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Abstract— Modularized sparse identification (M-SINDy) is de-
veloped in this paper for effective data-driven modeling of
the nonlinear transient dynamics of microgrid systems. The
high penetration of power-electronic interfaces makes microgrids
highly susceptible to disturbances, causing severe transients,
especially in the islanded mode. The M-SINDy method realizes
distributed discovery of nonlinear dynamics by partitioning a
higher-order microgrid system into multiple subsystems and
introducing pseudo-states to represent the impact of neighboring
subsystems. This specific property of the proposed algorithm is
found to be very useful while working with re-configurable and
scalable microgrids. The governing equations of the subsystems
are identified through regression by mapping the nonlinear
system’s data to a linear system in a large functional space.
The effectiveness of the M-SINDy method is tested and validated
through numerical examples and comparisons with other existing
identification models on a typical islanded microgrid. The method
can simultaneously compute the governing equations of different
subsystems and is examined to be robust to measurement noises
and partial observations. This paper highlights the advances of
data science in providing a potent tool for modeling and analyzing
higher-order nonlinear microgrid systems. Dynamic discovery
of system transients from measurements can be beneficial for
designing control strategies that improve the overall microgrid
stability and reliability.

Index Terms— Sparse identification, Modularized design, Data-
driven modeling, Distributed energy resources (DERs), Micro-
grids, Transient dynamics, Psedo-states.

I. INTRODUCTION

M ICROGRIDS are self-sufficient energy systems that
can provide a reliable power supply and enable better

interconnection between multiple renewable energy resources
[1], such as wind generation, photovoltaic, energy storage
systems, etc [2]. It can be defined as a group of interconnected
loads and distributed energy resources (DERs) that act as a
single controllable entity [3]. They can operate in parallel
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with the main grid or as an autonomous island by controlling
the DERs with power-electronics interfaces. Thus, microgrids
have the flexibility to operate in different modes based on
the distribution network and/ or economic requirements. The
transient dynamics of microgrid needs to be investigated for
the planning and operation of the system control structure as
the operation modes of a microgrid are significantly different
from that of a traditional power system.

The transient dynamics of microgrids are typically studied
by modeling the system as a set of differential algebraic equa-
tions (DAEs) [4], [5]. While the system topology to develop
the steady state algebraic constraint is easily obtainable, it is
rather difficult to develop a high-fidelity model that represents
the transient dynamics of the different DERs, and loads
connected in the system. Also, online calibration of the control
parameters in a large-scale system with high dimensions
poses additional challenges. New DERs are integrated into
existing microgrids to improve the overall system performance
and support increased load requirements. The addition of
new components to an already convoluted microgrid requires
modification of the existing DAEs. These modifications in the
physical system necessitate the development of new model
equations.

With the latest advancements in the power industry, opera-
tional time series data can be easily obtained. The abundance
of data over time can be exploited to develop a data-driven
model which has the flexibility to be modified as needed. The
time series data can be corrupted by external noise. Thus, it is
essential for the identification method to be robust to external
noises.

The characteristics of a system that is being identified can be
categorized based on multiple factors. The dynamic behavior
of a system can be distinguished as linear and non-linear
system based on its differential state equations. Certain iden-
tification techniques can be employed if the various functions
that define the differential state equations are sparse in the set
of all possible functions. Some identification techniques may
depend on both the state variables data and the output variables
data. The dimensionality of the data obtained from the system
is also very crucial to develop a data driven identification
technique. The ability of the identification model to adapt
to system changes in real time is also crucial. Based on
this discussion, typical examples of data-based identification
techniques from various literature are summarized below.

Identification of linear systems: The subspace method is a
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classic example that uses input and output data for identifying
linear time-invariant systems [6]. Its attractive features can be
listed as the ability to model multiple-input multiple-output
systems with a simple parametrization and present robust
non-iterative numerical solutions [7]. However, this method
is limited to linear dynamical systems and cannot be extended
to nonlinear systems, such as a complex microgrid. Dynamic
mode decomposition with control (DMDc) [8] is also capable
of using high dimensional data for system identification. This
method also works with the assumption of linear dynamics
and cannot provide a good fit for non-linear identification.

Identification of non-linear systems: A typical method using
Koopman operator is employed for non-linear system identi-
fication. This method converts the nonlinear system so that
it can be represented in terms of linear functions. Koopman
theory in combination with DMDc [9] has seen a lot of devel-
opments in recent years. A model-free method using Koopman
operator approximation has been proposed in [10] for power
system models. A linear approximation of the nonlinear system
independent of state variables is obtained using this method.
This method has various advantages relating to stability studies
[11] and trajectory prediction [12]. But, it is designed to be
employed for offline applications due to its computational
complexity. Non-linear models based on machine learning
concepts, i.e. neural network based system identification [13],
[14], are also becoming increasingly popular with the advances
in computing power [15], [16]. Model predictive control along
with deep reinforcement techniques [17], [18] yield precise
results in the large data limit. A combination of a binary tree
algorithm with nonlinear autoregressive with exogenous input
identification has been discussed in [19] for modeling nonlin-
ear loads in power systems. However, machine learning and
deep learning based algorithms often do not result in closed-
form expressions that are easy to interpret. Another common
challenge with these algorithms arise from the overfitting issue
[20].

Considering the sparse nature of the equations describing
the power system models, sparse sampling and dimensionality
reduction based method has been studied to characterize and
model the nonlinear dynamical systems in [21]. This method
has the capability to correctly identify the dynamical parameter
regime and reconstruct the full state dynamics. Sparse iden-
tification of nonlinear dynamics (SINDy) has been proposed
in [22]–[25]. This algorithm can utilize high-dimensional data
without having to bear the ill effects of overfitting. SINDy
with control was also developed as a sustainable alternative for
the online identification of non-linear dynamics in response to
rapid system changes [26]. It has been found that this method
can adapt to new test cases in real time and identify a model
which is robust to external noises. Despite the promising
approach of these methods to identify the nonlinear transient
dynamics, scaling to higher dimensional models increases
the computational cost and effort significantly. Inspired by
the aforementioned studies, this paper focuses on extending
the concept of SINDy to develop a modularized SINDy
(M-SINDy), which can identify the nonlinear dynamics of
microgrids with reduced computational effort. The novelty
of this paper are listed below:

(1) Modularized SINDy (M-SINDy) algorithm has been de-
veloped which can significantly improve the computa-
tional efficiency while studying higher order microgrid
models. The entire system is broken into multiple sub-
systems which can run parallelly with a smaller compu-
tational effort. This method also introduces the concept
of pseudo-state variables that has the ability to represent
multiple state and output variables and largely reduce the
dimensionality of the system. This method proves to be an
extremely useful tool while modeling adaptive microgrids
with re-configurable structures.

(2) A data-driven model is developed to identify the nonlin-
ear transient dynamics of microgrids, originally described
by DAEs. The developed algorithm can model the mi-
crogrid dynamics in the form of Ordinary Differential
Equations (ODEs). The effectiveness of the proposed
algorithm has been numerically verified in the paper.

(3) The paper also investigates the robustness of M-SINDy
algorithm with noisy measurements and partial system
observations. It discusses and demonstrates that the ef-
fective selection of candidate functions for M-SINDy is
vital to extend the algorithm for online applications and
development of system controls.

The remainder of this paper is organized as follows. Section
II introduces the proposed M-SINDy method and explains the
concept of pseudo-state variables. It also includes derivations
corresponding to the theoretical modeling of the microgrid
DAEs. Section III details the steps required to implement
the proposed algorithm. Numerical examples are provided in
Section IV to verify the effectiveness of the proposed method
with multiple test cases. Comparison results with a commonly
used identification technique are also described in this section.
Conclusions and future work are discussed in Section V.

II. MODULARIZED SPARSE IDENTIFICATION (M-SINDY)
FOR MODELING NONLINEAR DYNAMICS

The essential idea of M-SINDy is to partition a large-
scale nonlinear dynamical system into small-scale subsystems
without sacrificing the model accuracy by accounting for the
unused states with the help of pseudo-state variables. The
pseudo-state variables are introduced to represent the impact
of the neighboring subsystems. The algorithm is used to
identify the governing equations of the subsystems through
the measurement data obtained from the physical system [27],
[28]. The distribution system’s operating data is available in
abundance as a result of the widely installed advanced meter-
ing infrastructure. M-SINDy can be parallelly implemented
on these subsystems to discover their non-linear transient
dynamics. The method is developed based on the fact that
the governing equations are sparse in a high dimensional
functional space, i.e., only a few relevant terms are used to
determine each subsystem.

A. Transient Modeling of Nonlinear Microgrids

Transient stability refers to the ability of power generation
units in a microgrid to remain synchronized under credible
disturbances. Transient dynamics of microgrids are mainly
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governed by the variations in Distribution Energy Resources
(DERs) and loads. The averaged model is used to the represent
the corresponding power-electronic interfaces of the DERs.
The transient dynamics of the microgrid model can be mathe-
matically described by a set of differential-algebraic equations
(DAEs) [1],

ẋ(t) = f
(
x(t),y(t),u(t)

)
, (1a)

0 = g
(
x(t),y(t),u(t)

)
, (1b)

where x ∈ Rn is the state variable vector, e.g., state variables
in the controller of DER power-electronic interfaces, y ∈ Rm

is the algebraic variable vector, e.g., bus voltage amplitude
and angle, and u ∈ Rp represents the input variations/
disturbances, e.g., power output fluctuation of PV and power
load changes. The specifics of the microgrid model used in
this paper is provided in the appendix.

In power systems, the network power flow serves as a
constraint of the overall system’s transient dynamics. Thus,
the overall system can be represented as a set of complicated
ordinary differential equations (ODE) which includes the alge-
braic constraints i.e. the algebraic part shown in Eq. (1(b)) can
be visualized as a constraint of Eq. (1(a)) and can be merged
to form a set of complicated ODEs. In order to derive this
comprehensive ODEs from the original DAEs, we obtain the
time series Taylor expansion of Eq.1(b) as,

0 =
∂g

dt
∆t+

1

2
· ∂

2g

dt2
∆t2 +O(∆t3), (2)

To theoretically obtain a continuous time differential equation
for the overall system, we can consider a high sampling rate
with a very small value for the ∆t. Thus, the higher order
∆t terms can be ignored from the Taylor series expansion to
obtain Eq. (3) which can be further expanded to form Eq. (4).

∂g(x(t),y(t),u(t))

dt
= 0 (3)

∂g

∂y(t)
ẏ(t) +

∂g

∂x(t)
ẋ(t) +

∂g

∂u(t)
u̇(t) = 0 (4)

Eq. (4) can be rewritten to compute the differential form of
the algebraic variables y(t) as,

ẏ(t) = −
( ∂g

∂y(t)

)−1( ∂g

∂x(t)
ẋ(t) +

∂g

∂u(t)
u̇(t)

)
(5)

From the perspective of microgrid modeling, ∂g
∂y in Eq. (5)

represents the network admittance matrix, which is typically
a non-singular matrix. The work in [29] provides additional
details to justify this statement.

ẏ(t) = h(x(t),y(t),u(t)) (6)

ż(t) = [f(t),h(t)] (7)

ż(t) = F(z(t),u(t)) (8)

The ż(t) in Eq. 8 represents the overall differential equations
of the microgrid system where z(t) = [x(t) y(t)]. Thus, we
can conclude that the transient dynamics of the microgrid can
be modeled as an ODE without loss of generality, since the
algebraic constraint in Eq. (1(b)) has been absorbed into the
differential part.

State And Output Variables Data of the Test 
System 

Subsystem I

Grouping The System 
Based On the Topology 

Pseudo states 
To Represent 
Subsystem II 

Subsystem IIPseudo states 
To Represent 
Subsystem I 

State Variables

Output  Variables

Pseudo State 
Variables

 

Fig. 1. Pictorial representation of M-SINDy algorithm for system identifi-
cation

B. Preparing Data for Identifying the Governing Equations
using M-SINDy

The basic idea behind the proposed modularized data-driven
modeling algorithm is illustrated by Fig. 1, in which the iden-
tification of two subsystems is given as an example. The first
step towards modularized identification is to prepare the time
series data of the state variables, algebraic variables and input
disturbance variables. zj(t) ∈ Rq represents the measurement
of the state and algebraic variables (z(t) = [x(t),y(t)]) per-
taining to the subsystem j. This data is collected using a high
resolution measurement system and can be used to compute
the vector derivatives, żj(t) analytically or numerically. In this
work, żj(t) ≈ ∆zj

∆t is used to approximate the numerical
values of the derivatives that represent the overall modified
ODE of the original microgrid DAE. Here, ∆t is the sampling
time. Additionally, the data of the induced disturbances, i.e
uj(t), is collected in order to define the pool data which is
built based on the candidate functions defined specifically for
the microgrid system.

The measurement data of the module sampled over the given
time period t = [t1, t2, · · · , tk] can be organized as shown in
Eq. (9). Here, Xj represents the time series values of each
variable in the subsystem at individual time instances t =
t1, t2, · · · , tk and zTj (t1) = [z1(t1) z2(t1) · · · zq(t1)].
The time series data of the pseudo-state variables, vj(t) ∈ Rl

is shown by vT
j (t1) = [v1(t1) v2(t1) · · · vl(t1)]. Corre-

spondingly, the derivatives Ẋj can be computed to perform
the modularized sparse regression for system identification.

The X represents the time series measurements collected
for performing the system identification. It includes x(t),y(t)
and v(t). The x(t) represents the state variables in the model.

Xj =

zTj (t1) zTj (t2) · · · zTj (tk)

vT
j (t1) vT

j (t2) · · · vT
j (tk)


T

(9)

In microgrids, the system’s state variables (x(t)), bus volt-
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age magnitudes and phase angles (y(t)), and line currents
(v(t)) can be measured to build the data matrix for system
identification. The authors recommend using the line currents
as pseudo-state variables since the current over the distribution
feeders reflect the impact of neighboring subsystems.

The transient dynamics are driven by the input disturbances
and the data regarding these disturbances, applied at different
time intervals, can be prepared as

Uj = [uj(t1) uj(t2) · · · uj(tk)]
T (10)

The proposed modular design of the system identification
enables focus on the variables corresponding to the subsystem
of interest. The other subsystems can be reduced to only hold
the value of the pseudo-states, e.g., the current flowing through
the bus connecting the subsystems. This pseudo-state variable
can be used in addition to the subsystem’s states to represent
the overall system. The method is advantageous as it can
perform subsystem specific study and minimize the overall
computational effort.

C. Establishing Non-linear Candidate Functions

The objective of sparse identification is to map the non-
linear dynamics of the microgrid system to a set of candidate
functions with linear coefficients using regression. The non-
linear state equations corresponding to the transient dynamics
of the original system can be converted into a high dimensional
linear functional space. The library of candidate functions to
realize this can be formulated as,

Θ(Xj,Uj) = [ 1 Xj Xj
P 2

· · ·
sin(Xj) cos(Xj) Uj XjUj · · ·
sin(Uj) cos(Uj) · · · Xj sin(Xj) · · · ]

(11)

The candidate functions to identify the transient dynamics
of a microgrid model is chosen according to Eq. (11) based
on,

• The microgrid transient dynamics is dependent on the
variations in the loads connected to the system. The
complex ZIP [30] power load models are non-linear in
nature due to the quadratic terms of bus voltages and line
currents.

• The inverter control equations of the DER are defined in
the dq framework and the conversion of frames from abc
to dq model involves sinusoidal functions.

The pool data matrix is defined such that the number of
candidate functions (columns of Θ(Xj,Uj)) is significantly
lower than the number of data samples (rows of Θ(Xj,Uj)).
The sparcity property of the microgrid transient dynamics
equations enables proper tracking of these equations with
fewer functions. Thus, the restricted basis of non-linear func-
tions shown in Eq. (11) can be used for system identification.

The polynomial terms in the candidate functions library
are given by Xj,X

P2

j , · · · ,XPn

j . The trigonometric terms in
the candidate library are represented as sin(Xj), cos(Xj), · · · .
Examples for the expanded time series candidate functions
are given by Eq. (12) and Eq. (13), where XP2

j represents

quadratic polynomial function and sin(Xj) represents first
order trigonometric function.

XP 2

j =



zj1
2(t1) zj1(t1)zj2(t1) · · · zj2

2(t1) · · · zjn
2(t1)

zj1
2(t2) zj1(t2)zj2(t2) · · · zj2

2(t2) · · · zjn
2(t2)

...
...

. . .
...

. . .
...

zj1
2(tk) zj1(tk)zj2(tk) · · · zj2

2(tk) · · · zjn
2(tk)


(12)

sin(Xj) =



sin(zj1(t1)) sin(zj2(t1)) · · · sin(zjn(t1))

sin(zj1(t2)) sin(zj2(t2)) · · · sin(zjn(t2))

...
...

. . .
...

sin(zj1(tk)) sin(zj2(tk)) · · · sin(zjn(tk))


(13)

An example of a second order candidate function represent-
ing the impact of input disturbance is given in Eq. (14).

XjU =



u1(t1)zj1(t1) u1(t1)zj2(t1) · · · u1(t1)zjn(t1)

u1(t2)zj1(t2) u1(t2)zj2(t2) · · · u1(t2)zjn(t2)

...
...

. . .
...

u1(tk)zj1(tk) u1(tk)zj2(tk) · · · u1(tk)zjn(tk)


(14)

D. Sparse Regression for Modular Identification

The final step of system identification is the sparse regres-
sion of the pool data to identify the governing equations of
the subsystems. This step determines the function given in Eq.
(8) which pertains to the subsystem in study. The microgrid
dynamics can be modeled using only a few terms from the
set of all non-linear candidate functions. This sparse nature of
the microgrid system equations can be leveraged to obtain the
linear combination of non-linear terms that would accurately
describe the system’s governing equations using the regression
method.

If the sparse vector coefficients identified using regression is
given by Ξ =

[
ξ1 ξ2 · · · ξs

]
, then Ẋ can be represented

as,

Ẋj = ΞΘT(Xj,Uj), (15)

Here, Uj represents the external disturbances that drives
the subsystem dynamics. Xj = [Zj Vj]

T where Zj is the
time series data of the state and algebraic variables and
Vj is the time series data of the pseudo-state variables. To
identify the vector Ξ, multiple regression methods can be used.
Ordinary Least Squares (OLS) regression, Ridge regression,
Least Operator Shrinkage and Selection Operator (LASSO)
are some commonly used regression techniques. The LASSO-
type optimization problems can be solved by using various
proximal Newton methods which are also used for solving
convex composite optimization problems [31]. This paper
utilizes the LASSO regression technique which is outlined by
Eq. (16) in which Λ gives the sparsity constraint.
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Fig. 2. A simplified one DER based microgrid model with inverter controls

ξ = argmin
ξ′
||Θξ′ − x||2 + λ||ξ′||1, (16)

Empirical studies shows that not all state variables would
impact the entire microgrid dynamics. Hence, this sparse
nature of the system can be leveraged to develop a sparse
identification based data-driven model for microgrids. This has
been verified with multiple test cases in Section IV.

III. ALGORITHM TO IMPLEMENT M-SINDY

The data set for the original SINDy based identification
algorithm requires the information regarding all the state
variables, output variables and input disturbances to model the
entire system dynamics. The proposed M-SINDy method can
be used to identify only a part of the overall dynamics which is
of interest to the system operator. This property is specifically
useful in the power systems domain while working with the
re-configurable and scalable microgrids. The algorithm utilizes
the state variables, output variables (algebraic variables) and
input disturbance variables corresponding only to a section
of the entire system. The variables in the unused section of
the system can be combined to create pseudo-state variables
which reduces the dynamical order of the system without
compromising on the features of the overall system. The step-
by-step implementation of the proposed M-SINDy is given by
Algorithm 1.

IV. NUMERICAL EXAMPLES

A typical microgrid system shown in Fig. 3. This is used to
verify the effectiveness of the proposed method for modeling
the transient dynamics of microgrids using measurement data.
The test system includes 35 buses, 5 DERs, and 7 constant
power loads. The microgrid is modeled to operate in the
islanded mode with one grid forming DER and four grid
following DERs. The grid forming DER uses Vf control
strategy and the grid following DERs uses PQ control strategy.
The detailed block diagrams denoting the control strategies are
discussed in the appendix.

The proposed method can be applied to constant power load,
constant current load and constant impedance load models.
Constant power loads are adopted in this paper since it
can contribute more significantly to the system’s transient
dynamics. Transients are also introduced to the test system by
inducing an approximated step change in the power references
of the PQ-controlled DERs.

Algorithm 1: Algorithm to implement M-SINDy
Data:
z← state variables & algebraic variables
P0 −Pn ← polyorder
n← order of the system
u← input disturbances
usesine ← 1 or 0 (defines use of trigonometric
candidate functions)
Result:
Ξ×Θ← identify the set of differential equations that
define the transient system dynamics

1 Step 1: Select the time series state and algebraic data
required based on the method of type of identification
method used.

2 if Centralized SINDy then
3 z = set of all the state and algebraic variables
4 X = [Z U]T

5 else
6 if Modular SINDy then
7 z = set of the state and algebraic variables

corresponding to the chosen module
8 define v as the set of pseudo-state variables to

represent the impact of the unused state and
algebraic variables

9 X = [Z V U]T

10 end if
11 end if
12 Step 2: Compute the derivatives of X since F (X) = Ẋ
13 while i← 1 : t do
14 dx = x(i+1)−x(i)

dt
15 end while
16 Step 3: Build the pool data based on the candidate

functions defined for the system identification method
Θ(X)← library of all the non-linear functions based
on the inputs given (x,u,n, usesine, polyorder).

17 Step 4: Sparse Regression
18 Ξ = argminΞ′ ||ΘΞ′ −X||2 + λ||Ξ′||1
19 Step 5: Compute the identified dynamics as

Ẋid = Ξ×Θ
20 Integrate Xid to obtain the identified data X
21 Step 6: Obtain the root mean square to compare the

identified system with ground truth

The training data is prepared by modeling and simulating
the test system in MATLAB as a set of DAEs with added
white noise. In practice, the training data set can be obtained
from metering devices. The following two test cases have been
studied in detail.

• A simple system with only one grid forming DER has
been simulated to explain the nuances of the M-SINDy
algorithm developed in this paper. A simplified one DER
model is shown in Fig. 2.

• A more complicated system with five DERs has been
simulated to verify the effectiveness of scaling the M-
SINDy algorithm to higher order systems.
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Fig. 3. A typical microgrid test system with multiple distributed energy
resources and loads in islanded mode.

A. Case I: Data-driven modeling of system with one DER

1) Time domain trajectories and error analysis: The micro-
grid system modeled has the initial voltage reference set to 1.0
p.u. and the initial power load set to 0.27399 p.u. at t = 0.0s.
This system is perturbed to change the voltage reference value
from 1.0 p.u. to 0.9 p.u. at t = 0.5s. The second perturbation
decreases the active power load by 30% of its initial value at
t = 1.0s. The third disturbance increases the active power load
by 30% of its initial value at t = 1.5s. The final disturbance
brings back the power load to its initial value, but changes
the voltage reference to 1.1 p.u. These changes in the control
inputs of the system contributes to significant variations in
the system’s transient dynamics. A sampling time of 10 ms
has been recorded for this test case. Typically, smart meters
have a sampling rate of 1 Hz -1000 Hz [32] and the data
for identification in this work had a small sampling time for
improved accuracy (10 ms).

The inclusion of the disturbances in power loads (u1(t))
and the variations in the voltage references (u2(t)), can be
leveraged to track the transient system dynamics. Fig. 4 shows
the voltage magnitude and phase angle corresponding to the
bus to which the micro-turbine based DER (grid-forming
DER) is connected in the one DER test system.

The V-f controller is designed to synchronize and stabilize
the frequency of the entire microgrid at 60 Hz. The induced
power load disturbances can cause oscillations in the frequency
before reaching the steady state value. The figure showing
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Fig. 4. Comparison of ground truth and identified bus voltage magnitude
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Fig. 5. Comparison of ground truth and identified frequency variations in
the grid forming DER

these variations in the frequency of the grid forming DER is
shown in Fig. 5.

• The comparisons elucidates the exact tracking perfor-
mance of the M-SINDy algorithm by comparing the volt-
age and frequency data obtained from the true microgrid
model with the identified model.

• The root mean square error between the identified model
and the true microgrid model was computed to be in the
range of [7.95e−03% 0.0835%] with an average error
value of ±0.0125%.

2) Effect of polyorders on system identification: The can-
didate functions used to identify the system comprises of
constant values, polynomials of different orders, and trigono-
metric terms. In this test, the dependence of the quality of
identification on the different orders of the polynomial terms
has been discussed. Fig. 6 shows the transient dynamics of
true and identified states 5 and 8 of the microgrid model
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using the M-SINDy algorithm with polyorder 1. These states
represent the inverter modulation indices in the d and q frame
respectively. Fig. 7 is the representation of the same state
variables which has been identified using polyorder 2. We can
see that,

• By comparing the errors between the identified states and
the true states in both cases, it has been verified that the
nonlinearity of the microgrid model is represented better
by increasing the polyorder of the candidate function.

• While the average root mean square error for the case
with polyorder 1 was ±0.0125%, the average root mean
square error for the case with polyorder 2 was found to
be ±0.0053%.

• The mean square error significantly reduced as the poly-
order, used to track the nonlinearity in the system, was
increased. This indicates that higher polyorders are de-
sired for practical applications.

3) Trigonometric functions based Identification: In this test,
the candidate functions chosen to represent the nonlinearity
of the microgrid system consists only of trigonometric terms,
i.e., sine and cosine functions of higher orders to represent the
entire system. Any periodic function can be represented as the
sum of sine and cosine terms. Fig. 8 validates this statement as
the identified model consists only of trigonometric terms and
closely follows the actual system dynamics which comprises
of both polynomials and trigonometric functions.

4) Noisy data test: In practice, the sensor data obtained in
real-time is susceptible to be corrupted with some noise. In
order to understand the robustness of the M-SINDy algorithm
and its effectiveness to identify the original system with such
sensor noises, a small amount of white Gaussian noise with a
maximum of 10% signal to noise ratio (SNR) was introduced
to the true system data. This corrupted data was propagated
through the identification algorithm and the results obtained
verifies teh robustness of the proposed method. Fig. 9 shows
the voltage magnitude and the phase data identified from the
true system corrupted with noisy measurements (20 dB SNR).
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Fig. 7. Comparison of ground truth and identified state variables using
polyorder 2 in the M-SINDy algorithm
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Fig. 8. Comparison of ground truth and identified system using only
trigonometric functions

B. Case II: Data-driven modeling of system with five DERs

1) Time domain trajectories and error analysis: In order to
verify the effectiveness of the proposed M-SINDy algorithm
for identifying higher order microgrid models, a test case
system with 5 DERs was simulated. The size of the system
drastically increased in comparison to the previously tested
microgrid system with one DER. The new system comprises
of 40 state variables, which includes 8 state variables cor-
responding to each one of the 5 DERs, i.e, micro-turbine,
fuel cell, photovoltaic system, wind and battery. The system
is perturbed with two distinct disturbances at different time
intervals. A sampling time of 10 ms has been recorded for this
test case. The active power load is increased from its original
value by 5% at t = 0.0s . Following this, at t = 1.5s, the active
power load is decreased by 10% from its original value. At
t = 3.0s, the active power load is set to its original value and
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Fig. 11. Color-map detailing the dominant dynamics in the identified system

the power generation of the battery based DER is increased
by 10%. The initial per unitized value of the battery power
generation is 0.021. These variations in the control inputs are
incorporated in the pool data to track the system changes.

• The comparison validates the sparse identification based
system modeling in successfully converting the DAEs
based model into an ODEs based model.

• To further illustrate the effectiveness of the M-SINDy
algorithm in identifying the true system dynamics, the
voltage plots have been obtained and are shown in Fig.
10. The magnitude and phase of the bus 31 voltage
are tracked very closely by the proposed algorithm and
the root mean square error between the original sys-
tem and the identified system was found to be around
±2.33e−03%.

• The detailed colormap representing the dominant dynam-
ics of the 5 DER microgrid test system is shown in Fig.
11. It can be verified that the dominant states correspond
to the state variables 4,5,7 and 8 of each DER. These
states define the d-axis and q-axis modulation indices of
the connected inverter. Theoretically, these are the state
variables that experience maximum variations in their
dynamics. Thus, it is ideal for identified Ξ matrix to
follow a similar pattern.

2) Noise data test: As mentioned in the previous section, all
the data collected from the sensor in real-time are susceptible
to external noise. In order to ensure that the M-SINDy based
identification method can be employed for a higher order sys-
tem corrupted by noise, a gaussian white noise was manually
introduced to the simulated data. The results of the addition
of additive white gaussian noise (AWGN) to the simulated
voltage data are shown in Fig. 12. The voltage magnitude
and phase shown in this figure are well tracked by the ODEs
identified using the M-SINDy algorithm. Thus, the proposed
identification method would prove to be ideal for cases where
the measured data is possibly corrupted by external noise.

3) Identification with partial observation: One of the as-
sumptions in the sparse identification technique is the avail-
ability of all the state variables and the output variables. In
reality, it would be possible to obtain all the data regarding
state variables only if these states are observable and measur-
able. Hence, it is vital to show that the proposed method can
identify the transient dynamics using only the data regarding
the output variables which are usually measurable. In this case,
internal states data is not accessible and hence, only the bus
voltage magnitudes and phases are used as the measurement
data to identify the transient dynamics in the bus voltages of
the system. The output voltages correspond to the algebraic
part of the DAEs. The M-SINDy algorithm can accurately
model the algebraic constraint as a differential equation. The
dynamics of the bus voltages are a reflection of the overall
dynamics of the system. The voltages can be treated as a top
layer which is determined by the state variables in the hidden
layer.

Fig. 13 corresponds to the bus 31 voltage magnitude and
phase data. The system dynamics have been traced using only
the voltage data. If the internal state data is not an observable
state, it could cause inaccuracies while designing the control
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Fig. 12. Comparison of ground truth and identified system when the ground
truth is corrupted with gaussian white noise
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Fig. 13. Comparison of ground truth and identified system with partial
observation

algorithm for the exact output tracing. This method overcomes
the need to obtain all the internal states data for system
identification.

4) Subsystem Identification: In this test, the entire micro-
grid model is split into two subsystems. The details regarding
the split subsystems are shown in Fig. 14. The model has been
broken into two subsystems at the line connecting buses 7 and
8. Subsystem 1 consists of 2 DERs, 5 loads and 18 buses.
Subsystem 2 consists of 3 DERs, 3 loads and 15 buses. If the
load/ DER of interest belongs to subsystem 1, the entirety of
the dynamics corresponding to subsystem 2 can be reduced
to the current flowing between bus 8 and bus 7 (I78). The
dynamics of 24 state variables and 15 algebraic variables can
be represented by this current flow. This significantly reduces
the model complexity. The current flow between the buses at
the point of partition can be computed based on the knowledge
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Fig. 14. Representation of a microgrid test system that can be reconfigured
into multiple modules for identification

of the bus voltages and the line impedance between these
buses. The dynamics of the neighboring subsystems can be
understood by the current flow between the two subsystems
at the point of partition. Hence, the line current data can be
used as the pseudo state variable while modeling a single
subsystem using M-SINDy algorithm. Examples of the bus
voltages belonging to subsystem 1 and subsystem 2 are shown
in Fig. 15 and Fig. 16 respectively.

5) Modular Identification: In this example, the microgrid
test system has been broken into multiple modules. The
splitting of the test system into 6 modules (5 modules corre-
sponding to each DER, 1 module corresponding to the network
backbone connecting the DERs) is shown in Fig. 14. Each of
these modules can be parallelly identified using the M-SINDy
algorithm which significantly minimizes the computational
effort. Table I outlines the computational time required for
identification based on the number of modules. Fig. 17 has 6
subplots with each plot representing one of the state variables
from the 6 modules.

C. Comparison of data driven modeling techniques

Additional tests were performed to further elucidate the
accuracy of the proposed M-SINDy algorithm in comparison
to the existing data-driven identification methods. The data
provided in the one DER test system was propagated through
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Fig. 15. Bus voltage magnitude and phase comparison - subsystem 1
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Fig. 16. Bus voltage magnitude and phase comparison - subsystem 2

the layers of the neural network based NARX algorithm and
the results are shown in Fig. 18 and Table II. The overall
system accuracy, mean square error and computational time
comparisons show that the proposed method performs a better
system identification with lesser computational effort. The
final representation of the identified model as an ODE using
the M-SINDy algorithm provides a good correlation with the
physical system. NARX algorithm did not provide a similar
closed-form expression which is easy to interpret.

V. CONCLUSIONS AND FUTURE WORK

M-SINDy has been developed in this paper to identify
the nonlinear transient dynamics of higher order microgrid
systems in a data-driven fashion. The higher order system
can be decoupled into several small-scale subsystems and the
concept of pseudo-states was introduced to identify the gov-
erning equations using measurement data. Numerical examples

TABLE I
COMPARISON OF CALCULATION TIME BETWEEN M-SINDY AND SINDY.

Identification method Polyorder 1 Polyorder 2
Modularized-SINDy (6 modules) 1.355 s 99.166 s
Modularized-SINDy (2 modules) 3.645 s 286.455 s
Centralized-SINDy (1 module) 6.222 s 319.297 s

TABLE II
COMPARISON OF THE ELAPSED TIME AND RMS ERROR CALACULATION

FOR SYSTEM IDENTIFICATION

Method Error Percentage Time (s)
NARX 1.6524 % 2.7524

M-SINDy 0.0265 % 0.2285

validated the effectiveness of M-SINDy through time domain
simulations, identification with random white Gaussian noise
and partial measurements. It has also been verified that the
true dynamical system which is typically modeled as a DAE
can be represented as a system comprising only ODEs.

The M-SINDy algorithm can be extended to predict the
system dynamics and incorporate new model predictive control
algorithms that can significantly improve the transient stability
of the system.
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APPENDIX

The details regarding the modeling of the 5 DER based test
system used in the paper is given below. The system topology
details are shown in Tables III, IV, V. The one line diagram
of the system is shown by Fig. 19 which gives the steady
state algebraic values of the buses connected to the inverter
based resources. The averaged model of the inverter has been
utilized in this work.

TABLE III
DER GENERATIONS AT EACH BUS

Bus Pn(kW ) Qn(kV AR)
13 136.02 74.85
25 24.04 33.62
27 25.68 15.75
31 21.42 21.78
33 26.06 24.48

TABLE IV
POWER LOADS AT EACH BUS

Bus Pn(kW ) Qn(kV AR)
4 32.69 15.97

13 54.69 21.26
16 21.56 10.64
20 59.63 38.57
25 40.54 20.63
29 61.35 37.59
31 38.21 16.78
33 65.31 39.45
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Fig. 17. The comparison between the ground truth and the identified system’s states from the 6 modules

TABLE V
LINE IMPEDANCE BETWEEN BUSES

From To R(Ω/km) L(H/km) Length(m)
3 4 0.0682 0.5422× 10−3 45

13 2 0.005 0.1133× 10−3 30
2 3 0.005 0.1133× 10−3 30
4 14 0.1824 1.474× 10−3 50

14 15 0.0422 0.3220× 10−3 50
15 16 0.1510 1.684× 10−3 50
4 5 0.1678 1.662× 10−3 45
5 6 0.4645 3.740× 10−3 20
6 17 0.4645 3.740× 10−3 20

17 18 0.0952 0.8800× 10−3 20
18 19 0.2453 1.6400× 10−3 30
19 20 0.1423 1.1600× 10−3 30
6 21 0.0640 0.5933× 10−3 30

21 22 0.0640 0.5933× 10−3 30
22 23 0.0426 1.9622× 10−3 45
23 24 0.0480 5.900× 10−3 40
24 25 0.0480 2.2075× 10−3 40
6 7 0.0476 1.1675× 10−3 40
7 8 0.0423 1.0378× 10−3 45
8 26 0.0423 2.4133× 10−3 45

26 27 0.3040 3.6200× 10−3 30
27 28 0.2026 1.3200× 10−3 45
28 29 0.6563 3.600× 10−3 30
8 9 0.3530 1.8433× 10−3 30
9 10 0.3530 1.8433× 10−3 30

10 11 1.2613 2.8100× 10−3 30
11 30 0.5040 2.8267× 10−3 30
30 31 1.1786 2.8267× 10−3 30
11 12 1.1786 2.7200× 10−3 30
12 32 0.4394 3.0900× 10−3 30
32 33 0.5722 3.0900× 10−3 30
33 34 0.5722 1.8267× 10−3 30
34 35 0.3406 0.9633× 10−3 30
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Fig. 18. Comparison plots to explain the performance of the different
identification methods

The system has two specific control strategies corresponding
to the grid-forming DER (V-f control) and grid-following
DERs (P-Q control). Block diagrams and equations explaining
the details of the double-loop controller for the grid following
and grid forming DERs are shown in Fig. 20.

The differential equations (f(x(t),y(t),u(t))) that describe
the dynamics of the control system for the grid-forming DER
in Fig. 20 is given by (17)-(24). The differential equations
(f(x(t),y(t),u(t))) that describe the dynamics of the control
system for the grid-following DER in Fig. 20 is given by (25)-
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Fig. 20. Double loop controller for grid forming and grid following DERs
with/ without MPPT depending on the DER capability to dispatch active
power

(32). The algebraic equation, g(x(t),y(t),u(t)), describes the
network power flow.

ẋ1 = Vq − V̄q (17)
ẋ2 = ∆ω (18)

ẋ3 = V̄m −
√
|Vd|2 +

∣∣Vq

∣∣2 (19)

ẋ4 = ∆̄ω −∆ω (20)
ẋ5 = Īd − Id (21)
ẋ6 = Īq − Iq (22)

ẋ7 = (V̄
(inv)
d − x7)/Tf (23)

ẋ8 = (V̄ (inv)
q − x8)/Tf (24)

ẋ1 = Vq − V̄q (25)
ẋ2 = ∆ω (26)
ẋ3 = Pref − P (27)
ẋ4 = Qref −Q (28)
ẋ5 = Īd − Id (29)
ẋ6 = Īq − Iq (30)

ẋ7 = (V̄
(inv)
d − x7)/Tf (31)

ẋ8 = (V̄ (inv)
q − x8)/Tf (32)

Here, Vd and Vq represent the d-axis and q-axis bus voltages
at the point of interconnection between the inverter and
the network. ∆ω is the change in frequency of the system
calculated by the PLL design. Tf is the time constant used in
the low pass filter.
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