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Abstract 
Background 
Transcranial direct current stimulation (tDCS) paired with cognitive training (CT) is widely 
investigated as a therapeutic tool to enhance cognitive function in older adults with and 
without neurodegenerative disease. Prior research demonstrates that the level of benefit 
from tDCS paired with CT varies from person to person, likely due to individual differences 
in neuroanatomical structure.  
 
Objective 
The current study aims to develop a method to objectively optimize and personalize 
current dosage to maximize the functional gains of non-invasive brain stimulation. 
 
Methods 
A support vector machine (SVM) model was trained to predict treatment response based 
on computational models of current density in a sample dataset (n = 14).  Feature weights 
of the deployed SVM were used in a weighted Gaussian Mixture Model (GMM) to 
maximize the likelihood of converting tDCS non-responders to responders by finding the 
most optimum electrode montage and applied current intensity (optimized models). 
 
Results 
Current distributions optimized by the proposed SVM-GMM model demonstrated 93% 
voxel-wise coherence within target brain regions between the originally non-responders 
and responders. The optimized current distribution in original non-responders was 3.38 
standard deviations closer to the current dose of responders compared to the pre-
optimized models. Optimized models also achieved an average treatment response 
likelihood and normalized mutual information of 99.993% and 91.21%, respectively. 
Following tDCS dose optimization, the SVM model successfully predicted all tDCS non-
responders with optimized doses as responders. 
 
Conclusions 
The results of this study serve as a foundation for a custom dose optimization strategy 
towards precision medicine in tDCS to improve outcomes in cognitive decline remediation 
for older adults. 
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Introduction 
Previous longitudinal and cross-sectional clinical studies in aging populations 

converge on the idea that subtle declines in working memory are a natural part of the 
aging process [1–5]. Effective interventions to prevent working memory decline and 
enhance brain function in older adults remain elusive. Such interventions will be necessary 
to reduce the projected prevalence of cognitive impairment and Alzheimer’s disease over 
the coming decades [6]. Transcranial direct current stimulation (tDCS), a form of weak 
non-invasive electrical brain stimulation, has demonstrated moderate to large effect sizes 
to remediate cognitive aging in the healthy older adult population [7,8]. The putative 
mechanism of tDCS is based on the alteration of resting membrane potentials (i.e., 
modulate or attenuate) [9]. Thus, tDCS can facilitate or impede endogenous presynaptic 
potentials within the local field of stimulation, akin to either a long-term potentiation or 
depression [10–18]. Indeed, recent research suggests that tDCS-modulated 
neuroplasticity paired with cognitive training (CT) can enhance outcomes in older adults 
[19–22]. However, the level of benefit from tDCS paired with cognitive training varies from 
person to person, likely due to individual differences in neuroanatomical structure. The 
finite element method (FEM) can be used to account for individual differences in 
neuroanatomical structure through MRI-derived estimation of the tDCS electric field [23–
31]. Individualized tDCS modeling has been shown to predict functional connectivity [32], 
motor-evoked potentials [33], and cortical blood oxygenation [34,35]. Recent research has 
also shown that machine learning has the potential to identify factors critical in optimizing 
stimulation outcomes in each person by accounting for these individual differences [36–
39]. The current study employs state-of-the-art MRI-derived computational modeling (i.e., 
FEM) and machine learning to determine the tDCS parameters that maximize in-silico 
treatment response likelihood.  

To date, all prior trials of tDCS have applied a fixed dosing strategy (e.g., 2 mA for 
20 min with electrodes at F3/F4 in the 10-20 system) for all recipients. Our previous study 
[36], demonstrated that electrical current intensity and direction within the brain were 
strongly associated with treatment response. However, prior research demonstrates that 
individual variability in anatomical structures (e.g., brain atrophy, skull thickness, etc.), 
especially in older adults, generates significant variability in the spread and intensity of 
directed electrical current delivered to the brain [26,29,30,40]. Considering inherent dosing 
variability across individuals, optimization algorithms can be applied to patient-specific, 
MRI-derived computational models of electric current. Such an application has potential 
utility in determining tDCS parameters that optimize each individual’s electric field within 
the brain, maximizing the statistical likelihood of treatment response. We hypothesized 
that individual differences in neuroanatomical structure contribute to the variability seen in 
the amount of tDCS current reaching the brain tissue, which may subsequently alter 
individual treatment response. Given this, there have been some studies that have 
attempted an optimized electric-field approach, and these studies have shown promising 
results [41–44]. However, previous tDCS optimization techniques have utilized numerical 
approaches to search the parameter space, such as linear programming [41–44]. 
Although numerical techniques have been successful for convex problems, they may 
converge on suboptimal solutions when dealing with non-convex problems, which are 
common in real-world optimization due to the presence of multiple local optima. 
Additionally, previous tDCS optimization studies also required an a priori determination of 
brain regions and electric field characteristics to target, such as maximizing current 
intensity or focality. Instead, we propose an alternative exhaustive search approach that 
is purely data driven, leveraging SVM and GMM to account for individual anatomical 
differences. The SVM model provides the essential dosing characteristics for treatment 
response (i.e., current distribution, intensity, and direction) while the exhaustive GMM 



parameter search ensures the best possible parameters to achieve treatment 
response. This SVM-GMM approach will significantly increase the statistical likelihood of 
treatment response and precisely match the electrical current profile of treatment 
responders.  

 
Methods 

A T1-weighted Magnetic Resonance Imaging (MRI) dataset of 14 healthy older 
adults (mean (sd) age = 73.57 (7.84), mean (sd) MoCA = 27.85 (1.79), 7F:7M) was utilized 
to create individualized FEM. Details of the clinical trial dataset (NCT02137122; [19]) and 
machine learning protocol [36] have been previously reported. Responder and non-
responder labels were derived via a median split of working memory improvements 
following tDCS [36]. The current density distribution in each brain was computed using an 
open-source FEM software ROAST v3.0 [24]. Individual head volumes were segmented 
into six tissue types: white matter, gray matter, cerebrospinal fluid, bone, skin, and 
intracranial air with HEADRECO [25]–provided by SimNIBS 
(https://simnibs.github.io/simnibs/build/html/index.html). Individual tissue types were 
assigned conductivity values in ROAST [24]. Segmentation quality was visually inspected 
by overlaying segmented masks onto their respective T1-weighted images. Pad 
electrodes (5 x 7 cm2) were simulated as anodes at all 71 locations within the standard 
10–10 EEG system [45,46]. Each anode electrode was paired with a fixed, “reference” 
cathode at Iz and electric field models were generated per pair (i.e., two electrodes per 
model) yielding 71 unique electric field distributions to serve as the lead field for each head 
model. These lead fields can then be linearly combined to yield a standard montage (e.g., 
F4 Lead Field - F3 Lead Field = F3 Cathode/F4 Anode, see Dmochowski et al. 2011 for 
details [47]). This approach allows the estimation of any electrode montage without the 

need to exhaustively compute each model [47]Click	or	tap	here	to	enter	text.. Generated 

electric fields (E, in the unit of [Vm−1]) were then converted into current densities (J, in the 
unit of [A m−2]) based on the conductivity of the tissues.  
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Figure 1. A schematic diagram of the proposed SVM-GMM tDCS precision dosing pipeline: A) a 
dataset of structural MRI-images is used to train the machine learning discriminator. B) Specifically, 
individual computational models (Am-2) with colors representing estimated current density within 
each voxel of the head are used as features. C) These data are submitted to a machine learning 
discriminator to predict treatment response and output feature weights representing the predictive 
power of each voxel, D) Similar computational models of current density can be computed from 
MRI-images from a novel, treatment naïve brain. E) Computational models of treatment naïve 
computational models can then be submitted to a weighted, Gaussian mixture model to optimize 
tDCS dosing parameters. F) The electrode montage and injected current intensity that maximize 
the likelihood of treatment response are used as precision doses.  



A support vector machine (SVM) learning algorithm was used in our previous study 
to classify responders and non-responders based on the computed current density 
distribution per individual (in this case, F3/F4 at 2mA). In this study, the model produced 
an overall prediction accuracy of 86.43% (details for data processing and SVM model 
generation can be found in our previously published study  [36]). In sum, LIBSVM [48] was 
used to optimize the objective function: 

min
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where 𝐶 ≥ 0 is a penalty parameter on the training error. 𝑦% and 𝑥% are the ground truth 

label and feature vector for the 𝑛*+ of 𝑁 total observations, respectively. The SVM model 

was trained to optimize parameters 𝑤  and 𝑏 , which represent the weight and bias 
respectively. Optimized weights in the SVM model were used in a modified, weighted 
Gaussian mixture model (GMM) to generate a precision model that accounts for inter-
personal variation based on the current distribution of responders.  

The empirical responder mean, empirical responder variance, and SVM feature 
weights were used to estimate each Gaussian model. The likelihood (ℓ) of a new subject 
belonging to the responders’ current distribution (i.e., response likelihood) was calculated 
using: 

ℓ(𝑥	|	𝑤, 𝜇, 𝜎) = 𝑒,∑
! (/ ,0 )

&2 3)  

where 𝑤4 is the SVM weight (s.t., ∑𝑤 = 1), 𝜇4 is the empirical responder mean, and 𝜎4&	is 

the empirical responder variance for the 𝑣*+ of 𝑉 features. The likelihood estimate was 
used as the objective function to optimize tDCS parameters (i.e., electrode placement and 
injected current intensity; see Figure 1) in each current density volume. 

Normalized mutual information, feature-wise regression, and feature-wise dot 
product were used as metrics to evaluate the performance of optimization. To that end, 
normalized mutual information was defined as: 

Ι(𝑥, 𝑦) = max	(Η(𝑥) + Η(𝑦) − Η(𝑥, 𝑦)CΗ(𝑥) × Η(𝑦) , 0) 
where 𝐻(𝑖) = −𝑝(𝑖) ∙ log

&
𝑝(𝑖)  represents the entropy of a given distribution. Principal 

component analysis (PCA) was also utilized to project the expansive feature space and 
Gaussian model into two dimensions (i.e., the first two principal components). Electrode 
positions were optimized from 71x70=4,970 potential electrode pairs considering the 
electrical current direction (71 locations from the 10-10 system). The injected current 
intensity was optimized between 0.1 through 4.0 mA in 0.1 mA increments for a total of 40 
possible input current levels. The overall tDCS optimization space included 198,800 
potential tDCS doses per person. An exhaustive search of the parameter space was 
carried out in parallel on 7 NVIDIA A100 80GB GPUs with NVIDIA’s RAPIDS AI package 
(https://rapids.ai) to ensure the global maximum response likelihood. After the optimization 
process, current density volumes of optimized doses within the non-responder group were 
passed back through the original SVM model to predict treatment responders or non-
responders. 
 



Results

 
 

As previously reported, computational models of current intensity and direction predicted 
treatment response with over 86% accuracy [36]. Following GMM optimization, non-
responders were 3.38 pooled standard deviations closer to the responder mean 

compared to pre-optimization fixed dosing of non-responders (cf. Figure 2A, 𝐹[1,12] =
48.12, 𝑝 < 0.001, 𝑔 = 3.38). GMM dose optimization also achieved an average response 
likelihood of 99.993% (cf. Figure 2B) and shared 91.21% (7.26 bits) of normalized 
mutual information with the mean current distribution for responders (cf. Figure 2C). 
Regression of the mean optimized current density vector demonstrated strong feature-

wise coherence (cf. Figure 2F, 𝑅& = 0.930, 𝑝 < 0.001) and elevated the average feature-
wise dot product with the current density vector of responders (i.e., current density 
similarity to responders) by 40.8% compared to the conventional non-responder fixed 
doses (cf. Figure 2D & 2E). To assess optimization generalizability, five independent 
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Figure 2. Conventional fixed dosing compared to optimized dosing. A) Dosing variability represented as root 
mean squared error (RMSE) in average current density reaching the brain by fixed versus optimized doses 
respectively compared to the average responder current density reaching the brain. Black dots represent the 
mean. Error bars represent ±1 SD from the mean. Histograms represent the normal distribution of the sample. 
B) Response likelihood of non-responder (red) optimized (blue), and responder (green) models. Contour lines 
represent a 3D Gaussian distribution of the first and second principal components (i.e., PC1 and PC2) for 
responders. Histograms represent the smoothed distribution of PC1 and PC2 for estimated current density. 
C) Estimated current density reaching the brain for responder (green), non-responder (red), and optimized 
(blue) dosing. Dots represent the 95th percentile of each distribution. D) 3D dot product of the mean current 
density vector for the fixed versus responder mean. E) 3D dot product of current density vectors for average 
optimized dose versus average responder dose. F) Scatter plot of the voxel-wise mean current density of 
optimized doses versus the voxel-wise mean current density of tDCS responders. 



older adult E-fields were optimized using GMM. These out-of-sample data achieved an 
average response likelihood of 98.8% after optimization. All were classified as 
responders by the original SVM. Thus, the optimized electrical distribtion of the original 
non-responders were 100% converted to treatment responders in-silico via the proposed 
precision dosing approach. 

 
Discussion 

At present, the optimal stimulation target areas and anatomical substrates of tDCS 
remain unknown. Given the large individual variability in head anatomy, the conventional 
a priori electrode placement and injected current approach of tDCS is unlikely to optimally 
distribute current for maximal treatment response [28,49,50]. The current study is a follow-
up analysis to our previous treatment response prediction study [36] and, to the best of 
our knowledge, the first to utilize MRI-derived computational models, machine learning, 
and dose optimization to maximize the likelihood of treatment response at an individual 
level based on previously analyzed responders’ group of working memory performance. 
Our prior study demonstrated that features of MRI-derived electric fields can successfully 
predict working memory improvements with over 86% accuracy. Given this information, 
the current study used GMM optimization to significantly improve the electric field profile 
and match tDCS responders compared to a conventional fixed dosing strategy by 
customizing tDCS parameters for each individual that maximize the Gaussian likelihood 
of treatment response in silico. 

Overall, leveraging these precision dosing techniques provides a tool to potentially 
address necessary questions for enhancing the efficacy of tDCS paired with CT for 
remediating cognitive decline in older adults. Therefore, the present study provides critical 
information that can further improve existing prediction of tES current characteristics in 
older adults and a platform towards current dose customization for future tES applications 
in older adults. We acknowledge that our proposed approach involves relatively high 
computational resources due to the exhaustive search of tDCS parameters for each 
individual patient. This may limit its practical use in acute clinical settings requiring rapid 
treatment response. Therefore, future studies are needed to explore other relevant 
optimization procedures that are more efficient algorithms to reduce the computation time 
while maintaining the precision of the results. Additionally, while the models presented in 
this study show promise in silico, it is important to validate the precision doses in vivo 
through clinical trials. Furthermore, the analyses were performed on a small clinical trial 
dataset (NCT02137122), and thus, replication of these results with a larger, more 
heterogeneous sample is recommended to establish the generalizability of our findings. 
Conducting clinical trials to assess the potential of these precision dosing strategies is 
crucial for advancing the field and evaluating the efficacy and safety of individualized tDCS 
treatments. 

In conclusion, the presented results demonstrate a novel, dose optimization 
paradigm for non-invasive electrical stimulation. Machine learning combined with patient-
specific MRI-based models of the head is used to determine the electrode positions and 
current intensities to maximize the likelihood of treatment response by optimizing the 
induced electric field distribution. It was shown, at least computationally, that the optimal 
stimulation parameters improved response likelihood prediction, and elevated current 
intensity within targeted brain regions, and closely resembled the current distributions 
observed in treatment responders. Therefore, the current study demonstrates a precision 
dosing model of non-invasive brain stimulation to potentially improve treatment outcomes. 
While the current use case relates to remediating age-related decline in cognition, the 
potential use cases for this approach may far exceed this example. The next steps will 



involve directly assessing whether these paradigms, when applied in clinical trials, can 
improve treatment response beyond conventional dosing methods. 
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