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Abstract
In this paper we prove that the class of Goppa codes whose Goppa poly-
nomial is of the form g(x) = Try, m\F, Where Trg . \r, is a trace

polynomial from a field extension of degree m > 3 has a better min-
imum distance than what the Goppa bound d > 2deg(g(xz)) + 1
implies. This result is a significant improvement compared to the min-
imum distance of Trace Goppa codes over quadratic field extensions
(the case m = 2). We present two different techniques to improve
the minimum distance bound. For general p we prove that the Goppa
code C(L, Trr m\F,) is equivalent to another Goppa code C(M, h)
where deg(h) > deg(Trr m\r,). For p = 2 we use the fact that
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the values of Trr m\F, are fixed under g—powers to find several new
parity check equations which increase the known distance bounds.

Keywords: Binary Goppa Codes, Trace Goppa codes, Minimum Distance

1 Introduction

Binary Goppa codes are one of the fundamental linear code constructions
in Coding Theory. Binary Goppa codes have been extensively studied since
their introduction by V.D. Goppa in [1]. Their rich algebraic structure and
good decoding capabilities make binary Goppa codes suitable for cryptography
applications. There are also Best Known Linear Codes constructions realized
by binary Goppa codes.

Throughout this article we assume:

® ( is a prime power
¢ ¢ = p® for some natural number s
e m>3

We focus on binary Goppa codes where the defining polynomial g(z) is of
the form g(x) = Trg,,.\r,, that is

m—1

g(a:):x+a:q+mq2+---+a:q

Definition 1 [1] Suppose L = {aq,a2,...,an} C Fgm. Let g(x) be a univariate
polynomial of degree ¢ such that g(a;) # 0, for «; € L. The p—ary Goppa code is
defined as
n
s
C(L,9) == {(c1,¢c2,...,cn) €Fp :Z ' — =0 mod g(x)}.
i=1

Goppa codes satisfy the following:

Proposition 1 [1] Let L = {a1,a2,...,an} C Fgn. Let g(x) be a polynomial of
degree t such that g(a;) # 0, for a; € L. Then the dimension of C(L,g) is at least
n — smt and the minimum distance of C(L,g) is at least t + 1.

We have stated the Goppa code dimension bound, dim C'(L, g) > n — mst,
slightly differently from the classical dimension bound dim C(L, g) > n — mt.
This difference is because the set L is traditionally defined over F, where
q = p™ but in our case ¢ = p™*.

The image of g(z) = Trg,,,\r, is restricted to the subfield Fy of Fym. Thus,
there are two subfields to consider: the subfield containing Im(g(z)) and the
subfield F,, over which C(L, g) is defined. The set Im(g(z)) C F, and C(L, g)
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will be defined in F,. While Goppa codes can be defined over any subfield of
Fym, Goppa codes over the prime subfield F,, (and particularly in F3) remain
the most interesting. Although our results hold for any subfield Fq, C Fgm, in
this article we restrict ourselves to Goppa codes over the prime field F,,.

One of the first improvements on the bounds of binary Goppa codes was
given by Goppa in [1]. Goppa established that two different Goppa polynomials
define the same binary Goppa codes, so one polynomial bounds the dimension
of the code and the other polynomial bounds the minimum distance.

Proposition 2 [I] Let ¢ = 2°. Let L = {a1,a2,...,an} be a subset of Fgm. Let
g(z) be a squarefree polynomial of degree t such that g(a;) # 0, for a; € L. Then the
binary Goppa codes satisfy:

C(L7 g) = C(L7 92)'

This proposition improves the distance bound from ¢ + 1 to 2t + 1. The
distance bound on the Goppa code C(L,g) follows from the fact that the
codewords of C'(L, g) satisfy certain special parity check equations. Sugiyama
et al. generalize this equivalence between Goppa codes over arbitrary fields Iy, .

Proposition 3 [10] Let ¢ be a prime power. Let Fqy be a subfield of Fgm. Let
L = {a1,a2,...,an} be a subset of Fgm. Let g(x) be a squarefree polynomial of
degree t such that g(cy;) # 0, for a; € L. Then Goppa codes defined over Fy, satisfy:

C(L,g™ ") = C(L,g™).

Definition 2 Let L = {a1,a9,...,an} C Fgm where #L = n. Let f(z) € Fgm[X]
be a polynomial. We define the evaluation map ev as

evr, : Far [X] = Fim, evp(f) = (fln), f(az)..., flan).

The map ev is a linear map from the polynomial ring F,m[X] to the vector
space Fym. Its kernel is ker(ev) = ([[ (X — «)). We found f(z) € Fym[X]
acl
very helpful for understanding the parity check equations of C(L, g) and their

linear relations. From the definition of Goppa codes it follows that the parity
check equations for C(L,g) may also be written as evaluation maps evr(f).
We describe these parity check equations as follows.

Proposition 4 [1] Let g be a prime power. Let L = {a1,a9,...,an} C Fq. Let g(x)
be a polynomial of degree t such that g(a;) # 0, for a; € L. Then any codeword
c=(c1,¢2,...,cn) € C(L,g) satisfies

X7
c-ev ——— | =0 where 0 < j <t—1
L<9(X)> =7=
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Proposition 4 follows from the fact that g(ai) is the evaluation of %;) at

«; and the definition of Goppa codes. Goppa codes belong to a class of codes
known as Alternant Codes, which are subfield subcodes of Generalized Reed—
Solomon codes. Goppa codes are Alternant codes where a; = Hjj((%) One
important property of Alternant codes is that a decent bound on its minimum
distance can be determined as follows:

Proposition 5 Let ¢ = p°. Let aj,ag,...,an be distinct elements in Fgm. Let

a = (a1,a2,...,an) be nonzero elements in Fgm. Let § be a positive integer. Let
n .

C be a code of length n over Fyp. If 2:1 ciaiag =0 for0<j5 < 6—2 for any
1=

(c1,¢2,- -+ ,cn) € C, then the minimum distance of C is at least .

Proposition 5 is a restatement of the well known BCH bound which is
the Goppa bound on the minimum distance of Goppa codes. The classical
Goppa distance bound comes from the consecutive powers from j = 0 to
j = deg(g) — 1. We improved the distance bound by finding more consecutive
powers which are parity check equations for C(L, Try . \F,)-

Goppa codes are linear codes defined over a small field, IF,. However, the
parity check equations describing the Goppa codes are defined over the larger
field, Fym. For = (21,22, ...,7,) € Fym denote

J:(p):(x’f,mg7...,3017’1)61&?2%

; ; i\ ()
Note that if ¢ € C(L, g) and ¢- evp, (%) =0 then ¢®) - evy, (%) =0.

Since c € I, it follows that ¢®) = ¢. Thus, for each p-power, we obtain addi-

tional parity check equations c-evy, (%) = 0 as linear combinations of

the defining parity check equations of the Goppa code. As ¢ = p™* and there
are ms different p—powers, the dimension bound dim(C(L,g)) > n — mst is
obtained. Recall that the trace function Trg ,.\r, () takes values in the sub-
field F, for any o € Fym, implying that Try ,.\r,()? = Trg,_, \F, (@) and that

evy, (g(XT)q) = evy, (%) This fact will be important later when we prove

that certain p—powers of evaluation vectors evy, (%) and evys (h(yiyj)q) are

in the dual codes of another Goppa code with larger degree.
2 Improving the Minimum Distance of Trace
Goppa Codes

P. Véron has improved bounds on the dimension and distance of Trace
Goppa codes. Those bounds are sharp for m = 2. S. Bezzatev and N.
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Shekhunova in [9] proved that the classical Goppa distance bound is sharp
for m = 2. In this manuscript we improve the minimum distance for trace
Goppa codes when m > 3. Véron’s improvements are for a more general
class of Trace Goppa codes, namely those where g(z) = a(x)Trg,,.\r, (b(2))
where a and b are polynomials. Since the trace polynomial has a very high
degree deg(Trqu \]Fq) = ¢™ !, then any Goppa code with Goppa polynomial
g(x) = a(z)Trg_,.\r, (b(z)) would have a lot of parity check equations and low
dimension. In fact, dim C(L, Trg,,,\r,) = 0 and dim C(L, Trg,,,\r,) = 1. In
many cases, the degree of g(z) = a(x)Trg,_,.\r,(b(z)) is too high and leads to
trivial binary Goppa codes. For example, in the binary trace case (i.e. ¢ = 2)
the degree of the trace polynomial is the same as the length of the code and
the resulting binary Goppa code has dimension 0. In the quaternary trace case,
(i.e. ¢ = 4) direct computations show that the resulting binary Goppa code is
a repetition code.

We restrict ourselves to the class of trace Goppa codes where a(z) = 1 and
b(z) = x. Although the trace polynomial may have a relatively high degree and
therefore poor dimension, this class of trace Goppa codes includes codes with
highly interesting parameters. For example, the trace Goppa code C(L,z¢ +
x?) is a best possible [56,16,20] binary code. In [9] the authors established
that the Goppa code C(L,Trp,\r,,) is @ best known [240,123,36] binary
code [11]. The binary code C(L,’I‘rggmwm) is also a best known [240, 21, 104]

binary code ([11]). Strangely enough, the Goppa code C(L, rﬂ'%%ﬁww) is not
the best known code for its dimension. In this case the best known code is a
binary [240, 39, 79] code obtained from a BCH code.

We improve the minimum distance bound of Trace Goppa codes with
g(x) = Trr,,.\r, by finding additional parity check equations.

m—1
Lemma 6 Suppose 0 < i < ¢ — 2. Assume the q—ary expansion of i = . irq"
s=0

m—1
where 0 < ip < qg—1. Then ¢i mod ¢ —1= > ir_1¢°.
r=0

The parity check equations for C (L,TI'[qu\[Fq) are evy, (,I‘WXl\F> for
q™ \'q
0 <i < g™ " =1 and their p-powers. Since Trp,_,,\r, (@)? = Tr_,\r, (@) for

any a € Fym, evy, (TWX\F) for ¢ < i< gm 4+ ¢™ 2+ .- 4+ ¢ may be
4™ \Fq

obtained from a g—power of some evy, (Tr[FX\;(X)> where 0 < j < g™~ ! —1.
q™ \tq

Lemma 7 Let ¢m ' <i<¢g™ '+ ¢™24+...+q. Then

; (@)
X L
evy, (TIWZ) eC (L, Trg .. \]Fq) .
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Proof Suppose ¢ 1 <i < g™ 1 4¢™ 2 4...4¢. The g-ary expansion of i is of the

m—1
form ¢ = Y irq" where at least one of the entries i,, = 0. Otherwise if each i, > 1
r=0
theni > g™ ' 4+¢™ 24+ +¢ If i, =0, thend = ¢™ " mod ¢™ —1 < g™ L.
Xi (an—l—T) Xi/ n
Therefore, evy, (m) =evr, (m) eC (L,TI‘]qu\]Fq) .

Corollary 8 The minimum distance of C (L, ’I‘I‘qu \]Fq) is at least g™t +q™ 2 +
e g+2.

i 1
Proof Since evy, (wai\w) eC (L, TI'Iqu \IFq) for0<i< g™ l4¢m 24 4q,
q™ \taq

Proposition 5 implies

d((C (L»Trqu\Fq)) >q" " g2

3 Further improvements on the minimum
distance
For the remainder of the article we shall assume ¢ is even and that

the trace Goppa code C(L,Trp, ,.\r,) is a binary code. Since Trg .\r, is
a squarefree polynomial additional parity check equations can be of the

form evy, Tr% can be found for the binary case. The definition of
qu\Fq

C (L,Tr]%qm \Fq) implies that the evaluation vectors evy, (%) for 0 <

1
i < 2¢™ ! span C (L,Tr]%qm\ﬁq) . If ¢ is a power of 2, we can generalize

Lemma 7 to improve the minimum distance bound for C (L, ’I‘r%qm \Fq>. Our
Fym \Fq

improvement lies in finding additional consecutive powers evy, (TFQX) in

the span of C(L, Tr]qum \Fq)L. In the next Lemma we state a sufficient condition
to determine when a function of the form evy (X?) € C(L, g)*.

Lemma 9 Let g be a monic polynomial of degree t. Let i > t. Suppose that
evy, (%) € C(L,g)* for all0 <4 <i+t. Then

i+t ;
evr, (fm) € C(L,g)" if and only if ev(X") € C(L, g)™.
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Proof Suppose that evy, <%;()) € C(L,g)J‘ for all 0 <4/ < i+t.
Note that

i Xi"rt _ i Xi+t B ng(X) _gXZ"rt
evL(X)—evL <g(X))_eUL (X _g(X)>_eUL( g(X)f >

As g is a polynomial of degree ¢, all terms of X%g(X) — X*** have degree less than
i it
i + t. By the hypothesis of this Lemma, evy, (M) € C(L,g)*. As the

9(X)
difference
. Xi+t n
K3
evy, (X ) — evy, (g(X)) € C(L,g)
it follows that evp, (%) € C(L,g)* if and only if evy, (X?) € C(L, g)*. O

Since the code C (L,Tr]%qm \Fq) is closed under 2—powers, working with

evr,(X") allows for a direct use of BCH techniques to increase the dis-
tance bound. It allows us to automatically assume all even powers are in

L ) L
C (L, ’I‘r%qm \]Fq) . Tt also allows us to prove ev,(X3") € C (L, Tr]%qm\Fq)
which can be easier to prove than evy (X") € C (L, Tr]%qm \]Fq>

m—1
Lemma 10 Leti= > irq" where 0 <ir <qg—1.If
r=0

2" <i<2gm T g™ 2 g+ 1)

i 1
then evy, (Tr’A’Xi) eC (L,Tr]%qm\]Fq) .

Fym \Fq

Proof By the bound on i, there is one coefficient i, which is less than 2. By Lemma
6 there is some index 7’ such that the remainder ¢" ¢ mod ¢ — 1 < 2qm71.

Therefore
XZ' (@) Xiqu
evy, | —— =evy | ———
AT P\
q a qun \]Fq
Xiqr/ Xiqu mod ¢ —1
= €evyj, 2 = €evyp, a2
Fym \Fq Tri_ . \r,
Since iqr/ mod ¢" — 1 is less than 2¢™ !, it follows that
iq” mod ¢™—1 1 L
evp (X220 ) € © (L Tr2 ) Since C' (L Tr? ) is closed
L H y TR \Fy ) - TR m\F,
i 1
under 2—-powers, it follows that evy, -~ JecC L, Tr2 . O
7 e, Fym \Fq
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We discover more parity check equations to improve the minimum distance
bound by taking 2 powers. The key insight is that if 7 is not too large then i

id mod ¢ -1
X'2 a Trp 1
gm \Fq [ T 2
Tr2 ) eC ( ) Fgm \Fq>

Fym \Fq

mod ¢ — 1 is small and evy, <
Lemma 11 Ifi=2¢"" ' +2¢™ 2+ .- +2¢+ 2 then
X' 2 L
€vy, (TrQ) eC (L, rI‘I‘]qu \]Fq)

Fgm \Fq

Proof Note that i4 mod ¢ — 1= v g™ 2 g+ 1

Therefore
i () il id m
< X ) ( X4 ) (X 8 mod ¢™ — 1)
evy | ——— =evy, | ——— | =evp, )
2 q
Tri . \r, Try .\F, Trr o \F,
m—1 m—2
i 4 m_ X4 +a Jr~-~+q+1TI.[F F
Since evr, % = evyp - am \fa and
Egm \Fq Fom \F,
q q

m—1 m—2
all terms of X9 T4 ~totetlmy. have degree less than ¢, then
Fqm \Fq

m—1 m—2_
x4 +q + +q+]’I‘I‘ \
eV, Z

Tr2
Fam \Fq

2 - . L
€ C (L, Tr]qu \IFq) which  implies

i (3) i 9 €L
evy, (Trzxi) and evy, (Tﬂxi) are in C' (L,’I‘r]qu\]Fq)

Fqm \Fq Fqm \Fq

d

Lemma 11 proves that the first 2(¢™ 1 4+ ¢™ 2 + .- + ¢ + 1) consecutive

1
powers are in the span of C' (L, TrIQqu \Fq) . Our aim is to use these additional

powers to prove that if 4 is small enough, then i + g™ ! mod ¢™ — 1 is also
; 1

small enough such to imply evy, (Tr[%qu) eC (L, Tr]%qm \]Fq) CIf2¢m 1 <

i < 2¢™ ' + 3¢™ 2 then when writing i in its g basis expansion the first

coefficient i,,_1 = 2 and the second coefficient 0 < 4,,_9 < 2. In this lemma

we shall use the identity ¢* ' 4+¢* 2+ .- +¢+1= qq_—_ll to simplify notation.

2

Lemma 12 Let 2% 7' <i <295 + 29— Then

q q—1
Xt i
evy, <2> € C (L, ’I‘r%‘qm \]Fq) .
Tri . \r,

-2_4

Proof Let i be as in the hypothesis of the theorem. Then %i < qq:;__l1 + qq";T

Taking the remainder of both sides modulo ¢™ — 1 we obtain 4i —¢™ +1 < q:;:f +
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m—2 m
q% Adding qm_1 on both sides we obtain %i — ¢™ + 1 + gt < qq:ll +
m-1_1 g1 m_q
qqu Note that q 1 + q < 2qq71 .

Now that we have proven key bounds on %i mod ¢ — 1 we can prove the

statement of the lemma.
Recall that

; (4) 15 d¢g™—1
X¢ o Xzt Mot T T o \F,
evy, ™ = evy, = .
Fym \Fq Fym \Fq

The bounds on %z mod ¢"™ — 1 imply that all terms of X ¢ ™od qulTr]qu\]Fq
q

i () i
have degree < 2q . Therefore evy, (TﬁXi) and evy, (TrQXi) are in

qu, \Fq ]qu \Fq

C(LTeF,5,) L.
0

We use the additional parity check equations to state an improved distance
bound for C (L, Tr m\F )
q q

Corollary 13 Let q be an even prime power. The minimum distance of
2 .
C (L7 Trqu \IFq) is at least

mo_ m—2
¢ —1, 59 1
qg—1 qg—1

2 +2

Proof Recall that C' (L,T\[‘]qu \Fq) =C (L,Tr%qm\Fq). Lemmas 11 and 12 imply

that _
X' L
€vy, (’I}) eC (L,T‘I‘%qm\ﬂrq)
F,m\Fq

m—2
for0<i<2 q +2q —1 As there are Qq —1—2(1(171_1 + 1 consecutive parity

check equatlons, we obtaln d (C’ (L, Tr]qu \Fq)) > 2‘1 _1 + 27 + 2. O

4 Further improvements for m = 3

The technique presented in the previous section can be further extended for

particular values of m and p. More consecutive powers in C (L7 Trﬂzzqm \Fq)

implies more £ powers can be taken, which then implies more consecutive pow-

1L
ers in C' (L, Tr]%qm \qu) . For example, if we apply Lemma 12 again bounding

di— qm +14¢m ! by2 q 71 + 2q =1 then the bound on i is increased by
m—3__

4q . This is a meaningful increase only if m > 3.
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So far, we have improved the bound on d(C’ (L,Tr]pqm\]pq)) finding
additional parity check equations leading to

q
d(C(L7rI‘r]qu\]Fq))22q_1 +2 q—l

Next, we improve the minimum distance for m = 3.

i
We prove that evL< ) € C(L/I‘r%:s\ﬁq) . If true, then

x2a+2q+5
2
’I‘rFq3 \F

1
C (L, ’I‘r]%-q3 \Fq> would contain 2¢? +2q+ 7 consecutive powers, which implies

the d (C’ (L, Tr]pq3 \I&,)) > 2¢? +2q + 8. As in the previous section we assume

that ¢ is an even prime power such that ¢ > 8 as the trace Goppa codes for
q =2 and ¢ = 4 are trivial.

Corollary 14
€))

2
X294 +2¢+3 1
evp, | S—— ceC (L,Tr% F )
Tr e
F 5 \F,
Proof This corollary is follows from Lemma 11 and Lemma 12. ]

Lemma 15 Let q = 2° where s > 3.

evy, (X2q+5)(%) eC (L,’I‘r%qg\]};q)l

()
Proof We shall write evy, (X2q+5) *" as a linear combination of 2—powers of

evy, (%) where 0 < i < 2q2. Since each of the following powers satisfy 0 <
q3 q

1
i < 2¢% and ¢ > 8 the following evaluation vectors are elements of C (L, Trf, 3\]Fq) :
q

(%) (¢*)

X 0q+3 x @ H(E+1)g+3
cio=evp | —5— co=evy | ——5—
l%(13 \Fq ’ ’I‘r]%q‘g \Fq ’
Xq2+%q+4 (@)
cg=evp | —5——
Tr]%qs\mq
x @ +2q+§+2 x @ +da+d
ca=evp, | ————|,cs=evp | —5——
rI\rIquii \Fq - r]:‘r]%q3 \Fq

Taking the 2—powers inside of the evaluation, we obtain:
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x3¢°+a+4 X3 +a++1
ca=evy | 4— |,c2=evp, | —— 1,

ﬁFq3 \Fq ﬁ]%‘qg \F,
X4q2+q+%
cz3=evp | —5——
F,3\Fq
x @ +2a+5+2 x @ +a+3
cp=evp | —— | ,cs =evp | —5——
" 'I‘I'%q3\1Fq 7 " TrI2Fq3 \F,

Now we rewrite ¢ as the evaluation of a rational function with Tr]%- 3\F, in the
q

denominator by multiplying both sides by Try s\F,
q

2 q 2 2 q
X34 T (X + X4+ X)) X34 +gt+z+1
C1 = evy, 3 2 =evy | —(— 55—
Tr]FQS \F, Tr]Fq3 \F,
x4a® o+ x @ +2q+E+2 xa+dg+i
=€ | —5 —— |a=ev | —(—5 |, =€evL | —5
’I‘r]Fq3 \F, Trqus_ \F, 'I‘rIFq3 \F,
We expand c1 as
X3¢ +a+i+1 x3¢%+2q+1 x4a® o+
Cl :e'UL 1‘1‘27 +6'UL 27 +€'UL 27
Fya\Fq 7,3 \Fq F,a\F,q
Therefore,
x34°+2¢+4
c1 = c2 + evy, s +c3
]Fq?’ \Fq
Note that the sum ¢ + c2 + ¢3 + ¢4 + ¢5 equals
X3¢ +2q+4
c1+c2+c3+cqa+c5 =co+evy, B — +c3+c2+c3+cqa+ch
]Fq3 \Fq
X3q2+2q+%
=ev, | —5— | +c4+c5
TrZ \p
q3\ q
x3a°+2q+% x @ +2a+5+2 x @ +4a+3
= e'UL 27 + GUL 'I‘I-Qi + e'UL 1‘1‘27
F,5\Fq F,3\Fq F,s\Fq
2 q 2
X203 (x2 4 x29 4 x24 2 q
= evy, SI‘r2 ) =evy, (Xq +2q+2)
F,5\F,

2 a a
However X9 T24+2 — (X29+5)2  Therefore

(4)
c1+ca+es+ceq+es=evy <X2q+5) 7,

()
As we have decomposed evy, (X2q+5) *" as the sum of elements of

i iR
2 . 2¢+5 2
c (L, ™, \Fq) , it follows that evy, (X2975) € (L, ’I‘r]FqS\Fq) . 0
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As a consequence we obtain the the following improvement on the minimum
. 2
distance of C (L, ’I‘I']Fq3 \Fq>.

Theorem 16 The minimum distance of C (L7 TrIQF 3\1Fq) is at least 2q2 +2q + 8.
q

Proof By the definition of the Goppa code

X 2 + , 2
evp | oo | €€ (213 \5,) 0<i<24 -1,
F,3\Fq
Lemma 11 and Lemma 12 imply that
X’L
2
Try ,\F,

Corollary 14 implies

1
evy EC(L,TrIQFqS\Fq) 0<i<2¢®+2q+4

1
v (X213 e © (L, ’I‘r%qs\mq)
and Lemma 15 suggests

14 J_
evr, (X215 e ¢ (L, Tr%-qg\Fq) .
9 1
Because C (L, Tri 3\Fq) is closed under 2—powers, then
q

1
evy, (X2q+2)7 evy, (X2q+4)7 evr, (X2q+6) eC (L7 rI‘r]%qs \]Fq) .
Lemma 9 implies that

X' 2 L ) 2
T e EC(L,TrIFqs\]Fq) 0<i<2¢®+2q+6.
F 5 \F,

1
There are 2q2 + 2q + 7 consecutive powers in C' (L, ’I‘r% 3\1Fq) which signifies
q

d(C(L, ’I‘r%qs \F,) > 20° +2q+ 8.

5 Further improvements for m = 4

We apply a similar technique for the case m = 4 to increase the bound for

d (c (L, t[*r[%q4\ﬁq)).

Lemma 17 Let ¢ = 2° where s > 3.

2 . L
evy, (ng +4q+z)

% e (L,T‘r%q4\Fq)

for0<i<gqg-1.
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P, 2¢%+4q+i 2 + : :
Proof Lemma 11 implies evy, ( X € C (L, Try A\F, for 0 < i < 4. Since
q

1
c (L, Tr]% 4\]1;[1) is closed under 2—powers, we may assume the theorem holds when
q

1 is even. We proceed by induction on 7. Suppose i = 2ig + 1 is odd.

2 : ()
We shall write the vector evy, <X2q +4q+2’°+1> *" as a combination of 2-powers

of evaluations of evy, where 0 < i < 2q2.

Xi,

2
’I‘r]Fq4\Fq
Note

3 2 q
9" +2¢"+iog+5 my2
X 2’I‘rFq4\qu

2 ; ()
evy, (XQq +4q+2zo+1) 2/ _ evy,

2
T |\,

3 2., q 3 245 4
. . a°+2¢°+iga+ 3 2 a°+2q¢°+igat 5 y2q
The parity check equations evy, XW—X ) VL XW—X
Fq4 \Fq Fq4 \Fq
Xq3+2q2+ioq+%x2q2

Tr,

1
and evy, are in the code C(L,T&'IZFQ4\Fq) because the

2
F F,
¢4 \Fa

3 24, q
. . q°+2q°+igq+5 2
power of X in the numerator is less than 2q3. Therefore evy, XL T X

Tr2 )
F 4 \Fq
3 2.4, q 3 2.4, q 2 1
q°+29°+igq+ 2q q°+29°+igq+ 2q
evy, X2—2X and evy, X = 2 X eC L,TrIQF F
F 4 \F Try \r a4 \Fq
44 \Fq ¢4 \Fq

. 1
Therefore evL(X2q2+4q+2m+l) € C(L,Tr% 4\]Fq) if and only if
q

3¢°+2¢%+iga+§ L P
evp | X202 ) e o (L7 Tr 4\Fq) . We need to determine if
q

F 4 \Fq

x @ +2¢° +ioa+§ x24° x34°+2¢° +iog+3 ) 1
evy, — =evp | S | €€ (L, ’I‘rFq4\Fq)
F,a\Fq F,4\Fq

Note that

(%)
X6q2+2q+2io+1 2
evy, | ——s——— =evp,
2 Tr
IIIFq4 \F, Fa\Fq

x3a*+a’+ioa+4

3¢°+¢>+iog+%
X 2 rI‘I‘Hrq4 \]Fq
= €evy,
Tr2
Fq4 \Fq

X3q3+q2+ioq+%xq3 X3q3+q2+i0q+%Xq
;EUL

Note that evy, and

2 Tr2
F 4 \F F 4 \F
44 \Fq g4 \Fq

x323+a?+iga+ § X

Tr2
¥ 4\Fq

9 1
evy, are in C (L7 Tri 4\]Fq) .
q

x6a%+2q+2ig+1

1
Since  evp, € C (L, Tr%- 4\Fq) , then  both
q

Tr2
F a\Fq

3¢+ +iga+ % ya? 2 ; L
evy | £ o2 2 X , evy, (XQq +4q+22°+1) eC (L,’I‘r% A\F )
Foa \Fq q 1
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. 1
Therefore ey, (X0 H40+20% ) € ¢ (L, T2 |\ ) O
q

Now we extend the proof to powers of the form evy, (X 24" +5a+),

Lemma 18 Let ¢ = 2° where s > 3.

\(9) 1
evy, (X2q2+5q+z) ec (Lv'I‘I']I%‘q4\H?q) where 0 <7 < q— 1.

Proof The proof is almost identical to the proof of Lemma 17. The key differences
are as follows. Assuming 7 is odd, because the coefficient of ¢ of the power of X is 5

2 ; (ﬂ) 3 2 -
instead of 4, we obtain evy, (XQ‘I +5q+’) = evp, (Xq +29 +(’0+%)‘1+%) instead.
aq

2 A ()
Note 49 + 4 < g. After considering evy, (X2q +5q+z) " every logical step of Lemma

Tr2
F 4\Fq

6q2+2q+2ig+1 (%)
q q+2ig

F F,
q4\ q

($)
2 i
17 also holds for ig + % instead of ig. We also take evy, <W> instead

We finish this section finding additional consecutive powers and improving
2
the bound on d(C (L, Tr]Fq4\Fq).

Corollary 19 The minimum distance of C (L7 Tr% 4\]Fq) is at least 2q3+2q2+6q+8.
q

Proof Lemma 9, Lemma 17 and Lemma 18 imply that

X'i

i
evL GC(Lv’I‘I'J??q4\FQ) for 0 < i < 2¢° +2¢° +5¢ +q — 1.

2
’I‘[I]Fqél\mq
9 1
Because of Lemma 9 and because C' (L,’I‘r]F 4\]Fq) is closed under 2—powers
q

. 2¢3+24¢2+6q+1 2¢3+2q2+6q+3
we only need to establish that evp, Xgi ,evy, Xzi and
]Fq4\]Fq ]Fq4\]Fq

2¢% 4292 +6q+5 . L
evr, <X> are in the code C (L,Tr]l% 4\]Fq)
q

Trl%qzx \Fq
. . x2a%+24% +6q+1 9 L
The parity check equation evy, | &=—5—— ] € C (L7TrIF 4\]Fq) because
F 4\Fq q
q
the constant coefficient is 1 and q3(2q3 +2¢% + 6¢ + 1) mod ¢t —1 <24
2¢3+2¢%+64+3 s
The parity check equation evy, )“274” eC (L,’I‘I‘IQF \F ) because
Tr]Fq4 \Fq gt \a

2 3 2
evr, (X2 +6q+3)% = evp (X7 T34 Jr‘H%). Since the exponent ¢> + 3¢% + g + 4 has
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Xq3+3q2+q+%Tr§ "
two coefficients equal to one, the terms of evp, T a7 | are all in
F 4\]Fq
q

1
C (L,'I‘r]%q4\]Fq) . Using the same technique as in Lemma 17 the parity check

x26®+24%+64+5

1
W) eC (L,'I‘r]%q4 \]Fq) because

F 4 \F
¢4 \Fq

equation evy,

2 2 3 2 q
evy, (qu +6q+5> - evy, (Xq +3q +2q+2)

x3¢°+3¢°+2q+4
€evy, 3 =

and

Try . \F,
x 64’ +64+3 ) x3a*+3a* +a+§ xa”
evy, Trgi + Z evy, Ty2
Fgm\Fq re{0,1,3} Fym \Fq

are both in C (L,'I‘I'IQF 4\]Fq)" Since evy, (T‘r;(’ ) eC (L,’I‘r]% 4\Fq> for 0 <1 <
q R q

F 4 \F,
44 \Fq

2¢3 + 2¢2 + 6 + 7 it follows that
2 3 2
d (c (L,’I‘I'Fq4\]Fq)> > 2¢% + 24 + 6¢ + 8.

6 Conclusion

We improved the minimum distance bound of Trace Goppa codes
C(L, Trp, . \F,) using the fact that Trg_,\r, takes values over the subfield
F,. This improves the minimum distance bound of the Trace Goppa code is
significantly from ¢™ ' +1to¢™ ' +¢™ 2+ - 4+qg+ 1.

In the binary case, we found additional consecutive parity check equations

of the form evy, (Terl

. These additional equations improve the minimum
Fgm \Fq

distance bound from 2¢™ ' +2 to 2 q;ﬂ_—11 + qm(:f L +92. For binary Trace Goppa

codes with m = 3 and m = 4 we have further improved the minimum distance
bound by finding additional consecutive parity check equations. For m = 3,
the distance bound increases from 2¢% + 2q + 4 to 2¢® + 2q + 8. For m = 4,
the distance bound increases from 2¢3 + 2¢? + 4q + 6 to 2¢> + 2¢* + 6¢ + 8. If
m > 5 then Lemma 12 can be applied further to increase the distance bound.

Our results imply that Trace Goppa codes can provide better distance
bounds compared to the binary code obtained from puncturing and short-
ening the corresponding BCH codes in some cases. For example, the Trace
Goppa code over Fgio is a binary [448, 58, 152] code which is better than any
code obtained from puncturing or shortening BCH codes of length 511. As
proven in [9] the Trace Goppa code over Fosq, C(L, x'¢ + ) is the best known
[240, 123, 36] binary code. Thus for Trace Goppa codes and related Alternant
codes using the trace function Trp ,.\r, and its quasi-cyclic structure may
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improve the minimum distance and decoding algorithms of BCH codes of larger
lengths, perhaps over Faia, Fo15 or Faue.
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