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A B S T R A C T 
Galaxy clusters have a triaxial matter distribution. The weak-lensing signal, an important part in cosmological studies, measures 
the projected mass of all matter along the line of sight, and therefore changes with the orientation of the cluster. Studies suggest 
that the shape of the brightest cluster galaxy (BCG) in the centre of the cluster traces the underlying halo shape, enabling a 
method to account for projection effects. We use 324 simulated clusters at four redshifts between 0.1 and 0.6 from ‘The Three 
Hundred Project’ to quantify correlations between the orientation and shape of the BCG and the halo. We find that haloes and 
their embedded BCGs are aligned, with an average ∼20 degree angle between their major axes. The bias in weak lensing cluster 
mass estimates correlates with the orientation of both the halo and the BCG. Mimicking observations, we compute the projected 
shape of the BCG, as a measure of the BCG orientation, and find that it is most strongly correlated to the weak-lensing mass for 
relaxed clusters. We also test a 2D cluster relaxation proxy measured from BCG mass isocontours. The concentration of stellar 
mass in the projected BCG core compared to the total stellar mass provides an alternative proxy for the BCG orientation. We 
find that the concentration does not correlate to the weak-lensing mass bias, but does correlate with the true halo mass. These 
results indicate that the BCG shape and orientation for large samples of relaxed clusters can provide information to improve 
weak-lensing mass estimates. 
Key words: gravitational lensing: weak – methods: numerical – galaxies: clusters: general – galaxies: haloes – galaxies: struc- 
ture. 
1  I N T RO D U C T I O N  
Galaxy clusters are rare objects, known as the largest virialized 
objects in the Universe, which, according to the current cosmological 
model, have formed through the hierarchical merging of smaller dark 
matter haloes. This merger scheme predicts the number of haloes 
of a given mass (halo mass function) for a given cosmology. An 
observational census of haloes thus provides a cosmological probe 
(e.g. Sheth & Tormen 1999 ; Despali et al. 2016 ). At the high mass 
end, the halo mass function is steep, meaning that clusters-size haloes 
have great leverage over the normalization of the mass function and 
are therefore powerful cosmological probes (Vikhlinin et al. 2009b ; 
! E-mail: rherbonnet@gmail.com (RH); adrian.crawford@virginia.edu (AC); 
cavestru@umich.edu (CA) 

Mantz et al. 2015a ; Dodelson et al. 2016 ; Bocquet et al. 2019 ; To et al. 
2021 ). For a re vie w on cluster cosmology see e.g. Allen, Evrard & 
Mantz ( 2011 ). 

A galaxy cluster census aims to determine both the number of 
clusters and their total masses to constrain cosmological parameters. 
Clusters can be detected in optical (Rykoff et al. 2016 ; Maturi 
et al. 2019 ; Aguena et al. 2021 ), millimetre (Bleem et al. 2020 ; 
Hilton et al. 2021 ), and X-ray observations (Vikhlinin et al. 2009a ; 
Liu et al. 2021 ). Halo masses are usually determined from the 
baryonic observables used to detect the clusters, but these have to 
be calibrated using unbiased mass estimators. Weak gravitational 
lensing has become the standard method for this correction (e.g. 
von der Linden et al. 2014 ; McClintock et al. 2019 ; Abbott et al. 
2020 ; Herbonnet et al. 2020 ; Schrabback et al. 2021 ; Lesci et al. 
2022 ). The gravitational potential of the cluster introduces a coherent 
distortion in the observed shapes of galaxies behind the cluster, 
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which is directly related to the mass of the cluster. Weak lensing 
is sensitive to all matter along the line of sight and thus measures 
the total projected mass. To relate this to the spherical o v erdensity 
masses of the halo mass function, spherical symmetry of the haloes 
is incorrectly assumed. Simulations have shown that weak lensing 
cluster masses are almost unbiased, but the random orientation 
of the cluster’s triaxial mass distribution introduces a ∼20 scatter 
(orientation bias), as well as contributions from large-scale structure 
along the line of sight (e.g. Meneghetti et al. 2010 ; Becker & Kravtsov 
2011 ; Giocoli et al. 2014 ; Meneghetti et al. 2014 ). 

The scatter due to projection effects in the weak lensing mass 
can be mitigated by using large samples, but only when the cluster 
detection is unaffected by projection. This is not the case for optical 
cluster finders (Dietrich et al. 2014 ; Sunayama et al. 2020 ) and to a 
lesser extent also for millimetre cluster finders (Shirasaki, Nagai & 
Lau 2016 ). Upcoming millimetre and optical surv e ys are projected 
to find tens of thousands of galaxies o v er almost a hemisphere in the 
coming decade. Projection effects will need to be addressed in order 
to reliably infer cosmology with galaxy clusters. 

One way to deal with projection effects is to model their effect 
on the relation between cluster observable and halo mass (e.g. 
Costanzi et al. 2020 ). Ho we ver, a practical estimator of the dark 
matter halo orientation could provide a way to select cluster samples 
truly representative of the whole population. In simulations of galaxy 
clusters it has been shown that central galaxies in clusters, also known 
as the brightest cluster galaxies (BCGs), grow through mergers with 
satellite galaxies, where the merger time-scale scales inversely with 
satellite mass. Therefore, central galaxies mainly merge with other 
central galaxies when their parent haloes merge (De Lucia & Blaizot 
2007 ). This manner of growth implies that BCGs accrete matter 
along the same infall direction as the parent halo, and the mass 
distributions of BCG and halo should have the same orientation. 
Indeed, central galaxies have been shown to be aligned with their 
cluster halo in simulations (e.g. Ragone-Figueroa et al. 2020 ; De 
Propris et al. 2021 ) and observations (e.g Donahue et al. 2016 ; 
Durret et al. 2019 ; Wittman, Foote & Golovich 2019 ). The extended 
envelope of stars around the BCG, called the intracluster light, is 
also a good tracer of the dark matter distribution (Montes & Trujillo 
2019 ). Multiwavelength observations have also indicated that galaxy 
clusters exhibit an alignment between the BCG, gas (from X-ray 
and millimetre), and weak lensing signatures (Donahue et al. 2016 ). 
Based on the expected alignment between the BCG and cluster halo, 
se veral observ ational studies have sho wn that the observed shape of 
the BCG, as a proxy for the orientation with respect to the line of 
sight, correlates to weak lensing mass (Marrone et al. 2012 ; Mahdavi 
et al. 2013 ; Gruen et al. 2014 ; Herbonnet et al. 2019 ). 

In this paper we investigate in detail the correlation between the 
shape and orientation of the BCG and those of the cluster halo in 
simulations, where both 3D orientations of mass distribution and 
the projected 2D shapes can be measured. We use the clusters 
from The300 project, which has simulated 324 clusters with full 
h ydrodynamical ph ysics (Cui et al. 2018 ). The large sample of 
clusters available in The300 is particularly important for our study. 
First, this is required for a precise measurement of the scatter in 
the weak lensing mass. Secondly, measuring shapes of objects is 
non-trivial, due to the proximity of nearby objects and the difficulty 
in establishing concrete boundaries to the extent of an object (see 
also Fig. 1 ). With a large sample we can remo v e objects with 
very uncertain shape measurements without affecting our results 
too much. 

In Section 2 we describe our data and methods, in Section 3 we 
look at the alignment between the BCG and cluster halo in three 

dimensions and how the orientation of both relates to weak-lensing 
mass measurements. We look at projected quantities of clusters in 
Section 4 , as this is what can be observed in the real Universe. In 
Section 5 we look at an alternative method to estimate the orientation 
of the BCG and we conclude in Section 6 . 
2  M E T H O D O L O G Y  
In this section, we present the data we use and the analyses we 
perform. 
2.1 Data: The300 project 
2.1.1 General: the simulated sample 
We use the most massive galaxy clusters found in the zoom-in 
simulated regions from The300. 1 Cui et al. ( 2018 ) fully details 
The300 Project, but we briefly describe the simulated sample here. 
Our sample is extracted from 324 regions built around the most 
massive clusters identified at z = 0 in the dark-matter-only MultiDark 
simulation (Klypin et al. 2016 ), specifically the Planck2 box. The 
parent simulation consists of a box with sides of comoving length 1 
h −1 Gpc, and contains 3840 3 particles each of mass 1.5 × 10 9 M $. 
The Planck2 box uses cosmological parameters from Planck Collab- 
oration XIII ( 2016 ) ( "m = 0.307, "b = 0.048, "# = 0.693, h = 0.678, 
σ 8 = 0.823, n s = 0.96). 

The300 consists of the zoom-in resimulations of these 324 La- 
grangian regions including full baryon physics. The mass range of 
The300 spans 6.4 × 10 14 M $ < M 200 c < 26.5 × 10 14 M $ at z = 0, 
where M 200 c is the mass within a cluster-centric sphere of radius 
R 200 c enclosing an average density that is 200 times the critical 
density of the universe. The resimulation of each cluster includes 
high-resolution particles within a spherical region of radius 15 h −1 
Mpc at z = 0, centred on the highest density peak of the main cluster. 
For the resimulation, the respective dark matter and gas particle 
masses are m DM = 12.7 × 10 8 h −1 M $ and m gas = 2.36 × 10 8 h −1 M $. 
The simulations have dark matter Plummer smoothing length of 
6.5 kpc h −1 . Outside the high-resolution regions, only dark matter 
particles at lower resolution are kept to properly trace the large-scale 
gravitational field. 

The300 project includes resimulations with three different ver- 
sions of hydrodynamic simulation codes with baryon models: 
Gadget-MUSIC, Gadget-X, and GIZMO-SIMBA (Cui et al. 2022 ). 
For this analysis, we use the resimulations generated with the 
smoothed-particle hydrodynamics scheme and baryonic implemen- 
tations in the full physics Gadget-X code (Rasia et al. 2015 ; Beck 
et al. 2016 ). The data set consists of 128 simulation snapshots saved 
between 0 ≤ z ≤ 17, and halo catalogues from the Amiga Halofinder 
(Knollmann & Knebe 2009 ). Even if the Lagrangian regions are large 
enough to contain other massive clusters, we only consider the most 
massive object in each region, with the exception of the few clusters 
that, at the considered redshift, were contaminated by low-resolution 
particles. In this work, we primarily use data from four snapshots 
summarized in Table 1 , z = 0.116 (snapshot 123), z = 0.220 (119), 
z = 0.333 (115), and z = 0.592 (107). These redshifts are roughly 
representative of the range found in cluster weak-lensing analyses 
(e.g. Abbott et al. 2020 ; Giocoli et al. 2021 ). Some studies target 
more distant clusters (e.g. Chiu et al. 2020 ; Schrabback et al. 2021 ), 
1 ht tps://the300-project .org 
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Figure 1. Top row: projected stellar density map from which we measured 2D BCG shapes. Full image on the left-hand side and zoomed in on the right-hand 
side. The black dashed lines show ellipses drawn using the properties of the contours at 96th, 88th, 80th percentile of the peak brightness in the image, from 
the image centre outwards, respectively. The red solid lines shows the ellipse drawn using the moment measurements. The white dotted line shows the ellipse 
corresponding to the Sers ́ıc model fit at the best-fitting half-light radius. The Sers ́ıc model is a good description of the shape of the fairly round BCG core, 
but fail to capture the more elliptical envelope of the BCG. The moments prefer a more elliptical shape because they are more sensitive to mass further from 
the centre. The contours provide a good estimate at the various radii. Bottom row: Same as top panel but showing an example where shape measurements are 
difficult due to nearby massive objects. Again the Sers ́ıc model describes the core well and are not affected too much by the neighbouring objects. The moments 
are very affected by the object in the lower left-hand side of the image, as is the largest contour. The smaller contours closer to the BCG centre are affected by 
the nearby objects. Our flagging routine identifies this cluster to have unreliable shape measurements in our analysis. 
but for our redshifts we can be sure that the shape of the BCG could 
be reliably measured in observations. 

Our analysis makes use of projected and 3D distribution of the 
stellar particles near the central regions of clusters associated with 
the brightest cluster galaxy (see Section 2.1.3 ), and the projected 
spatial distribution of all the particles in each galaxy cluster (see 
Section 2.1.2 ). Previous works have analysed and validated various 
components of the simulations, including galaxy properties (Wang 
et al. 2018 ), gas profiles (Mostoghiu et al. 2019 ; Li et al. 2020 ), 

and the dynamical states of the galaxy cluster sample (Capalbo et al. 
2020 ; De Luca et al. 2021 ). 
2.1.2 Data: Dark matter distribution 
For all clusters, we have their true total mass M 200 c computed by 
summing o v er all particle species (dark matter, stars, and gas). The 
3D shapes of the total cluster mass distribution, including gas, stars, 
and dark matter, were computed by Knebe et al. ( 2020 ) and we 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/2/2178/6566350 by U
niversity of M

ichigan user on 16 August 2023

art/stac997_f1.eps


BCGs trace mass bias and triaxiality 2181 

MNRAS 513, 2178–2193 (2022) 

Table 1. Summary of simulated galaxy clusters used in this analysis: 
snapshot number, corresponding redshift, and number of clusters with 
available 3D particle information. We bold our fiducial snapshot, 119, 
for which we use all 324 clusters with projected map images. 
Snapshot Redshift N 3d, clusters M 200, min/max 
123 0.116 320 (324) [23.0 × 10 12 , 2.2 × 10 14 ] 
119 0.220 316 (324) [7.7 × 10 12 , 1.9 × 10 14 ] 
115 0.333 315 (324) [12.0 × 10 12 , 2.1 × 10 14 ] 
107 0.592 281 (324) [9.3 × 10 12 , 1.6 × 10 14 ] 

use their results. We discuss their shape measurement method in 
Section 2.2.2 . 

Light rays passing by a galaxy cluster have their trajectories 
deflected due to the curvature of space–time. In this section, we 
briefly summarize the procedure adopted to derive the lensing 
properties of the clusters in our sample (Meneghetti et al. 2010 , 2014 , 
2020 ). We will give a more detailed description in a forthcoming 
paper (Meneghetti et al., in preparation). Given the relatively small 
size of galaxy clusters compared to the typical distances involved in 
gravitational lensing phenomena, we can assume that the deflection 
occurs on a plane, called lens plane. We begin by choosing an 
arbitrary axis passing through us (the observer) and perpendicular to 
the lens plane, and we compute the positions on the sk y relativ e to 
this axis. The lens equation relates the intrinsic and apparent angular 
positions, & β = ( β1 , β2 ) and & θ = ( θ1 , θ2 ), of a distant source lensed 
by the cluster: 
& β = & θ − & α( & θ) , (1) 
where & α( & θ ) is the deflection angle at position & θ . 

Let (( & θ ) be the cluster surface density at position & θ , obtained 
by projecting all particles on the lens plane. We can define the lens 
convergence as 
κ( & θ) = (( & θ ) 

( cr , (2) 
where 
( cr = c 2 

4 πG D S 
D L SD L (3) 

is the critical surface density, and D L , D S , and D LS are the angular 
diameter distances between the observer and the lens, the observer 
and the source, and the lens and the source, respectively. We obtain 
three convergence maps for each simulated cluster by projecting the 
masses of all particles along the simulation axes x , y , and z. We select 
the particles within a volume of depth 10 Mpc centred on the cluster 
centre, 2 producing maps of 6 × 6 Mpc. The line-of-sight depth was 
chosen because it fits within the spherical high-resolution volume. 
Becker & Kravtsov ( 2011 ) have shown that the weak-lensing mass 
bias and scatter do not change significantly if the depth was increased 
to 20 Mpc. 

The deflection angle can be expressed in terms of the convergence 
via a convolution integral: 
& α( & θ) = 1 

π

∫ 
d 2 θ ′ κ( & θ ′ ) & θ − & θ ′ 

| & θ − & θ ′ | 2 . (4) 
Thus, we can derive the components, α1 and α2 of the deflection 
angle & α( & θ ) at each position on the lens plane from the equation abo v e 
2 The cluster centre coincides with the minimum of the cluster gravitational 
potential well. 

using fast-Fourier-Transform methods (e.g. Press et al. 1992 ). Since 
these assume periodic boundary conditions, we remo v e the outer 
region of 1 Mpc surrounding the maps to limit numerical errors. 
Thus, the resulting deflection angle maps have a size of 5 × 5 Mpc, 
spatially resolved with 2048 × 2048 pixels. To a v oid shot noise 
due to particle discreteness, we apply a Gaussian smoothing with 
full width at half-maximum (FWHM) of ∼7 kpc to the convergence 
maps before computing the deflection angles. 

From the maps of the deflection angles, we derive the shear 
components γ 1 and γ 2 , defined as 
γ1 = 1 

2 
(

∂α1 
∂θ1 − ∂α2 

∂θ2 
)

, (5) 
γ2 = ∂α1 

∂θ2 = ∂α2 
∂θ1 . (6) 

In the weak lensing re gime, conv ergence and shear at the image 
position fully describe how the source shape changes because of 
lensing. F or e xample, circular sources are mapped on to elliptical 
images, whose major and minor axes have lengths 
a = 1 

1 − κ − γ
, (7) 

b = 1 
1 − κ + γ . (8) 

In the formulas abo v e, γ = √ 
γ 2 

1 + γ 2 
2 is the shear modulus. The 

source magnification is given by µ = [(1 − κ) 2 − γ 2 ] −1 . More 
generally, the measured ellipticity of a lensed source, given by e = 
( a − b )/( a + b ), provides an unbiased estimate of the so-called 
reduced shear, g = γ /(1 − κ). 

We calculate the critical surface density assuming a fiducial 
source redshift z s = 3, noting that weak lensing measurements 
that incorporate a true redshift distribution would require rescaling 
of these convergence maps. These maps provide projected surface 
density maps from which we derive projected halo shape and mass 
measurements (see Section 2.2.1 for more information). 
2.1.3 Data: regions containing the brightest cluster galaxy 
We analyse both the 3D stellar particle distribution and the projected 
stellar density maps from The300 centred around the cluster density 
peak. This peak is assumed as both the centre of the galaxy cluster 
and the BCG. 

To measure 3D shapes of the BCGs we use all the stellar particles 
within a sphere of radius 100 h −1 kpc around the cluster centre. Each 
particle has x , y , z coordinates and mass m . The 3D stellar particle 
data are only available for subsets of the 324 resimulated clusters 
at each redshift: 316 at our fiducial snapshot 119 at z = 0.220, 320 
at z = 0.116, 315 at z = 0.333, and 281 at z = 0.592, specified in 
Table 1 . 

The projected stellar density maps were constructed from a cube 
of 0.4 Mpc on a side, centred on the density peak, projected along the 
three main axes of the cube. Similar to the weak-lensing maps, these 
maps were also smoothed, using a Gaussian with FWHM of ∼2 kpc. 
The projected stellar mass maps are 0.4 × 0.4 Mpc 2 , larger than the 
3D data we used, allowing us to study the outer envelope of the BCG. 
There are three projections for each of the 324 resimulated clusters 
totalling to 972 projected stellar density maps at each redshift. 

There are two caveats to our analysis using the simulated data for 
direct comparisons with observations. The first is in the properties of 
simulated brightest cluster galaxies, and the second is in the difficulty 
of distentangling stars associated with the brightest cluster galaxy and 
the intracluster light. 
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First, we note that simulating realistic galaxies is difficult and 
properties of the simulated BCGs we study do not fully match 
properties of observed BCGs (Cui et al. 2018 ). Clusters from The300 
have central galaxies that are relatively more massive and bluer that 
those in observations. The differences come from difficulties in cap- 
turing microphysical processes with subgrid models. For example, 
the quenching of star formation at redshift z = 0 is not accurately 
reproduced, leading to bluer galaxies in the simulations (Cui et al. 
2018 ). Additionally, the projected images contain information of the 
projected stellar mass, integrated along the line of sight. The images 
do not correspond to flux or luminosity. Using the projected stellar 
density maps as a proxy for observations therefore implicitly assumes 
a constant mass-to-light ratio. Since our analysis is mostly concerned 
with the shape of the stellar light, the shape measurements are likely 
not heavily impacted with this assumption. 

Secondly, there is generally not a clear-cut distinction between 
stellar particles that comprise the BCG and the stellar particles 
that make up the intracluster light (ICL) in neither simulations 
nor observations (e.g. Cui et al. 2014 ). Additionally, the stellar 
components associated with the ICL in observations is usually 
difficult to see abo v e the noise because of its low surface brightness 
and observations more easily pick up the brightest stellar components 
that comprise the BCG (Zhang et al. 2019b ). While there are some 
methods to try to disentangle the BCG and ICL with dynamics 
(with phase space information in simulations; e.g. Ca ̃ nas et al. 
2020 ), observations find that the surface brightness indistinguishably 
embeds the BCG and ICL components (Kluge et al. 2020 ). The 
most straightforw ard w ay to approximate the BCG-ICL separation 
in simulations that is consistent with what observers might do is 
to use a radial cut. We therefore measure the shape of the stellar 
particle distribution at various radii to quantify the differences in 
stellar density shapes when the BCG likely encloses more or fewer 
stars that may be associated with the ICL. 

We also note that our construction of centring the stellar density 
maps on the cluster density peak assumes that the location of the 
BCG coincides with this definition of the cluster centre. While this 
typically holds for galaxy clusters in simulation, this is not al w ays 
the case in observed galaxy clusters since recent major mergers 
may displace the BCG, leading to oscillations about the peak of the 
potential (De Propris et al. 2021 ). 
2.1.4 Data: relaxation criteria for subselection 
The dynamical state of the clusters of The300 have been studied 
in a few works (Cui et al. 2018 ; Capalbo et al. 2020 ; Haggar 
et al. 2020 ; De Luca et al. 2021 ) and we use here a subsample 
of relaxed objects. Relaxed clusters refer to systems that have not 
undergone recent major mergers or periods of high accretion that 
drive components of the galaxy cluster further from dynamical or 
hydrostatic equilibrium. These clusters exhibit signatures that tend 
to correlate with equilibrium, such as in the shape of the o v erall halo 
(Faltenbacher et al. 2005 ; Kasun & Evrard 2005 ) or gas shape (Chen 
et al. 2019 ; Machado Poletti Valle et al. 2021 ), or the offset between 
X-ray gas centres and the centres of collision-less components such 
as the peak of the dark matter potential or the BCG (De Propris et al. 
2021 ). 

Ho we ver, the state of dynamical relaxedness is not a binary 
state, rather on a continuum; galaxy clusters continually accrete 
matter through filamentary structures. Typically, some thresholds 
of dynamical state indicators are chosen as the criteria for binary 
classification of ‘dynamically relaxed’. We use two sets of relaxation 

criteria, based on properties computed within R 200 c , to examine how 
the alignment between the BCG and halo depends on the subselected 
samples. 

The relaxed haloes are defined following De Luca et al. ( 2021 ): 
(1) the halo’s centre of mass is less than 0.1 R 200 c from the true centre 
( δx halo, CoM < 0.1 R 200 c ), and (2) the mass in substructures is less than 
10 per cent of the total halo mass within R 200 c ( f sub < 0.1 M 200 c ). 

For comparison we also defined a sample of relaxed clusters 
following Cui et al. ( 2018 ), with more stringent criteria: (1) the halo’s 
centre of mass is less than 0.04 R 200 c from the true centre ( δx halo, CoM 
< 0.04 R 200 c ), (2) the mass in substructures is less than 10 per cent of 
the total halo mass within R 200 c ( f sub < 0.1 M 200 c ), and (3) the virial 
ratio η = (2 T − E s )/ | W | is 0.85 < η < 1.15. Here, T is the total kinetic 
energy, E s is the surface pressure energy from both collision-less and 
gas particles and W is the total potential energy (Cui et al. 2017 ). We 
use the stricter definition of relaxation from Cui et al. ( 2018 ) as the 
default definition for relaxed clusters and denote it as relaxed C18. 
2.2 Measurements 
2.2.1 Measurements: weak lensing mass estimates 
We use weak lensing masses computed using the method described 
in Giocoli et al. ( 2021 ), and briefly outlined here. The convergence 
and shear maps described in Section 2.1.2 were used to construct 
weak-lensing observables for mock galaxies. The weak-lensing maps 
show a field of view of 5 × 5 Mpc 2 at the cluster redshift. We 
populate this field with mock galaxies and fill the field of view 
with circa 30 source galaxies per square arcmin, following a redshift 
distribution that peaks at z S ≈ 1. This roughly corresponds to the 
number of expected galaxies for cluster weak lensing with Euclid and 
the approximate redshift distribution of 3 observations (Laureijs et al. 
2011 ). Specifically, these simulations have been built using a Euclid - 
like source redshift distribution constructed using Euclid -like images 
of clusters from SkyLens (Plazas et al. 2019 ), rescaled to 30 galaxies 
per square arcmin. Note, a similar parametrization has been adopted 
in Boldrin et al. ( 2012 , 2016 ). For this analysis, we do not assume 
any redshift uncertainty for the background galaxy population and 
randomly assign a position to them in the considered field of view. 
The convergence and shear maps described in Section 2.1.2 are then 
rescaled from redshift z S = 3 to the considered redshift of the source 
galaxy. 

The source galaxies are then binned in 24 radial annuli around 
the cluster centre from a radius of 0.01 h −1 Mpc outwards. Shear 
uncertainties include shape noise contribution ( σ ε = 0.3) and the 
r.m.s. of the shear profile in the annulus. The binned tangential shear 
profiles were fit using the Baltz, Marshall & Oguri ( 2009 ) density 
profile, assuming a truncation radius r t set to 3 times R 200 c . The mean 
shear was fit only using bins with more than 10 galaxies. 

Mass ( M WL 
200 c ) and concentration ( C WL ) were free parameters of 

the model with flat priors from log 10 M WL 
200 c = 13 to 16, and from 

C WL = 1 to 10, respectively. The model was centred on the known 
cluster centre, and no miscentring terms were added to the model. 
Considering the limited field of view in which the clusters are 
located, we also neglect the 2-halo term in the modelling function 
(Giocoli et al. 2021 ). We tested this assumption and found negligible 
differences in the reco v ered weak-lensing quantities. 

3 http:// sci.esa.int/ euclid/ 
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2.2.2 3D shape measurements 
Shape measurements of mass distributions in simulations are gen- 
erally done using the moments of the particle distribution. The first 
three moments are, 
I 0 = ∑ 

n m n w n 1 , 
I 1 = ∑ 

n m n w n x n , 
I 2 = ∑ 

n m n w n ( x n ⊗ x n ) . (9) 
Here x n is the 3D coordinate column vector of the n -th particle, 
and x n ⊗ x n is the outer product of the two coordinate vectors. The 
origin of the coordinates is the true BCG centre. The mass of the 
n -th particle is m n and it is assigned a weight w n . The zeroth order 
I 0 moment gives the total mass; the first order moment vector I 1 
can be used to determine the centre of the particle distribution. The 
eigenvectors e of the second moment I 2 give the primary axes of the 
distribution and the square roots of the eigenvalues correspond to a 
> b > c , the axis lengths. 

Cluster cores are dense regions; a large number of galaxies are 
close to each other. Proximity of another galaxy strongly affects I 2 , 
as large values of | x n | dominate the contributions to the sum. To 
mitigate the effect of neighbours, we employ a radial top-hat weight 
function, so that w n = 1 if the radial distance to the centre is smaller 
or equal to r lim and w n is set to 0 beyond the limiting radius. We 
inv estigated sev eral limits: r lim = 25, 50, 75, and 100 h −1 kpc. We 
find that the choice of radial limit has no significant effect on our 
results (see Section 3.1 ). 

Knebe et al. ( 2020 ) uses another weight function for their measure- 
ment of the shape of the halo, which decreases with radius squared: 
w n = | x n | −2 . Ho we ver, this weighting highlights the core of the 
distribution, which is not necessarily the area of interest for galaxies 
since astrophysics complicates the galaxy cores often rounding the 
inner shape. We expect the outskirts of BCGs and the ICL distribution 
to be more aligned with the halo shape and accretion history of the 
cluster. Our selected weighting provides a more flexible approach by 
looking at different radii of interest. 

In addition, we attempt to flag such instances where a neighbour 
significantly affects the measured BCG shape. For this, we compute 
the first moment I 1 . All three components of I 1 will be zero if the 
distribution is completely symmetric around the centre, as we roughly 
expect for galaxy mass distributions. If the distribution is skewed 
along axis i , for instance due to a neighbouring galaxy, then I i will 
be large. We flag BCG shape measurements as contaminated if the 
norm of I 1 is larger than 0.1 R lim . 

The second moments matrix I 2 from the 3D data can also be used to 
find the 2D shapes for the mass distribution if its projected along any 
of the three axes of the simulation. By omitting those elements of the 
3x3 I 2 matrix corresponding to the axis along which we project, we 
can construct the 2x2 moments matrix for the projected image. Note 
that our star particles are within a sphere and therefore the projection 
depth is not uniform. More particles will lay on lines of sight going 
through the BCG centre. This may artificially bias these projected 
2D shapes to be more circular. The projected images described in 
Section 2.1.3 are a better imitation of observations and we use these 
to quantify the relation of BCG shape and weak-lensing masses. 

The shapes of the total mass distribution of the cluster haloes were 
determined by Knebe et al. ( 2020 ). All particles (dark matter, gas, 
and star particles) were used to compute the shapes and they used 
w n = 1 /r 2 n , where r n is the radial distance to the centre of the cluster. 

This emphasizes the core of the cluster o v er its outskirts, and we thus 
expect a stronger correlation of the halo shape to the shape of the 
BCG than for a shallower weight function. 
2.2.3 2D shape measurements 
We determine the shape from the projected images with three 
different methods as a cross-check. 

Isophote contours : We draw a contour at a fixed isophote using the 
PYTHON SCIKIT-IMAGE package 4 (Van der Walt et al. 2014 ), similar 
to some observational work (Huang et al. 2018a ; Montes & Trujillo 
2019 ). For the stellar density maps, we determine contour shapes 
at isophotes that correspond to a given percentile brightness with 
respect to the entire image of the stellar density map, ranging across 
the percentiles [80,98]. Here the 100th percentile corresponds to the 
densest peak in the map, and for an ideal galaxy density distribution 
that decreases monotonically with distance from the centre, lower 
percentile values would trace the shape of the galaxy further out. 
For a contour, SCIKIT-IMAGE has properties like its centroid and 
the lengths of its major axis a and minor axis b , from which we 
compute the axis-ratio q 2 D = b / a and the radius r 2 D = √ 

ab / 2. We 
enforce that the area enclosed by the contour must include the true 
BCG centre. Isophotes at fixed brightness percentile will not be at 
the exact same physical radial distance for each projected cluster. 
We therefore define the conversion from a brightness percentile to a 
physical scale as the median of the distribution of radii of all clusters. 
The medians range from 55 to 200 kpc for the brightest contour to 
the dimmest contour we measure. The spread in physical values 
corresponding to each contour is than 5 per cent for the innermost 
contour and 10 per cent for the outermost contour. 

Image moments: We compute the image moments for the pro- 
jected image using equation ( 9 ), where instead of particles of a mass 
m n we now have pixels of the convergence map. The value of the 
pixel at coordinate x n is used instead of m n in the equation for the 
second moment. The eigenvalues of the second moments allow us 
to determine the 2D axis-ratio q 2 D , similar to the measurements 
we perform in 3D. We employ a uniform weight function w n = 
1, emphasizing the contribution of the outskirts of the BCG. We 
compute image moments for both the stellar density and κ maps. 

Sers ́ıc profile fits: We fit an elliptical Sers ́ıc profile to the projected 
stellar density maps using GALFIT (Peng et al. 2011 ), mimicking 
some observational work (Durret et al. 2019 ; Herbonnet et al. 2019 ; 
Wittman et al. 2019 ; Zhang et al. 2019b ). The free parameters of the 
Sers ́ıc profile are the amplitude, the half-light radius R e (the radius 
containing half of the total flux), and the Sers ́ıc index n , as well as the 
position angle and axis-ratio. We do not mask any parts of the image 
and use uniform weighting. We found that implementing a mask did 
not change the resulting shape estimates much on average. 

In Fig. 1 we show the resulting shape measurements for two dif- 
ferent projected stellar mass maps. The right-hand panels correspond 
to the central patch of the left-hand panels, magnified by a factor of 
2. The white ellipse shows a contour of the Sers ́ıc model, the red 
ellipse is based on the moments measurements and the black ellipses 
are based on the properties of the contours at the 80th, 88th, and 96th 
percentile. The higher percentile values trace the matter closer to the 
BCG core. The Sers ́ıc model traces the core of the BCG, showing 
that the GALFIT chi-square minimization is dominated by the dense 
centre of the BCG. Moments follow the mass distribution at larger 
radii, as expected because the weight function is uniform. 
4 ht tps://scikit -image.org 
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In practice, substructure within the BCG mass distribution or 
nearby other galaxies will affect the measured shape, as can be seen 
in the bottom row of Fig. 1 . The bottom left-hand panel illustrates a 
case where shapes of both the largest contour and the moments are 
dominated by the object in the lower part of the image ∼200 kpc 
from the centre, which is not part of the BCG. The bottom right-hand 
panel illustrates how the smaller contours closer to the centre can be 
affected by neighbours. The centroid of the largest black dashed 
ellipse is notably far from the image centre, where we assume the 
true BCG is located. In contrast, in the top row of Fig. 1 the contour 
centroids are very near to the centre. 

We use centroid offsets to flag instances where the shape mea- 
surement is unreliable due to neighbouring objects, such as those 
illustrated in the bottom panel of Fig. 1 . For a more reproducible 
flag for observers, who do not know the true BCG centres, we set 
the centroid of a small contour as a proxy for the ‘observed’ BCG 
centroid, selecting the centroid of the 96th percentile isophote as a 
default. Note that we found little difference when instead using the 
98th percentile isophote contour. We then compute the offset of the 
centroid of a larger contour x i to our ‘observed’ BCG centroid x 96 , 
where the subscript is labelled by the percentile value of the isophote. 

We then use the value of the offset normalized by the radius 
of the larger contour, R i , which we denote as 0 x i , 96 . We found 
that the distributions of normalized centroid offsets is extremely 
similar regardless of the choice of contours. These distributions all 
had a long tail, where all shape measurements were heavily affected 
by neighbouring objects. We only keep shape measurements where 
0 x i , 96 < 0.2, or the centroid of the contour is no more than 20 per cent 
of its radius away from the ‘observed’ BCG centre. A value of 0.2 cuts 
off most of the long tail and visual inspection revealed that below 
0.2 most shape measurements were fine. We found that moments 
and Sers ́ıc shape measurements perform similarly to contour shape 
measurements (see the discussion in Section 4.2.1 ). We therefore 
use the same flagging routine based on contour measurements for 
the other two methods. 

Finally, we also use the contour method on the convergence maps 
to determine the projected shape and orientation of the dark matter 
halo at R 200 c . For this, we compute contours at several isophotes in 
the convergence maps and use the contour whose radius was closest 
to R 200 c . 
3  SHAPE  C O R R E L AT I O N S  IN  3 D  
In this section, we quantify the alignment between the 3D mass 
distribution of the BCG and the underlying dark matter halo in 
324 clusters from ’The Three Hundred Project’. Then we assess 
how the alignment relates to the weak lensing mass bias and varies 
as a function of mass and redshift in our sample. To quantify the 
correlation between variables, we compute the Spearman correlation 
with PYMCCORELLATION 5 and its uncertainty with 1000 bootstraps. 
This package implements the Monte Carlo error analysis procedure 
described in Curran ( 2014 ). Privon et al. ( 2020 ) provides analysis 
with the first use of the package described. 
3.1 Quantifying the BCG–halo alignment 
To determine the BCG-halo alignment from 3D data, we first compute 
the second moments for the stellar particles from the region described 
in Section 2.1.3 . We determine the vector of the major axis a of the 
5 https://github.com/privong/pyMCspearman 

Figure 2. Distribution of the angles between the major axis halo and the 
major axis of the BGC in degrees and the cosine of this alignment angle 
for clusters in The300 simulations. This is shown for a sample of relaxed 
clusters according to the criteria of Cui et al. ( 2018 ) in blue and for a sample 
of clusters with BCG shape measurements deemed unbiased by neighbours 
(good). The number of clusters in each sample is shown in parentheses in 
the legend. The clusters are taken from a snapshot at z = 0.22 and a limiting 
radius of r lim = 50 kpc was used to compute the BCG shape. Short vertical 
lines (around cos( α) ∼ 0.95) show the median for each sample. The grey 
shaded area show the 25th to 75th percentile of the distribution of alignment 
angles for randomly oriented vectors to guide the eye. Both samples have 
BCGs preferentially aligned with their host haloes. 
stellar particle distribution, e BCG 

a , and the corresponding vector for 
the major axis of the halo, e halo 

a . 
The alignment between the halo and the BCG is quantified by the 

angle between the major axes of both distributions, which we call 
the (mis)alignment angle, α. We define α as, 
α = arccos (∣∣e halo 

a · e BCG 
a ∣∣). (10) 

To quantify effects on projected measurements, we also compute 
the inclination angle for both the BCG and the dark matter halo 
distribution. We define the inclination angle of a mass distribution as 
the angle between the line of sight and the major axis of that mass 
distribution. The inclination angle of the BCG is then 
θBCG = arccos (∣∣e LOS · e BCG 

a ∣∣), (11) 
where e LOS is the normalized vector along the line of sight. We 
similarly calculate the inclination angle of the halo. 

In Fig. 2 , we show the alignment angle α between the major axis 
of the BCG and the major axis of the halo for the z ≈ 0.22 snapshot 
(119) for the limiting radius r lim = 50 kpc. We show the cosine of 
the alignment angle because for random orientations of BCG and 
halo cos( α) is an approximately flat distribution, whereas α would 
be highly skewed. Of the 316 clusters for which we have stellar 
particle data, we show in red 289 clusters, as 27 clusters were flagged 
according to the routine described in Section 2.2.2 . A subselected 
sample of 45 relaxed clusters according to the criteria from Cui et al. 
( 2018 ) is shown in blue. We indicate the median angle of orientation 
of each population with same-colour ticks along the x-axis. 

For the entire distribution of unflagged clusters, we find that the 
orientations of the BCG and the halo are preferentially aligned with 
a median angle of ∼20 degrees (cos α = 0.94 denoted with the red 
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Figure 3. Bias in the weak lensing mass as a function of the inclination angle of the halo particles (left-hand panel) and the BCG stellar particles (right-hand 
panel) for three projections of clusters at z ≈ 0.22. The mass bias M WL 

200 /M 200 is shown on the right-hand y-axis and the log 10 of the mass bias is shown on 
the left-hand y-axis for both plots. Clusters oriented along the line of sight are at cos( θLOS ) ≈ 1 and clusters oriented along the plane of the sky at cos( θLOS ) 
≈ 0. The black dotted line indicates the mean mass bias for all clusters. Coloured lines with errorbars show the mean and uncertainty on the mean in bins of 
inclination angle for the same selections of clusters as in Fig. 2 , with the number of clusters in each selection noted in the legend in parentheses. There is a clear 
relation between the inclination angle and mass bias in both panels. As a quantification the legend notes the Spearman correlation Sp for each selection. For 
clarity, only some data points are shown with errorbars coming from the weak-lensing mass estimate. Note, we limit the range of the y-axis to zoom in on the 
mean behaviour of the trends shown with the bands; this omits 37 data points from the plot. 
solid line). This value is in agreement with other studies (Okabe et al. 
2020 ; Ragone-Figueroa et al. 2020 ). For the 45 relaxed, unflagged 
clusters (cyan line) the median alignment angles is lower: 12 degrees. 
For the De Luca et al. ( 2021 ) relaxation criteria, which do not have the 
additional constraint of the virial ratio parameter, the median angle 
is ∼14 degrees for 85 clusters. The decrease in alignment illustrates 
that BCGs in relaxed clusters tend to be relatively more aligned with 
their host halo when compared to the entire population. 

Since the orientation of a very spherical or oblate ( a ∼ b ≥ c ) 
object is ill-defined, we also looked at a subset of clusters where 
both the halo and the BCG have b / a > 0.9. For these 238 clusters we 
find no significant change compared to the entire unflagged sample. 

We looked at the alignment angle for different choices of the 
limiting radius r lim for the BCG shape measurement and found no 
significant difference between them. On average, the halo is aligned 
with the BCG at radii from 25 to 100 kpc. 
3.2 Weak lensing mass bias 
The assumption of a spherical halo mass profile for the triaxial halo 
leads to a scatter in the weak lensing mass around the true mass 
(Meneghetti et al. 2010 , 2014 ). We explore this orientation bias by 
examining the relation of the weak lensing mass bias with inclination 
angle. In the left-hand panel of Fig. 3 we find for our cluster sample 
that the direction of the halo major axis is a strong indicator of 
the bias, in line with results from other studies (e.g. Henson et al. 
2017 ). On average clusters masses are o v er or underestimated by 
∼20 per cent, depending on the inclination angle. The mean relation 
does not change significantly if only relaxed clusters are selected. A 
more detailed analysis of the weak-lensing masses will be described 
in Giocoli et al. (in preparation). We find that the scatter in the 
weak lensing masses about the true cluster mass is 23 per cent in 
our simulated sample (20 per cent for relaxed clusters). On the other 
hand, the scatter about the mean relation between halo mass and 
halo inclination (shown as the coloured lines in Fig. 3 ) is 15 per cent 

(11 per cent for relaxed clusters), a relatively tighter scatter. This 
shows that halo orientation information can lead to more precise 
weak-lensing mass estimates. 

From Fig. 2 , we see that the BCG and halo major are preferentially 
aligned. We now investigate the correlation between the BCG and 
weak lensing mass bias. In the right-hand panel of Fig. 3 , we again 
see a clear trend between the inclination angle and bias. Ho we ver, 
the relation is shallower than for the halo shape, due to the imperfect 
alignment between halo and BCG. The two cluster samples have 
similar mean relations, but the relaxed sample shows a stronger 
correlation with a Spearman correlation coefficient Sp = 0.57, a 
similar value to the correlation between halo orientation and mass 
bias. This is likely due to the stronger alignment between halo 
and BCG for relaxed clusters. The scatter about the mean relation 
between halo mass and BCG inclination is 17 per cent (11 per cent 
for relaxed clusters). This now highlights the potential how BCG 
information might mitigate the statistical uncertainties in cluster 
masses, which again is 23 per cent (20 per cent for relaxed clusters) 
in our sample. 
3.3 Variation with cluster mass and redshift 
There is evidence that the mass and the elongation of a cluster halo 
are correlated, with lower mass clusters being on average more 
spherical (Despali, Giocoli & Tormen 2014 ; Henson et al. 2017 ; 
Okabe et al. 2020 ). We looked at the axis-ratio b / a of the halo and 
the BCG as a function of redshift and mass. In agreement with these 
works, we find that haloes become more elongated for higher masses, 
although the effect is very small, consistent with no trend within the 
uncertainties. Over the full mass range the mean axis-ratio 〈 q halo 〉 = 
0.80 ± 0.08 decreases by only ∼0.04. BCGs are more elongated on 
average than their haloes with an axis-ratio 〈 q BCG 〉 = 0.74 ± 0.10, but 
get slightly rounder with increasing cluster mass: 〈 q BCG 〉 increases 
∼0.04. Similar trends are seen for both haloes and BCGs for clusters 
at redshifts z = 0.116, 0.333, 0.592. 
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Figure 4. Both panels show the relation between the inclination angle of the BCG and the axis-ratio of the projected BCG stellar mass distribution. Colours 
indicate the ratios q = b / a (left-hand panel) and s = c / a (right-hand panel) of the full 3D mass distribution. There is a clear trend between inclination angle and 
2D axis-ratio for the elongated q 3D ≤ 0.75 and s 3D ≤ 0.75 BCGs, but at larger values of q 3D there is more scatter. 

To check if our results depend on cluster mass we divided the 
clusters in to four bins with approximately equal number of clusters. 
We find that the weak lensing mass bias is lower for the least massive 
clusters, and the other mass bins are consistent with each other and 
the full sample. Ho we ver, the relations between weak-lensing mass 
and inclination angle for both the halo and BCG are qualitatively 
the same for all mass bins: the weak lensing mass bias increases 
when the inclination angle decreases from 90 degrees to 0 degrees. 
We do not see a significantly shallower slope or different Spearman 
correlation strength for the lowest mass bin. Note, massive clusters 
still comprise the lowest mass bin, as there are very few groups in 
the simulated sample. 

We repeated our analysis for other snapshots of the simulated 
cluster regions, at redshifts z = 0.116, 0.333, 0.592, in addition to 
our analysis at the fiducial z = 0.221. We find no significant change 
with redshift in the relations shown in Fig. 3 . 
4  PROJEC TED  SHAPE  C O R R E L AT I O N S  
4.1 BCG inclination and projected shape relationship 
The inclination angle of the BCG provides a direct link to the 
weak-lensing mass bias, but it cannot be measured by observers 
and a projected observable is required. Naturally, the ellipticity 
and orientation of a distribution of particles in 3D is correlated 
to the ellipticity projected to 2D. For a prolate spheroid a > b = 
c , a projection along the major axis results in a round 2D shape, 
and a projection along any of the two minor axes would show 
an elliptical 2D shape, with the ellipticity increasing going from 
θ = 0 to 90 degrees. In Fig. 4 we compare the 3D observables 
measured within 50 kpc to the 2D axis-ratio q 2 D , the only parameter 
available for observers, for all unflagged BCGs. We use the method 
described in Section 2.2.2 to calculate the 2D axis-ratio from the 3D 
data. In the left-hand panel, the trend we have described is clearly 
exhibited by the yello w-bro wn ( q 3D < 0.75) data points. At b / a > 
0.75 this trend is still there, but there is also more scatter in the 
data points. Quantitatively, the elongated BCGs (those with q 3D < 
0.75) have more correlation between the observed shape q 2D and the 
inclination angle θBCG 

LOS with a Spearman correlation coefficient of 
∼0.76, compared to the intrinsically spherical BCGs (those with q 3D 
> 0.75), which have a coefficient of ∼0.15. Intuitively, this is to be 

expected. Spherical objects ( a ∼ b ∼ c ) will al w ays look round in 
projection regardless of the inclination angle and introduce scatter at 
q 2D > 0.9. Oblate spheroids ( a ∼ b > c ) will look elliptical in 2D when 
projected along the major axis and remain elliptical when rotating 
the LOS towards the medium axis b , but will appear increasingly 
rounder when rotating the LOS towards the minor axis c . As such, 
they produce an opposite trend to prolate spheroids. This behaviour 
is most notable for the blue ( a ∼ b ) data point in the bottom right 
of the left-hand panel at cos( θ ) = 1, which appears to be elliptical 
in projection. In the right-hand panel this BCG is shown to have a 
small c / a , thus it is an oblate spheroid. 

The BCGs will likely not be perfectly spherical, prolate or oblate, 
but their triaxial mass distributions ( a > b > c ) will tend towards 
any of these three. The right-hand panel of Fig. 4 shows that the 
simulations contain no spherical BCGs as s 3D < 0.9 for all BCGs. 
We find that the large majority of our BCGs are prolate spheroids, 
249 out of the 316 BCGs have b closer in value to c than to a . This 
is consistent with the observational study by Fasano et al. ( 2010 ). 

Therefore, when observing an elliptical BCG (in 2D), it is very 
likely that it is in fact an elongated BCG (in 3D) oriented roughly in 
the plane of the sky. Note, if observing a round BCG (in 2D), the BCG 
may either be truly round (in 3D) or elongated with its semimajor 
axis aligned with the line of sight. The latter is more likely, given the 
predominance of prolate BCGs. 
4.2 Projected BCG shapes 
In an ideal case, the projected shape of the BCG holds information 
of the inclination angle. In this subsection, we examine BCG shapes 
measured from the projected stellar density maps. These shape 
measurements are more in line with measurements an observer could 
make. Since substructures in the stellar density map might alter 
the measured shape of the BCG, we employ three different shape 
measurements as a consistency check with methods described in 
Section 2.2.3 . 
4.2.1 Shape measurement comparison 
We show the comparison between our three shape measurement 
methods in Fig. 5 , which shows the Spearman correlation strength be- 
tween shapes from either the image moment measurements (dashed 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/2/2178/6566350 by U
niversity of M

ichigan user on 16 August 2023

art/stac997_f4.eps


BCGs trace mass bias and triaxiality 2187 

MNRAS 513, 2178–2193 (2022) 

Figure 5. Consistency between 2D BCG shape measurement methods: 
Spearman correlation strength between the BCG shape measured with either 
the Sers ́ıc profile fit (solid lines) or the unweighted moments (dashed lines) 
and the 2D BCG shape measured at different contour percentiles as a function 
of the median radial size of the shape measurement. The blue lines indicate 
measurements for the entire sample, and orange for the subset of images 
in the lowest quartile of centroid offsets measured between the 80th and 
96th percentile contours. Top axis label shows the corresponding brightness 
percentile defining the contour at which we measure the BCG shape. Shape 
measurements that enclose more of the BCG (lower percentile contours) 
better correlate with shapes measured with the unweighted moment method. 
Shape measurements focused on the centre of the BCG (higher percentile 
contours) better correlate with shapes measured with the Sers ́ıc profile fit. 
Note, measurements for all contours at 95th percentile isophote and larger 
only include BCGs where the contour shape measurement satisfies our quality 
flag. 
lines) or the Sers ́ıc fits (solid lines) and the shape from a isophote 
contour, as a function of the isophote contour percentile. We show 
the percentile value on the top x-axis labels and the corresponding 
median radius of that percentile contour on the bottom x-axis labels. 
The blue lines show the correlation for the shape measurements 
when calculated for the galaxies passing the quality cut. For the 96th 
and 98th percentile isophote contours, where our quality flag 0 x i , 96 
is undefined, the blue line shows measurements for all BCGs. The 
shaded region illustrates the 16–84 percentile error. The Spearman 
correlation strength between different BCG shape measurement 
methods varies between ∼0.4, which is a moderate correlation, and 
∼0.7, a strong correlation. The largest contour shape measurements 
( r ≈ 100 kpc) strongly correlate with the image moment shape 
measurements. 

In Table 2 , we summarize the correlation strengths between BCG 
contour shape measurements methods at percentiles p = [80, 88, 96]. 
We show the Spearman correlation for different selections: clusters 
with unflagged shape measurements, a quarter of the clusters with 
the lowest normalized centroid offset 0 x 80, 96 , and relaxed clusters 
according to the De Luca et al. ( 2021 ) and the Cui et al. ( 2018 ) 
criteria. 

Fig. 5 quantifies the behaviour visible in the two examples of Fig. 1 . 
Sers ́ıc models (solid lines) tend to have small half-light radii because 
the fit is dominated by the massive BCG core. Sers ́ıc derived shape 
measurements therefore mostly describe the shape of the BCG core. 
Hence, the correlation between q 2D, Ser and q 2D, con (solid blue line) is 
strongest for the smallest contours. On the other hand, unweighted 
moments (dashed lines) are sensitive to all mass in the image and 
mostly to masses at large radii from the centre (see equation 9 ). 
This relationship leads to a similar performance between the image 

moment shape measurements and the shape measurements from the 
largest contours. Both trace the mass far from the centre, and thus 
the correlation Sp ( q 2D, mom , q 2D, con ) (dashed blue line) is strong for 
the biggest contours. 
4.2.2 Shapes compared to observations 
Despite the difficulty of simulating realistic central galaxies, simu- 
lations are able to reproduce stellar mass profiles fairly well (Ardila 
et al. 2021 ). Ho we v er, as a consistenc y check we compare our 
measured shapes to values found in observations. The range of axis 
ratios in observations is ∼0.4 −1.0 (Fasano et al. 2010 ; Marrone 
et al. 2012 ; Herbonnet et al. 2019 ). We find that our measured BCG 
shapes are on average more elliptical, likely due to our choice in 
shape measurement method. The unweighted moments have a range 
of q 2D similar to observations and a median at q 2D ≈ 0.65. Contour 
measurements result in more elliptical values, from q 2D ≈ 0.3 to 1.0, 
with a median at ≈0.45. But, we emphasize that Fig. 5 shows that rank 
ordering is preserved between moments and contours. The Spearman 
correlation between the moments and contour shape measurements is 
strong, showing that both will measure more elliptical distributions 
as having smaller values of q 2 D relative to the entire sample. The 
exact value of q 2 D is less relevant to our analysis, as we are most 
interested in how the shape measurement scales with weak lensing 
mass. 
4.2.3 An optical relaxation selection: min 0 x 80, 96 
Naively, we would expect different shape measurement methods to 
be more consistent with one another for the most relaxed clusters, 
which have a minimum of massive substructures (Lauer et al. 2014 ; 
Golden-Marx et al. 2022 ). As a proxy for this in projected stellar 
density space, we checked whether a stricter cut on the centroid offset 
would further impro v e the correlation illustrated in the blue lines in 
Fig. 5 . We find that keeping only a quarter of the data with the smallest 
0 x 80, 96 consistently led to stronger correlations. These are shown as 
the orange lines in Fig. 5 . At all radii this cut largely impro v ed 
the Spearman correlation strength between shapes measured using 
moments and contours. Ho we ver, the Sers ́ıc measurements do not 
show the same increase in correlation strength using this stricter 
selection. The Sers ́ıc fits mainly trace the shape of the BCG core and 
are mostly unaffected by mass far from the BCG centre, to which 
0 x 80, 96 is sensitive. 

We moti v ate the selection of clusters whose centroids are least 
offset from one another as a proxy to relaxation criteria that are only 
available in 3D data of simulations. Clusters whose inner and outer 
contour centroids are least offset will tend to be clusters whose outer 
contour measurement is not disrupted by substructures and whose 
centre of mass roughly sits at the peak of the light distribution. 

Given that the 80th percentile contour most strongly correlates 
with the image moment measurements and that the 96th percentile 
contour closely surrounds the peak of the light distribution, we 
can consider min ( 0 x 80, 96 ) to be a light proxy of the relaxation 
criteria identified using δx halo, CoM and f sub (see Section 2.1.4 ). This 
offset measurement is somewhat sensitive to both, given that an 
abundance of substructures outside the centre will impact the shape 
measurement at larger contours. Note, our 2D selection criterion has 
some o v erlap with the relaxation criteria in 3D; since substructures 
outside of centre can shift the centroid of the 80th percentile contour 
away from the centroid of the 96th percentile contour, the 2D 
selection criterion likely identifies some clusters with high values of 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/2/2178/6566350 by U
niversity of M

ichigan user on 16 August 2023

art/stac997_f5.eps


2188 R. Herbonnet et al. 

MNRAS 513, 2178–2193 (2022) 

Table 2. Table of Spearman correlations ( Sp ) between measured projected quantities at various percentile isophotes ( p ), which correspond to different 
radii from the BCG centre ( r ). This radius was obtained as the average over all clusters in the selection. q BCG is the axis-ratio of the contour at percentile 
p , and q mom 

BCG and q Ser 
BCG are the axis-ratios measured using the moments and Sers ́ıc fits, respectively. The subscript halo indicates contour measurements of 

the halo at R 200 c and o denotes the projected orientation. The number of clusters in each selection at each percentile isophote are shown in the last column. 
Selection p 〈 r 〉 [kpc] Sp( q con 

BCG , q mom 
BCG ) Sp( q con 

BCG , q Ser 
BCG ) Sp ( q BCG , M WL / M ) Sp ( q BCG , q halo ) Sp ( o BCG , o halo ) Clusters 

95 48 . 2 + 4 . 0 −2 . 0 0.50 ± 0.03 0.47 ± 0.03 0.10 ± 0.03 0.38 ± 0.03 0.13 ± 0.03 935 
Good 88 76 . 2 + 3 . 8 −2 . 3 0.59 ± 0.03 0.46 ± 0.03 0.14 ± 0.04 0.40 ± 0.04 0.20 ± 0.03 798 

80 99 . 2 + 3 . 4 −3 . 1 0.68 ± 0.02 0.41 ± 0.03 0.17 ± 0.03 0.42 ± 0.04 0.27 ± 0.03 757 
95 49 . 0 + 1 . 8 −1 . 3 0.57 ± 0.05 0.45 ± 0.06 0.21 ± 0.06 0.43 ± 0.07 0.24 ± 0.06 243 

(min( 0 x 80, 96 ) 88 76 . 9 + 2 . 6 −1 . 4 0.68 ± 0.04 0.37 ± 0.06 0.24 ± 0.06 0.45 ± 0.07 0.29 ± 0.06 243 
80 99 . 0 + 3 . 0 −2 . 5 0.71 ± 0.04 0.35 ± 0.06 0.29 ± 0.06 0.45 ± 0.07 0.26 ± 0.06 243 
95 48 . 6 + 3 . 1 −1 . 8 0.49 ± 0.05 0.45 ± 0.06 0.23 ± 0.06 0.47 ± 0.06 0.20 ± 0.06 271 

Relaxed DL21 88 76 . 6 + 2 . 3 −1 . 9 0.58 ± 0.05 0.45 ± 0.06 0.32 ± 0.06 0.56 ± 0.06 0.26 ± 0.06 230 
De Luca et al. ( 2021 ) 80 99 . 4 + 2 . 8 −2 . 6 0.67 ± 0.04 0.39 ± 0.06 0.32 ± 0.06 0.54 ± 0.07 0.30 ± 0.06 225 

95 48 . 8 + 2 . 2 −1 . 8 0.42 ± 0.07 0.52 ± 0.07 0.26 ± 0.07 0.58 ± 0.08 0.16 ± 0.08 144 
Relaxed C18 88 76 . 6 + 2 . 3 −1 . 8 0.51 ± 0.07 0.49 ± 0.07 0.35 ± 0.08 0.63 ± 0.08 0.31 ± 0.07 132 
Cui et al. ( 2018 ) 80 99 . 6 + 3 . 1 −2 . 9 0.63 ± 0.06 0.37 ± 0.08 0.33 ± 0.08 0.66 ± 0.08 0.34 ± 0.09 130 

δx halo, CoM and f sub . Specifically, we found that min ( 0 x 80, 96 ) exhibited 
respective Spearman correlation strengths with f sub and δx halo, CoM of 
0.3 and 0.23, respectively. We note that the 3D relaxation criteria 
are measured at much larger radii than our contours, so are not an 
exact proxy of one another. In fact, the correlation strength becomes 
negligible for 3D relaxation parameters measured at r 200 c . But, many 
of the objects selected by our 2D criterion are objects also excluded 
by the De Luca et al. ( 2021 ) and Cui et al. ( 2018 ) criteria; respectively, 
74 per cent and 86 per cent of the objects excluded by our 2D criterion 
would have been excluded by the De Luca et al. ( 2021 ) or Cui et al. 
( 2018 ) selection. Our 2D criterion identifies ∼40 per cent of the 
relaxed clusters identified by either De Luca et al. ( 2021 ) and Cui 
et al. ( 2018 ). We also note that correlations between the BCG shape 
and the weak lensing mass bias also strengthens when we subselect 
clusters whose centroids of the 80 and 96th percentiles are least 
offset. We further discuss the relationship between BCG shape and 
the weak lensing mass bias in Section 4.3 . 
4.2.4 Relation between BCG shape and halo shape 
We expect most of the BCG accreted stars to be deposited in the 
BCG outskirts (e.g. Oogi & Habe 2013 ). Hence, the outskirts should 
be more informative of the clusters assembly history. Indeed, we find 
that the axis-ratio of larger contours correlate more strongly with the 
shape of the projected mass density of the whole halo on scales of 
∼R 200 c . We show the Spearman correlation strength as a function of 
BCG radius in Table 2 . In all four cluster samples, the correlation 
between the BCG and the halo grows stronger with increasing radius 
for both the axial ratio and the orientation. We therefore conclude 
that moments and large contours provide the most useful estimates 
of the BCG + ICL shape in tracing the underlying halo distribution. 
4.3 Correlation between BCG shape and weak-lensing mass 
In Fig. 6 we show the Spearman correlation strength between 
the weak-lensing mass bias and the axis-ratio measured from the 
contours at different isophotes. The red solid line shows the results for 
all cluster projections (which pass the shape quality cut) and shows 
a very weak correlation between mass bias and BCG shape. The 
quartile of the cluster projections with the smallest offset between 
the centroids of the 80th and 96th percentile isophotes, min( 0 x 80, 96 ) 
(green dashed line) has a more moderate correlation at all radii, 

Figure 6. Spearman correlation strength between the weak lensing mass 
bias and the 2D BCG shape measured at different contour percentiles as a 
function of the median radial size of the shape measurement. Top axis label 
shows the corresponding brightness percentile defining the contour at which 
we measure the BCG shape. Shape measurements that enclose more of the 
BCG (lower percentile contours) better correlate with the weak lensing mass 
bias. Each line corresponds to a different measure of ‘relaxedness’ including 
a selection of the clusters whose 80th and 96th percentile contour centroids 
are the least offset. Relaxed cluster subsamples have stronger correlations 
between their weak lensing mass bias and 2D BCG shape. 
exhibiting a slight upward radial trend. The relaxed clusters according 
to the De Luca et al. ( 2021 ) (orange dotted line) and the Cui et al. 
( 2018 ) criteria (blue dash-dotted line) show the strongest correlation 
between BCG shape and weak-lensing mass bias. All selections 
show a stronger correlation with increasing radius, supporting our 
hypothesis that the BCG envelope is a better indicator for the BCG 
orientation, and thus the halo orientation, to which the weak-lensing 
signal is sensitive. 

We tested how various choices in centroid offset criteria impacted 
the correlation between the BCG shape measurement and the weak 
lensing mass bias. We found that the choice of 0 x 80, 96 selects clusters 
whose outer BCG shape best correlate with the weak lensing mass 
bias. The effect is analogous to the selection using 3D relaxation 
criteria, but is not as stringent. 

We show the correlation between the BCG shape around 100 kpc 
(at the 80th percentile isophote) and the weak lensing mass bias 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/2/2178/6566350 by U
niversity of M

ichigan user on 16 August 2023

art/stac997_f6.eps


BCGs trace mass bias and triaxiality 2189 

MNRAS 513, 2178–2193 (2022) 

Figure 7. Mean weak lensing mass bias as a function of the axis-ratio of 
the 80th percentile isophote contour of the projected BCG mass distribution. 
Lines show the mean mass bias in seven bins of q 2D, BCG , and the errorbars 
and the shaded regions show the uncertainty on the mean mass bias. The 
colours denote the same samples as in Fig. 6 . The horizontal lines shows the 
mean weak-lensing mass bias for each sample in the same colour. Relaxed 
clusters show the largest correlation between measured BCG shape and mass 
bias. 
in Fig. 7 . The data was binned into eight axis-ratio bins with 
approximately equal numbers of clusters. The coloured lines show 
for three of the selections in Fig. 6 the mean weak-lensing mass 
bias in bins of the BCG axis-ratio, and the uncertainty on the mean. 
The horizontal dashed lines show in the same colour scheme for 
each selection the average weak lensing mass bias. For the full 
sample (red) the average bias 〈 M WL 

200 /M 200 〉 ≈ −3 . 5 per cent and 
≈−2.5 per cent for the other selections. 

Compared to the average weak lensing mass bias, there is a clear 
trend for each selection that the bias is underestimated for elliptical 
BCGs and o v erestimated for round BCGs. Ho we ver, the Spearman 
correlation strength ( Sp = 0.17 ± 0.03, shown in the legend) is weak 
for the full sample in red. The sample of relaxed clusters are shown 
as the blue dash-dotted line and have a larger, but still only moderate 
correlation of Sp = 0.33. The relaxed clusters according to De Luca 
et al. ( 2021 ) show a very similar behaviour to the blue dash-dotted 
line. The selection based on 0 x 80, 96 in green performs similar to the 
relaxation criteria. For the highest axial ratio bin, the green and red 
lines show a slight decrease in mass bias compared to the o v erall 
upward trend. This dip is due to spherical BCGs with large values of 
q BCG, 2D whose weak-lensing mass estimates are not as high due to 
cluster orientation (see also Section 4.1 ). 

The scatter about the mean relation of the whole measured sample 
shown in the red solid line in Fig. 7 is 19 per cent. BCG shape 
information alone provides a moderately tighter scatter compared 
with the 23 per cent scatter of weak lensing masses about their true 
mass. F or relax ed clusters, the scatter about the relation shown as 
the blue dash-dotted line in Fig. 7 is 15 per cent, also a moderately 
tighter scatter compared with the 20 per cent of weak lensing masses 
about their true mass. 

These results imply that observations of relaxed samples of clusters 
might exhibit the trend between BCG shape and weak-lensing mass 
bias. Therefore, measurements of the BCG shape could impro v e 
mass constraints of relaxed clusters. BCG shape measurements may 
not be as indicative of the weak-lensing mass bias in samples that 

include a larger number of disturbed systems. Optical proxies of 
relaxation, similar to the simple 0 x 80, 96 used here, could be useful 
in identifying subsamples where the BCG shape and weak-lensing 
mass bias trend is stronger. Finally, the relationship between observed 
outer BCG shape and the halo orientation suggests an indicator 
for quantifying selection bias in observations. For example, if the 
majority of observed BCGs in a sample are fairly round, the sample 
may be biased with a preferential selection for clusters that are 
oriented along the line of sight. In this case, we e xpect an y weak- 
lensing masses for this sample to bias high compared with the true 
masses. 
5  PROJ ECTED  BCG  MASS  DI STRI BUTI O N  
Another possible indicator of BCG orientation is the concentration 
of mass (or light for observers) in the core compared to the outskirts 
(Giocoli et al. 2014 ). When a mass distribution is viewed along its 
major axis, it will have more mass projected along the line of sight 
than when viewed from other angles. When viewed along the minor 
axis, the least amount of mass is projected into the centre of the 
observed distribution. Here we investigate if the concentration of 
mass, i.e. the projected mass in the core of BCGs compared with 
the total stellar mass, correlates with weak lensing mass bias. Since 
there is no definition of the total extent of BCGs we instead use the 
mass within 100 kpc as an estimate of the total mass. Huang et al. 
( 2018a ) show that the mass within 100 kpc is a decent estimate of 
the total mass of a central galaxy. We look at both our 3D stellar 
particle data and our 2D projected stellar mass maps to compute the 
projected stellar mass. 
5.1 Projected stellar mass concentration 
In this section, we examine the relationship between the projected 
stellar mass concentration and BCG orientation. To calculate the 
projected stellar mass concentration, we project our spherically 
selected BCG stellar particles along each of the three main axes 
of the simulation box. For each projection, we then select circular 
apertures of fixed physical radii and sum the mass of all BCG particles 
within the cylinders. No weights are applied to the particles. 

Note, the described procedure likely underestimates projection 
effects. We project the 100 kpc sphere containing BCG particles, 
and exclude stellar particles outside of the r = 100 kpc radius. 
Hence, projected annuli corresponding to the outer regions of our 
BCG contain fewer particles than if the projection were of fixed 
depth at all apertures. Additionally, we do not tailor the circular 
apertures to individual BCG mass distributions, which are not al w ays 
round in projection. We therefore expect projection effects to be 
underestimated and thus we only use the spherically selected BCG 
stellar particle data to highlight the connection between the projected 
stellar mass distribution and the orientation of the BCG. 

We select the 867 BCGs whose 3D shape and orientation mea- 
surements were not flagged as contaminated (see Section 2.2.2 ). 
Fig. 8 shows the relation between the concentration of stellar mass 
of the BCG and the inclination angle of the BCG θBCG 

LOS . We define 
projected stellar mass concentration as the projected stellar mass 
within a circular aperture of 25 kpc divided by the projected stellar 
mass within 100 kpc. The latter is, by construction, all spherically 
selected BCG stellar particles for each cluster. The inclination angle 
is calculated using 3D image moments based on all particles within 
a 100 kpc radius. 

As expected, less spherical BCGs (lower values of q BCG, 3D or 
s BCG, 3D , sho wn in bro wn) sho w the most significant trend between 
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Figure 8. Both panels show the relation between the inclination angle of the BCG and the ratio of projected stellar mass in a circular apertures of radii 25 and 
100 kpc. Colours indicate the ratio q = b / a (left-hand panel) and s = c / a (right-hand panel) of the full 3D mass distribution. There is a clear trend between 
inclination angle and mass concentration for the most elongated q 3D ≤ 0.7 and s 3D ≤ 0.7 BCGs, but at larger values of q 3D there is more scatter. 
concentration and inclination angle. BCGs with q BCG, 3D < 0.7 have 
a stellar mass concentration of ∼0.4 at cos( θBCG 

LOS ) = 0 which rises to 
almost 0.6 at cos( θBCG 

LOS ) = 1. There is more mass in the inner 25 kpc 
when an elongated BCG is viewed along its major axis than when it is 
viewed along its minor axis. However, for more spherical BCGs (i.e. 
q BCG, 3D > 0.7 and s BCG, 3D > 0.6), the relation between concentration 
and inclination angle exhibits a wider scatter. For these objects the 
difference between a and b , c is too small to lead to an observable 
effect. 

In conclusion, the BCGs with the lowest observed concentration, 
so with relatively more mass in their outskirts compared to the core, 
will likely not be oriented along the line of sight. BCGs with most of 
their mass in the inner 25 kpc are likely fairly spherical and could have 
any inclination angle. Given the trend between BCG concentration 
and orientation for more elongated BCG, we may expect to see a 
relation between mass concentration and weak-lensing mass bias. 
We explore this possibility in the following subsection. 
5.2 Correlation concentration and weak-lensing mass 
To quantify the relation between the projected stellar mass concen- 
tration and the weak lensing mass bias, we use the 2D projected 
stellar mass maps. Unlike the 3D particle data, these maps have a 
uniform depth of 400 kpc o v er the entire image. We use the contour 
measurements described in Section 2.2.3 to capture the projected 
shape of the galaxy and sum up the mass within a contour to compute 
the projected stellar mass. 

The left-hand panel of Fig. 9 shows the mass enclosed in the 80th 
percentile isophote contour M contour, 80 per cent and the mass enclosed in 
the 98th percentile isophote contour M contour, 98 per cent for 757 BCGs 
with 0 x 80, 96 < 0.2. First, we binned the data into four bins according 
to the weak lensing mass bias. Each bin contains a quarter of the total 
number of projected clusters, approximately 190 projections each. 
Then, for each quartile of the data we bin the data into five bins of 
M contour, 80 per cent with equal numbers of projections in each bin. We 
compute the median of M contour, 98 per cent in each bin and show the 
result as the coloured lines in Fig. 9 . The shaded areas show for each 
line the 16–84 percentile confidence interval in M contour, 98 per cent . 

In this plane of M contour, 80 per cent and M contour, 98 per cent more con- 
centrated BCGs would lie to the right at fixed M contour, 98 per cent , or 
would lie low at fixed M contour, 80 per cent . Given the relation seen in 
Section 5.1 , we expect clusters with high weak-lensing mass bias 

to be very concentrated and hence lie on the right-hand side of the 
distribution. Ho we ver, there is no distinct behaviour for the four mass 
bias bins, they are all consistent with each other. Different choices of 
bins did not change this result, nor did the selection of relaxed haloes 
with either of the two relaxation criteria. The absence of a trend is 
probably due to the large scatter seen in Fig. 8 . The scatter washes 
out any trend that the most elongated BCGs would show between 
weak-lensing mass bias and concentration. 

In the right-hand panel of Fig. 9 we show the same plot, but here 
the coloured lines represent bins in true halo mass M 200 c . There 
is a trend that higher mass haloes (e.g. blue dashed line and band) 
preferentially have less concentrated BCGs (e.g. lower normalization 
than the brown dotted line and band); more of the mass is in their 
outskirts. This relation was explored in depth by Huang et al. ( 2018b , 
2020 ) in observations and simulations. Physically, we expect the 
most massive systems to still be forming. At these late times, BCGs to 
accrete mass in their outer envelopes. The mass distribution of BCGs, 
quantified by their projected stellar mass concentration, reflects the 
mass assembly of the cluster. The consistency between observations 
and the different simulations supports this physical picture. 

Qualitatively the results in Fig. 9 did not change with the adoption 
of a sample of relaxed clusters. We note that our 98 per cent isophote 
contour is much larger than the 10 kpc used by Huang et al. ( 2020 ). 
We also looked at higher percentile isophote contours, such that we 
computed the projected stellar mass within a smaller radius, and 
found very similar results to Fig. 9 . 

For our sample of simulated clusters the concentration of mass 
in BCGs is not a good informant on the mass bias in weak-lensing 
analyses. The stellar mass distribution can nevertheless be a useful 
tool for cluster studies in optical wavelengths as a proxy for total 
halo mass. 
6  C O N C L U S I O N S  
Using the full hydrodynamical resimulated clusters of ’The Three 
Hundred Project’ we studied the mass distributions of galaxy clusters 
and their central galaxy, also known as the brightest cluster galaxy 
(BCG). We investigate how the BCG and halo are related and how 
the BCG can inform weak-lensing studies, which aim to accurately 
estimate the mass of the halo. 

We looked at the alignment between the BCG and the mass 
distribution of the cluster as a whole. We find that the BCG and the 
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Figure 9. Projected stellar mass within the 80 per cent isophote M contour , 80 per cent , an estimate of the total stellar mass of the BCG, and the 98 per cent isophote 
contours M contour , 98 per cent , an estimate of the stellar mass of the core of the BCG. The coloured lines show the median behaviour of clusters in four bins in 
weak-lensing mass bias (left-hand panel) and halo mass (right-hand panel). While there is no visible trend for mass bias there is a trend in halo masses. More 
massive haloes tend to also have less centrally concentrated stellar mass distributions in their central galaxy, as seen in upper-rightward separation of halo mass 
bins. 
cluster are preferably aligned with on average ∼20 degrees between 
the major axes (Fig. 2 ). Relaxed clusters are more tightly aligned for 
the two relaxation criteria we studied here. Both are based on cluster 
properties only available to simulators and it remains to be seen how 
observational relaxation criteria perform. 

The halo-BCG alignment forms the core assumption for the use of 
the BCG as an indicator of weak-lensing mass bias. In addition, we 
only employ geometrical arguments to relate observable properties 
of the BCG to the orientation of the halo. This alignment between 
central galaxy and host halo has been shown by many different 
authors for different simulations (e.g. Dong et al. 2014 ; Tenneti et al. 
2015 ; Velliscig et al. 2015 ; Okabe et al. 2018 ; Ragone-Figueroa 
et al. 2020 ). Despite the difficulties in simulating realistic BCGs with 
properties similar to observations, the fact that different simulations 
with different physics implementations all show the preferential 
alignment between the BCG and halo supports the idea that this 
is a physical phenomenon in galaxy clusters. We also note that an 
e x ercise of masking subhaloes in the simulations would impro v e the 
3D shape measurements and accomplish stronger correlations the 
correlation between the BCG shape and weak-lensing mass. 

The triaxial mass distribution of clusters introduces a scatter 
in the estimated weak lensing mass, which generally assumes a 
spherical mass distribution (e.g. Giocoli et al. 2012 ). The simulated 
clusters show a direct correlation between weak lensing mass and 
the orientation of the halo with respect to the line of sight. Due to 
the alignment of BCG and halo, the same correlation is seen for the 
BCG orientation (Fig. 3 ). Relaxed clusters have the same Spearman 
correlation strength whether the BCG or the halo inclination is used 
as proxy for the mass bias. 

We find that most BCGs in the simulation are prolate spheroids. 
For prolate objects the inclination of the major axis to the observer 
determines the observed shape projected along the line of sight. 
Hence the BCG shape informs the observer on the BCG orientation, 
and therefore the orientation bias in the weak-lensing mass. We 
determined projected BCG shapes and measured the correlation 
with the weak lensing mass (Figs 6 and 7 ). Because BCGs are not 
perfect prolate spheroids, the correlation is relatively weak. Relaxed 
clusters show the strongest correlation. This is likely due to the 
tighter alignment between BCG and halo, as we do not find that 
BCGs in relaxed clusters are more perfect prolate spheroids than in 
other clusters. 

Observ ational e vidence for correlation between BCG shape and 
weak lensing-mass has been mostly for X-ray selected cluster 
samples (Marrone et al. 2012 ; Mahdavi et al. 2013 ; Herbonnet et al. 
2019 ). These samples likely contain more relaxed clusters. A cool 
core in clusters is a likely indicator of relaxedness and because of 
their high X-ray luminosity, they are preferentially detected in X-ray 
observations. Our results are in line with this hypothesis. However, it 
is encouraging that Gruen et al. ( 2014 ) also found a relation for their 
12 clusters selected based on millimetre wavelength observations. 
The correlation signal identified in our work is relatively moderate. 
Our work supports the premise that BCG information, such as that 
indicated in Fig. 7 , could be used to benefit weak-lensing mass 
constraints of relaxed clusters for work such as Mantz et al. ( 2022 ). 

Note, we use dark matter criteria to identify relaxed clusters 
from 3D criteria. While there are observational proxies for these 
parameters, e.g. X-ray peak-BCG position offset as a proxy for x off 
and the magnitude gap as a proxy for f sub , these do not necessarily 
have a one-to-one correspondence with the dark matter criteria and 
are often dif ficult observ ational measurements to make. Ho we ver, 
our tests on our 2D proxy for relaxation based on centroid offsets 
are potentially applicable to observations, depending on the impact 
of noise in observed images. We acknowledge these as additional 
limitations in linking simulation-based conclusions to what can be 
extracted from or applied to observ ations. Ho we ver, we note that 
some observational relaxation criteria, e.g. the SPA criteria in X-ray 
observations, subselect ∼ 10 − 15 per cent of cluster samples to be 
relaxed Mantz et al. ( 2015b ). 

A second possible observable tracer of BCG orientation is the 
distribution of stellar mass in the galaxy. There should be a difference 
in projected mass in the BCG core when projecting along the major 
axis or the minor axis. We computed the projected concentration 
of stellar mass as the total mass within a small aperture divided by 
the total mass of the BCG. We find that the concentration of mass 
in BCGs is not a good informant on the mass bias in weak-lensing 
analyses. Nevertheless, we reproduce the results of Huang et al. 
( 2020 ) and found that the BCG mass concentration does correlate 
well with the true halo mass (Fig. 9 ). It can therefore still be a valuable 
tool for weak-lensing studies. 

As cluster samples will grow in the coming years with new 
optical, X-ray, and millimetre surv e ys going online, there is increased 
pressure to control systematic uncertainties (e.g. Sartoris et al. 2016 ). 
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Projection effects can introduce large selection biases in cosmolog- 
ical cluster studies based on weak-lensing mass estimates (Abbott 
et al. 2020 ; Sunayama et al. 2020 ; Zhang & Annis 2022 ). Optical 
observations have a wealth of information, which is currently not 
fully utilized by weak-lensing studies, instead relying on assumptions 
of sphericity for large enough samples of clusters. Although galaxy 
cluster physics is not fully understood, there are observables with 
simple relations to the underlying dark matter halo. Our work has 
showed that the BCG can be an indicator for orientation bias in weak- 
lensing masses. Alternatively, the distribution of satellite galaxies 
also traces the halo mass distribution (e.g. Velliscig et al. 2015 ; 
Ragone-Figueroa et al. 2020 ; Gonzalez et al. 2021 ; Shi et al. 2021 ) 
and might be combined with the BCG shape for a better proxy of 
cluster orientation. We leave potential studies to future work. 

Determining a cluster’s central galaxies is standard practice and 
hence almost al w ays available for weak-lensing studies. The BCG 
therefore provides a cheap way for studies of relaxed clusters to 
impro v e their precision and accuracy . Unfortunately , the galaxy 
determined as the central is not al w ays the true central galaxy (e.g. 
Zhang et al. 2019a ), and this miscentring will wash out the correlation 
to the halo inclination. The upcoming multiwavelength large-area 
surv e ys can provide more than just mass-observable scaling relations, 
but also accurate cluster centres and reliable central galaxy candidates 
(George et al. 2012 ). A full combination of available data will provide 
the best way towards to tightest cosmological constraints. 
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