed be fractal as a result of the
nonequilibrium process in which the material is assembled
[1,8,14–18].

In this paper, we show that a model fractal network, the
Sierpiński gasket lattice (SGL), does indeed achieve rigidity
at arbitrarily low volume fractions. The SGL exhibits intrinsic
positional correlation between the particles which increases
with its number of fractal iterations n. This result is supported
analytically by simple calculation on the undiluted SGL and
numerically on the randomly diluted SGL by using the pebble
game algorithm. We also calculate the correlation length and
fractal dimension critical exponents for RP in this lattice and
find that the universality class of the rigidity phase transition
in the lattice is the same as that for the regular triangular
lattice. We further propose a simple nonfractal model, the RP
of which yields a strict upper bound to the disorder-averaged
critical volume fraction of the SGL.

II. MODEL

We use a lattice that achieves an arbitrarily low volume
fraction while still exhibiting rigidity at full site occupancy.
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FIG. 1. (a, b) Sierpiński gasket (SG) of fractal iteration n = 2, 5.
(c, d) Lattices of SG’s are models for ultralow-density networks at
n = 2, 5. In (c) semitransparent purple disks represent the physical
particles we are modeling. The diameter of each particle is equal to
the bond length, which we set to 1.

Motivated by the experimentally observed fractal structure
of fiber networks and colloidal gels [8,15,19], we consider
a triangular lattice where the upwards pointing triangles are
replaced by Sierpiński gaskets (SG’s), as shown in Fig. 1. The
unit cell of this lattice is an upwards pointing SG with an
adjoining vacant downwards pointing triangle, which forms
a rhombus. Vibrational modes and spin phase transitions have
been studied on this lattice [20–26]. This is a rich lattice to
study since there are three length scales: (i) the size of the
smallest triangle in an SG which we always set as 1, (ii) the
length of the edge of an SG 2n, and (iii) the length of the lattice
L = s2n. s is the number of SG’s on one side of the lattice,
and n is the number of times the SG pattern repeats on itself,
what we call the fractal iteration number. We emphasize that
L is measured in units of the smallest triangle of an SG since
the length of the smallest triangle is always 1, independent
of n. Also note that n = 0 corresponds to a regular triangular
lattice.

The volume fraction of the SGL, at full site occupancy, is

φSGLundiluted = A
3n+1 − 1

22n
, (1)

where the constant A is the area of the particle. In the SGL
we consider here, A = π/4

√
3. This result is derived in Ap-

pendix A, and it is obtained by assuming that each site is
occupied by a disk whose diameter equals the bond length
between neighboring sites, pictured in Fig. 1(c). It follows that

lim
n→∞

φSGLundiluted (n) = 0. (2)

An arbitrarily large n corresponds to an arbitrarily small
φSGLundiluted , so the SGL is indeed a suitable model to study the
emergence of rigidity in ultralow-density networks. A single

SG, of any n, is isostatic—it has three trivial zero modes
and no states of self stress [27]. The coordination number
of the undiluted lattice under periodic boundary conditions
〈z〉undiluted can be calculated as a function of n,

〈z〉undiluted = 6 + 4(x − 1)
x

, (3)

where x = (3n+1 − 1)/2 is the number of sites present in a
single n-level SG where n ! 1. At n = 0, the lattice is a
regular triangular lattice, so 〈z〉undiluted = 6. The coordination
number decreases from 6 to 4 as n goes from 0 to ∞.

We dilute the SGL by removing randomly chosen sites. If
a site is removed, then all of the bonds attached to that site are
also removed. The occupancy fraction pSGL is the ratio of the
number of occupied sites to the number of sites present in a
completely filled SGL. As shown in Appendix A, the volume
fraction of the diluted SGL is then

φSGL = pSGLφSGLundiluted . (4)

We emphasize that while the occupancy fraction pSGL is
the ratio of the number of occupied sites to total number of
sites (unoccupied and occupied), the volume fraction φSGL is
the ratio of the occupied space to the total space covered by
the lattice. Because the volume fraction of the undiluted SGL
φSGLundiluted vanishes in the n → ∞ limit, φSGL can approach 0
even when pSGL is of O(1).

III. METHOD AND RESULTS

A rigid cluster in a mechanical network is a collection
of sites and bonds without any floppy modes. The only zero
energy normal modes of a rigid cluster are trivial rigid-body
degrees of freedom of the whole cluster. If a rigid cluster spans
the whole network, then the system must exhibit at least one
positive elastic modulus. The emergence of such an infinite
rigid cluster is called RP. It is worth mentioning that when
rigidity percolates, floppy modes may still exist in other parts
of the network which are not in an infinite rigid cluster. The
pebble game is an efficient algorithm that can be used to
examine rigidity in two dimensions [28,29].

To study the RP in the diluted SGL, we execute the pebble
game algorithm on SGL’s at n = 1, 2, 3, 4, 5 with periodic
boundary conditions. For each value of n, we consider four
different system sizes L which were chosen so that the lattices
have approximately 250, 1000, 4000, and 16 000 particles
(sites) (although at n = 5 we consider only the 3 larger sys-
tem sizes because each SG at n = 5 already contains a large
number of sites, and we need to keep the number of SG’s large
in the lattice). To keep the number of sites roughly constant
across varying n, we reference

L = 2
2n+1

2

√
N

3n+1 − 1
, (5)

which is immediate from Eqs. (A4) and (A5) (Appendix A),
to choose an integer valued side length L for each target
system size (in terms of the total number of sites) and fractal
iteration n.

For each n and L, we generate 200 samples of SGL’s. Each
one represents a realization of disordered dilution. For each
SGL, initially empty, we add new sites randomly to the lattice
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one by one. Each new site added increases pSGL. We run the
pebble game algorithm at regular intervals of pSGL on this
lattice to determine when a spanning rigid cluster appears.
The occupancy fraction at which this occurs is the critical
occupancy fraction pc,SGL. We record the mass of the spanning
rigid cluster Mc,SGL when it first occurs in each sample. The
code used to produce this data is contained in a GitHub repos-
itory [30]. We then average over the 200 samples to obtain
the averaged quantities, 〈Mc,SGL(n, L)〉 and 〈pc,SGL(n, L)〉, for
each n and L. We also measure the fluctuation of the transition
point

#pc,SGL =
√

〈pc,SGL(n, L)2〉 − 〈pc,SGL(n, L)〉2. (6)

Our previous study of correlated RP on the triangular lattice
[13] showed that the short-range spatial correlation only shifts
the transition point and does not change the universality class
of RP in the triangular lattice. Following this result, we make
the assumption that RP in the SGL is also a continuous transi-
tion, with the mass of the infinite rigid cluster being the order
parameter. This assumption is verified by our scaling results
below.

We invoke finite-size scaling relations [13,31] to calculate
the critical exponents associated with the rigidity phase tran-
sition. The correlation length exponent νSGL and the fractal
dimension d f ,SGL are calculated as the slopes of linear fits of
log-log plots of 〈Mc,SGL〉 and #pc,SGL versus L, according to
the finite-size scaling relations

〈Mc,SGL(n, L)〉 ∝ Ld f ,SGL , (7)

#pc,SGL ∝ L−1/νSGL (8)

(Appendix B). Note that these relations give a calculation of
d f ,SGL and νSGL for each n.

We find νSGL and d f ,SGL for the SGL rigidity phase tran-
sition are the same as for the rigidity phase transition in
the regular triangular lattice [9] as shown in Fig. 2. This
observation is consistent with results on RP in lattices with
spatial correlations [13], where the critical exponents remain
the same as in classical RP, and the short-ranged spatial cor-
relation can be viewed as an irrelevant perturbation. Here, the
fractals in each unit cell can also be viewed as a short range
feature, which do not change the divergent length scale at
the transition. We assert that the large-scale fractal structure
of the spanning rigid cluster in the infinite system size limit
overwhelms the local fractal structure of the SG’s, so d f ,SGL
is the same as in the regular triangular lattice case instead
of being the fractal dimension of the SG. We also verify
that our assumption (the phase transition is continuous) is
well justified since the phase transition belongs to the same
universality class as Ref. [13].

We extract the critical occupancy fraction at the infinite
system size limit pc,SGL(n, L = ∞) by linearly extrapolating
the finite critical occupancy fractions pc,SGL(n, L) for each
n as a function of L−1/ν . The pc,SGL(n, L = ∞) are simply
the y-intercepts of these linear fits which are displayed in
Fig. 3. Further information about this process can be found in
Appendix C of Ref. [13]. We find that the critical occupancy
fraction pc,SGL(n, L = ∞) approaches 1 as n increases while
the critical volume fraction φc,SGL(n, L = ∞) approaches 0

FIG. 2. (a) The correlation length exponent νSGL at n =
1, 2, 3, 4, 5. (b) The spanning rigid cluster fractal dimension df ,SGL

for the five values of n. The red lines show these exponents for
classical RP in the regular triangular lattice (ν = 1.21 ± 0.06 and
df = 1.86 ± 0.02) [9]. The error bars are 95% confidence intervals.

[following the relation in Eq. (4)], indicating that these dis-
ordered fractal structures exhibit rigidity at vanishing volume
fractions. These results are shown in Table I.

IV. INTERPRETATION

The fact that the pc,SGL(n, L = ∞)’s approach 1 as n
increases is a reflection of both the fragility of a single SG–
for any value of n, removing any noncorner site of an SG
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FIG. 3. Extracting pc,SGL(n, L = ∞) from the linear extrapola-
tion of the finite-size critical occupancy fractions pc,SGL(n, L) as a
function of L−1/νSGL where νSGL = 1.21. The lines are linear fits,
and the y-intercepts are the infinite-size limit of the critical occu-
pancy fractions pc,SGL(n, L = ∞). The error bars are 95% confidence
intervals.

segregates the three corners of the SG into three separate
rigid clusters (Appendix C), and the result [Eq. (3)] that 〈z〉
approaches the critical value of 4 as n increases. The latter
point reveals that the SGL is asymptotically a Maxwell lattice
(i.e., lattices that satisfy 〈z〉 = 2d and are thus at the verge of
mechanical instability [27,32]) as n → ∞.

These observations motivate a simplified model of the
SGL–the triangle plate lattice (TPL). The TPL is a regular tri-
angular lattice consisting of upwards-pointing rigid triangles
hinged at their tips. In other words, if we view it as a regular
bond-dilution RP in a triangular lattice, then the items which
are being diluted are groups of three bonds which together
form an upwards pointing triangle. Figure 4 is an example of
what a diluted TPL can look like.

There is one main feature that separates the TPL from the
SGL: in the SGL an SG with a site removed may still be
an essential part of the spanning rigid cluster. In the TPL,
a vacant triangle cannot transmit rigidity. Because of this
difference the critical packing fraction of the TPL is used to
calculate a strict upper bound on that of the SGL.

TABLE I. The critical occupancy and volume fractions for
the SGL’s for n = 1, 2, 3, 4, 5 in the infinite system size
limit, pc,SGL(n, L = ∞) and φc,SGL(n, L = ∞). As n increases,
pc,SGL(n, L = ∞) → 1 and φc,SGL(n, L = ∞) → 0. The error values
are 95% confidence intervals.

n pc,SGL(n, L = ∞) φc,SGL(n, L = ∞)

1 0.882 ± 0.002 0.800 ± 0.002
2 0.961 ± 0.004 0.708 ± 0.003
3 0.990 ± 0.004 0.561 ± 0.002
4 0.998 ± 0.004 0.428 ± 0.002
5 0.999 ± 0.005 0.322 ± 0.002

FIG. 4. The triangular plate model (TPL) is a regular triangular
lattice which has been diluted in units of upwards pointing equilateral
triangles (black).

All p’s that follow in this section should be taken to be
in the infinite system size limit. The relationship between
pc,SGL and the critical packing fraction for the TPL pc,TPL
is as follows: consider an SGL and a TPL, where the SG’s
in the SGL and the triangle plates in the TPL are the same
size. Let the two lattices also be of equal size. A removed
upwards pointing triangle from the TPL corresponds to at
least one removed site from the SGL. Letting the number of
triangles/SG’s present in either lattice be N# and the number
of sites present in a single SG be x = (3n+1 − 1)/2, the critical
occupancy fractions for the two lattices are related by

xN#(1 − pc,SGL) ! N#(1 − pc,TPL). (9)

The number of removed sites at the critical point in the SGL
is at least the number of removed triangles at the critical point
in the TPL. The “=” sign is only satisfied if removing each
site from the SGL corresponds to removing a distinct triangle
plate from the TPL. This is not always the case because (i)
multiple removed sites in the SGL can belong to the same
SG, and, as we discussed above, (ii) a “broken” SG can still
contribute to the rigidity of the lattice. As a result, the TPL
provides an upper bound of the critical occupancy in the SGL,
Pc,SGL. Explicitly,

pc,SGL " 1 − 1 − pc,TPL

x
≡ Pc,SGL. (10)

We perform the pebble game routine on the TPL and ex-
ecute the same finite scaling procedures that we did for the
SGL. We find that pc,TPL = 0.656 ± 0.005 and νTPL = 1.4 ±
0.1. The errors given are 95% confidence intervals. pc,TPL and
νTPL both lie within error bars of the corresponding variables
for the regular triangular lattice in the case of bond dilution
[9]. The upper bounds on the pc,SGL’s predicted by the TPL
are obeyed for all tested values of n and tightly obeyed for
larger values of n (Fig. 5). It is worth pointing out that this is
a strict upper bound in the sense of disorder averaged critical
occupancy. It does not necessarily hold for individual samples.
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FIG. 5. The difference between the upper bound on pc,SGL given
by the TPL, Pc,SGL, and the measured pc,SGL becomes smaller as n
increases. The error bars are 95% confidence intervals.

V. CONCLUSION, DISCUSSIONS, AND EXTENSIONS

In this paper we show that by introducing fractal local
structures, rigidity can exist at an arbitrarily low volume
fraction of solid particles. Using a periodic lattice model
consisting of Sierpiński gaskets, we find that as the fractal
iteration increases, the critical site occupancy fraction for
rigidity increases, while the critical volume fraction decreases,
allowing rigidity at progressively lower volume fractions. We
also show that the RP transition in this fractal lattice remains
in the same universality class as the classical RP transition
when length is measured in units of the sides of the smallest
triangles. We interpret this result by mapping the RP on this
fractal lattice into the RP of a simple triangle plate model,
based on the fragility of a single SG. This mapping gives a
strict upper bound of the critical volume fraction of the fractal
lattice.

Our results may shed light on the origin of rigidity in
ultralow volume fraction soft solids, such as hydrogels and
aerogels. A simple way to understand this phenomena is to
realize that, even in a dense disordered solid such as granular
matter or colloidal glass, stress is often carried by a very
small fraction of the solid content, i.e., force chains [33–35],
while other components do not significantly contribute to the
elasticity. Thus, by introducing appropriate spatial correlation
between the solid particles, a material can be constructed
without filling the space which is not needed for rigidity. Inter-
estingly, interactions and nonequilibrium processes (such as
hydrodynamics of the solvent) occurring during the formation
of these ultralow volume fraction solids appear to naturally
achieve this goal of arranging particles in very efficient ways
of transmitting stress. It is of our interest to understand how
this occurs in these experimental systems in the future.

FIG. 6. (a) The correlation length exponent νSGL and (b) the
fractal dimension df ,SGL for the SGL are both obtained from the
slopes of the linear fits for each n according to Eqs. (7) and (8). The
error bars are 95% confidence intervals.

The model we discuss here is a two-dimensional lattice.
A curious question that immediately arises is what happens
in three dimensions. The SG has a direct three-dimensional
generalization: the Sierpiński tetrahedron (ST), which is con-
structed by iteratively hinging tips of four tetrahedra together
to form a bigger tetrahedra (which has an octahedron of empty
space in the middle). Each face of an ST is an SG. Interest-
ingly, there is a mechanical analogy between the SG and the
ST: each internal node in the ST has six bonds, satisfying the
Maxwell condition 〈z〉 = 2d , while the four tip nodes each
have three bonds (z = 3), giving rise to exactly the six trivial
rigid body motions of the whole ST. Thus, each ST is isostatic
in three dimensions.

These ST’s can be used to construct a face-centered-cubic
lattice in the same way the SG’s are used to construct the SGL.
This three-dimensional lattice also has a volume fraction that
approaches zero as its fractal iteration increases. Analogously,
in the undiluted face-centered-cubic lattice, each node at the
tip of an ST has z = 12, taking the whole structure to 〈z〉 > 6.
It is straightforward to see that the undiluted ST lattice has
rigidity from the rigidity of the single ST’s and from the
stress-bearing structures (states of self-stress along straight
lines of bonds) [27,32,36]. Therefore, a similar RP problem
can be formulated for this three-dimensional ST lattice. The
nature of the RP transition may be more complicated because
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FIG. 7. (a) An n = 1 SG. (b) Removing any noncorner site (red)
from an n = 1 SG leaves two rotors attached to a rigid triangle. The
triangle and both rotors (particles with only one bond) each have a
corner site (black), so all three corner sites belong to distinct rigid
clusters.

it is a three-dimensional problem [10], but this lattice at least
provides an example of a three-dimensional lattice where
rigidity exists at an arbitrarily low volume fraction. It is also of
our interest to study the RP transition in this three-dimensional
lattice in the future.
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APPENDIX A: CALCULATING φSGL

The volume fraction, an area fraction for d = 2, is the ratio
of space taken up by the occupied sites to the space enclosed
within the unit cell. φSGL is the volume fraction of the lattice,
Nocc is the number of occupied sites in the lattice, Av is the
area covered by a single site, and Al is the total area covered
by the lattice.

φSGL ≡ NoccAv

Al
. (A1)

The lattice is a rhombus with side length L, so

Al =
√

3
2

L2. (A2)

Additionally, we define the occupancy fraction pSGL as

pSGL ≡ Nocc

Ntotal
, (A3)

where Ntotal is the total number of sites (occupied and un-
occupied) in the lattice. For an SGL with periodic boundary
conditions, Ntotal is given by

Ntotal = s2
(

3n+1 − 1
2

)
, (A4)

where n is the number of fractal iterations, and s is the length
of the lattice in units of SG’s. We set the distance between
neighboring sites on the lattice to be 1. Due to the fractal

FIG. 8. (a) An (n + 1)-level SG, composed of three n-level SG’s
(black). (b) Case (i), a site connecting two n level SG’s (red) is re-
moved, allowing independent motion of the three corner sites (black).
(c) Case (ii), a nonconer site is removed from an n-level SG (gray
with white hatching). If the three corners of the n-level SG are in
separate rigid clusters, then the three corners of the (n + 1)-level SG
can move independently and are thus also in separate rigid clusters.

structure of an SG,

L = s2n. (A5)

Since the length between sites is 1, we also know that

Av = π

(
1
2

)2

. (A6)

Putting everything together,

φSGL = A
3n+1 − 1

22n
pSGL. (A7)

where the constant A = π/4
√

3 is specific to the geometry of
the system.

APPENDIX B: CALCULATING CRITICAL EXPONENTS

Given the finite size scaling relations Eqs. (7) and (8), we
can calculate the correlation length exponent νSGL and the
fractal dimension d f ,SGL for the SGL, as shown in Fig. 6.
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APPENDIX C: FRAGILITY OF AN SG

We use induction to prove that removing any noncorner
site in an SG will segregate the 3 corner sites into different
rigid clusters. If a corner site is removed in a free SG, then the
rigidity of the SG is unaffected. If a corner site is removed in
an SGL, then the SG’s are disconnected and may not be rigid
with respect to one another.

Consider an n = 1 SG. It is immediate from Fig. 7 that our
desired result holds in this case. Suppose this result holds for
an n-level SG. Consider now an SG of fractal iteration n + 1,
displayed in Fig. 8(a). It is composed of 3 SG’s each of fractal
iteration n. When any internal site of the (n + 1)-level SG is
removed, there are two possible cases: (i) the site is a shared
corner site between two n-level SG’s, shown in Fig. 8(b), or
(ii) the site is a noncorner site which belongs to a single n-level

SG, shown in Fig. 8(c). If (i), then the two n-level SG’s
which were previously connected are now free to rotate about
the hinges they each share with the third unaltered n-level
SG. The 3 corners of the (n + 1)-level SG are now in separate
rigid clusters. If (ii), then the 3 corners of the n-level SG from
which a site was removed are now in different rigid clusters,
so they can move freely relative to each other. Since the two
unaltered SG’s are independently rigid, the node connecting
the two unaltered SG’s is a free hinge, so the three corners
of the (n + 1)-level SG must be in separate rigid clusters.
Since assuming our claim is true for an n-level SG implies
our claim is true for an (n + 1)-level SG, and the n = 1 case
is manifestly true, for an SG of an arbitrary number of fractal
iterations, removing any noncorner site will segregate the 3
corner sites of that SG into different rigid clusters. An SG is
“fragile” in the sense that it has this property.
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