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Abstract

Background

Transcranial direct current stimulation (tDCS) paired with cognitive training (CT) is widely
investigated as a therapeutic tool to enhance cognitive function in older adults with and
without neurodegenerative disease. Prior research demonstrates that the level of benefit
from tDCS paired with CT varies from person to person, likely due to individual differences
in neuroanatomical structure.

Objective
The current study aims to develop a method to objectively optimize and personalize
current dosage to maximize the functional gains of non-invasive brain stimulation.

Methods

A support vector machine (SVM) model was trained to predict treatment response based
on computational models of current density in a sample dataset (n = 14). Feature weights
of the deployed SVM were used in a weighted Gaussian Mixture Model (GMM) to
maximize the likelihood of converting tDCS non-responders to responders by finding the
most optimum electrode montage and applied current intensity (optimized models).

Results

Current distributions optimized by the proposed SVM-GMM model demonstrated 93%
voxel-wise coherence within target brain regions between the originally non-responders
and responders. The optimized current distribution in original non-responders was 3.38
standard deviations closer to the current dose of responders compared to the pre-
optimized models. Optimized models also achieved an average treatment response
likelihood and normalized mutual information of 99.993% and 91.21%, respectively.
Following tDCS dose optimization, the SVM model successfully predicted all tDCS non-
responders with optimized doses as responders.

Conclusions

The results of this study serve as a foundation for a custom dose optimization strategy
towards precision medicine in tDCS to improve outcomes in cognitive decline remediation
for older adults.
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Introduction

Previous longitudinal and cross-sectional clinical studies in aging populations
converge on the idea that subtle declines in working memory are a natural part of the
aging process [1-5]. Effective interventions to prevent working memory decline and
enhance brain function in older adults remain elusive. Such interventions will be necessary
to reduce the projected prevalence of cognitive impairment and Alzheimer’s disease over
the coming decades [6]. Transcranial direct current stimulation (tDCS), a form of weak
non-invasive electrical brain stimulation, has demonstrated moderate to large effect sizes
to remediate cognitive aging in the healthy older adult population [7,8]. The putative
mechanism of tDCS is based on the alteration of resting membrane potentials (i.e.,
modulate or attenuate) [9]. Thus, tDCS can facilitate or impede endogenous presynaptic
potentials within the local field of stimulation, akin to either a long-term potentiation or
depression [10-18]. Indeed, recent research suggests that tDCS-modulated
neuroplasticity paired with cognitive training (CT) can enhance outcomes in older adults
[19-22]. However, the level of benefit from tDCS paired with cognitive training varies from
person to person, likely due to individual differences in neuroanatomical structure. The
finite element method (FEM) can be used to account for individual differences in
neuroanatomical structure through MRI-derived estimation of the tDCS electric field [23—
31]. Individualized tDCS modeling has been shown to predict functional connectivity [32],
motor-evoked potentials [33], and cortical blood oxygenation [34,35]. Recent research has
also shown that machine learning has the potential to identify factors critical in optimizing
stimulation outcomes in each person by accounting for these individual differences [36—
39]. The current study employs state-of-the-art MRI-derived computational modeling (i.e.,
FEM) and machine learning to determine the tDCS parameters that maximize in-silico
treatment response likelihood.

To date, all prior trials of tDCS have applied a fixed dosing strategy (e.g., 2 mA for
20 min with electrodes at F3/F4 in the 10-20 system) for all recipients. Our previous study
[36], demonstrated that electrical current intensity and direction within the brain were
strongly associated with treatment response. However, prior research demonstrates that
individual variability in anatomical structures (e.g., brain atrophy, skull thickness, etc.),
especially in older adults, generates significant variability in the spread and intensity of
directed electrical current delivered to the brain [26,29,30,40]. Considering inherent dosing
variability across individuals, optimization algorithms can be applied to patient-specific,
MRI-derived computational models of electric current. Such an application has potential
utility in determining tDCS parameters that optimize each individual’s electric field within
the brain, maximizing the statistical likelihood of treatment response. We hypothesized
that individual differences in neuroanatomical structure contribute to the variability seen in
the amount of tDCS current reaching the brain tissue, which may subsequently alter
individual treatment response. Given this, there have been some studies that have
attempted an optimized electric-field approach, and these studies have shown promising
results [41-44]. However, previous tDCS optimization techniques have utilized numerical
approaches to search the parameter space, such as linear programming [41-44].
Although numerical techniques have been successful for convex problems, they may
converge on suboptimal solutions when dealing with non-convex problems, which are
common in real-world optimization due to the presence of multiple local optima.
Additionally, previous tDCS optimization studies also required an a priori determination of
brain regions and electric field characteristics to target, such as maximizing current
intensity or focality. Instead, we propose an alternative exhaustive search approach that
is purely data driven, leveraging SVM and GMM to account for individual anatomical
differences. The SVM model provides the essential dosing characteristics for treatment
response (i.e., current distribution, intensity, and direction) while the exhaustive GMM
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Figure 1. A schematic diagram of the proposed SVM-GMM tDCS precision dosing pipeline: A) a
dataset of structural MRI-images is used to train the machine learning discriminator. B) Specifically,
individual computational models (Am2) with colors representing estimated current density within
each voxel of the head are used as features. C) These data are submitted to a machine learning
discriminator to predict treatment response and output feature weights representing the predictive
power of each voxel, D) Similar computational models of current density can be computed from
MRI-images from a novel, treatment naive brain. E) Computational models of treatment naive
computational models can then be submitted to a weighted, Gaussian mixture model to optimize
tDCS dosing parameters. F) The electrode montage and injected current intensity that maximize
the likelihood of treatment response are used as precision doses.

parameter search ensures the best possible parameters to achieve treatment
response. This SVM-GMM approach will significantly increase the statistical likelihood of
treatment response and precisely match the electrical current profile of treatment
responders.
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Methods

A T1-weighted Magnetic Resonance Imaging (MRI) dataset of 14 healthy older
adults (mean (sd) age = 73.57 (7.84), mean (sd) MoCA = 27.85 (1.79), 7F:7M) was utilized
to create individualized FEM. Details of the clinical trial dataset (NCT02137122; [19]) and
machine learning protocol [36] have been previously reported. Responder and non-
responder labels were derived via a median split of working memory improvements
following tDCS [36]. The current density distribution in each brain was computed using an
open-source FEM software ROAST v3.0 [24]. Individual head volumes were segmented
into six tissue types: white matter, gray matter, cerebrospinal fluid, bone, skin, and
intracranial air with HEADRECO [25]—provided by SimNIBS
(https://simnibs.github.io/simnibs/build/html/index.html). Individual tissue types were
assigned conductivity values in ROAST [24]. Segmentation quality was visually inspected
by overlaying segmented masks onto their respective T1-weighted images. Pad
electrodes (5 x 7 cm?) were simulated as anodes at all 71 locations within the standard
10-10 EEG system [45,46]. Each anode electrode was paired with a fixed, “reference”
cathode at |, and electric field models were generated per pair (i.e., two electrodes per
model) yielding 71 unique electric field distributions to serve as the lead field for each head
model. These lead fields can then be linearly combined to yield a standard montage (e.qg.,
F4 Lead Field - F3 Lead Field = F3 Cathode/F4 Anode, see Dmochowski et al. 2011 for
details [47]). This approach allows the estimation of any electrode montage without the
need to exhaustively compute each model [47]Click or tap here to enter text.. Generated
electric fields (E, in the unit of [Vm™"]) were then converted into current densities (J, in the
unit of [A m~3]) based on the conductivity of the tissues.




A support vector machine (SVM) learning algorithm was used in our previous study
to classify responders and non-responders based on the computed current density
distribution per individual (in this case, F3/F4 at 2mA). In this study, the model produced
an overall prediction accuracy of 86.43% (details for data processing and SVM model
generation can be found in our previously published study [36]). In sum, LIBSVM [48] was
used to optimize the objective function:
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where C > 0 is a penalty parameter on the training error. y,, and x,, are the ground truth
label and feature vector for the nt* of N total observations, respectively. The SVM model
was trained to optimize parameters w and b, which represent the weight and bias
respectively. Optimized weights in the SVM model were used in a modified, weighted
Gaussian mixture model (GMM) to generate a precision model that accounts for inter-
personal variation based on the current distribution of responders.

The empirical responder mean, empirical responder variance, and SVM feature
weights were used to estimate each Gaussian model. The likelihood (f) of a new subject
belonging to the responders’ current distribution (i.e., response likelihood) was calculated
using:
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where w, is the SVM weight (s.t., ¥ w = 1), u, is the empirical responder mean, and 2 is
the empirical responder variance for the vt" of V features. The likelihood estimate was
used as the objective function to optimize tDCS parameters (i.e., electrode placement and
injected current intensity; see Figure 1) in each current density volume.

Normalized mutual information, feature-wise regression, and feature-wise dot
product were used as metrics to evaluate the performance of optimization. To that end,
normalized mutual information was defined as:

H(x) + H(y) — H(x, y) 0
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where H(i) = —p(i) - log2 p(i) represents the entropy of a given distribution. Principal

component analysis (PCA) was also utilized to project the expansive feature space and
Gaussian model into two dimensions (i.e., the first two principal components). Electrode
positions were optimized from 71x70=4,970 potential electrode pairs considering the
electrical current direction (71 locations from the 10-10 system). The injected current
intensity was optimized between 0.1 through 4.0 mA in 0.1 mA increments for a total of 40
possible input current levels. The overall tDCS optimization space included 198,800
potential tDCS doses per person. An exhaustive search of the parameter space was
carried out in parallel on 7 NVIDIA A100 80GB GPUs with NVIDIA’s RAPIDS Al package
(https://rapids.ai) to ensure the global maximum response likelihood. After the optimization
process, current density volumes of optimized doses within the non-responder group were
passed back through the original SVM model to predict treatment responders or non-
responders.

I(x,y) = max (
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Figure 2. Conventional fixed dosing compared to optimized dosing. A) Dosing variability represented as root
mean squared error (RMSE) in average current density reaching the brain by fixed versus optimized doses
respectively compared to the average responder current density reaching the brain. Black dots represent the
mean. Error bars represent £1 SD from the mean. Histograms represent the normal distribution of the sample.
B) Response likelihood of non-responder (red) optimized (blue), and responder (green) models. Contour lines
represent a 3D Gaussian distribution of the first and second principal components (i.e., PC1 and PC2) for
responders. Histograms represent the smoothed distribution of PC1 and PC2 for estimated current density.
C) Estimated current density reaching the brain for responder (green), non-responder (red), and optimized
(blue) dosing. Dots represent the 95™ percentile of each distribution. D) 3D dot product of the mean current
density vector for the fixed versus responder mean. E) 3D dot product of current density vectors for average
optimized dose versus average responder dose. F) Scatter plot of the voxel-wise mean current density of
optimized doses versus the voxel-wise mean current density of tDCS responders.
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As previously reported, computational models of current intensity and direction predicted
treatment response with over 86% accuracy [36]. Following GMM optimization, non-
responders were 3.38 pooled standard deviations closer to the responder mean
compared to pre-optimization fixed dosing of non-responders (cf. Figure 2A, F[1,12] =
48.12,p < 0.001, g = 3.38). GMM dose optimization also achieved an average response
likelihood of 99.993% (cf. Figure 2B) and shared 91.21% (7.26 bits) of normalized
mutual information with the mean current distribution for responders (cf. Figure 2C).
Regression of the mean optimized current density vector demonstrated strong feature-
wise coherence (cf. Figure 2F, R? = 0.930,p < 0.001) and elevated the average feature-
wise dot product with the current density vector of responders (i.e., current density
similarity to responders) by 40.8% compared to the conventional non-responder fixed
doses (cf. Figure 2D & 2E). To assess optimization generalizability, five independent



older adult E-fields were optimized using GMM. These out-of-sample data achieved an
average response likelihood of 98.8% after optimization. All were classified as
responders by the original SVM. Thus, the optimized electrical distribtion of the original
non-responders were 100% converted to treatment responders in-silico via the proposed
precision dosing approach.

Discussion

At present, the optimal stimulation target areas and anatomical substrates of tDCS
remain unknown. Given the large individual variability in head anatomy, the conventional
a priori electrode placement and injected current approach of tDCS is unlikely to optimally
distribute current for maximal treatment response [28,49,50]. The current study is a follow-
up analysis to our previous treatment response prediction study [36] and, to the best of
our knowledge, the first to utilize MRI-derived computational models, machine learning,
and dose optimization to maximize the likelihood of treatment response at an individual
level based on previously analyzed responders’ group of working memory performance.
Our prior study demonstrated that features of MRI-derived electric fields can successfully
predict working memory improvements with over 86% accuracy. Given this information,
the current study used GMM optimization to significantly improve the electric field profile
and match tDCS responders compared to a conventional fixed dosing strategy by
customizing tDCS parameters for each individual that maximize the Gaussian likelihood
of treatment response in silico.

Overall, leveraging these precision dosing techniques provides a tool to potentially
address necessary questions for enhancing the efficacy of tDCS paired with CT for
remediating cognitive decline in older adults. Therefore, the present study provides critical
information that can further improve existing prediction of tES current characteristics in
older adults and a platform towards current dose customization for future tES applications
in older adults. We acknowledge that our proposed approach involves relatively high
computational resources due to the exhaustive search of tDCS parameters for each
individual patient. This may limit its practical use in acute clinical settings requiring rapid
treatment response. Therefore, future studies are needed to explore other relevant
optimization procedures that are more efficient algorithms to reduce the computation time
while maintaining the precision of the results. Additionally, while the models presented in
this study show promise in silico, it is important to validate the precision doses in vivo
through clinical trials. Furthermore, the analyses were performed on a small clinical trial
dataset (NCT02137122), and thus, replication of these results with a larger, more
heterogeneous sample is recommended to establish the generalizability of our findings.
Conducting clinical trials to assess the potential of these precision dosing strategies is
crucial for advancing the field and evaluating the efficacy and safety of individualized tDCS
treatments.

In conclusion, the presented results demonstrate a novel, dose optimization
paradigm for non-invasive electrical stimulation. Machine learning combined with patient-
specific MRI-based models of the head is used to determine the electrode positions and
current intensities to maximize the likelihood of treatment response by optimizing the
induced electric field distribution. It was shown, at least computationally, that the optimal
stimulation parameters improved response likelihood prediction, and elevated current
intensity within targeted brain regions, and closely resembled the current distributions
observed in treatment responders. Therefore, the current study demonstrates a precision
dosing model of non-invasive brain stimulation to potentially improve treatment outcomes.
While the current use case relates to remediating age-related decline in cognition, the
potential use cases for this approach may far exceed this example. The next steps will



involve directly assessing whether these paradigms, when applied in clinical trials, can
improve treatment response beyond conventional dosing methods.
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