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Abstract

Deep learning has achieved the state-of-the-art performance across medical imaging tasks; however, model
calibration is often not considered. Uncalibrated models are potentially dangerous in high-risk applications
since the user does not know when they will fail. Therefore, this paper proposes a novel domain-aware loss
function to calibrate deep learning models. The proposed loss function applies a class-wise penalty based on
the similarity between classes within a given target domain. Thus, the approach improves the calibration while

also ensuring that the model makes less risky errors even when incorrect. The code for this software is available
at https://github.com/lab-smile/DOMINO.
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1. Introduction to Deep Learning Calibration

Modern deep learning models achieve spectacular accuracy; however, they often disregard calibration analysis
[9]. Confidence calibration relates the model output prediction score (“the confidence”) to the true likelihood
of a class being correct [9, 2]. In other words, a calibrated model has an X percent chance of getting each
data point that has X output probability correct. This is related to the model uncertainty, which corresponds
to the classification noise [2]. Confidence calibration and uncertainty details are highly associated with model
interpretability [2]. Hence, models with high accuracy and poor calibration could appear groundbreaking during
research development, yet these same models may not be trustworthy for clinical deployment.

One reason for this poor translation to clinical data is that clinical data is often more variable than research
data. Indeed, generalization to out-of-domain (OOD) data is a huge challenge in machine learning [18]. OOD
data refers to any testing data that is different in distribution from the training data. In the research setting,
it is easy to design an ideal testing dataset that matches our training data. This is performed by dividing
one dataset into training and testing data splits. A fundamental problem with current deep learning models
is that the high accuracy on such datasets often does not translate to OOD testing data. Different factors
that may affect the distribution of clinical data include variability in data collection parameters, differences
between patients, and rare data classes. For instance, changing to a different imaging scanner manufacturer
may drastically lower segmentation performance [0, 15]. Rare data classes are at the highest risk of these
changes [7]. Poor performance on rare data is potentially dangerous, as the rarest data in medicine are often
in diseased states [7]. There is prior evidence that confidence calibration can help [15].

In addition, model calibration can improve a model’s ability to detect when it is most likely to fail [1].
Failure prediction includes successfully detecting OOD data and reporting model confidence [14]. This feedback
is equally as important as improving the performance because it strengthens a model’s interpretability. For
instance, a disease classification model could sort patient cases based on confidence rather than just the binary
label. This information is useful in clinical screening since the true labels will not always be available. In
this setting, a prediction with low confidence would be highlighted for clinician review. Overall, a calibrated
machine has more potential for embedded safety features when compared to an uncalibrated model, even when
the performance is equal.

Model calibration has the potential to improve failure detection, aid model interpretability, and possibly
even improve generalizability. Yet, most modern deep learning models are poorly calibrated. Hence, DOMINO
[17] was developed to calibrate deep learning models. The DOMINO loss function that computes penalties
for incorrect classifications based on class-wise similarities. DOMINO computes the relevant class similarities
using either task-driven or data-driven similarities. This approach improves performance by learning more
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true information about class representation, as opposed to traditional deep learning algorithms that fight class
similarity. In addition, DOMINO can be adjusted so that classes that are safer to confuse are closer together.
In this way, DOMINO loss allows a model to make safer and more meaningful mistakes when wrong. These
features add to the overall safety and effectiveness of this calibration approach.

2. The DOMINO Methodology

DOMINO calibration is constructed as a loss regularization term for deep learning. The base loss function only
relies on Python3 and any PyTorch version. CUDA is optimal for best performance, but it is not required. The
DOMINO-regularized loss function is

Ly, 9) + By" W3, (1)
where L is any loss function, y is the one-hot encoded true label, and ¢ is the softmax output. The parameter 3
can take on any value between zero and one, and the entire novel loss term is scaled by 8. The matrix W
represents a generic regularization term of size N x N, where N is the number of classes. The diagonals are
zero, whereas the off-diagonals represent the penalties for confusing classes.

The overall loss function is simple yet efficient so that it can be dynamically altered for a given task.
DOMINO can work with either classification or segmentation, whereas the segmentation approach is regarded
as classification on a pixel-wise basis. However, one caveat of the loss function is that it is optimized for multi-
class problems. The reason is that DOMINO operates on the fundamental logic that the functional performance
of a model on a particular task may be improved by treating certain classes as being less risky to confuse than
others. These ideas lose their meaning in a binary problem since in a binary case the two classes are maximally
separated.

DOMINO is easy to implement and adjust to different deep learning frameworks because its overall structure
is simple. Equation 1 operates according to basic matrix multiplication. At the same time, DOMINO is effective
due to its adaptability across tasks. This is because the only parameter that is inherently task-specific is the
W term, and W can be modified based on the specific user task. This term refers to a class-wise weighting
penalty that regularizes our loss based on specific penalties for confusing a given class for any other class. The
scheme does not need to be symmetric; for instance, a disease severity model could give step-wise increases in
penalization such as giving higher weight to false negatives. Our prior works [17] use two main W schemes
that can be broadly categorized as machine-level confusion (confusion matrix method (DOMINO-CM)) or
expert-guided groupings (hierarchical class method (DOMINO-HC)).

3. The Advantages of using DOMINO

Our prior experiments [1 7] show that DOMINO can improve both accuracy and calibration metrics across many
classification and segmentation tasks. DOMINO is easy to implement in existing projects via a quick addition
to the loss function. DOMINO is particularly advantageous for works in which certain mistakes would carry
lower risks than others. For example, a theoretical deep learning model controls a self-driving car which has to
swerve due to frozen roadways. There are three “objects” in the car’s vision: a pedestrian, a bicycle rider, and a
stop sign. In this situation, an uncalibrated model might equally confuse a bicycle rider for being a pedestrian
or a stop sign. If it thinks that there are two stop signs, it might hit the rider. On the other hand, DOMINO
would assign lower penalties for confusing pedestrian and bicycle rider, whereas it assigns a maximal penalty
for confusing either of these classes with the stop sign. DOMINO helps reduce the risk to the bicycle rider.

So far, DOMINO has been added to segmentation applications in T1-weighted Magnetic Resonance Images
(T1-MRIs) and the Cityscapes dataset [5]. Our results in T1-MRIs are featured in Stolte et al. [17]. Our
classification studies have been on the MEDNIST [20], MNIST [13], and FashionMNIST [19] datasets. Some
results on MEDNIST are featured in this section to show the promise of our method.

Figure 1 shows our confusion matrix results using a simple convolutional neural network (CNN) with cross-
entropy la, DOMINO-HC 1b, and DOMINO-CM 1c. These results show that our overall accuracy is 99.47%
with cross-entropy, 99.54% with DOMINO-HC, and 99.56% with DOMINO-CM. Both of our methods increases
the accuracy even further. Both DOMINO-CM and DOMINO-HC also improve segmentation accuracy [17].



Table 1: Brier Score Loss [1] for basic cross-entropy and one of our methods. A lower Brier Score Loss
corresponds to better calibration. The best performances are in bold.

MEDNIST Class Cross-Entropy DOMINO-HC DOMINO-CM

Abdomen CT 0.00219 0.00193 0.00183

Breast MRI 0.145 0.144 0.143

CXR 0.163 0.160 0.161

ChestCT 0.170 0.169 0.167

Hand 0.172 0.170 0.170

Head CT 0.162 0.162 0.160
Table 1 shows that these methods also give lower Brier Scores [I] Brier score loss measures the difference
between predicted probability and the model’s assigned probability outputs for a given class [1]. A model’s

assigned probability outputs refer to the softmax outputs before the final label assignment. A lower Brier score
corresponds to better calibration.

4. How to implement DOMINO

DOMINO can currently be used within any PyTorch-based deep learning loss function. Our previous exper-
iments have tested DOMINO on both classification and segmentation. In addition, DOMINO can work with
different deep learning algorithms. Prior experiments have tested simple CNNs, U-Net transformers (UNETR)
[10], and DeepLabv3+ [3]. In these experiments, DOMINO was paired with cross-entropy loss, dice loss, or a
combined cross-entropy and dice loss. Therefore, DOMINQO’s only main requirement for functionality is that it
currently requires the code to be written in PyTorch.

Computation of the W matrix for a specific user task is required to run DOMINO. One advantage of our
previous confusion matrix method is that it requires no previous knowledge of a problem to calculate W [17].
Broadly, this loss penalty can be calculated from the normalized confusion matrix of an uncalibrated model.
This approach requires twice the running time of the uncalibrated model or hierarchical DOMINO method.
On the other hand, the hierarchical grouping method does require manual creation of the required task groups
[17]. This approach requires some knowledge of the intended task output, but under the right circumstances it
can leverage user knowledge and intuition to provide improved outcomes. One example would entail grouping
disease severity levels or sub-types based on their common treatment recommendations to minimize the impact
of the most likely incorrect labeling results. All W constructions require the diagonal to be all zeros, as the
diagonal of W represents “the penalty of correct classification”.

CUDA GPU access is not required, but it is strongly recommended. DOMINO is substantially faster on
classification tasks, as classification tasks require image-wise computation whereas segmentation tasks require
pixel-wise computation. Decent GPU resources are particularly recommended for segmentation with the confu-
sion matrix method. Our previous work used an A100 NVIDIA GPU for training volumetric image segmentation,
whereas MNIST classification could function on a GPU or CPU.

5. The impact of DOMINO on current research questions

Uncalibrated models may look good in research development but be untrustworthy in real-life high-risk appli-
cations. Thus, there is a gap “from bench to bedside,” or “from lab to life.” This paper provides a tool that
is easy for researchers to implement in their codes to improve calibration. This will allow different projects to
preserve their state-of-the-art performance while being calibrated. Therefore, our project has great potential
for improving the trustworthiness and reliability of existing deep learning methods in high-risk applications.
Another strength of this approach is that it works for classification and segmentation.

DOMINO will prove to be the most beneficial in deep learning tasks where the penalties of making mistakes
among different classes are not equal, especially in high-risk applications including medical treatment (e.g.,
tumor segmentation [11]), self-driving vehicles [16], and financial decision making [8]. In tumor segmentation, a



triage system that recognizes healthy tissue as a tumor lesion would lead to an unnecessary doctor consultation,
whereas a system that recognizes a tumor lesion as healthy could cause a person with cancer to miss their
critical treatment window. Here, DOMINO would give a larger weight penalty for mistaking tumor tissue
as healthy tissue than vice versa. Similarly, a self-driving car would need DOMINO to give a larger penalty
for confusing humans for non-humans than the reverse. Further, DOMINO’s implementation could lead the
respective software to make choices that are oriented towards lower error in their end tasks, rather than focusing
on traditional accuracy metrics. For example, the DOMINO creators have published an academic paper on
DOMINO for medical image segmentation [17]. A following paper is planned that extends this segmentation to
penalize head tissues based on their properties in applications for non-invasive brain stimulation.

In addition to its future impact on high-risk software, DOMINO will benefit ongoing research questions
in machine learning calibration. Specifically, multi-class calibration problems are even less well-defined than
binary calibration. Typical methods treat classes in a one-vs-all or all-vs-all approach [12]. The area of multi-
class calibration needs much more significant research attention to develop better evaluation criteria. DOMINO
contributes towards this area by challenging the idea that equal class treatment (e.g., in the one-vs-all approach)
is truly reflective of the reliability and trustworthiness of deep learning systems. The research community and
many application areas will benefit from this software’s contribution to trustworthy machine learning.

The results enabled by the software have been reported in the following academic publication:

Skylar E. Stolte, Kyle Volle, Aprinda Indahlastari, Alejandro Albizu, Adam J. Woods, Kevin Brink, Matthew
Hale, and Ruogu Fang. DOMINO: Domain-aware Model Calibration in Medical Image Segmentation. Interna-
tional Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022. 2022.
Conference Proceedings, Springer. DOI: https://doi.org/10.1007/978-3-031-16443-9_44. See [17].

Declarations of Competing Interests
The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Institutes of Health / National Institute on Aging (NIA RF1AG071469,
NIA R0O1AG054077), the National Science Foundation (1908299), the Air Force Research Laboratory Munitions
Directorate (FA8651-08-D-0108 TO48), and the NSF-AFRL INTERN Supplement (2130885). We acknowledge
the people of the NVIDIA AT Technology Center (NVAITC) for their suggestions.

References

[1] Glenn W Brier et al. Verification of forecasts expressed in terms of probability. Monthly weather review,
78(1):1-3, 1950.

[2] Gustavo Carneiro, Leonardo Zorron Cheng Tao Pu, Rajvinder Singh, and Alastair Burt. Deep learning
uncertainty and confidence calibration for the five-class polyp classification from colonoscopy. Medical
Image Analysis, 62:101653, 2020.

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder
with atrous separable convolution for semantic image segmentation, 2018.

[4] Charles Corbiere, Nicolas THOME, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez. Addressing failure
prediction by learning model confidence. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.


https://doi.org/10.1007/978-3-031-16443-9_44

[5]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understand-
ing. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Blake E. Dewey, Can Zhao, Jacob C. Reinhold, Aaron Carass, Kathryn C. Fitzgerald, Elias S. Sotirchos,
Shiv Saidha, Jiwon Oh, Dzung L. Pham, Peter A. Calabresi, Peter C.M. van Zijl, and Jerry L. Prince.
Deepharmony: A deep learning approach to contrast harmonization across scanner changes. Magnetic
Resonance Imaging, 64:160-170, 2019. Artificial Intelligence in MRI.

K. Ruwani M. Fernando and Chris P. Tsokos. Dynamically weighted balanced loss: Class imbalanced
learning and confidence calibration of deep neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 33(7):2940-2951, 2022.

Sebastian Fritz-Morgenthal, Bernhard Hein, and Jochen Papenbrock. Financial risk management and
explainable, trustworthy, responsible ai. Frontiers in Artificial Intelligence, 5:5, 2022.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 1321-1330. PMLR, 06-11 Aug
2017.

Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Landman,
Holger Roth, and Daguang Xu. Unetr: Transformers for 3d medical image segmentation, 2021.

Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville, Yoshua Bengio,
Chris Pal, Pierre-Marc Jodoin, and Hugo Larochelle. Brain tumor segmentation with deep neural networks.
Medical image analysis, 35:18-31, 2017.

Ulf Johansson, Tuwe Lofstrom, and Henrik Bostrom. Calibrating multi-class models. In Conformal and
Probabilistic Prediction and Applications, pages 111-130. PMLR, 2021.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Alireza Mehrtash, William M. Wells, Clare M. Tempany, Purang Abolmaesumi, and Tina Kapur. Con-
fidence calibration and predictive uncertainty estimation for deep medical image segmentation. I[IEEE
Transactions on Medical Imaging, 39(12):3868-3878, 2020.

Anshul Ratnaparkhi, Bilwaj Gaonkar, David Zarrin, Ien Li, Kirstin Cook, Azim Laiwalla, Bayard Wil-
son, Mark Attiah, Christine Ahn, Diane Villaroman, Bryan Yoo, Banafsheh Salehi, Joel Beckett, and
Luke Macyszyn. Ensembling mitigates scanner effects in deep learning medical image segmentation with
deep-U-Nets. In Karen Drukker, Khan M. Iftekharuddin, Hongbing Lu, Maciej A. Mazurowski, Chisako
Muramatsu, and Ravi K. Samala, editors, Medical Imaging 2022: Computer-Aided Diagnosis, volume
12033, page 120330I. International Society for Optics and Photonics, SPIE, 2022.

Jack Stilgoe. Machine learning, social learning and the governance of self-driving cars. Social studies of
science, 48(1):25-56, 2018.

Skylar E. Stolte, Kyle Volle, Aprinda Indahlastari, Alejandro Albizu, Adam J. Woods, Kevin Brink,
Matthew Hale, and Ruogu Fang. Domino: Domain-aware model calibration in medical image segmentation.
In Linwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, and Shuo Li, editors, Medical Image
Computing and Computer Assisted Intervention — MICCAI 2022, pages 454-463, Cham, 2022. Springer
Nature Switzerland.

Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit. On calibration and out-of-domain generalization.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 2215-2227. Curran Associates, Inc., 2021.



[19] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. CoRR, abs/1708.07747, 2017.

[20] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and Bingbing
Ni. Medmnist v2: A large-scale lightweight benchmark for 2d and 3d biomedical image classification.
CoRR, abs/2110.14795, 2021.



Confusion Matrix

AbdomenCT
BreastCT
- CXR
©
=
©
< ChestCT
Hand
HeadCT
5 5 % 5 3 &
5} g O g T 3
€ o < %
g o o
£
Predicted
(a) cross-entropy (CE)
Confusion Matrix Confusion Matrix
AbdomenCT AbdomenCT
BreastCT BreastCT
— CXR - CXR
(1] ©
= =]
° ©
< ChestCT < ChestCT
Hand Hand
HeadCT HeadCT
— = x — o = = = x = o =
0 (&) X Q g 0 0 O 4 Q g 0
< 7] O 7] o < » (@) ® o
9] © i T © o © O ES I
£ 0 < £ £ o < £
§ o © § o ©
< 2
Predicted Predicted
(b) DOMINO-HC (c) DOMINO-CM

Figure 1: Confusion matrices on testing set of MEDNIST classification. The cross-entropy model gives 99.47%
performance, DOMINO-HC gives 99.54% performance, and DOMINO-CM gives 99.56% performance. Notably,
DOMINO-HC and DOMINO-CM confuses AbdomenCT for ChestCT and Hand for BreastCT at lower rates.
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