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ABSTRACT

Galaxy clusters have a triaxial matter distribution. The weak-lensing signal, an important part in cosmological studies, measures
the projected mass of all matter along the line of sight, and therefore changes with the orientation of the cluster. Studies suggest
that the shape of the brightest cluster galaxy (BCG) in the centre of the cluster traces the underlying halo shape, enabling a
method to account for projection effects. We use 324 simulated clusters at four redshifts between 0.1 and 0.6 from ‘The Three
Hundred Project’ to quantify correlations between the orientation and shape of the BCG and the halo. We find that haloes and
their embedded BCGs are aligned, with an average ~20 degree angle between their major axes. The bias in weak lensing cluster
mass estimates correlates with the orientation of both the halo and the BCG. Mimicking observations, we compute the projected
shape of the BCG, as a measure of the BCG orientation, and find that it is most strongly correlated to the weak-lensing mass for
relaxed clusters. We also test a 2D cluster relaxation proxy measured from BCG mass isocontours. The concentration of stellar
mass in the projected BCG core compared to the total stellar mass provides an alternative proxy for the BCG orientation. We
find that the concentration does not correlate to the weak-lensing mass bias, but does correlate with the true halo mass. These
results indicate that the BCG shape and orientation for large samples of relaxed clusters can provide information to improve
weak-lensing mass estimates.

Key words: gravitational lensing: weak —methods: numerical — galaxies: clusters: general —galaxies: haloes — galaxies: struc-
ture.

1 INTRODUCTION

Galaxy clusters are rare objects, known as the largest virialized
objects in the Universe, which, according to the current cosmological
model, have formed through the hierarchical merging of smaller dark
matter haloes. This merger scheme predicts the number of haloes
of a given mass (halo mass function) for a given cosmology. An
observational census of haloes thus provides a cosmological probe
(e.g. Sheth & Tormen 1999; Despali et al. 2016). At the high mass
end, the halo mass function is steep, meaning that clusters-size haloes
have great leverage over the normalization of the mass function and
are therefore powerful cosmological probes (Vikhlinin et al. 2009b;
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Mantz et al. 2015a; Dodelson et al. 2016; Bocquet et al. 2019; To et al.
2021). For a review on cluster cosmology see e.g. Allen, Evrard &
Mantz (2011).

A galaxy cluster census aims to determine both the number of
clusters and their total masses to constrain cosmological parameters.
Clusters can be detected in optical (Rykoff et al. 2016; Maturi
et al. 2019; Aguena et al. 2021), millimetre (Bleem et al. 2020;
Hilton et al. 2021), and X-ray observations (Vikhlinin et al. 2009a;
Liu et al. 2021). Halo masses are usually determined from the
baryonic observables used to detect the clusters, but these have to
be calibrated using unbiased mass estimators. Weak gravitational
lensing has become the standard method for this correction (e.g.
von der Linden et al. 2014; McClintock et al. 2019; Abbott et al.
2020; Herbonnet et al. 2020; Schrabback et al. 2021; Lesci et al.
2022). The gravitational potential of the cluster introduces a coherent
distortion in the observed shapes of galaxies behind the cluster,
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which is directly related to the mass of the cluster. Weak lensing
is sensitive to all matter along the line of sight and thus measures
the total projected mass. To relate this to the spherical overdensity
masses of the halo mass function, spherical symmetry of the haloes
is incorrectly assumed. Simulations have shown that weak lensing
cluster masses are almost unbiased, but the random orientation
of the cluster’s triaxial mass distribution introduces a ~20 scatter
(orientation bias), as well as contributions from large-scale structure
along the line of sight (e.g. Meneghetti et al. 2010; Becker & Kravtsov
2011; Giocoli et al. 2014; Meneghetti et al. 2014).

The scatter due to projection effects in the weak lensing mass
can be mitigated by using large samples, but only when the cluster
detection is unaffected by projection. This is not the case for optical
cluster finders (Dietrich et al. 2014; Sunayama et al. 2020) and to a
lesser extent also for millimetre cluster finders (Shirasaki, Nagai &
Lau 2016). Upcoming millimetre and optical surveys are projected
to find tens of thousands of galaxies over almost a hemisphere in the
coming decade. Projection effects will need to be addressed in order
to reliably infer cosmology with galaxy clusters.

One way to deal with projection effects is to model their effect
on the relation between cluster observable and halo mass (e.g.
Costanzi et al. 2020). However, a practical estimator of the dark
matter halo orientation could provide a way to select cluster samples
truly representative of the whole population. In simulations of galaxy
clusters it has been shown that central galaxies in clusters, also known
as the brightest cluster galaxies (BCGs), grow through mergers with
satellite galaxies, where the merger time-scale scales inversely with
satellite mass. Therefore, central galaxies mainly merge with other
central galaxies when their parent haloes merge (De Lucia & Blaizot
2007). This manner of growth implies that BCGs accrete matter
along the same infall direction as the parent halo, and the mass
distributions of BCG and halo should have the same orientation.
Indeed, central galaxies have been shown to be aligned with their
cluster halo in simulations (e.g. Ragone-Figueroa et al. 2020; De
Propris et al. 2021) and observations (e.g Donahue et al. 2016;
Durret et al. 2019; Wittman, Foote & Golovich 2019). The extended
envelope of stars around the BCG, called the intracluster light, is
also a good tracer of the dark matter distribution (Montes & Trujillo
2019). Multiwavelength observations have also indicated that galaxy
clusters exhibit an alignment between the BCG, gas (from X-ray
and millimetre), and weak lensing signatures (Donahue et al. 2016).
Based on the expected alignment between the BCG and cluster halo,
several observational studies have shown that the observed shape of
the BCG, as a proxy for the orientation with respect to the line of
sight, correlates to weak lensing mass (Marrone et al. 2012; Mahdavi
et al. 2013; Gruen et al. 2014; Herbonnet et al. 2019).

In this paper we investigate in detail the correlation between the
shape and orientation of the BCG and those of the cluster halo in
simulations, where both 3D orientations of mass distribution and
the projected 2D shapes can be measured. We use the clusters
from The300 project, which has simulated 324 clusters with full
hydrodynamical physics (Cui et al. 2018). The large sample of
clusters available in The300 is particularly important for our study.
First, this is required for a precise measurement of the scatter in
the weak lensing mass. Secondly, measuring shapes of objects is
non-trivial, due to the proximity of nearby objects and the difficulty
in establishing concrete boundaries to the extent of an object (see
also Fig. 1). With a large sample we can remove objects with
very uncertain shape measurements without affecting our results
too much.

In Section 2 we describe our data and methods, in Section 3 we
look at the alignment between the BCG and cluster halo in three
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dimensions and how the orientation of both relates to weak-lensing
mass measurements. We look at projected quantities of clusters in
Section 4, as this is what can be observed in the real Universe. In
Section 5 we look at an alternative method to estimate the orientation
of the BCG and we conclude in Section 6.

2 METHODOLOGY

In this section, we present the data we use and the analyses we
perform.

2.1 Data: The300 project

2.1.1 General: the simulated sample

We use the most massive galaxy clusters found in the zoom-in
simulated regions from The300.! Cui et al. (2018) fully details
The300 Project, but we briefly describe the simulated sample here.
Our sample is extracted from 324 regions built around the most
massive clusters identified at z = 0 in the dark-matter-only MultiDark
simulation (Klypin et al. 2016), specifically the Planck2 box. The
parent simulation consists of a box with sides of comoving length 1
h~" Gpc, and contains 3840° particles each of mass 1.5 x 10°M.
The Planck?2 box uses cosmological parameters from Planck Collab-
oration XIII (2016) (£2,, = 0.307, 2, =0.048, 2, =0.693, 1 = 0.678,
os =0.823, ny = 0.96).

The300 consists of the zoom-in resimulations of these 324 La-
grangian regions including full baryon physics. The mass range of
The300 spans 6.4 x 10" Mg < May. < 26.5 x 10*My at z = 0,
where Moo, is the mass within a cluster-centric sphere of radius
Rypo. enclosing an average density that is 200 times the critical
density of the universe. The resimulation of each cluster includes
high-resolution particles within a spherical region of radius 15 /™!
Mpc at z =0, centred on the highest density peak of the main cluster.
For the resimulation, the respective dark matter and gas particle
masses are mpy = 12.7 x 10877 Mg and mg,s = 2.36 x 108h~' M.
The simulations have dark matter Plummer smoothing length of
6.5 kpch™!. Outside the high-resolution regions, only dark matter
particles at lower resolution are kept to properly trace the large-scale
gravitational field.

The300 project includes resimulations with three different ver-
sions of hydrodynamic simulation codes with baryon models:
Gadget-MUSIC, Gadget-X, and GIZMO-SIMBA (Cui et al. 2022).
For this analysis, we use the resimulations generated with the
smoothed-particle hydrodynamics scheme and baryonic implemen-
tations in the full physics Gadget-X code (Rasia et al. 2015; Beck
et al. 2016). The data set consists of 128 simulation snapshots saved
between 0 < z < 17, and halo catalogues from the Amiga Halofinder
(Knollmann & Knebe 2009). Even if the Lagrangian regions are large
enough to contain other massive clusters, we only consider the most
massive object in each region, with the exception of the few clusters
that, at the considered redshift, were contaminated by low-resolution
particles. In this work, we primarily use data from four snapshots
summarized in Table 1, z = 0.116 (snapshot 123), z = 0.220 (119),
z = 0.333 (115), and z = 0.592 (107). These redshifts are roughly
representative of the range found in cluster weak-lensing analyses
(e.g. Abbott et al. 2020; Giocoli et al. 2021). Some studies target
more distant clusters (e.g. Chiu et al. 2020; Schrabback et al. 2021),

Uhttps://the300-project.org
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Figure 1. Top row: projected stellar density map from which we measured 2D BCG shapes. Full image on the left-hand side and zoomed in on the right-hand
side. The black dashed lines show ellipses drawn using the properties of the contours at 96th, 88th, 80th percentile of the peak brightness in the image, from
the image centre outwards, respectively. The red solid lines shows the ellipse drawn using the moment measurements. The white dotted line shows the ellipse
corresponding to the Sersic model fit at the best-fitting half-light radius. The Sersic model is a good description of the shape of the fairly round BCG core,
but fail to capture the more elliptical envelope of the BCG. The moments prefer a more elliptical shape because they are more sensitive to mass further from
the centre. The contours provide a good estimate at the various radii. Bottom row: Same as top panel but showing an example where shape measurements are
difficult due to nearby massive objects. Again the Sersic model describes the core well and are not affected too much by the neighbouring objects. The moments
are very affected by the object in the lower left-hand side of the image, as is the largest contour. The smaller contours closer to the BCG centre are affected by
the nearby objects. Our flagging routine identifies this cluster to have unreliable shape measurements in our analysis.

but for our redshifts we can be sure that the shape of the BCG could
be reliably measured in observations.

Our analysis makes use of projected and 3D distribution of the
stellar particles near the central regions of clusters associated with
the brightest cluster galaxy (see Section 2.1.3), and the projected
spatial distribution of all the particles in each galaxy cluster (see
Section 2.1.2). Previous works have analysed and validated various
components of the simulations, including galaxy properties (Wang
et al. 2018), gas profiles (Mostoghiu et al. 2019; Li et al. 2020),
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and the dynamical states of the galaxy cluster sample (Capalbo et al.
2020; De Luca et al. 2021).

2.1.2 Data: Dark matter distribution

For all clusters, we have their true total mass M. computed by
summing over all particle species (dark matter, stars, and gas). The
3D shapes of the total cluster mass distribution, including gas, stars,
and dark matter, were computed by Knebe et al. (2020) and we
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Table 1. Summary of simulated galaxy clusters used in this analysis:
snapshot number, corresponding redshift, and number of clusters with
available 3D particle information. We bold our fiducial snapshot, 119,
for which we use all 324 clusters with projected map images.

SnaPShOt Redshift N3d, clusters M200, min/max

123 0.116 320 (324) [23.0 x 10'2,2.2 x 10'4]
119 0.220 316 (324) [7.7 x 10'2,1.9 x 10'4]
115 0.333 315 (324) [12.0 x 10'2,2.1 x 10'4]
107 0.592 281 (324) [9.3 x 10'2, 1.6 x 10'4]

use their results. We discuss their shape measurement method in
Section 2.2.2.

Light rays passing by a galaxy cluster have their trajectories
deflected due to the curvature of space—time. In this section, we
briefly summarize the procedure adopted to derive the lensing
properties of the clusters in our sample (Meneghetti et al. 2010, 2014,
2020). We will give a more detailed description in a forthcoming
paper (Meneghetti et al., in preparation). Given the relatively small
size of galaxy clusters compared to the typical distances involved in
gravitational lensing phenomena, we can assume that the deflection
occurs on a plane, called lens plane. We begin by choosing an
arbitrary axis passing through us (the observer) and perpendicular to
the lens plane, and we compute the positions on the sky relative to
this axis. The lens equation relates the intrinsic and apparent angular
positions, E = (B, B2) and 6= (01, 6,), of a distant source lensed
by the cluster:

B =6—a@), (1)

where &(5) is the deflection angle at position f.

Let 2(5) be the cluster surface density at position 6, obtained
by projecting all particles on the lens plane. We can define the lens
convergence as

@y =29 @
er
where
_ C2 DS (3)
747G D.SD,

is the critical surface density, and D;, Dy, and D,y are the angular
diameter distances between the observer and the lens, the observer
and the source, and the lens and the source, respectively. We obtain
three convergence maps for each simulated cluster by projecting the
masses of all particles along the simulation axes x, y, and z. We select
the particles within a volume of depth 10 Mpc centred on the cluster
centre,? producing maps of 6 x 6 Mpc. The line-of-sight depth was
chosen because it fits within the spherical high-resolution volume.
Becker & Kravtsov (2011) have shown that the weak-lensing mass
bias and scatter do not change significantly if the depth was increased
to 20 Mpc.

The deflection angle can be expressed in terms of the convergence
via a convolution integral:

-6

— ()
16 — 62

- 1 207 cnt
a(@):—/dex(e)
T

Thus, we can derive the components, «; and «, of the deflection
angle a(0) at each position on the lens plane from the equation above

The cluster centre coincides with the minimum of the cluster gravitational
potential well.
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using fast-Fourier-Transform methods (e.g. Press et al. 1992). Since
these assume periodic boundary conditions, we remove the outer
region of 1 Mpc surrounding the maps to limit numerical errors.
Thus, the resulting deflection angle maps have a size of 5 x 5 Mpc,
spatially resolved with 2048 x 2048 pixels. To avoid shot noise
due to particle discreteness, we apply a Gaussian smoothing with
full width at half-maximum (FWHM) of ~7 kpc to the convergence
maps before computing the deflection angles.

From the maps of the deflection angles, we derive the shear
components ¥ and y,, defined as

1 8a1 8012
= - - ) 5
n=s (ael 392> ©)
80{1 80{2
= — = —\ 6
V2 26, ~ 96, (6)

In the weak lensing regime, convergence and shear at the image
position fully describe how the source shape changes because of
lensing. For example, circular sources are mapped on to elliptical
images, whose major and minor axes have lengths

1
a=—"-—

1—k—y

1
S l—k+y

In the formulas above, y = \/y? + ¥4 is the shear modulus. The
source magnification is given by u = [(1 — «)*> — y%]~'. More
generally, the measured ellipticity of a lensed source, given by e =
(a — b)l(a + D), provides an unbiased estimate of the so-called
reduced shear, g = y/(1 — ).

We calculate the critical surface density assuming a fiducial
source redshift z; = 3, noting that weak lensing measurements
that incorporate a true redshift distribution would require rescaling
of these convergence maps. These maps provide projected surface
density maps from which we derive projected halo shape and mass
measurements (see Section 2.2.1 for more information).

(O]

®)

2.1.3 Data: regions containing the brightest cluster galaxy

We analyse both the 3D stellar particle distribution and the projected
stellar density maps from The300 centred around the cluster density
peak. This peak is assumed as both the centre of the galaxy cluster
and the BCG.

To measure 3D shapes of the BCGs we use all the stellar particles
within a sphere of radius 100 2~! kpc around the cluster centre. Each
particle has x, y, z coordinates and mass m. The 3D stellar particle
data are only available for subsets of the 324 resimulated clusters
at each redshift: 316 at our fiducial snapshot 119 at z = 0.220, 320
at z = 0.116, 315 at z = 0.333, and 281 at z = 0.592, specified in
Table 1.

The projected stellar density maps were constructed from a cube
of 0.4 Mpc on a side, centred on the density peak, projected along the
three main axes of the cube. Similar to the weak-lensing maps, these
maps were also smoothed, using a Gaussian with FWHM of ~2 kpc.
The projected stellar mass maps are 0.4 x 0.4 Mpc?, larger than the
3D data we used, allowing us to study the outer envelope of the BCG.
There are three projections for each of the 324 resimulated clusters
totalling to 972 projected stellar density maps at each redshift.

There are two caveats to our analysis using the simulated data for
direct comparisons with observations. The first is in the properties of
simulated brightest cluster galaxies, and the second is in the difficulty
of distentangling stars associated with the brightest cluster galaxy and
the intracluster light.

MNRAS 513, 2178-2193 (2022)
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First, we note that simulating realistic galaxies is difficult and
properties of the simulated BCGs we study do not fully match
properties of observed BCGs (Cui et al. 2018). Clusters from The300
have central galaxies that are relatively more massive and bluer that
those in observations. The differences come from difficulties in cap-
turing microphysical processes with subgrid models. For example,
the quenching of star formation at redshift z = 0 is not accurately
reproduced, leading to bluer galaxies in the simulations (Cui et al.
2018). Additionally, the projected images contain information of the
projected stellar mass, integrated along the line of sight. The images
do not correspond to flux or luminosity. Using the projected stellar
density maps as a proxy for observations therefore implicitly assumes
a constant mass-to-light ratio. Since our analysis is mostly concerned
with the shape of the stellar light, the shape measurements are likely
not heavily impacted with this assumption.

Secondly, there is generally not a clear-cut distinction between
stellar particles that comprise the BCG and the stellar particles
that make up the intracluster light (ICL) in neither simulations
nor observations (e.g. Cui et al. 2014). Additionally, the stellar
components associated with the ICL in observations is usually
difficult to see above the noise because of its low surface brightness
and observations more easily pick up the brightest stellar components
that comprise the BCG (Zhang et al. 2019b). While there are some
methods to try to disentangle the BCG and ICL with dynamics
(with phase space information in simulations; e.g. Cafias et al.
2020), observations find that the surface brightness indistinguishably
embeds the BCG and ICL components (Kluge et al. 2020). The
most straightforward way to approximate the BCG-ICL separation
in simulations that is consistent with what observers might do is
to use a radial cut. We therefore measure the shape of the stellar
particle distribution at various radii to quantify the differences in
stellar density shapes when the BCG likely encloses more or fewer
stars that may be associated with the ICL.

We also note that our construction of centring the stellar density
maps on the cluster density peak assumes that the location of the
BCG coincides with this definition of the cluster centre. While this
typically holds for galaxy clusters in simulation, this is not always
the case in observed galaxy clusters since recent major mergers
may displace the BCG, leading to oscillations about the peak of the
potential (De Propris et al. 2021).

2.1.4 Data: relaxation criteria for subselection

The dynamical state of the clusters of The300 have been studied
in a few works (Cui et al. 2018; Capalbo et al. 2020; Haggar
et al. 2020; De Luca et al. 2021) and we use here a subsample
of relaxed objects. Relaxed clusters refer to systems that have not
undergone recent major mergers or periods of high accretion that
drive components of the galaxy cluster further from dynamical or
hydrostatic equilibrium. These clusters exhibit signatures that tend
to correlate with equilibrium, such as in the shape of the overall halo
(Faltenbacher et al. 2005; Kasun & Evrard 2005) or gas shape (Chen
et al. 2019; Machado Poletti Valle et al. 2021), or the offset between
X-ray gas centres and the centres of collision-less components such
as the peak of the dark matter potential or the BCG (De Propris et al.
2021).

However, the state of dynamical relaxedness is not a binary
state, rather on a continuum; galaxy clusters continually accrete
matter through filamentary structures. Typically, some thresholds
of dynamical state indicators are chosen as the criteria for binary
classification of ‘dynamically relaxed’. We use two sets of relaxation

MNRAS 513, 2178-2193 (2022)

criteria, based on properties computed within Ry, to examine how
the alignment between the BCG and halo depends on the subselected
samples.

The relaxed haloes are defined following De Luca et al. (2021):
(1) the halo’s centre of mass is less than 0.1R,(. from the true centre
(8Xnalo, com < 0.1R00.), and (2) the mass in substructures is less than
10 per cent of the total halo mass within Rypoc(fsup < 0.1M500c)-

For comparison we also defined a sample of relaxed clusters
following Cui et al. (2018), with more stringent criteria: (1) the halo’s
centre of mass is less than 0.04R,y. from the true centre (8Xnaio, com
< 0.04R200.), (2) the mass in substructures is less than 10 per cent of
the total halo mass within Rygo. (fsup < 0.1M500.), and (3) the virial
ration = (2T — E;)/|W|is 0.85 < n < 1.15. Here, T is the total kinetic
energy, E; is the surface pressure energy from both collision-less and
gas particles and W is the total potential energy (Cui et al. 2017). We
use the stricter definition of relaxation from Cui et al. (2018) as the
default definition for relaxed clusters and denote it as relaxed C18.

2.2 Measurements

2.2.1 Measurements: weak lensing mass estimates

We use weak lensing masses computed using the method described
in Giocoli et al. (2021), and briefly outlined here. The convergence
and shear maps described in Section 2.1.2 were used to construct
weak-lensing observables for mock galaxies. The weak-lensing maps
show a field of view of 5 x 5 Mpc? at the cluster redshift. We
populate this field with mock galaxies and fill the field of view
with circa 30 source galaxies per square arcmin, following a redshift
distribution that peaks at zg & 1. This roughly corresponds to the
number of expected galaxies for cluster weak lensing with Euclid and
the approximate redshift distribution of observations (Laureijs et al.
2011). Specifically, these simulations have been built using a Euclid-
like source redshift distribution constructed using Euclid-like images
of clusters from SkyLens (Plazas et al. 2019), rescaled to 30 galaxies
per square arcmin. Note, a similar parametrization has been adopted
in Boldrin et al. (2012, 2016). For this analysis, we do not assume
any redshift uncertainty for the background galaxy population and
randomly assign a position to them in the considered field of view.
The convergence and shear maps described in Section 2.1.2 are then
rescaled from redshift zg = 3 to the considered redshift of the source
galaxy.

The source galaxies are then binned in 24 radial annuli around

the cluster centre from a radius of 0.01 4! Mpc outwards. Shear
uncertainties include shape noise contribution (o, = 0.3) and the
r.m.s. of the shear profile in the annulus. The binned tangential shear
profiles were fit using the Baltz, Marshall & Oguri (2009) density
profile, assuming a truncation radius r, set to 3 times Rygo.. The mean
shear was fit only using bins with more than 10 galaxies.
Mass (M;X(])}) and concentration (CV') were free parameters of
the model with flat priors from logioMye. = 13 to 16, and from
CWVL =1 to 10, respectively. The model was centred on the known
cluster centre, and no miscentring terms were added to the model.
Considering the limited field of view in which the clusters are
located, we also neglect the 2-halo term in the modelling function
(Giocoli et al. 2021). We tested this assumption and found negligible
differences in the recovered weak-lensing quantities.

3http://sci.esa.int/euclid/
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2.2.2 3D shape measurements

Shape measurements of mass distributions in simulations are gen-
erally done using the moments of the particle distribution. The first
three moments are,

IO = Zmnwnlv
Il = Zmnwnxn’
n
L= mw,(xn ® X ©

Here x, is the 3D coordinate column vector of the n-th particle,
and x, ® X, is the outer product of the two coordinate vectors. The
origin of the coordinates is the true BCG centre. The mass of the
n-th particle is m, and it is assigned a weight w,,. The zeroth order
Iy moment gives the total mass; the first order moment vector Iy
can be used to determine the centre of the particle distribution. The
eigenvectors e of the second moment I, give the primary axes of the
distribution and the square roots of the eigenvalues correspond to a
> b > c, the axis lengths.

Cluster cores are dense regions; a large number of galaxies are
close to each other. Proximity of another galaxy strongly affects I,
as large values of |x,| dominate the contributions to the sum. To
mitigate the effect of neighbours, we employ a radial top-hat weight
function, so that w, = 1 if the radial distance to the centre is smaller
or equal to r;, and w, is set to 0 beyond the limiting radius. We
investigated several limits: ry,, = 25, 50, 75, and 100 2~! kpc. We
find that the choice of radial limit has no significant effect on our
results (see Section 3.1).

Knebe et al. (2020) uses another weight function for their measure-
ment of the shape of the halo, which decreases with radius squared:
w, = |x,|~2. However, this weighting highlights the core of the
distribution, which is not necessarily the area of interest for galaxies
since astrophysics complicates the galaxy cores often rounding the
inner shape. We expect the outskirts of BCGs and the ICL distribution
to be more aligned with the halo shape and accretion history of the
cluster. Our selected weighting provides a more flexible approach by
looking at different radii of interest.

In addition, we attempt to flag such instances where a neighbour
significantly affects the measured BCG shape. For this, we compute
the first moment I;. All three components of I; will be zero if the
distribution is completely symmetric around the centre, as we roughly
expect for galaxy mass distributions. If the distribution is skewed
along axis i, for instance due to a neighbouring galaxy, then /; will
be large. We flag BCG shape measurements as contaminated if the
norm of I, is larger than 0.1 Ry;p,.

The second moments matrix I, from the 3D data can also be used to
find the 2D shapes for the mass distribution if its projected along any
of the three axes of the simulation. By omitting those elements of the
3x3 I, matrix corresponding to the axis along which we project, we
can construct the 2x2 moments matrix for the projected image. Note
that our star particles are within a sphere and therefore the projection
depth is not uniform. More particles will lay on lines of sight going
through the BCG centre. This may artificially bias these projected
2D shapes to be more circular. The projected images described in
Section 2.1.3 are a better imitation of observations and we use these
to quantify the relation of BCG shape and weak-lensing masses.

The shapes of the total mass distribution of the cluster haloes were
determined by Knebe et al. (2020). All particles (dark matter, gas,
and star particles) were used to compute the shapes and they used
w, = 1/r2, where r, is the radial distance to the centre of the cluster.
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This emphasizes the core of the cluster over its outskirts, and we thus
expect a stronger correlation of the halo shape to the shape of the
BCG than for a shallower weight function.

2.2.3 2D shape measurements

We determine the shape from the projected images with three
different methods as a cross-check.

Isophote contours: We draw a contour at a fixed isophote using the
PYTHON SCIKIT-IMAGE package* (Van der Walt et al. 2014), similar
to some observational work (Huang et al. 2018a; Montes & Trujillo
2019). For the stellar density maps, we determine contour shapes
at isophotes that correspond to a given percentile brightness with
respect to the entire image of the stellar density map, ranging across
the percentiles [80,98]. Here the 100th percentile corresponds to the
densest peak in the map, and for an ideal galaxy density distribution
that decreases monotonically with distance from the centre, lower
percentile values would trace the shape of the galaxy further out.
For a contour, scikiT-IMAGE has properties like its centroid and
the lengths of its major axis a and minor axis b, from which we
compute the axis-ratio ¢op = b/a and the radius r,p = Jab /2. We
enforce that the area enclosed by the contour must include the true
BCG centre. Isophotes at fixed brightness percentile will not be at
the exact same physical radial distance for each projected cluster.
We therefore define the conversion from a brightness percentile to a
physical scale as the median of the distribution of radii of all clusters.
The medians range from 55 to 200 kpc for the brightest contour to
the dimmest contour we measure. The spread in physical values
corresponding to each contour is than 5 per cent for the innermost
contour and 10 per cent for the outermost contour.

Image moments: We compute the image moments for the pro-
jected image using equation (9), where instead of particles of a mass
m, we now have pixels of the convergence map. The value of the
pixel at coordinate x, is used instead of m, in the equation for the
second moment. The eigenvalues of the second moments allow us
to determine the 2D axis-ratio g,p, similar to the measurements
we perform in 3D. We employ a uniform weight function w, =
1, emphasizing the contribution of the outskirts of the BCG. We
compute image moments for both the stellar density and « maps.

Sersic profile fits: We fit an elliptical Sersic profile to the projected
stellar density maps using caLriT (Peng et al. 2011), mimicking
some observational work (Durret et al. 2019; Herbonnet et al. 2019;
Wittman et al. 2019; Zhang et al. 2019b). The free parameters of the
Sersic profile are the amplitude, the half-light radius R, (the radius
containing half of the total flux), and the Sersic index n, as well as the
position angle and axis-ratio. We do not mask any parts of the image
and use uniform weighting. We found that implementing a mask did
not change the resulting shape estimates much on average.

In Fig. 1 we show the resulting shape measurements for two dif-
ferent projected stellar mass maps. The right-hand panels correspond
to the central patch of the left-hand panels, magnified by a factor of
2. The white ellipse shows a contour of the Sersic model, the red
ellipse is based on the moments measurements and the black ellipses
are based on the properties of the contours at the 80th, 88th, and 96th
percentile. The higher percentile values trace the matter closer to the
BCG core. The Sersic model traces the core of the BCG, showing
that the caLFIT chi-square minimization is dominated by the dense
centre of the BCG. Moments follow the mass distribution at larger
radii, as expected because the weight function is uniform.

“https://scikit-image.org
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In practice, substructure within the BCG mass distribution or
nearby other galaxies will affect the measured shape, as can be seen
in the bottom row of Fig. 1. The bottom left-hand panel illustrates a
case where shapes of both the largest contour and the moments are
dominated by the object in the lower part of the image ~200 kpc
from the centre, which is not part of the BCG. The bottom right-hand
panel illustrates how the smaller contours closer to the centre can be
affected by neighbours. The centroid of the largest black dashed
ellipse is notably far from the image centre, where we assume the
true BCG is located. In contrast, in the top row of Fig. 1 the contour
centroids are very near to the centre.

We use centroid offsets to flag instances where the shape mea-
surement is unreliable due to neighbouring objects, such as those
illustrated in the bottom panel of Fig. 1. For a more reproducible
flag for observers, who do not know the true BCG centres, we set
the centroid of a small contour as a proxy for the ‘observed’ BCG
centroid, selecting the centroid of the 96th percentile isophote as a
default. Note that we found little difference when instead using the
98th percentile isophote contour. We then compute the offset of the
centroid of a larger contour x; to our ‘observed’ BCG centroid xog,
where the subscript is labelled by the percentile value of the isophote.

We then use the value of the offset normalized by the radius
of the larger contour, R;, which we denote as Ax; ¢¢. We found
that the distributions of normalized centroid offsets is extremely
similar regardless of the choice of contours. These distributions all
had a long tail, where all shape measurements were heavily affected
by neighbouring objects. We only keep shape measurements where
Ax; 96 < 0.2, or the centroid of the contour is no more than 20 per cent
of its radius away from the ‘observed” BCG centre. A value of 0.2 cuts
off most of the long tail and visual inspection revealed that below
0.2 most shape measurements were fine. We found that moments
and Sersic shape measurements perform similarly to contour shape
measurements (see the discussion in Section 4.2.1). We therefore
use the same flagging routine based on contour measurements for
the other two methods.

Finally, we also use the contour method on the convergence maps
to determine the projected shape and orientation of the dark matter
halo at Ryy.. For this, we compute contours at several isophotes in
the convergence maps and use the contour whose radius was closest
t0 Roogc-

3 SHAPE CORRELATIONS IN 3D

In this section, we quantify the alignment between the 3D mass
distribution of the BCG and the underlying dark matter halo in
324 clusters from The Three Hundred Project’. Then we assess
how the alignment relates to the weak lensing mass bias and varies
as a function of mass and redshift in our sample. To quantify the
correlation between variables, we compute the Spearman correlation
with pyMmccoreLLATION and its uncertainty with 1000 bootstraps.
This package implements the Monte Carlo error analysis procedure
described in Curran (2014). Privon et al. (2020) provides analysis
with the first use of the package described.

3.1 Quantifying the BCG-halo alignment

To determine the BCG-halo alignment from 3D data, we first compute
the second moments for the stellar particles from the region described
in Section 2.1.3. We determine the vector of the major axis a of the

Shttps://github.com/privong/pyMCspearman
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Figure 2. Distribution of the angles between the major axis halo and the
major axis of the BGC in degrees and the cosine of this alignment angle
for clusters in The300 simulations. This is shown for a sample of relaxed
clusters according to the criteria of Cui et al. (2018) in blue and for a sample
of clusters with BCG shape measurements deemed unbiased by neighbours
(good). The number of clusters in each sample is shown in parentheses in
the legend. The clusters are taken from a snapshot at z = 0.22 and a limiting
radius of rim = 50 kpc was used to compute the BCG shape. Short vertical
lines (around cos(«) ~ 0.95) show the median for each sample. The grey
shaded area show the 25th to 75th percentile of the distribution of alignment
angles for randomly oriented vectors to guide the eye. Both samples have
BCGs preferentially aligned with their host haloes.

stellar particle distribution, e2°C, and the corresponding vector for

the major axis of the halo, ell°.

The alignment between the halo and the BCG is quantified by the
angle between the major axes of both distributions, which we call
the (mis)alignment angle, «. We define « as,

a = arccos (|e)" - e2°9|). (10)

To quantify effects on projected measurements, we also compute
the inclination angle for both the BCG and the dark matter halo
distribution. We define the inclination angle of a mass distribution as
the angle between the line of sight and the major axis of that mass
distribution. The inclination angle of the BCG is then

). an

where e s is the normalized vector along the line of sight. We
similarly calculate the inclination angle of the halo.

In Fig. 2, we show the alignment angle « between the major axis
of the BCG and the major axis of the halo for the z &~ 0.22 snapshot
(119) for the limiting radius ry, = S0kpc. We show the cosine of
the alignment angle because for random orientations of BCG and
halo cos(c) is an approximately flat distribution, whereas « would
be highly skewed. Of the 316 clusters for which we have stellar
particle data, we show in red 289 clusters, as 27 clusters were flagged
according to the routine described in Section 2.2.2. A subselected
sample of 45 relaxed clusters according to the criteria from Cui et al.
(2018) is shown in blue. We indicate the median angle of orientation
of each population with same-colour ticks along the x-axis.

For the entire distribution of unflagged clusters, we find that the
orientations of the BCG and the halo are preferentially aligned with
a median angle of ~20 degrees (cos o = 0.94 denoted with the red

QBCG G

= arccos(|eL05 . eEC
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Figure 3. Bias in the weak lensing mass as a function of the inclination angle of the halo particles (left-hand panel) and the BCG stellar particles (right-hand
panel) for three projections of clusters at z &~ 0.22. The mass bias M%(I)‘ /M>oo is shown on the right-hand y-axis and the log;o of the mass bias is shown on
the left-hand y-axis for both plots. Clusters oriented along the line of sight are at cos(61.0s) & 1 and clusters oriented along the plane of the sky at cos(61.0s)

~ 0. The black dotted line indicates the mean mass bias for all clusters. Coloured lines with errorbars show the mean and uncertainty on the mean in bins of
inclination angle for the same selections of clusters as in Fig. 2, with the number of clusters in each selection noted in the legend in parentheses. There is a clear
relation between the inclination angle and mass bias in both panels. As a quantification the legend notes the Spearman correlation Sp for each selection. For

clarity, only some data points are shown with errorbars coming from the weak-lensing mass estimate. Note, we limit the range of the y-axis to zoom in on the
mean behaviour of the trends shown with the bands; this omits 37 data points from the plot.

solid line). This value is in agreement with other studies (Okabe et al.
2020; Ragone-Figueroa et al. 2020). For the 45 relaxed, unflagged
clusters (cyan line) the median alignment angles is lower: 12 degrees.
For the De Luca et al. (2021) relaxation criteria, which do not have the
additional constraint of the virial ratio parameter, the median angle
is ~14 degrees for 85 clusters. The decrease in alignment illustrates
that BCGs in relaxed clusters tend to be relatively more aligned with
their host halo when compared to the entire population.

Since the orientation of a very spherical or oblate (a ~ b > c¢)
object is ill-defined, we also looked at a subset of clusters where
both the halo and the BCG have b/a > 0.9. For these 238 clusters we
find no significant change compared to the entire unflagged sample.

We looked at the alignment angle for different choices of the
limiting radius ryy, for the BCG shape measurement and found no
significant difference between them. On average, the halo is aligned
with the BCG at radii from 25 to 100 kpc.

3.2 Weak lensing mass bias

The assumption of a spherical halo mass profile for the triaxial halo
leads to a scatter in the weak lensing mass around the true mass
(Meneghetti et al. 2010, 2014). We explore this orientation bias by
examining the relation of the weak lensing mass bias with inclination
angle. In the left-hand panel of Fig. 3 we find for our cluster sample
that the direction of the halo major axis is a strong indicator of
the bias, in line with results from other studies (e.g. Henson et al.
2017). On average clusters masses are over or underestimated by
~20 per cent, depending on the inclination angle. The mean relation
does not change significantly if only relaxed clusters are selected. A
more detailed analysis of the weak-lensing masses will be described
in Giocoli et al. (in preparation). We find that the scatter in the
weak lensing masses about the true cluster mass is 23 percent in
our simulated sample (20 per cent for relaxed clusters). On the other
hand, the scatter about the mean relation between halo mass and
halo inclination (shown as the coloured lines in Fig. 3) is 15 per cent

(11 percent for relaxed clusters), a relatively tighter scatter. This
shows that halo orientation information can lead to more precise
weak-lensing mass estimates.

From Fig. 2, we see that the BCG and halo major are preferentially
aligned. We now investigate the correlation between the BCG and
weak lensing mass bias. In the right-hand panel of Fig. 3, we again
see a clear trend between the inclination angle and bias. However,
the relation is shallower than for the halo shape, due to the imperfect
alignment between halo and BCG. The two cluster samples have
similar mean relations, but the relaxed sample shows a stronger
correlation with a Spearman correlation coefficient Sp = 0.57, a
similar value to the correlation between halo orientation and mass
bias. This is likely due to the stronger alignment between halo
and BCG for relaxed clusters. The scatter about the mean relation
between halo mass and BCG inclination is 17 percent (11 per cent
for relaxed clusters). This now highlights the potential how BCG
information might mitigate the statistical uncertainties in cluster
masses, which again is 23 per cent (20 per cent for relaxed clusters)
in our sample.

3.3 Variation with cluster mass and redshift

There is evidence that the mass and the elongation of a cluster halo
are correlated, with lower mass clusters being on average more
spherical (Despali, Giocoli & Tormen 2014; Henson et al. 2017;
Okabe et al. 2020). We looked at the axis-ratio b/a of the halo and
the BCG as a function of redshift and mass. In agreement with these
works, we find that haloes become more elongated for higher masses,
although the effect is very small, consistent with no trend within the
uncertainties. Over the full mass range the mean axis-ratio (Ghao) =
0.80 £ 0.08 decreases by only ~0.04. BCGs are more elongated on
average than their haloes with an axis-ratio (ggcg) = 0.74 £ 0.10, but
get slightly rounder with increasing cluster mass: (gpcg) increases
~(.04. Similar trends are seen for both haloes and BCGs for clusters
at redshifts z = 0.116, 0.333, 0.592.

MNRAS 513, 2178-2193 (2022)

€202 1sNBny 91 uo Jasn ueBIYDIN J0 AlISISAIUN A 0GE99S9/8/ L Z/2/E LG/RI0IME/SEIUW/ W0 dNO"DlWapED.//:SA)Y WOy PAPEOjUMOQ


art/stac997_f3.eps

2186  R. Herbonnet et al.

inclination angle 88SS [deg]

90 80 70 60 50 4030 0
1.0 1 1 1 1 1 1 1.0
094+ L 3ie saii® s

ool fra S8 0T

Q 0.8 nittre it tes

d o.: 0 ¢ D& ;‘

00 02 04 06 08 10
cos(6558)

inclination angle 85S¢ [deg]

90 80 70 60 50 4030 O
1.0 1 1 1 1 .I 1 - 0.9
o, #*
P ® o0 L ~ 3
i SOREL TN s o8 Lo
0.9 L ° ! ’:n ° .f{"“"‘;:‘ 0.8
[a) ] %oge’i®® Dol P @ 0,8 Ry a
SO R T s o (o7 2
O 0.7 ¢ 5 oz 9% gralep * oy O
[an] [e olo¥ o . S0l '.‘ ® o pe 0.6 m
SR R oL SOOI &
06 h‘.::::.... '. ~.?.l' °® 05
0.5 A e
T T T T 0.4

Figure 4. Both panels show the relation between the inclination angle of the BCG and the axis-ratio of the projected BCG stellar mass distribution. Colours
indicate the ratios ¢ = b/a (left-hand panel) and s = c¢/a (right-hand panel) of the full 3D mass distribution. There is a clear trend between inclination angle and
2D axis-ratio for the elongated gzp < 0.75 and s3p < 0.75 BCGs, but at larger values of g3p there is more scatter.

To check if our results depend on cluster mass we divided the
clusters in to four bins with approximately equal number of clusters.
We find that the weak lensing mass bias is lower for the least massive
clusters, and the other mass bins are consistent with each other and
the full sample. However, the relations between weak-lensing mass
and inclination angle for both the halo and BCG are qualitatively
the same for all mass bins: the weak lensing mass bias increases
when the inclination angle decreases from 90 degrees to 0 degrees.
We do not see a significantly shallower slope or different Spearman
correlation strength for the lowest mass bin. Note, massive clusters
still comprise the lowest mass bin, as there are very few groups in
the simulated sample.

We repeated our analysis for other snapshots of the simulated
cluster regions, at redshifts z = 0.116, 0.333, 0.592, in addition to
our analysis at the fiducial z = 0.221. We find no significant change
with redshift in the relations shown in Fig. 3.

4 PROJECTED SHAPE CORRELATIONS

4.1 BCG inclination and projected shape relationship

The inclination angle of the BCG provides a direct link to the
weak-lensing mass bias, but it cannot be measured by observers
and a projected observable is required. Naturally, the ellipticity
and orientation of a distribution of particles in 3D is correlated
to the ellipticity projected to 2D. For a prolate spheroid a > b =
¢, a projection along the major axis results in a round 2D shape,
and a projection along any of the two minor axes would show
an elliptical 2D shape, with the ellipticity increasing going from
0 = 0 to 90 degrees. In Fig. 4 we compare the 3D observables
measured within 50 kpc to the 2D axis-ratio ¢,p, the only parameter
available for observers, for all unflagged BCGs. We use the method
described in Section 2.2.2 to calculate the 2D axis-ratio from the 3D
data. In the left-hand panel, the trend we have described is clearly
exhibited by the yellow-brown (gsp < 0.75) data points. At bla >
0.75 this trend is still there, but there is also more scatter in the
data points. Quantitatively, the elongated BCGs (those with g;p <
0.75) have more correlation between the observed shape g,p and the
inclination angle 655§ with a Spearman correlation coefficient of
~(0.76, compared to the intrinsically spherical BCGs (those with ¢3p
> 0.75), which have a coefficient of ~0.15. Intuitively, this is to be
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expected. Spherical objects (a ~ b ~ ¢) will always look round in
projection regardless of the inclination angle and introduce scatter at
¢>p > 0.9. Oblate spheroids (a ~ b > ¢) will look elliptical in 2D when
projected along the major axis and remain elliptical when rotating
the LOS towards the medium axis b, but will appear increasingly
rounder when rotating the LOS towards the minor axis c¢. As such,
they produce an opposite trend to prolate spheroids. This behaviour
is most notable for the blue (a ~ b) data point in the bottom right
of the left-hand panel at cos(f) = 1, which appears to be elliptical
in projection. In the right-hand panel this BCG is shown to have a
small c/a, thus it is an oblate spheroid.

The BCGs will likely not be perfectly spherical, prolate or oblate,
but their triaxial mass distributions (¢ > b > ¢) will tend towards
any of these three. The right-hand panel of Fig. 4 shows that the
simulations contain no spherical BCGs as s3p < 0.9 for all BCGs.
We find that the large majority of our BCGs are prolate spheroids,
249 out of the 316 BCGs have b closer in value to ¢ than to a. This
is consistent with the observational study by Fasano et al. (2010).

Therefore, when observing an elliptical BCG (in 2D), it is very
likely that it is in fact an elongated BCG (in 3D) oriented roughly in
the plane of the sky. Note, if observing a round BCG (in 2D), the BCG
may either be truly round (in 3D) or elongated with its semimajor
axis aligned with the line of sight. The latter is more likely, given the
predominance of prolate BCGs.

4.2 Projected BCG shapes

In an ideal case, the projected shape of the BCG holds information
of the inclination angle. In this subsection, we examine BCG shapes
measured from the projected stellar density maps. These shape
measurements are more in line with measurements an observer could
make. Since substructures in the stellar density map might alter
the measured shape of the BCG, we employ three different shape
measurements as a consistency check with methods described in
Section 2.2.3.

4.2.1 Shape measurement comparison

We show the comparison between our three shape measurement
methods in Fig. 5, which shows the Spearman correlation strength be-
tween shapes from either the image moment measurements (dashed
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Figure 5. Consistency between 2D BCG shape measurement methods:
Spearman correlation strength between the BCG shape measured with either
the Sersic profile fit (solid lines) or the unweighted moments (dashed lines)
and the 2D BCG shape measured at different contour percentiles as a function
of the median radial size of the shape measurement. The blue lines indicate
measurements for the entire sample, and orange for the subset of images
in the lowest quartile of centroid offsets measured between the 80th and
96th percentile contours. Top axis label shows the corresponding brightness
percentile defining the contour at which we measure the BCG shape. Shape
measurements that enclose more of the BCG (lower percentile contours)
better correlate with shapes measured with the unweighted moment method.
Shape measurements focused on the centre of the BCG (higher percentile
contours) better correlate with shapes measured with the Sersic profile fit.
Note, measurements for all contours at 95th percentile isophote and larger
only include BCGs where the contour shape measurement satisfies our quality
flag.

lines) or the Sersic fits (solid lines) and the shape from a isophote
contour, as a function of the isophote contour percentile. We show
the percentile value on the top x-axis labels and the corresponding
median radius of that percentile contour on the bottom x-axis labels.
The blue lines show the correlation for the shape measurements
when calculated for the galaxies passing the quality cut. For the 96th
and 98th percentile isophote contours, where our quality flag Ax; o6
is undefined, the blue line shows measurements for all BCGs. The
shaded region illustrates the 16-84 percentile error. The Spearman
correlation strength between different BCG shape measurement
methods varies between ~0.4, which is a moderate correlation, and
~0.7, a strong correlation. The largest contour shape measurements
(r = 100 kpc) strongly correlate with the image moment shape
measurements.

In Table 2, we summarize the correlation strengths between BCG
contour shape measurements methods at percentiles p = [80, 88, 96].
We show the Spearman correlation for different selections: clusters
with unflagged shape measurements, a quarter of the clusters with
the lowest normalized centroid offset Axgg 96, and relaxed clusters
according to the De Luca et al. (2021) and the Cui et al. (2018)
criteria.

Fig. 5 quantifies the behaviour visible in the two examples of Fig. 1.
Sersic models (solid lines) tend to have small half-light radii because
the fit is dominated by the massive BCG core. Sersic derived shape
measurements therefore mostly describe the shape of the BCG core.
Hence, the correlation between gop, ser and gap, con (solid blue line) is
strongest for the smallest contours. On the other hand, unweighted
moments (dashed lines) are sensitive to all mass in the image and
mostly to masses at large radii from the centre (see equation 9).
This relationship leads to a similar performance between the image
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moment shape measurements and the shape measurements from the
largest contours. Both trace the mass far from the centre, and thus
the correlation Sp(g2p, mom»> §2p, con) (dashed blue line) is strong for
the biggest contours.

4.2.2 Shapes compared to observations

Despite the difficulty of simulating realistic central galaxies, simu-
lations are able to reproduce stellar mass profiles fairly well (Ardila
et al. 2021). However, as a consistency check we compare our
measured shapes to values found in observations. The range of axis
ratios in observations is ~0.4—1.0 (Fasano et al. 2010; Marrone
et al. 2012; Herbonnet et al. 2019). We find that our measured BCG
shapes are on average more elliptical, likely due to our choice in
shape measurement method. The unweighted moments have a range
of gp similar to observations and a median at g,p =& 0.65. Contour
measurements result in more elliptical values, from ¢>p & 0.3 to 1.0,
with a median at ~0.45. But, we emphasize that Fig. 5 shows that rank
ordering is preserved between moments and contours. The Spearman
correlation between the moments and contour shape measurements is
strong, showing that both will measure more elliptical distributions
as having smaller values of g;p relative to the entire sample. The
exact value of g,p is less relevant to our analysis, as we are most
interested in how the shape measurement scales with weak lensing
mass.

4.2.3 An optical relaxation selection: min AXg, o6

Naively, we would expect different shape measurement methods to
be more consistent with one another for the most relaxed clusters,
which have a minimum of massive substructures (Lauer et al. 2014;
Golden-Marx et al. 2022). As a proxy for this in projected stellar
density space, we checked whether a stricter cut on the centroid offset
would further improve the correlation illustrated in the blue lines in
Fig. 5. We find that keeping only a quarter of the data with the smallest
Axg, 96 consistently led to stronger correlations. These are shown as
the orange lines in Fig. 5. At all radii this cut largely improved
the Spearman correlation strength between shapes measured using
moments and contours. However, the Sersic measurements do not
show the same increase in correlation strength using this stricter
selection. The Sersic fits mainly trace the shape of the BCG core and
are mostly unaffected by mass far from the BCG centre, to which
AXxg, 96 1 sensitive.

We motivate the selection of clusters whose centroids are least
offset from one another as a proxy to relaxation criteria that are only
available in 3D data of simulations. Clusters whose inner and outer
contour centroids are least offset will tend to be clusters whose outer
contour measurement is not disrupted by substructures and whose
centre of mass roughly sits at the peak of the light distribution.

Given that the 80th percentile contour most strongly correlates
with the image moment measurements and that the 96th percentile
contour closely surrounds the peak of the light distribution, we
can consider min (Axgp g¢) to be a light proxy of the relaxation
criteria identified using Sxnaio, com and fp (see Section 2.1.4). This
offset measurement is somewhat sensitive to both, given that an
abundance of substructures outside the centre will impact the shape
measurement at larger contours. Note, our 2D selection criterion has
some overlap with the relaxation criteria in 3D; since substructures
outside of centre can shift the centroid of the 80th percentile contour
away from the centroid of the 96th percentile contour, the 2D
selection criterion likely identifies some clusters with high values of

MNRAS 513, 2178-2193 (2022)

€20z 1snBny 9| uo Jasn uebiyoipy 10 AlsieAiun Aq 05£9959/8/ 1 Z/Z/S L S/a101e/seluw/woo dno olwapeoe//:sdiy Woll papeojumo(]


art/stac997_f5.eps

2188  R. Herbonnet et al.

Table 2. Table of Spearman correlations (Sp) between measured projected quantities at various percentile isophotes (p), which correspond to different
radii from the BCG centre (r). This radius was obtained as the average over all clusters in the selection. ggcg is the axis-ratio of the contour at percentile

mom

p, and ggéd and qgeC’G are the axis-ratios measured using the moments and Sersic fits, respectively. The subscript palo indicates contour measurements of
the halo at Ryg. and o denotes the projected orientation. The number of clusters in each selection at each percentile isophote are shown in the last column.

Selection p (r) [kpe] Sp(aEes. anemy  Sp(gils. a5ss)  Sp(asca, MVVIM)  Sp(gscG. Ghalo)  SP(0BCG Onalo)  Clusters
95 48.23:8 0.50 £0.03 0.47 £0.03 0.10 £0.03 0.38 £0.03 0.13 £0.03 935
Good 88 76.2;";:2 0.59 £0.03 0.46 £0.03 0.14 £ 0.04 0.40 £ 0.04 0.20 £0.03 798
80 99.2f§:‘11 0.68 £0.02 0.41 +£0.03 0.17 £0.03 0.42 £ 0.04 0.27 £0.03 757
95 49.0f{:§ 0.57 £0.05 0.45 £ 0.06 0.21 £0.06 0.43 £0.07 0.24 £0.06 243
(min(Axgo, 96) 88 76.91’%;2 0.68 + 0.04 0.37 + 0.06 0.24 + 0.06 0.45 £ 0.07 0.29 + 0.06 243
80 99.032 0.71 £ 0.04 0.35 £ 0.06 0.29 £ 0.06 0.45 £ 0.07 0.26 £ 0.06 243
95 48.61’?:% 0.49 +£0.05 0.45 + 0.06 0.23 + 0.06 0.47 £ 0.06 0.20 = 0.06 271
Relaxed DL21 88 76.6%5 0.58 & 0.05 0.45 £ 0.06 0.32 £ 0.06 0.56 % 0.06 0.26 & 0.06 230
De Luca et al. (2021) 80 99.4'_"%:2 0.67 £0.04 0.39 £ 0.06 0.32 £0.06 0.54 £0.07 0.30 £ 0.06 225
95 48.8f%;§ 0.42 +£0.07 0.52 +0.07 0.26 = 0.07 0.58 £ 0.08 0.16 = 0.08 144
Relaxed C18 88 76.6f%;§ 0.51 £0.07 0.49 £ 0.07 0.35£0.08 0.63 £0.08 0.31 £0.07 132
Cui et al. (2018) 80 99.6'_";:(1) 0.63 £0.06 0.37 £0.08 0.33 £0.08 0.66 £ 0.08 0.34 £0.09 130
8Xnalo, com and fuub. Specifically, we found that min (Axgg, 96) exhibited BCG Contour Percentile
respective Spearman correlation strengths with fq,, and 8xna10, com of 95 94 93 92 91 90 88 86 83 80
0.3 and 0.23, respectively. We note that the 3D relaxation criteria 045 — - Relaxed C18(130)  ——- min(Axens6)(243)
are measured at much larger radii than our contours, so are not an B | Relaxed DL21(225) — all(757)
exact proxy of one another. In fact, the correlation strength becomes 8 0401
negligible for 3D relaxation parameters measured at r2g.. But, many 2 0.35 1 L —
of the objects selected by our 2D criterion are objects also excluded g 0.304 oL .............. S =
by the De Lucaetal. (2021) and Cui et al. (2018) criteria; respectively, E_ AL — T g B R Iy
74 per cent and 86 per cent of the objects excluded by our 2D criterion z; 0.25 1 1= e P R
would have been excluded by the De Luca et al. (2021) or Cui et al. D020 el -7 r
(2018) selection. Our 2D criterion identifies ~40 percent of the 8 0.15 1
relaxed clusters identified by either De Luca et al. (2021) and Cui L% 010 J‘/
et al. (2018). We also note that correlations between the BCG shape '

and the weak lensing mass bias also strengthens when we subselect
clusters whose centroids of the 80 and 96th percentiles are least
offset. We further discuss the relationship between BCG shape and
the weak lensing mass bias in Section 4.3.

4.2.4 Relation between BCG shape and halo shape

We expect most of the BCG accreted stars to be deposited in the
BCG outskirts (e.g. Oogi & Habe 2013). Hence, the outskirts should
be more informative of the clusters assembly history. Indeed, we find
that the axis-ratio of larger contours correlate more strongly with the
shape of the projected mass density of the whole halo on scales of
~Ry00.- We show the Spearman correlation strength as a function of
BCG radius in Table 2. In all four cluster samples, the correlation
between the BCG and the halo grows stronger with increasing radius
for both the axial ratio and the orientation. We therefore conclude
that moments and large contours provide the most useful estimates
of the BCG + ICL shape in tracing the underlying halo distribution.

4.3 Correlation between BCG shape and weak-lensing mass

In Fig. 6 we show the Spearman correlation strength between
the weak-lensing mass bias and the axis-ratio measured from the
contours at different isophotes. The red solid line shows the results for
all cluster projections (which pass the shape quality cut) and shows
a very weak correlation between mass bias and BCG shape. The
quartile of the cluster projections with the smallest offset between
the centroids of the 80th and 96th percentile isophotes, min(Axsg, 96)
(green dashed line) has a more moderate correlation at all radii,
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Figure 6. Spearman correlation strength between the weak lensing mass
bias and the 2D BCG shape measured at different contour percentiles as a
function of the median radial size of the shape measurement. Top axis label
shows the corresponding brightness percentile defining the contour at which
we measure the BCG shape. Shape measurements that enclose more of the
BCG (lower percentile contours) better correlate with the weak lensing mass
bias. Each line corresponds to a different measure of ‘relaxedness’ including
a selection of the clusters whose 80th and 96th percentile contour centroids
are the least offset. Relaxed cluster subsamples have stronger correlations
between their weak lensing mass bias and 2D BCG shape.

exhibiting a slight upward radial trend. The relaxed clusters according
to the De Luca et al. (2021) (orange dotted line) and the Cui et al.
(2018) criteria (blue dash-dotted line) show the strongest correlation
between BCG shape and weak-lensing mass bias. All selections
show a stronger correlation with increasing radius, supporting our
hypothesis that the BCG envelope is a better indicator for the BCG
orientation, and thus the halo orientation, to which the weak-lensing
signal is sensitive.

We tested how various choices in centroid offset criteria impacted
the correlation between the BCG shape measurement and the weak
lensing mass bias. We found that the choice of Axg g6 selects clusters
whose outer BCG shape best correlate with the weak lensing mass
bias. The effect is analogous to the selection using 3D relaxation
criteria, but is not as stringent.

‘We show the correlation between the BCG shape around 100 kpc
(at the 80th percentile isophote) and the weak lensing mass bias
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Figure 7. Mean weak lensing mass bias as a function of the axis-ratio of
the 80th percentile isophote contour of the projected BCG mass distribution.
Lines show the mean mass bias in seven bins of g2p, Bcg, and the errorbars
and the shaded regions show the uncertainty on the mean mass bias. The
colours denote the same samples as in Fig. 6. The horizontal lines shows the
mean weak-lensing mass bias for each sample in the same colour. Relaxed
clusters show the largest correlation between measured BCG shape and mass
bias.

in Fig. 7. The data was binned into eight axis-ratio bins with
approximately equal numbers of clusters. The coloured lines show
for three of the selections in Fig. 6 the mean weak-lensing mass
bias in bins of the BCG axis-ratio, and the uncertainty on the mean.
The horizontal dashed lines show in the same colour scheme for
each selection the average weak lensing mass bias. For the full
sample (red) the average bias (M;g(l)‘ /M) ~ —3.5 percent and
~—2.5 per cent for the other selections.

Compared to the average weak lensing mass bias, there is a clear
trend for each selection that the bias is underestimated for elliptical
BCGs and overestimated for round BCGs. However, the Spearman
correlation strength (Sp = 0.17 & 0.03, shown in the legend) is weak
for the full sample in red. The sample of relaxed clusters are shown
as the blue dash-dotted line and have a larger, but still only moderate
correlation of Sp = 0.33. The relaxed clusters according to De Luca
et al. (2021) show a very similar behaviour to the blue dash-dotted
line. The selection based on Axgy g6 in green performs similar to the
relaxation criteria. For the highest axial ratio bin, the green and red
lines show a slight decrease in mass bias compared to the overall
upward trend. This dip is due to spherical BCGs with large values of
gBca, 2p Whose weak-lensing mass estimates are not as high due to
cluster orientation (see also Section 4.1).

The scatter about the mean relation of the whole measured sample
shown in the red solid line in Fig. 7 is 19 percent. BCG shape
information alone provides a moderately tighter scatter compared
with the 23 per cent scatter of weak lensing masses about their true
mass. For relaxed clusters, the scatter about the relation shown as
the blue dash-dotted line in Fig. 7 is 15 per cent, also a moderately
tighter scatter compared with the 20 per cent of weak lensing masses
about their true mass.

These results imply that observations of relaxed samples of clusters
might exhibit the trend between BCG shape and weak-lensing mass
bias. Therefore, measurements of the BCG shape could improve
mass constraints of relaxed clusters. BCG shape measurements may
not be as indicative of the weak-lensing mass bias in samples that

BCGs trace mass bias and triaxiality 2189

include a larger number of disturbed systems. Optical proxies of
relaxation, similar to the simple Axgg 96 used here, could be useful
in identifying subsamples where the BCG shape and weak-lensing
mass bias trend is stronger. Finally, the relationship between observed
outer BCG shape and the halo orientation suggests an indicator
for quantifying selection bias in observations. For example, if the
majority of observed BCGs in a sample are fairly round, the sample
may be biased with a preferential selection for clusters that are
oriented along the line of sight. In this case, we expect any weak-
lensing masses for this sample to bias high compared with the true
masses.

5 PROJECTED BCG MASS DISTRIBUTION

Another possible indicator of BCG orientation is the concentration
of mass (or light for observers) in the core compared to the outskirts
(Giocoli et al. 2014). When a mass distribution is viewed along its
major axis, it will have more mass projected along the line of sight
than when viewed from other angles. When viewed along the minor
axis, the least amount of mass is projected into the centre of the
observed distribution. Here we investigate if the concentration of
mass, i.e. the projected mass in the core of BCGs compared with
the total stellar mass, correlates with weak lensing mass bias. Since
there is no definition of the total extent of BCGs we instead use the
mass within 100 kpc as an estimate of the total mass. Huang et al.
(2018a) show that the mass within 100 kpc is a decent estimate of
the total mass of a central galaxy. We look at both our 3D stellar
particle data and our 2D projected stellar mass maps to compute the
projected stellar mass.

5.1 Projected stellar mass concentration

In this section, we examine the relationship between the projected
stellar mass concentration and BCG orientation. To calculate the
projected stellar mass concentration, we project our spherically
selected BCG stellar particles along each of the three main axes
of the simulation box. For each projection, we then select circular
apertures of fixed physical radii and sum the mass of all BCG particles
within the cylinders. No weights are applied to the particles.

Note, the described procedure likely underestimates projection
effects. We project the 100 kpc sphere containing BCG particles,
and exclude stellar particles outside of the r = 100 kpc radius.
Hence, projected annuli corresponding to the outer regions of our
BCG contain fewer particles than if the projection were of fixed
depth at all apertures. Additionally, we do not tailor the circular
apertures to individual BCG mass distributions, which are not always
round in projection. We therefore expect projection effects to be
underestimated and thus we only use the spherically selected BCG
stellar particle data to highlight the connection between the projected
stellar mass distribution and the orientation of the BCG.

We select the 867 BCGs whose 3D shape and orientation mea-
surements were not flagged as contaminated (see Section 2.2.2).
Fig. 8 shows the relation between the concentration of stellar mass
of the BCG and the inclination angle of the BCG 655§ We define
projected stellar mass concentration as the projected stellar mass
within a circular aperture of 25 kpc divided by the projected stellar
mass within 100 kpc. The latter is, by construction, all spherically
selected BCG stellar particles for each cluster. The inclination angle
is calculated using 3D image moments based on all particles within
a 100 kpc radius.

As expected, less spherical BCGs (lower values of ggcg, 3p or
SBCG, 3D shown in brown) show the most significant trend between
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Figure 8. Both panels show the relation between the inclination angle of the BCG and the ratio of projected stellar mass in a circular apertures of radii 25 and
100 kpc. Colours indicate the ratio ¢ = b/a (left-hand panel) and s = c/a (right-hand panel) of the full 3D mass distribution. There is a clear trend between
inclination angle and mass concentration for the most elongated ¢3p < 0.7 and s3p < 0.7 BCGs, but at larger values of ¢g3p there is more scatter.

concentration and inclination angle. BCGs with gpcg, 3p < 0.7 have
a stellar mass concentration of ~0.4 at cos(6 CG) = 0 which rises to
almost 0.6 at cos(9ES$) = 1. There is more mass in the inner 25 kpc
when an elongated BCG is viewed along its major axis than when it is
viewed along its minor axis. However, for more spherical BCGs (i.e.
gnca.3p > 0.7 and spcg, 3p > 0.6), the relation between concentration
and inclination angle exhibits a wider scatter. For these objects the
difference between a and b, ¢ is too small to lead to an observable
effect.

In conclusion, the BCGs with the lowest observed concentration,
so with relatively more mass in their outskirts compared to the core,
will likely not be oriented along the line of sight. BCGs with most of
their mass in the inner 25 kpc are likely fairly spherical and could have
any inclination angle. Given the trend between BCG concentration
and orientation for more elongated BCG, we may expect to see a
relation between mass concentration and weak-lensing mass bias.
We explore this possibility in the following subsection.

5.2 Correlation concentration and weak-lensing mass

To quantify the relation between the projected stellar mass concen-
tration and the weak lensing mass bias, we use the 2D projected
stellar mass maps. Unlike the 3D particle data, these maps have a
uniform depth of 400 kpc over the entire image. We use the contour
measurements described in Section 2.2.3 to capture the projected
shape of the galaxy and sum up the mass within a contour to compute
the projected stellar mass.

The left-hand panel of Fig. 9 shows the mass enclosed in the 80th
percentile isophote contour Montour,80 per cent and the mass enclosed in
the 98th percentile isophote contour Montour,98 per cent fOr 757 BCGs
with Axgp 96 < 0.2. First, we binned the data into four bins according
to the weak lensing mass bias. Each bin contains a quarter of the total
number of projected clusters, approximately 190 projections each.
Then, for each quartile of the data we bin the data into five bins of
M contour,80 per cent With equal numbers of projections in each bin. We
compute the median of Mcontour,98 per cent N €ach bin and show the
result as the coloured lines in Fig. 9. The shaded areas show for each
line the 1684 percentile confidence interval in Mcongour,98 per cent-

In this plane of Mcomour.SO per cent and Mcomour,()S per cent more con-
centrated BCGs would lie to the right at fixed Mcontour,98 per cent> OF
would lie low at fixed Mcontour,80 per cent- Given the relation seen in
Section 5.1, we expect clusters with high weak-lensing mass bias
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to be very concentrated and hence lie on the right-hand side of the
distribution. However, there is no distinct behaviour for the four mass
bias bins, they are all consistent with each other. Different choices of
bins did not change this result, nor did the selection of relaxed haloes
with either of the two relaxation criteria. The absence of a trend is
probably due to the large scatter seen in Fig. 8. The scatter washes
out any trend that the most elongated BCGs would show between
weak-lensing mass bias and concentration.

In the right-hand panel of Fig. 9 we show the same plot, but here
the coloured lines represent bins in true halo mass Mjy.. There
is a trend that higher mass haloes (e.g. blue dashed line and band)
preferentially have less concentrated BCGs (e.g. lower normalization
than the brown dotted line and band); more of the mass is in their
outskirts. This relation was explored in depth by Huang et al. (2018b,
2020) in observations and simulations. Physically, we expect the
most massive systems to still be forming. At these late times, BCGs to
accrete mass in their outer envelopes. The mass distribution of BCGs,
quantified by their projected stellar mass concentration, reflects the
mass assembly of the cluster. The consistency between observations
and the different simulations supports this physical picture.

Qualitatively the results in Fig. 9 did not change with the adoption
of a sample of relaxed clusters. We note that our 98 per cent isophote
contour is much larger than the 10 kpc used by Huang et al. (2020).
We also looked at higher percentile isophote contours, such that we
computed the projected stellar mass within a smaller radius, and
found very similar results to Fig. 9.

For our sample of simulated clusters the concentration of mass
in BCGs is not a good informant on the mass bias in weak-lensing
analyses. The stellar mass distribution can nevertheless be a useful
tool for cluster studies in optical wavelengths as a proxy for total
halo mass.

6 CONCLUSIONS

Using the full hydrodynamical resimulated clusters of *The Three
Hundred Project’ we studied the mass distributions of galaxy clusters
and their central galaxy, also known as the brightest cluster galaxy
(BCG). We investigate how the BCG and halo are related and how
the BCG can inform weak-lensing studies, which aim to accurately
estimate the mass of the halo.

We looked at the alignment between the BCG and the mass
distribution of the cluster as a whole. We find that the BCG and the
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Figure 9. Projected stellar mass within the 80 per cent isophote Mcontour,80 per cent» an estimate of the total stellar mass of the BCG, and the 98 per cent isophote
contours Mecontour,98 per cent an estimate of the stellar mass of the core of the BCG. The coloured lines show the median behaviour of clusters in four bins in
weak-lensing mass bias (left-hand panel) and halo mass (right-hand panel). While there is no visible trend for mass bias there is a trend in halo masses. More
massive haloes tend to also have less centrally concentrated stellar mass distributions in their central galaxy, as seen in upper-rightward separation of halo mass

bins.

cluster are preferably aligned with on average ~20 degrees between
the major axes (Fig. 2). Relaxed clusters are more tightly aligned for
the two relaxation criteria we studied here. Both are based on cluster
properties only available to simulators and it remains to be seen how
observational relaxation criteria perform.

The halo-BCG alignment forms the core assumption for the use of
the BCG as an indicator of weak-lensing mass bias. In addition, we
only employ geometrical arguments to relate observable properties
of the BCG to the orientation of the halo. This alignment between
central galaxy and host halo has been shown by many different
authors for different simulations (e.g. Dong et al. 2014; Tenneti et al.
2015; Velliscig et al. 2015; Okabe et al. 2018; Ragone-Figueroa
etal. 2020). Despite the difficulties in simulating realistic BCGs with
properties similar to observations, the fact that different simulations
with different physics implementations all show the preferential
alignment between the BCG and halo supports the idea that this
is a physical phenomenon in galaxy clusters. We also note that an
exercise of masking subhaloes in the simulations would improve the
3D shape measurements and accomplish stronger correlations the
correlation between the BCG shape and weak-lensing mass.

The triaxial mass distribution of clusters introduces a scatter
in the estimated weak lensing mass, which generally assumes a
spherical mass distribution (e.g. Giocoli et al. 2012). The simulated
clusters show a direct correlation between weak lensing mass and
the orientation of the halo with respect to the line of sight. Due to
the alignment of BCG and halo, the same correlation is seen for the
BCG orientation (Fig. 3). Relaxed clusters have the same Spearman
correlation strength whether the BCG or the halo inclination is used
as proxy for the mass bias.

We find that most BCGs in the simulation are prolate spheroids.
For prolate objects the inclination of the major axis to the observer
determines the observed shape projected along the line of sight.
Hence the BCG shape informs the observer on the BCG orientation,
and therefore the orientation bias in the weak-lensing mass. We
determined projected BCG shapes and measured the correlation
with the weak lensing mass (Figs 6 and 7). Because BCGs are not
perfect prolate spheroids, the correlation is relatively weak. Relaxed
clusters show the strongest correlation. This is likely due to the
tighter alignment between BCG and halo, as we do not find that
BCGs in relaxed clusters are more perfect prolate spheroids than in
other clusters.

Observational evidence for correlation between BCG shape and
weak lensing-mass has been mostly for X-ray selected cluster
samples (Marrone et al. 2012; Mahdavi et al. 2013; Herbonnet et al.
2019). These samples likely contain more relaxed clusters. A cool
core in clusters is a likely indicator of relaxedness and because of
their high X-ray luminosity, they are preferentially detected in X-ray
observations. Our results are in line with this hypothesis. However, it
is encouraging that Gruen et al. (2014) also found a relation for their
12 clusters selected based on millimetre wavelength observations.
The correlation signal identified in our work is relatively moderate.
Our work supports the premise that BCG information, such as that
indicated in Fig. 7, could be used to benefit weak-lensing mass
constraints of relaxed clusters for work such as Mantz et al. (2022).

Note, we use dark matter criteria to identify relaxed clusters
from 3D criteria. While there are observational proxies for these
parameters, e.g. X-ray peak-BCG position offset as a proxy for xo
and the magnitude gap as a proxy for fgs, these do not necessarily
have a one-to-one correspondence with the dark matter criteria and
are often difficult observational measurements to make. However,
our tests on our 2D proxy for relaxation based on centroid offsets
are potentially applicable to observations, depending on the impact
of noise in observed images. We acknowledge these as additional
limitations in linking simulation-based conclusions to what can be
extracted from or applied to observations. However, we note that
some observational relaxation criteria, e.g. the SPA criteria in X-ray
observations, subselect ~ 10 — 15 per cent of cluster samples to be
relaxed Mantz et al. (2015b).

A second possible observable tracer of BCG orientation is the
distribution of stellar mass in the galaxy. There should be a difference
in projected mass in the BCG core when projecting along the major
axis or the minor axis. We computed the projected concentration
of stellar mass as the total mass within a small aperture divided by
the total mass of the BCG. We find that the concentration of mass
in BCGs is not a good informant on the mass bias in weak-lensing
analyses. Nevertheless, we reproduce the results of Huang et al.
(2020) and found that the BCG mass concentration does correlate
well with the true halo mass (Fig. 9). It can therefore still be a valuable
tool for weak-lensing studies.

As cluster samples will grow in the coming years with new
optical, X-ray, and millimetre surveys going online, there is increased
pressure to control systematic uncertainties (e.g. Sartoris et al. 2016).
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Projection effects can introduce large selection biases in cosmolog-
ical cluster studies based on weak-lensing mass estimates (Abbott
et al. 2020; Sunayama et al. 2020; Zhang & Annis 2022). Optical
observations have a wealth of information, which is currently not
fully utilized by weak-lensing studies, instead relying on assumptions
of sphericity for large enough samples of clusters. Although galaxy
cluster physics is not fully understood, there are observables with
simple relations to the underlying dark matter halo. Our work has
showed that the BCG can be an indicator for orientation bias in weak-
lensing masses. Alternatively, the distribution of satellite galaxies
also traces the halo mass distribution (e.g. Velliscig et al. 2015;
Ragone-Figueroa et al. 2020; Gonzalez et al. 2021; Shi et al. 2021)
and might be combined with the BCG shape for a better proxy of
cluster orientation. We leave potential studies to future work.

Determining a cluster’s central galaxies is standard practice and
hence almost always available for weak-lensing studies. The BCG
therefore provides a cheap way for studies of relaxed clusters to
improve their precision and accuracy. Unfortunately, the galaxy
determined as the central is not always the true central galaxy (e.g.
Zhang et al. 2019a), and this miscentring will wash out the correlation
to the halo inclination. The upcoming multiwavelength large-area
surveys can provide more than just mass-observable scaling relations,
but also accurate cluster centres and reliable central galaxy candidates
(George etal. 2012). A full combination of available data will provide
the best way towards to tightest cosmological constraints.
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