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Abstract

In this paper we prove that the class of Goppa codes whose Goppa poly-
nomial is of the form g(x) = TrFqm\Fq where TrFqm\Fq is a trace
polynomial from a field extension of degree m ≥ 3 has a better min-
imum distance than what the Goppa bound d ≥ 2 deg(g(x)) + 1
implies. This result is a significant improvement compared to the min-
imum distance of Trace Goppa codes over quadratic field extensions
(the case m = 2). We present two different techniques to improve
the minimum distance bound. For general p we prove that the Goppa
code C(L,TrFqm\Fq) is equivalent to another Goppa code C(M,h)
where deg(h) > deg(TrFqm\Fq). For p = 2 we use the fact that
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the values of TrFqm\Fq are fixed under q–powers to find several new
parity check equations which increase the known distance bounds.

Keywords: Binary Goppa Codes, Trace Goppa codes, Minimum Distance

1 Introduction

Binary Goppa codes are one of the fundamental linear code constructions
in Coding Theory. Binary Goppa codes have been extensively studied since
their introduction by V.D. Goppa in [1]. Their rich algebraic structure and
good decoding capabilities make binary Goppa codes suitable for cryptography
applications. There are also Best Known Linear Codes constructions realized
by binary Goppa codes.

Throughout this article we assume:

� q is a prime power
� q = ps for some natural number s
� m ≥ 3

We focus on binary Goppa codes where the defining polynomial g(x) is of
the form g(x) = TrFqm\Fq

, that is

g(x) = x+ xq + xq2 + · · ·+ xqm−1

.

Definition 1 [1] Suppose L = {α1, α2, . . . , αn} ⊆ Fqm . Let g(x) be a univariate
polynomial of degree t such that g(αi) ̸= 0, for αi ∈ L. The p–ary Goppa code is
defined as

C(L, g) := {(c1, c2, . . . , cn) ∈ Fnp :

n∑︂
i=1

ci
x− αi

≡ 0 mod g(x)}.

Goppa codes satisfy the following:

Proposition 1 [1] Let L = {α1, α2, . . . , αn} ⊆ Fqm . Let g(x) be a polynomial of
degree t such that g(αi) ̸= 0, for αi ∈ L. Then the dimension of C(L, g) is at least
n− smt and the minimum distance of C(L, g) is at least t+ 1.

We have stated the Goppa code dimension bound, dimC(L, g) ≥ n−mst,
slightly differently from the classical dimension bound dimC(L, g) ≥ n−mt.
This difference is because the set L is traditionally defined over Fq where
q = pm but in our case qm = pms.

The image of g(x) = TrFqm\Fq
is restricted to the subfield Fq of Fqm . Thus,

there are two subfields to consider: the subfield containing Im(g(x)) and the
subfield Fp over which C(L, g) is defined. The set Im(g(x)) ⊆ Fq and C(L, g)
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will be defined in Fp. While Goppa codes can be defined over any subfield of
Fqm , Goppa codes over the prime subfield Fp (and particularly in F2) remain
the most interesting. Although our results hold for any subfield Fq0 ⊆ Fqm , in
this article we restrict ourselves to Goppa codes over the prime field Fp.

One of the first improvements on the bounds of binary Goppa codes was
given by Goppa in [1]. Goppa established that two different Goppa polynomials
define the same binary Goppa codes, so one polynomial bounds the dimension
of the code and the other polynomial bounds the minimum distance.

Proposition 2 [1] Let q = 2s. Let L = {α1, α2, . . . , αn} be a subset of Fqm . Let
g(x) be a squarefree polynomial of degree t such that g(αi) ̸= 0, for αi ∈ L. Then the
binary Goppa codes satisfy:

C(L, g) = C(L, g2).

This proposition improves the distance bound from t + 1 to 2t + 1. The
distance bound on the Goppa code C(L, g) follows from the fact that the
codewords of C(L, g) satisfy certain special parity check equations. Sugiyama
et al. generalize this equivalence between Goppa codes over arbitrary fields Fq0 .

Proposition 3 [10] Let qm be a prime power. Let Fq0 be a subfield of Fqm . Let
L = {α1, α2, . . . , αn} be a subset of Fqm . Let g(x) be a squarefree polynomial of
degree t such that g(αi) ̸= 0, for αi ∈ L. Then Goppa codes defined over Fq0 satisfy:

C(L, gq0−1) = C(L, gq0).

Definition 2 Let L = {α1, α2, . . . , αn} ⊆ Fqm where #L = n. Let f(x) ∈ Fqm [X]
be a polynomial. We define the evaluation map ev as

evL : Fqm [X] → Fn
qm , evL(f) = (f(α1), f(α2) . . . , f(αn)).

The map ev is a linear map from the polynomial ring Fqm [X] to the vector
space Fn

qm . Its kernel is ker(ev) = ⟨
∏︁
α∈L

(X − α)⟩. We found f(x) ∈ Fqm [X]

very helpful for understanding the parity check equations of C(L, g) and their
linear relations. From the definition of Goppa codes it follows that the parity
check equations for C(L, g) may also be written as evaluation maps evL(f).
We describe these parity check equations as follows.

Proposition 4 [1] Let q be a prime power. Let L = {α1, α2, . . . , αn} ⊆ Fq. Let g(x)
be a polynomial of degree t such that g(αi) ̸= 0, for αi ∈ L. Then any codeword
c = (c1, c2, . . . , cn) ∈ C(L, g) satisfies

c · evL

(︄
Xj

g(X)

)︄
= 0 where 0 ≤ j ≤ t− 1
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Proposition 4 follows from the fact that
αj

i

g(αi)
is the evaluation of Xj

g(X) at

αi and the definition of Goppa codes. Goppa codes belong to a class of codes
known as Alternant Codes, which are subfield subcodes of Generalized Reed–

Solomon codes. Goppa codes are Alternant codes where ai =
g(αi)∏︁

j ̸=i(αj−αi
). One

important property of Alternant codes is that a decent bound on its minimum
distance can be determined as follows:

Proposition 5 Let q = ps. Let α1, α2, . . . , αn be distinct elements in Fqm . Let
a = (a1, a2, . . . , an) be nonzero elements in Fqm . Let δ be a positive integer. Let

C be a code of length n over Fp. If
n∑︁

i=1
ciaiα

j
i = 0 for 0 ≤ j ≤ δ − 2 for any

(c1, c2, · · · , cn) ∈ C, then the minimum distance of C is at least δ.

Proposition 5 is a restatement of the well known BCH bound which is
the Goppa bound on the minimum distance of Goppa codes. The classical
Goppa distance bound comes from the consecutive powers from j = 0 to
j = deg(g)− 1. We improved the distance bound by finding more consecutive
powers which are parity check equations for C(L,TrFqm\Fq

).
Goppa codes are linear codes defined over a small field, Fp. However, the

parity check equations describing the Goppa codes are defined over the larger
field, Fqm . For x = (x1, x2, . . . , xn) ∈ Fn

qm denote

x(pi) = (xpi

1 , xpi

2 , . . . , xpi

n ) ∈ Fn
qm .

Note that if c ∈ C(L, g) and c · evL
(︂

Xj

g(X)

)︂
= 0 then c(p

i) · evL
(︂

Xj

g(X)

)︂(pi)

= 0.

Since c ∈ Fp it follows that c(p
i) = c. Thus, for each p–power, we obtain addi-

tional parity check equations c · evL
(︃(︂

Xj

g(X)

)︂pi)︃
= 0 as linear combinations of

the defining parity check equations of the Goppa code. As qm = pms and there
are ms different p–powers, the dimension bound dim(C(L, g)) ≥ n − mst is
obtained. Recall that the trace function TrFqm\Fq

(α) takes values in the sub-
field Fq for any α ∈ Fqm , implying that TrFqm\Fq

(α)q = TrFqm\Fq
(α) and that

evL

(︂
Xi

g(X)q

)︂
= evL

(︂
Xi

g(X)

)︂
. This fact will be important later when we prove

that certain p–powers of evaluation vectors evL

(︂
Xi

g(X)q

)︂
and evM

(︂
Y j

h(Y )q

)︂
are

in the dual codes of another Goppa code with larger degree.

2 Improving the Minimum Distance of Trace
Goppa Codes

P. Véron has improved bounds on the dimension and distance of Trace
Goppa codes. Those bounds are sharp for m = 2. S. Bezzatev and N.
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Shekhunova in [9] proved that the classical Goppa distance bound is sharp
for m = 2. In this manuscript we improve the minimum distance for trace
Goppa codes when m ≥ 3. Véron’s improvements are for a more general
class of Trace Goppa codes, namely those where g(x) = a(x)TrFqm\Fq

(b(x))
where a and b are polynomials. Since the trace polynomial has a very high
degree deg(TrFqm\Fq

) = qm−1, then any Goppa code with Goppa polynomial
g(x) = a(x)TrFqm\Fq

(b(x)) would have a lot of parity check equations and low
dimension. In fact, dimC(L,TrF2m\F2

) = 0 and dimC(L,TrF4m\F4
) = 1. In

many cases, the degree of g(x) = a(x)TrFqm\Fq
(b(x)) is too high and leads to

trivial binary Goppa codes. For example, in the binary trace case (i.e. q = 2)
the degree of the trace polynomial is the same as the length of the code and
the resulting binary Goppa code has dimension 0. In the quaternary trace case,
(i.e. q = 4) direct computations show that the resulting binary Goppa code is
a repetition code.

We restrict ourselves to the class of trace Goppa codes where a(x) = 1 and
b(x) = x. Although the trace polynomial may have a relatively high degree and
therefore poor dimension, this class of trace Goppa codes includes codes with
highly interesting parameters. For example, the trace Goppa code C(L, x16 +
x2) is a best possible [56, 16, 20] binary code. In [9] the authors established
that the Goppa code C(L,TrF256\F16

) is a best known [240, 123, 36] binary

code [11]. The binary code C(L,Tr6F256\F16
) is also a best known [240, 21, 104]

binary code ([11]). Strangely enough, the Goppa code C(L,Tr4F256\F16
) is not

the best known code for its dimension. In this case the best known code is a
binary [240, 39, 79] code obtained from a BCH code.

We improve the minimum distance bound of Trace Goppa codes with
g(x) = TrFqm\Fq

by finding additional parity check equations.

Lemma 6 Suppose 0 ≤ i ≤ qm − 2. Assume the q–ary expansion of i =
m−1∑︁
s=0

irq
r

where 0 ≤ ir ≤ q − 1. Then qi mod qm − 1 =
m−1∑︁
r=0

ir−1q
s.

The parity check equations for C
(︁
L,TrFqm\Fq

)︁
are evL

(︃
Xi

TrFqm\Fq

)︃
for

0 ≤ i ≤ qm−1 − 1 and their p–powers. Since TrFqm\Fq
(α)q = TrFqm\Fq

(α) for

any α ∈ Fqm , evL

(︃
Xi

TrFqm\Fq

)︃
for qm−1 ≤ i ≤ qm−1 + qm−2 + · · · + q may be

obtained from a q–power of some evL

(︃
Xj

TrFqm\Fq (X)

)︃
where 0 ≤ j ≤ qm−1 − 1.

Lemma 7 Let qm−1 ≤ i ≤ qm−1 + qm−2 + · · ·+ q. Then

evL

(︄
Xi

TrFqm\Fq

)︄(q)

∈ C
(︂
L,TrFqm\Fq

)︂⊥
.
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Proof Suppose qm−1 ≤ i ≤ qm−1+qm−2+ · · ·+q. The q-ary expansion of i is of the

form i =
m−1∑︁
r=0

irq
r where at least one of the entries ir = 0. Otherwise if each ir ≥ 1

then i > qm−1 + qm−2 + · + q. If ir = 0, then i′ = qm−1−ri mod qm − 1 < qm−1.

Therefore, evL

(︃
Xi

TrFqm\Fq

)︃(qm−1−r)

= evL

(︃
Xi′

TrFqm\Fq

)︃
∈ C

(︂
L,TrFqm\Fq

)︂⊥
.

□

Corollary 8 The minimum distance of C
(︂
L,TrFqm\Fq

)︂
is at least qm−1+ qm−2+

· · ·+ q + 2.

Proof Since evL

(︃
Xi

TrFqm\Fq

)︃
∈ C

(︂
L,TrFqm\Fq

)︂⊥
for 0 ≤ i ≤ qm−1+qm−2+· · ·+q,

Proposition 5 implies

d(
(︂
C
(︂
L,TrFqm\Fq

)︂)︂
≥ qm−1 + qm−2 + · · ·+ q + 2.

□

3 Further improvements on the minimum
distance

For the remainder of the article we shall assume q is even and that
the trace Goppa code C(L,TrFqm\Fq

) is a binary code. Since TrFqm\Fq
is

a squarefree polynomial additional parity check equations can be of the

form evL

(︃
Xi

Tr2Fqm\Fq

)︃
can be found for the binary case. The definition of

C
(︂
L,Tr2Fqm\Fq

)︂
implies that the evaluation vectors evL

(︃
Xi

Tr2Fqm\Fq

)︃
for 0 ≤

i < 2qm−1 span C
(︂
L,Tr2Fqm\Fq

)︂⊥
. If q is a power of 2, we can generalize

Lemma 7 to improve the minimum distance bound for C
(︂
L,Tr2Fqm\Fq

)︂
. Our

improvement lies in finding additional consecutive powers evL

(︃
Xi

Tr2Fqm\Fq

)︃
in

the span of C(L,Tr2Fqm\Fq
)⊥. In the next Lemma we state a sufficient condition

to determine when a function of the form evL(X
i) ∈ C(L, g)⊥.

Lemma 9 Let g be a monic polynomial of degree t. Let i ≥ t. Suppose that

evL

(︃
Xi′

g(X)

)︃
∈ C(L, g)⊥ for all 0 ≤ i′ < i+ t. Then

evL

(︄
Xi+t

g(X)

)︄
∈ C(L, g)⊥ if and only if evL(X

i) ∈ C(L, g)⊥.
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Proof Suppose that evL

(︃
Xi′

g(X)

)︃
∈ C(L, g)⊥ for all 0 ≤ i′ < i+ t.

Note that

evL

(︂
Xi
)︂
− evL

(︄
Xi+t

g(X)

)︄
= evL

(︄
Xi − Xi+t

g(X)

)︄
= evL

(︄
Xig(X)− gtX

i+t

g(X)

)︄
.

As g is a polynomial of degree t, all terms of Xig(X)−Xi+t have degree less than

i + t. By the hypothesis of this Lemma, evL

(︂
Xig(X)−Xi+t

g(X)

)︂
∈ C(L, g)⊥. As the

difference

evL

(︂
Xi
)︂
− evL

(︄
Xi+t

g(X)

)︄
∈ C(L, g)⊥

it follows that evL

(︂
Xi+t

g(X)

)︂
∈ C(L, g)⊥ if and only if evL(X

i) ∈ C(L, g)⊥. □

Since the code C
(︂
L,Tr2Fqm\Fq

)︂
is closed under 2–powers, working with

evL(X
i′) allows for a direct use of BCH techniques to increase the dis-

tance bound. It allows us to automatically assume all even powers are in

C
(︂
L,Tr2Fqm\Fq

)︂⊥
. It also allows us to prove evL(X

q
2 i

′
) ∈ C

(︂
L,Tr2Fqm\Fq

)︂⊥

which can be easier to prove than evL(X
i′) ∈ C

(︂
L,Tr2Fqm\Fq

)︂

Lemma 10 Let i =
m−1∑︁
r=0

irq
r where 0 ≤ ir ≤ q − 1. If

2qm−1 ≤ i < 2(qm−1 + qm−2 + · · ·+ q + 1)

then evL

(︃
Xi

Tr2Fqm\Fq

)︃
∈ C

(︂
L,Tr2Fqm\Fq

)︂⊥
.

Proof By the bound on i, there is one coefficient ir which is less than 2. By Lemma

6 there is some index r′ such that the remainder qr
′
i mod qm − 1 < 2qm−1.

Therefore

evL

(︄
Xi

Tr2Fqm\Fq

)︄(qr
′
)

= evL

⎛⎝ Xiqr
′

Tr2q
r′

Fqm\Fq

⎞⎠
= evL

⎛⎝ Xiqr
′

Tr2Fqm\Fq

⎞⎠ = evL

⎛⎝Xiqr
′

mod qm−1

Tr2Fqm\Fq

⎞⎠ .

Since iqr
′

mod qm − 1 is less than 2qm−1, it follows that

evL

(︃
Xiqr

′
mod qm−1

Tr2Fqm\Fq

)︃
∈ C

(︂
L,Tr2Fqm\Fq

)︂⊥
. Since C

(︂
L,Tr2Fqm\Fq

)︂⊥
is closed

under 2–powers, it follows that evL

(︃
Xi

Tr2Fqm\Fq

)︃
∈ C

(︂
L,Tr2Fqm\Fq

)︂⊥
. □
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We discover more parity check equations to improve the minimum distance
bound by taking q

2 powers. The key insight is that if i is not too large then i q2

mod qm − 1 is small and evL

(︃
Xi

q
2

mod qm−1TrFqm\Fq

Tr2Fqm\Fq

)︃
∈ C

(︂
L,Tr2Fqm\Fq

)︂⊥
.

Lemma 11 If i = 2qm−1 + 2qm−2 + · · ·+ 2q + 2 then

evL

(︄
Xi

Tr2Fqm\Fq

)︄
∈ C

(︂
L,Tr2Fqm\Fq

)︂⊥
.

Proof Note that i q2 mod qm − 1 = qm−1 + qm−2 + · · ·+ q + 1.
Therefore

evL

(︄
Xi

Tr2Fqm\Fq

)︄( q
2 )

= evL

(︄
Xi q

2

TrqFqm\Fq

)︄
= evL

(︄
Xi q

2 mod qm − 1

TrFqm\Fq

)︄
.

Since evL

(︃
Xi

q
2 mod qm−1
TrFqm\Fq

)︃
= evL

(︄
Xqm−1+qm−2+···+q+1TrFqm\Fq

Tr2Fqm\Fq

)︄
and

all terms of Xqm−1+qm−2+···+q+1TrFqm\Fq
have degree less than i, then

evL

(︄
Xqm−1+qm−2+···+q+1TrFqm\Fq

Tr2Fqm\Fq

)︄
∈ C

(︂
L,Tr2Fqm\Fq

)︂⊥
which implies

evL

(︃
Xi

Tr2Fqm\Fq

)︃( q
2 )

and evL

(︃
Xi

Tr2Fqm\Fq

)︃
are in C

(︂
L,Tr2Fqm\Fq

)︂⊥
.

□

Lemma 11 proves that the first 2(qm−1 + qm−2 + · · · + q + 1) consecutive

powers are in the span of C
(︂
L,Tr2Fqm\Fq

)︂⊥
. Our aim is to use these additional

powers to prove that if i is small enough, then i q2 + qm−1 mod qm − 1 is also

small enough such to imply evL

(︃
Xi

Tr2Fqm\Fq

)︃
∈ C

(︂
L,Tr2Fqm\Fq

)︂⊥
. If 2qm−1 ≤

i < 2qm−1 + 3qm−2 then when writing i in its q basis expansion the first
coefficient im−1 = 2 and the second coefficient 0 ≤ im−2 ≤ 2. In this lemma
we shall use the identity qa−1+ qa−2+ · · ·+ q+1 = qa−1

q−1 to simplify notation.

Lemma 12 Let 2 qm−1
q−1 < i ≤ 2 qm−1

q−1 + 2 qm−2−1
q−1 . Then

evL

(︄
Xi

Tr2Fqm\Fq

)︄
∈ C

(︂
L,Tr2Fqm\Fq

)︂⊥
.

Proof Let i be as in the hypothesis of the theorem. Then q
2 i ≤ q qm−1

q−1 + q qm−2−1
q−1 .

Taking the remainder of both sides modulo qm− 1 we obtain q
2 i− qm+1 ≤ qm−1

q−1 +
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q qm−2−1
q−1 . Adding qm−1 on both sides we obtain q

2 i − qm + 1 + qm−1 ≤ qm−1
q−1 +

q qm−1−1
q−1 . Note that qm−1

q−1 + q qm−1−1
q−1 < 2 qm−1

q−1 .

Now that we have proven key bounds on q
2 i mod qm − 1 we can prove the

statement of the lemma.
Recall that

evL

(︄
Xi

Tr2Fqm\Fq

)︄( q
2 )

= evL

(︄
X

q
2 i mod qm−1TrFqm\Fq

Tr2Fqm\Fq

)︄
.

The bounds on q
2 i mod qm − 1 imply that all terms of X

q
2 i mod qm−1TrFqm\Fq

have degree < 2 qm−1
q−1 . Therefore evL

(︃
Xi

Tr2Fqm\Fq

)︃( q
2 )

and evL

(︃
Xi

Tr2Fqm\Fq

)︃
are in

C
(︂
L,Tr2Fqm\Fq

)︂⊥
.

□

We use the additional parity check equations to state an improved distance

bound for C
(︂
L,Tr2Fqm\Fq

)︂
.

Corollary 13 Let q be an even prime power. The minimum distance of

C
(︂
L,Tr2Fqm\Fq

)︂
is at least

2
qm − 1

q − 1
+ 2

qm−2 − 1

q − 1
+ 2

Proof Recall that C
(︂
L,TrFqm\Fq

)︂
= C

(︂
L,Tr2Fqm\Fq

)︂
. Lemmas 11 and 12 imply

that

evL

(︄
Xi

Tr2Fqm\Fq

)︄
∈ C

(︂
L,Tr2Fqm\Fq

)︂⊥
for 0 ≤ i ≤ 2 qm−1

q−1 +2 qm−2−1
q−1 . As there are 2 qm−1

q−1 +2 qm−2−1
q−1 +1 consecutive parity

check equations, we obtain d
(︂
C
(︂
L,TrFqm\Fq

)︂)︂
≥ 2 qm−1

q−1 + 2 qm−2−1
q−1 + 2. □

4 Further improvements for m = 3

The technique presented in the previous section can be further extended for

particular values of m and p. More consecutive powers in C
(︂
L,Tr2Fqm\Fq

)︂⊥

implies more q
2 powers can be taken, which then implies more consecutive pow-

ers in C
(︂
L,Tr2Fqm\Fq

)︂⊥
. For example, if we apply Lemma 12 again bounding

q
2 i− qm + 1+ qm−1 by 2 qm−1

q−1 + 2 qm−2−1
q−1 then the bound on i is increased by

4 qm−3−1
q−1 . This is a meaningful increase only if m ≥ 3.
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So far, we have improved the bound on d
(︁
C
(︁
L,TrFqm\Fq

)︁)︁
finding

additional parity check equations leading to

d
(︁
C
(︁
L,TrFqm\Fq

)︁)︁
≥ 2

qm − 1

q − 1
+ 2

qm−2 − 1

q − 1
+ 2.

Next, we improve the minimum distance for m = 3.

We prove that evL

(︃
X2q2+2q+5

Tr2F
q3

\Fq

)︃
∈ C

(︂
L,Tr2Fq3\Fq

)︂⊥
. If true, then

C
(︂
L,Tr2Fq3\Fq

)︂⊥
would contain 2q2+2q+7 consecutive powers, which implies

the d
(︂
C
(︂
L,TrFq3\Fq

)︂)︂
≥ 2q2 +2q+8. As in the previous section we assume

that q is an even prime power such that q ≥ 8 as the trace Goppa codes for
q = 2 and q = 4 are trivial.

Corollary 14

evL

⎛⎝X2q2+2q+3

Tr2Fq3\Fq

⎞⎠( q
2 )

∈ C
(︂
L,Tr2Fq3\Fq

)︂⊥

Proof This corollary is follows from Lemma 11 and Lemma 12. □

Lemma 15 Let q = 2s where s ≥ 3.

evL

(︂
X2q+5

)︂( q
2 ) ∈ C

(︂
L,Tr2Fq3\Fq

)︂⊥

Proof We shall write evL

(︂
X2q+5

)︂( q
2 )

as a linear combination of 2–powers of

evL

(︄
Xi

Tr2F
q3

\Fq

)︄
where 0 ≤ i < 2q2. Since each of the following powers satisfy 0 ≤

i < 2q2 and q ≥ 8 the following evaluation vectors are elements of C
(︂
L,Tr2Fq3\Fq

)︂⊥
:

c1 = evL

⎛⎝ X6q+3

Tr2Fq3\Fq

⎞⎠( q
2 )

, c2 = evL

⎛⎝Xq2+( q
2+1)q+3

Tr2Fq3\Fq

⎞⎠(q2)

,

c3 = evL

⎛⎝Xq2+ q
2 q+4

Tr2Fq3\Fq

⎞⎠(q2)

c4 = evL

⎛⎝Xq2+2q+ q
2+2

Tr2Fq3\Fq

⎞⎠ , c5 = evL

⎛⎝Xq2+4q+ q
2

Tr2Fq3\Fq

⎞⎠
Taking the 2–powers inside of the evaluation, we obtain:
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c1 = evL

(︄
X3q2+q+ q

2

TrFq3\Fq

)︄
, c2 = evL

⎛⎝X3q2+q+ q
2+1

Tr2Fq3\Fq

⎞⎠ ,

c3 = evL

⎛⎝X4q2+q+ q
2

Tr2Fq3\Fq

⎞⎠
c4 = evL

⎛⎝Xq2+2q+ q
2+2

Tr2Fq3\Fq

⎞⎠ , c5 = evL

⎛⎝Xq2+4q+ q
2

Tr2Fq3\Fq

⎞⎠
Now we rewrite c1 as the evaluation of a rational function with Tr2Fq3\Fq

in the

denominator by multiplying both sides by TrFq3\Fq
.

c1 = evL

⎛⎝X3q2+q+ q
2 (X +Xq +Xq2)

Tr2Fq3\Fq

⎞⎠ , c2 = evL

⎛⎝X3q2+q+ q
2+1

Tr2Fq3\Fq

⎞⎠
c3 = evL

⎛⎝X4q2+q+ q
2

Tr2Fq3\Fq

⎞⎠ , c4 = evL

⎛⎝Xq2+2q+ q
2+2

Tr2Fq3\Fq

⎞⎠ , c5 = evL

⎛⎝Xq2+4q+ q
2

Tr2Fq3\Fq

⎞⎠
We expand c1 as

c1 = evL

⎛⎝X3q2+q+ q
2+1

Tr2Fq3\Fq

⎞⎠+ evL

⎛⎝X3q2+2q+ q
2

Tr2Fq3\Fq

⎞⎠+ evL

⎛⎝X4q2+q+ q
2

Tr2Fq3\Fq

⎞⎠ .

Therefore,

c1 = c2 + evL

⎛⎝X3q2+2q+ q
2

Tr2Fq3\Fq

⎞⎠+ c3

Note that the sum c1 + c2 + c3 + c4 + c5 equals

c1 + c2 + c3 + c4 + c5 = c2 + evL

⎛⎝X3q2+2q+ q
2

Tr2Fq3\Fq

⎞⎠+ c3 + c2 + c3 + c4 + c5

= evL

⎛⎝X3q2+2q+ q
2

Tr2Fq3\Fq

⎞⎠+ c4 + c5

= evL

⎛⎝X3q2+2q+ q
2

Tr2Fq3\Fq

⎞⎠+ evL

⎛⎝Xq2+2q+ q
2+2

Tr2Fq3\Fq

⎞⎠+ evL

⎛⎝Xq2+4q+ q
2

Tr2Fq3\Fq

⎞⎠ .

= evL

⎛⎝Xq2+2q+ q
2 (X2 +X2q +X2q2)

Tr2Fq3\Fq

⎞⎠ = evL

(︂
Xq2+2q+ q

2

)︂
However Xq2+2q+ q

2 = (X2q+5)
q
2 . Therefore

c1 + c2 + c3 + c4 + c5 = evL

(︂
X2q+5

)︂( q
2 )

.

As we have decomposed evL

(︂
X2q+5

)︂( q
2 )

as the sum of elements of

C
(︂
L,Tr2Fq3\Fq

)︂⊥
, it follows that evL(X

2q+5) ∈ C
(︂
L,Tr2Fq3\Fq

)︂⊥
. □
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As a consequence we obtain the the following improvement on the minimum

distance of C
(︂
L,Tr2Fq3\Fq

)︂
.

Theorem 16 The minimum distance of C
(︂
L,Tr2Fq3\Fq

)︂
is at least 2q2 + 2q + 8.

Proof By the definition of the Goppa code

evL

⎛⎝ Xi

Tr2Fq3\Fq

⎞⎠ ∈ C
(︂
L,Tr2Fq3\Fq

)︂⊥
, 0 ≤ i ≤ 2q2 − 1.

Lemma 11 and Lemma 12 imply that

evL

⎛⎝ Xi

Tr2Fq3\Fq

⎞⎠ ∈ C
(︂
L,Tr2Fq3\Fq

)︂⊥
, 0 ≤ i ≤ 2q2 + 2q + 4.

Corollary 14 implies

evL(X
2q+3) ∈ C

(︂
L,Tr2Fq3\Fq

)︂⊥
and Lemma 15 suggests

evL(X
2q+5) ∈ C

(︂
L,Tr2Fq3\Fq

)︂⊥
.

Because C
(︂
L,Tr2Fq3\Fq

)︂⊥
is closed under 2–powers, then

evL(X
2q+2), evL(X

2q+4), evL(X
2q+6) ∈ C

(︂
L,Tr2Fq3\Fq

)︂⊥
.

Lemma 9 implies that

evL

⎛⎝ Xi

Tr2Fq3\Fq

⎞⎠ ∈ C
(︂
L,Tr2Fq3\Fq

)︂⊥
, 0 ≤ i ≤ 2q2 + 2q + 6.

There are 2q2 + 2q + 7 consecutive powers in C
(︂
L,Tr2Fq3\Fq

)︂⊥
which signifies

d(C(L,Tr2Fq3\Fq
) ≥ 2q2 + 2q + 8.

□

5 Further improvements for m = 4

We apply a similar technique for the case m = 4 to increase the bound for

d
(︂
C
(︂
L,Tr2Fq4\Fq

)︂)︂
.

Lemma 17 Let q = 2s where s ≥ 3.

evL

(︂
X2q2+4q+i

)︂( q
2 ) ∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
for 0 ≤ i ≤ q − 1.
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Proof Lemma 11 implies evL

(︂
X2q2+4q+i

)︂
∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
for 0 ≤ i ≤ 4. Since

C
(︂
L,Tr2Fq4\Fq

)︂⊥
is closed under 2–powers, we may assume the theorem holds when

i is even. We proceed by induction on i. Suppose i = 2i0 + 1 is odd.

We shall write the vector evL

(︂
X2q2+4q+2i0+1

)︂( q
2 )

as a combination of 2–powers

of evaluations of evL

(︄
Xi

Tr2F
q4

\Fq

)︄
where 0 ≤ i < 2q2.

Note

evL

(︂
X2q2+4q+2i0+1

)︂( q
2 )

= evL

⎛⎝Xq3+2q2+i0q+
q
2Tr2Fq4\Fq

Tr2Fq4\Fq

⎞⎠ .

The parity check equations evL

(︄
Xq3+2q2+i0q+

q
2 X2

Tr2F
q4

\Fq

)︄
, evL

(︄
Xq3+2q2+i0q+

q
2 X2q

Tr2F
q4

\Fq

)︄

and evL

(︄
Xq3+2q2+i0q+

q
2 X2q2

Tr2F
q4

\Fq

)︄
are in the code C

(︂
L,Tr2Fq4\Fq

)︂⊥
because the

power of X in the numerator is less than 2q3. Therefore evL

(︄
Xq3+2q2+i0q+

q
2 X2

Tr2F
q4

\Fq

)︄
,

evL

(︄
Xq3+2q2+i0q+

q
2 X2q

Tr2F
q4

\Fq

)︄
and evL

(︄
Xq3+2q2+i0q+

q
2 X2q2

Tr2F
q4

\Fq

)︄
∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
Therefore evL(X

2q2+4q+2i0+1) ∈ C
(︂
L,Tr2Fq4\Fq

)︂⊥
if and only if

evL

(︄
X3q3+2q2+i0q+

q
2

Tr2F
q4

\Fq

)︄
∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
. We need to determine if

evL

⎛⎝Xq3+2q2+i0q+
q
2X2q3

Tr2Fq4\Fq

⎞⎠ = evL

⎛⎝X3q3+2q2+i0q+
q
2

Tr2Fq4\Fq

⎞⎠ ∈ C
(︂
L,Tr2Fq4\Fq

)︂⊥
.

Note that

evL

⎛⎝X6q2+2q+2i0+1

Tr2Fq4\Fq

⎞⎠( q
2 )

= evL

(︄
X3q3+q2+i0q+

q
2

TrFq4\Fq

)︄

= evL

⎛⎝X3q3+q2+i0q+
q
2TrFq4\Fq

Tr2Fq4\Fq

⎞⎠ .

Note that evL

(︄
X3q3+q2+i0q+

q
2 Xq3

Tr2F
q4

\Fq

)︄
,evL

(︄
X3q3+q2+i0q+

q
2 Xq

Tr2F
q4

\Fq

)︄
and

evL

(︄
X3q3+q2+i0q+

q
2
X

Tr2F
q4

\Fq

)︄
are in C

(︂
L,Tr2Fq4\Fq

)︂⊥
.

Since evL

(︄
X6q2+2q+2i0+1

Tr2F
q4

\Fq

)︄
∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
, then both

evL

(︄
X3q3+q2+i0q+

q
2 Xq2

Tr2F
q4

\Fq

)︄
, evL

(︂
X2q2+4q+2i0+1

)︂
∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
.
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Therefore evL(X
2q2+4q+2i0+1) ∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
□

Now we extend the proof to powers of the form evL(X
2q2+5q+i).

Lemma 18 Let q = 2s where s ≥ 3.

evL

(︂
X2q2+5q+i

)︂( q
2 ) ∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
where 0 ≤ i ≤ q − 1.

Proof The proof is almost identical to the proof of Lemma 17. The key differences
are as follows. Assuming i is odd, because the coefficient of q of the power of X is 5

instead of 4, we obtain evL

(︂
X2q2+5q+i

)︂( q
2 )

= evL

(︂
Xq3+2q2+(i0+

q
2 )q+

q
2

)︂
instead.

Note i0+
q
2 < q. After considering evL

(︂
X2q2+5q+i

)︂( q
2 )

every logical step of Lemma

17 also holds for i0 +
q
2 instead of i0. We also take evL

(︄
X6q2+3q+2i0+1

Tr2F
q4

\Fq

)︄( q
2 )

instead

of evL

(︄
X6q2+2q+2i0+1

Tr2F
q4

\Fq

)︄( q
2 )

. □

We finish this section finding additional consecutive powers and improving

the bound on d(C
(︂
L,Tr2Fq4\Fq

)︂
.

Corollary 19 The minimum distance of C
(︂
L,Tr2Fq4\Fq

)︂
is at least 2q3+2q2+6q+8.

Proof Lemma 9, Lemma 17 and Lemma 18 imply that

evL

⎛⎝ Xi

Tr2Fq4\Fq

⎞⎠ ∈ C
(︂
L,Tr2Fq4\Fq

)︂⊥
for 0 ≤ i ≤ 2q3 + 2q2 + 5q + q − 1.

Because of Lemma 9 and because C
(︂
L,Tr2Fq4\Fq

)︂⊥
is closed under 2–powers

we only need to establish that evL

(︄
X2q3+2q2+6q+1

Tr2F
q4

\Fq

)︄
,evL

(︄
X2q3+2q2+6q+3

Tr2F
q4

\Fq

)︄
and

evL

(︄
X2q3+2q2+6q+5

Tr2F
q4

\Fq

)︄
are in the code C

(︂
L,Tr2Fq4\Fq

)︂⊥
.

The parity check equation evL

(︄
X2q3+2q2+6q+1

Tr2F
q4

\Fq

)︄
∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
because

the constant coefficient is 1 and q3(2q3 + 2q2 + 6q + 1) mod q4 − 1 < 2q3.

The parity check equation evL

(︄
X2q3+2q2+6q+3

Tr2F
q4

\Fq

)︄
∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
because

evL(X
2q2+6q+3)

q
2 = evL(X

q3+3q2+q+ q
2 ). Since the exponent q3 + 3q2 + q + q

2 has
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two coefficients equal to one, the terms of evL

⎛⎝Xq3+3q2+q+
q
2 Tr2F

q4
\Fq

Tr2F
q4

\Fq

⎞⎠ are all in

C
(︂
L,Tr2Fq4\Fq

)︂⊥
. Using the same technique as in Lemma 17 the parity check

equation evL

(︄
X2q3+2q2+6q+5

Tr2F
q4

\Fq

)︄
∈ C

(︂
L,Tr2Fq4\Fq

)︂⊥
because

evL

(︂
X2q2+6q+5

)︂ q
2
= evL

(︂
Xq3+3q2+2q+ q

2

)︂
and

evL

(︄
X3q3+3q2+2q+ q

2

Tr2Fqm\Fq

)︄
=

evL

(︄
X6q2+6q+3

Tr2Fqm\Fq

)︄( q
2 )

+
∑︂

r∈{0,1,3}
evL

(︄
X3q3+3q2+q+ q

2Xqr

Tr2Fqm\Fq

)︄

are both in C
(︂
L,Tr2Fq4\Fq

)︂
. Since evL

(︄
Xi

Tr2F
q4

\Fq

)︄
∈ C

(︂
L,Tr2Fq4\Fq

)︂
for 0 ≤ i ≤

2q3 + 2q2 + 6q + 7 it follows that

d
(︂
C
(︂
L,Tr2Fq4\Fq

)︂)︂
≥ 2q3 + 2q2 + 6q + 8.

□

6 Conclusion

We improved the minimum distance bound of Trace Goppa codes
C(L,TrFqm\Fq

) using the fact that TrFqm\Fq
takes values over the subfield

Fq. This improves the minimum distance bound of the Trace Goppa code is
significantly from qm−1 + 1 to qm−1 + qm−2 + · · ·+ q + 1.

In the binary case, we found additional consecutive parity check equations

of the form evL

(︃
Xi

Tr2Fqm\Fq

)︃
. These additional equations improve the minimum

distance bound from 2qm−1+2 to 2 qm−1
q−1 + qm−2−1

q−1 +2. For binary Trace Goppa
codes with m = 3 and m = 4 we have further improved the minimum distance
bound by finding additional consecutive parity check equations. For m = 3,
the distance bound increases from 2q2 + 2q + 4 to 2q2 + 2q + 8. For m = 4,
the distance bound increases from 2q3 + 2q2 + 4q + 6 to 2q3 + 2q2 + 6q + 8. If
m ≥ 5 then Lemma 12 can be applied further to increase the distance bound.

Our results imply that Trace Goppa codes can provide better distance
bounds compared to the binary code obtained from puncturing and short-
ening the corresponding BCH codes in some cases. For example, the Trace
Goppa code over F512 is a binary [448, 58, 152] code which is better than any
code obtained from puncturing or shortening BCH codes of length 511. As
proven in [9] the Trace Goppa code over F256, C(L, x16+x) is the best known
[240, 123, 36] binary code. Thus for Trace Goppa codes and related Alternant
codes using the trace function TrFqm\Fq

and its quasi–cyclic structure may
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improve the minimum distance and decoding algorithms of BCH codes of larger
lengths, perhaps over F214 , F215 or F216 .
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[4] P. Véron, True Dimension of Some Binary Quadratic Trace
Goppa Codes. Designs, Codes and Cryptography 24, 81–97 (2001).
https://doi.org/10.1023/A:1011281431366
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