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ABSTRACT

Many recent numerical studies have argued that cosmic rays (CRs) from supernovae (SNe) or active galactic nuclei (AGNs) could
play a crucial role in galaxy formation, in particular by establishing a CR-pressure-dominated circumgalactic medium (CGM).
But explicit CR-magnetohydrodynamics (CR-MHD) remains computationally expensive, and it is not clear whether those results
can be applied to simulations that do not explicitly treat magnetic fields or resolved interstellar medium phase structure. We
therefore present an intentionally extremely simplified ‘sub-grid’ model for CRs, which attempts to capture the key qualitative
behaviors of greatest interest for those interested in simulations or semi-analytical models including some approximate CR
effects on galactic (= kpc) scales, while imposing negligible computational overhead. The model is numerically akin to some
recently developed sub-grid models for radiative feedback, and allows for a simple constant parametrization of the CR diffusivity
and/or streaming speed; it allows for an arbitrary distribution of sources (proportional to black hole accretion rates or star—particle
SNe rates or gas/galaxy star formation rates), and interpolates between the limits where CRs escape the galaxies with negligible
losses and those where CRs lose most of their energy catastrophically before escape (relevant in e.g. starburst galaxies). The
numerical equations are solved trivially alongside gravity in most codes. We compare this to explicit CR-MHD simulations and

discuss where the (many) sub-grid approximations break down, and what drives the major sources of uncertainty.
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1 INTRODUCTION

Inrecent years, a number of different studies have shown by explicitly
evolving cosmic ray (CR) dynamics coupled to the MHD equations in
galaxy formation simulations that CRs could play a key role in galaxy
formation (Jubelgas et al. 2008; Uhlig et al. 2012; Wiener, Zweibel &
Oh 2013b; Salem & Bryan 2014; Pakmor et al. 2016; Simpson et al.
2016; Ruszkowski, Yang & Zweibel 2017; Girichidis et al. 2018).
Most notably, CRs from supernovae (SNe) or active galactic nuclei
(AGNs) could provide an additional source of pressure in the halo or
circumgalactic medium (CGM), which can suppress new inflows of
cooling gas or re-accelerate outflows to intergalactic medium (IGM)
scales, significantly altering galaxy formation (Salem, Bryan &
Corlies 2016; Butsky & Quinn 2018; Holguin et al. 2019; Su et al.
2019, 2020; Buck et al. 2020; Butsky et al. 2020; Hopkins et al.
2020b, 2021a, b, c; Ji et al. 2020, 2021).

But it is computationally very expensive to explicitly incorporate
CR transport in numerical simulations, and adds substantial com-
putational complexity. Like radiation hydrodynamics (RHD), CRs
represent a broad spectral distribution (so one would ideally desire
to evolve a range of CRs momenta or rigidities, like wavelengths
of light, as in Girichidis et al. 2020, Ogrodnik, Hanasz & Wéltanski
2021, Hopkins 2023, and Hopkins et al. 2022b, ¢), and move locally at
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up to the speed of light. One can reduce the complexity by integrating
over energies to obtain a ‘single-bin’ approximation (for spectrally
integrated quantities like the total CR energy or pressure), and using a
moments-based method obtain an energy and flux (‘M 1-like”) or pure
energy (‘FLD-like’ or Fokker—Planck) equation for the CRs (Zweibel
2013; Jiang & Oh 2018; Chan et al. 2019; Thomas & Pfrommer
2019; Hopkins, Squire & Butsky 2022a). However, solving such
equation explicitly still imposes severe time-step costs, e.g. explicitly
integrating CR diffusion requires a time-step At < C Ax?/k where
k is the diffusivity, Ax the numerical resolution, and C a Courant-like
factor. For the observationally required values of « (at the energies
~ 1-10 GeV which dominate the CR pressure) needed to reproduce
Solar system CR observations (Blasi & Amato 2012; Vladimirov
et al. 2012; Gaggero et al. 2015; Cummings et al. 2016; Guo, Tian &
Jin 2016; J6hannesson et al. 2016; Korsmeier & Cuoco 2016; Evoli
et al. 2017; Amato & Blasi 2018; De La Torre Luque et al. 2021;
Hopkins et al. 2022b) and extragalactic y -ray constraints (Chan et al.
2019; Su et al. 2020; Hopkins et al. 2020b, 2021b, c; Bustard &
Zweibel 2021), this translates to At < (Ax/pc)? yr. Higher-moment
methods can remove this constraint at the expense of introducing the
speed of light as a signal speed (At < C Ax/c), then employing
a ‘reduced speed of light” (RSOL) approximation, but this still
requires the RSOL be much faster than any other signal speeds to
obtain converged solutions (Chan et al. 2019), which by definition
significantly reduces the time-steps. And while implicit numerical
methods (e.g. Sharma, Colella & Martin 2010a; Sharma & Hammett
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2011; Kannan et al. 2016; Pakmor et al. 2016) can be stably integrated
for somewhat longer time-steps they impose their own (often very
large) overhead costs and typically scale poorly if a deep hierarchical
time-step structure is adopted (Hopkins 2017).

Moreover, it is not clear whether the cost or complexity of adding
explicit CR transport is worthwhile, in simulations which neglect
other key physics which are important for CR transport, losses, and
coupling to gas, such as magnetic field dynamics, variation in local
radiation energy densities, explicitly resolved neutral versus ionized
phases of the interstellar medium (ISM), and individually time-
resolved SNe and/or collimated AGN jets. In simulations like those
in e.g. Vogelsberger et al. (2013), Crain et al. (2015), Grand et al.
(2017), Pillepich et al. (2018), and Buck et al. (2020), it is common
practice to treat other forms of stellar and AGN feedback via sub-grid
prescriptions that treat the ISM with some ‘effective equation of state’
instead of resolving its structure, and insert key effects of SNe and
AGN mechanical feedback ‘by hand’ (e.g. injecting thermal energy,
‘kicking’ particles into outflows, or turning off cooling for some spec-
ified period of time). Ideally, these models for mechanical feedback
are calibrated directly to the results of higher resolution simulations
that attempt to actually resolve those phenomena. Clearly, one would
like to have a similar treatment for CRs. However, the popular sub-
grid model approaches above cannot appropriately treat CRs: if the
dominant effect of CRs is the introduction of non-thermal pressure
terms, and their gradients are important on large scales like the CGM
(far from their injection sites), then one cannot qualitatively approx-
imate this with some ‘thermal + kinetic’ or ‘cooling turnoft’ type
model.

In this paper, therefore, we attempt to develop a simple sub-grid
prescription for use in simulations of galactic or cosmological scales
(specifically, simulations that do not attempt to resolve ISM phases
or explicitly treat CR transport). Our goal is to design the simplest
possible toy model which can capture the most important qualitative
effects/behaviours of CRs in so far as they influence galaxy formation
and CGM/IGM structure, which can be incorporated into simulations
like those mentioned above with essentially zero computational cost,
and allow users to parametrize the CR transport parameters (whose
detailed scaling is probably the most uncertain parameter governing
CR effects on galaxies, see Butsky & Quinn 2018; Butsky et al.
2020; Hopkins et al. 2021b) in a simple manner. We stress that this is
in no way a replacement for simulations which do explicitly model
these physics: such simulations are necessary and crucial to inform
models like those here, as well as to actually make quantitative
predictions for CR observables (which the model we propose below
is not appropriate for) in order to actually constrain the detailed role
of CRs in galaxy formation.

2 DERIVATION

2.1 Local CR energy density and pressure

2.1.1 Generalized large-scale CR transport equations

Beginning from the fully general CR transport Vlasov equation,
one can make a series of assumptions and transformations to pro-
gressively make the equations simpler. First, assume Lorentz forces
rapidly ensure a microscopically near-gyrotropic CR distribution
function f, to obtain the focused CR transport equation (Le Roux
et al. 2015) which is valid to leading order in O(r,/L) (where r,
is the CR gyro-radius, and L the macroscopic resolved scales in the
simulations), with the standard quasi-linear theory scattering rate
coefficients from Schlickeiser (1989).
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Next, take the first and second pitch-angle moments equations with
an interpolated closure relation and expand to leading order in
O(u/c), where u is the (non-relativistic) background fluid velocity
to obtain the moments equations in Hopkins et al. (2022a). Then
integrate these over momentum-space, imposing the assumption
of a fixed spectral shape for the CRs with most of the energy in
ultrarelativistic CRs, to obtain the energy equations, equation (38) in
Hopkins et al. (2022a):

~ v
Dieer + V- (Feb) ~ Se = Per: Vu— — [14 Fe =3 v} (e + Por)]
DiF, 4+ ¢*b-(V-Py) ~ =0 [F, — 3 x D4 (e + Pe)] + Sk, (1)

where ey, Py ~ eq/3, P, F, are the CR energy density, scalar
pressure, pressure tensor, and energy flux; u is the gas fluid velocity;
D, X = 0,X + V - (uX) is the conservative comoving derivative; S,
and Sy, represent sources and sinks; b is the unit magnetic field
vector = B/|B|; ¥ is the appropriately spectrally averaged mean CR
scattering rate (= vy + V_, the sum of contributions from forward
and backward-propagating waves); c is the speed of light; vy4 is the
appropriate Alfvén speed (Alfvén speed of modes with wavenumber
~1/r, where r, is the gyro radius); 4 = va (V4 — V_)/(V4 + D)
is the signed ‘streaming speed’, and x = (I — (u?)/2 is a
completely general closure function that defines the (an)isotropy
of Py =3 P [x I+ (1 —3x) bb] for any gyrotropic CR f'in terms
of the second moment of the pitch-angle (j4?).

Next, take this and assume the CRs have reached flux-steady-state
in the strong-scattering limit, i.e. D,F, — 0 (or equivalently take
the Newtonian limit, ¢ — o0), which occurs in a scattering time
~ b~ ~ 30 yrfor ~ 1 GV CRs (Hopkins et al. 2021c), leading to
the strong-scattering limit with a close-to-isotropic CR distribution
function (x — 1/3, P,y — P [). In this limit, v, approaches one of
two limits: either 4 — 0 if CR scattering is symmetric in the Alfvén
frame, or v4 — —SIGN(f) - VP) v, if the scattering is asymmetric
(as expected if modes excited by the CRs dominate scattering as in
self-confinement models). This gives a CR energy equation we can
write as

2

[

0,6 —> V- bbVey, — (54 b + ) o

w
<!

2 =2
— PyV - (iabtu)+ A

; D (eer + Pe) + S . )

2.1.2 Isotropized steady-state equations

Now, we make a series of much stronger assumptions akin to
those used to derive the commonly adopted (see e.g. Strong &
Moskalenko 2001; Evoli et al. 2017) steady-state isotropic Fokker—
Planck equation for CRs: (1) assume the energy equation is in
Eulerian steady-state (0;e,, — 0, which occurs on a bulk CR
transport/injection time-scale ~L>/k or e/S, which can range from
~ 107 yr in the dense ISM to ~ 1-10 Gyr in the CGM), and (2)
that the magnetic fields are isotropically ‘tangled’ on scales of order
the CR scattering mean-free-path and below the resolution scale,
and we implicitly replace all quantities with their averages over the
resolution-scale ‘tangling’, so that we can replace the anisotropic dif-
fusion tensor k| = iy bb = (c?/3 9) bb with an isotropic equivalent'

!For a more formal justification of this, see e.g. Braginskii (1965), Berezinskii
et al. (1990), Zweibel (2013), and for a more practical example showing
that this is an acceptable approximation at the order-of-magnitude level in
simulations using explicitly anisotropic transport (including those studied
here below), see Chan et al. (2019), Su et al. (2019, 2020), Buck et al. (2020),
Ji et al. (2020), and Hopkins et al. (2020b).
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(V- (k) - Veer)) ~ Vkiso Veer) with kiso ~ k/3 = ¢/9 D, and like-
wise replace vy — u + (|17A|/«/§) V P,;. With these, and replacing
P ~ e, /3, we obtain

Vovg 4(v2 -2
— V- [kiso Ve — Vs €] ~ _% e + (27/47“”/‘) e+ S. 3)

Here, the terms on the left-hand side represent the ‘diffusive’
transport (in «) and the ‘streaming’ plus ‘advective/convective’
transport (in vg) — it is clear from the equation above (though see
appendix B in Hopkins et al. 2021c for more detailed discussion) that
these are only meaningfully separable into classical ‘diffusion’ versus
‘streaming’ behaviours if k5, and v are strictly constants: if we allow
them to be arbitrary functions of position, then the coefficients are
strictly degenerate (as we note below) and one cannot mathematically
separate the two terms. On the right-hand side, we have the ‘adiabatic’
and ‘streaming loss’ term (in V - vg), the ‘diffusive reacceleration
(DRA)’ term (in (v% — v%)) and the S collects sources (at injection
sites) and losses. Note that we define vy, to collect the ‘streaming’ and
advective/convective/adiabatic terms together on both sides (different
from the usual convention), because our model is ultimately defined
in an Eulerian frame of the galaxy.

2.1.3 Spherically symmetric form away from a point source

Next, separate S — jin — Qloss With injection jj, and losses Qjoss &
Wy € for some loss rate function W.,2 and consider a point
source with location defined as the origin (ji, = E¢ 8(x)). Now
make one more series of strong assumptions: take vy = |vy| to be
approximately constant, in a spherically symmetric ambient medium
(so ¥ — Y(r, ...)), giving (away from r = 0 aka outside of sources,
SO jin — 0):

1 0 2 Oecr
77 a r Ust €cr — Kiso ? =

2 Vg €cr 4(1& — ﬁf‘)
— — . 4
3r 27 Kiso foss | Ger )

2.1.4 The ‘streaming + diffusion’ approximation with constant
coefficients

Even with all our simplifying assumptions and spherical symmetry,
with (kiso) = (Kiso)(7), equation (4) can only be solved numerically
making a variety of additional assumptions about the form of i,
and U4, vg4, etc. However, it is useful at this point to note that
for self-confinement models, the ‘DRA’ term in v; — 93 vanishes
identically, and even for extrinsic turbulence models (where v4 — 0
so this re-acceleration term is maximized), the term is orders-of-
magnitude smaller than the W, term for realistic values of i
(see discussion in Hopkins et al. 2022a, b). We can therefore drop
it safely.> Next note that the vy term includes only the ‘advective’

2For CR spectra dominated by ~ 1-10 GV protons with observation-
ally favored transport speeds (much faster than Alfvénic), the CR-
spectrum-integrated loss function Wju is dominated by a combination of
hadronic/pionic, Coulomb, and ionization losses, scaling as

Wiges & 10710 em® s (6.4 ny + 3.1 ¢ + 1.8 npy),

where ny, ne, and nyy are the number densities of nucleons, free electrons,
and neutral atoms, respectively (Mannheim & Schlickeiser 1994).
3We stress that there is no inherent conflict between dropping this term here,
and claims in some steady-state analytical Galactic cosmic ray transport
models (with e.g. GALPROP, see Korsmeier & Cuoco 2022) that there is a
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and Alfvén velocities: vy = |u + 94 b/+/3], where |4] < v,, which
is much smaller than the effective ‘bulk’ streaming or diffusion
or transport speed of CRs (given by vegr ~ |kiso ec_rl Ve|) at least
within the galaxy for any observationally allowed diffusivities in
Milky Way like and dwarf galaxies at the energies (~ 1-10 GeV)
which dominate the total CR energy density e, (see Blasi & Amato
2012; Vladimirov et al. 2012; Gaggero et al. 2015; Cummings et al.
2016; Guo et al. 2016; J6hannesson et al. 2016; Korsmeier & Cuoco
2016; Evoli et al. 2017; Amato & Blasi 2018; Chan et al. 2019;
Hopkins et al. 2020b, 2021b, c; Su et al. 2020; Bustard & Zweibel
2021; De La Torre Luque et al. 2021), though we will allow for
some streaming outside the galaxy as discussed below. Typically in
these studies the inferred vesr ~ (10°=10*) v4. This means we can
neglect the ‘streaming + adiabatic loss term’ 2 vy ee,/(3 1) < va/r
as a dominant loss term for e, (though we note below the ‘adiabatic’
part of this term can sometimes be non-negligible).*

However, it is common in the literature to refer to ‘super-Alfvénic
streaming’ arising from self-confinement motivated CR transport
models. In these models, the scattering rate v (and therefore «)
depends itself on e, and its gradients, so it introduces ‘streaming like’
behaviour into k.. To capture this to leading order, in our spherically
symmetric, time-invariant steady-state approximation, we assume we
can expand the spherically averaged, direction-averaged effective
diffusivity as (ki) ~ (c2/9D(r, ...)) ~ Ko + Ve /2 + ..., where kg
and v, are constants [and we write v, = 2 (0(kiso[r])/0r) because
this term has units of velocity]. This separates the behaviours of
the scattering term ks, into an effectively traditional ‘diffusion-like’
term k¢ and a ‘streaming-like’ term v,.

We stress that as shown in Hopkins et al. (2021c), this is only an
approximation to the mean behaviour of CR scattering models: actual
self-confinement models, for example, produce coefficients which
are complicated functions of e, and its derivatives in a manner which
means that, in detail, the behaviour of equation (4) is neither truly
that of a “diffusion’ or a ‘streaming’ equation. But large uncertainties
remain in these models, so we choose to simply parametrize the
coefficients as above. With this, we define the ‘effective streaming
speed’ vy eff = Uy + U4 = v,. Note that here and throughout this
paper, we use ‘streaming’ to refer to any transport term which
produces ‘streaming-like dynamics’ in this sense, regardless of
whether it originates via large-scale gradients in the scattering rate
or k with position, or Alfvénic streaming, or free-streaming at ¢ or
other processes. In the models here, these are all degenerate (they all

‘preference’ for including DRA. Taking, for example, the favoured parameters
from the model variant with the strongest DRA in Korsmeier & Cuoco (2022),
then the DRA term (o< vﬁ — 1')124) in equation (4) is approximately ~10° times
smaller than the leading-order term in equation (4). Importantly, (1) there are
many small correction terms which might manifest in very detailed models
of full CR spectra of many species, which do not dominate the leading-order
uncertainties in the transport of most of the CR energy to the CGM (the only
quantity our models really attempt to capture); (2) the leading-order effect
of DRA on the CR spectra is diffusion in momentum-space (the usual ‘D’
term) which can alter CR spectra shapes but has a much weaker effect on the
bulk transport of total CR energy; and (3) such terms are at least partially
degenerate with terms that cannot be captured in steady-state models, such as
the adiabatic term, which most CR-MHD simulations find to be significantly
larger, as we discuss below (Pfrommer et al. 2017; Chan et al. 2019; Buck
et al. 2020; Butsky et al. 2020; Hopkins et al. 2022b).

4This statement regarding v is somewhat radius (r)-dependent: for constant
streaming/diffusion coefficients, the streaming term will be less important at
small  and more important at large-r. We discuss how large a correction this
can be in more detail in Section 4 below.
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produce essentially identical predictions), so we are agnostic to their
physical origins. However, we emphasize this is a different usage
of the term ‘streaming’ than in some of the historical cosmic ray
literature.

2.1.5 Approximate closed-form analytical expression

Now with all of these approximations, [which reduce equation (4)
to r720,{r? [vg e — k 0ree]} = —W ey ], it becomes possible to
solve equation (4) numerically, but it still does not have closed-
form analytical solutions. However given the gross approximations
we have already made, we can approximate the exact numerical
solutions to more than sufficient accuracy (and capture all of the
relevant limiting behaviours within the context allowed by our
approximations) with the following simple closed-form solution:?

~ (Ecl‘>r _[(r
€or X I otva ) exp{ Jo Wioss dr} ®)

_ (Eer)yp e
4 r (KO + Ust, eff }’)

v K Wioss \
1/’loss leSS (1 + 21055 ) ) (6)
st

st

%

where we use (E(),, to denote the time-averaged value of the source
function E.. averaged over approximately the bulk CR transport
time (since the CR energy cannot instantly adjust to small-time-scale
variations in E,).

We can then approximate e, by integrating over all sources.

2.2 Couplings to gas

If we again begin from the general CR-gas coupling terms described
in Hopkins et al. (2022a, b), including Lorentz forces, scattering,
ionization, and Coulomb and catastrophic interactions, etc., and
take all of the same limits assumed above in Section 2.1, then the
remaining leading-order coupling terms to the gas momentum and
energy equations can be written entirely in terms of e, derived above.

In the gas momentum equation, for the limits above, the CR
pressure tensor P, & P, | & (e;/3) [ is approximately isotropic and
simply adds to the total isotropic gas pressure in the momentum
equation as Pgys — Py, non—cr + Per-

In the gas thermochemistry, the CRs give rise to an ionization rate
(for our assumed universal CR spectral shape) expressed in terms of
the usual ¢ parameter as ¢, &~ 5 x 1078 57! (e;/eV cm™?) (note in
some conventions ¢, must be multiplied by ~1.5 for atomic gas and
~2.3 for molecular gas). Though we caution that the ionization rate

5Equation (5) comes from combining the reduced equation (4) with vy, off =
Vs, 0 + v and k = kg + v, /2, together with the flux boundary condition in
spherical symmetry ¢ Fe; - dA|,o = 47 72 (vst. 0 €er — K Oreer)lrm0 = Eer.
There is no closed-form exact analytical solution, but it is easy to verify
by insertion that equation (5) satisfies both constraint equations in each of
the four possible limits: (1) diffusion dominated (ko 3> Vg, eff ' OF Vg, eff —
0) with weak losses (W — 0); (2) diffusion dominated with strong losses
(W large, so Oy ecr & — e to leading order); (3) ‘streaming’ dominated
(ko < Vg, eff ¥ OF kg — 0) with weak losses; (4) ‘streaming’ dominated with
strong losses. And it is trivial to verify from the form of equation (5) that
the transition between each of these regimes occurs at the order-of-magnitude
value where we would expect (i.e. between diffusion and streaming dominated
when v eff I ~ ko, or between negligible losses and loss-dominated when
J ¥ dr ~ 1, equivalent to the statement that the transport and loss times out
to some radius r are roughly equal.

Sub-grid CR transport 2939

depends primarily on low-energy (~MeV) CRs, which contribute
little to the total energy, so there could be large variations in this owing
to un-modelled variations in the CR spectrum (and there appears to be
direct evidence for this in Milky Way GMCs; Indriolo et al. 2015).
Still, this can provide a substantial improvement on the common
practice of simply assuming a single uniform-in-space-and-time ¢ .

In the gas thermal energy equation, in addition to ionization
heating parametrized via ¢ above, the energy lost by CRs in
hadronic/pionic and Coulomb interactions is partially thermalized
(and partially lost to escaping radiation/particles such as y-rays;
see Mannheim & Schlickeiser 1994; Guo & Oh 2008), giving
e, gas ~ € (0.9, +1.6n,) x 10~'0s~! (where n, is the nucleon
number density and 7, the free-electron number density). Optionally,
if one assumes that the CR scattering is dominated by CR self-
excited waves such that |v, — b_|/|D, + D_| & 1, then one can also
include the ‘streaming losses’ (which reflect asymmetric scattering
transferring energy into these rapidly damped Alfvén waves which
then thermalize on short time-scales, see Wiener, Oh & Guo 2013a;
Wiener et al. 2013b; Ruszkowski et al. 2017; Thomas & Pfrommer
2019) which for the assumptions above take the simple form:
éth.gas ~ |UA vPcr|/3

3 NUMERICAL IMPLEMENTATION

Numerically, we can estimate e, ;, the value of e, at the centre-of-
mass location x; of cell i, by summing equation (5) over all sources:

(Ecr)j e "erii

Ceri N X5 For, Gorvaen ) @
= et 5, (B o) Fry) ®)
i.e.

s QU S ESEN F () ©)
with rj =[x — X, QN = =St fien = guten (| ) The

source term (E.) ; is defined below, and the second equality stems
from the following definitions and approximations:

Ter,ij = A"-—cr,i + A'L'cr,j + (,;:x) (10)
i 27172

Aty ; = Yios {Ax? + (i) } (1

— 1 =12 /1 12

'F(rij) = 4mrij (Ko+vst, eff i) e ! (12)

Here, we have approximated 7. ;; by the sum Aty ; + At j,
where At ; is (half, to account for the averaging) the integral
extrapolated from the location of cell i with a local Sobolev-length
approximation, assuming a log-linear scaling p(r) from r = 0 to r
— 00, based on the local gradient, giving the gradient scale-length
p/|Vp| evaluated at x = x;, plus the integral through the single cell
Ax; = (Am;/p;)"3. This is akin to a LEBRON-type local radiation-
hydrodynamics approximation (Hopkins, Quataert & Murray 2011;
Hopkins & Grudi¢ 2019; Hopkins et al. 2020a). We average from
both ‘endpoints’ i and j to approximate the integral in-between.®

This is convenient computationally as it reduces the computation to two
local operations which can be done before and after the collective sum over
sources, making the evaluation of equation (7) formally equivalent to the
usual self-gravity evaluation. Integrating over the full ‘path’ of a CR group
to evaluate 7., ;; on the other hand would not only require evaluation of the
integral of 1055 along the ray between source and target cell, but because the
CR follows field lines and has a quasi-diffusive trajectory, we would have to
integrate over the entire volume traversed by CRs (see Section 4).

MNRAS 522, 2936-2950 (2023)

€20z 1snbny 9| uo Jasn obaiq ueg ‘elulole) 1o Ausiaaiun Aq 890101 2/9E62/2/22S/3101e/Seluw/Wwod dno-olwapeoe//:sdny woJj papeojumoq



2940 P F Hopkins et al.

We also impose the term (r,;,«/rmax)z, which accounts for finite-CR-
transport time effects which are otherwise ignored in our calculation
above which assumed that we were always in steady state (9,e., —
0). In short, . reflects the maximum distance that CRs would travel
in some time 7y, , SO we do not inadvertently assign CR energy
densities to gas arbitrarily far away from sources. For the same
transport approximations, we can calculate 7,,x numerically for some
fmax» OF approximate it” as

1/2
1+(1+;6A> } (13)
Vg, eff fmax

Note that this gives the correct behaviour in both limits of ko or vy ef
dominating. The choice of 7, scaling with —|—(r,-j/rmax)2 ensures that
in the diffusive limit, this reproduces exactly the Gaussian ‘cutoff’ of
the true constant-k finite-time diffusion solution. In cosmological
simulations, it is reasonable to take f, & fubble(2), the age of the
Universe at redshift z, but one could also take it to be the time since
the beginning of a simulation, or ideally the time since a source first
formed or turned on (though this latter requires #,,,x for individual
sources which can complicate implementation in tree methods, where
one may need to define an ‘effective’ average t,,,x for groups of
sources which occupy the same tree node).

In equation (7), approximating 7, this way allows us to write e, ;
in a particularly useful form, after the — sign: we have a sum over
all sources of a scalar, the ‘locally attenuated’ E;‘:“"]“ = <Ecr>_j e ATerj
(which can be evaluated and saved purely locally for each source
particle, as a single number that depends only on the local particle/cell
properties), times a function F(r;;) which depends on their distance.
And then after the sum is complete, we account for ‘self-shielding’,
essentially by multiplying the saved sum at each site i by e~2%ri, in
cell i.

In tree codes, such as GIZMO which we test below, the imple-
mentation is then trivial and e, ; can be computed with negligible
cost alongside quantities like the gravitational forces. Specifically, all
sources send one scalar, E;‘;‘C]“, into the gravity force-tree, alongside
the numbers needed for gravity, we perform the sum | ; E é‘;‘ej“ F(rij)
in the tree, using r; between the target cell i and all sources j
to evaluate F;;, then immediate after the tree-sum is complete
multiply by the ‘shielding’ term e~2%i, to obtain the updated e, ;
for that time-step. In the tree code, because the sum over Ec‘ﬁte," is
linear, we can make the same approximation as we do for gravity
for distant nodes (replacing the individual Eé‘;‘ej“ with the sum in
the tree node/branch/etc, and using the appropriate distance). It is
immediately obvious how to generalize this to related multipole
and other methods (although entirely Fourier-based methods require
somewhat more overhead to correctly evaluate F(r;;)).

We can add the appropriate coupling terms to the gas, by inserting
eqr, i, and corresponding Py ; = e ;/3, and their gradients, into all
the existing Riemann problem and heating/cooling functions for
the gas, exactly as described for our fully explicit CR dynamics
treatments in Chan et al. (2019).

__ Tmax Ust, eff
rmax = 2

7Specifically, equation (13) is an approximate fitting function which is, by
construction, asymptotically exact to the (already simplified) equations being
integrated [e.g. equation (4) with constant x, vg efr] in the limits where
either « or vy, off dominates (and the other can be neglected), and is within
~ 10 per cent of the numerically integrated solution for all values of interest
of the dimensionless ratio «js,/ vfl’ off fmax- [t represents the distance enclosing
1/2 of the total energy of an initial § function ‘pulse’ of CRs injected at the
origin, evolved according to equation (4), after a time fpax.
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All that remains is to specify the source terms (E.) j-Depending on
the type of simulation, different approximations may be most useful.
Most of the CR energy density in typical dwarf-through-MW-mass
galaxies (at ~GeV energies) is accelerated in SNe shocks, with
€3¢ ~ 10 per cent of the ejecta kinetic energy (EJN ~ 10" erg
per SNe) going into CRs, 50 (Eer)j ~ €5 ESN® (Nsne)/ (where the
average over Ngy. should effectively ‘smooth’ the SNe rate over
some time-scale e.g. of order the local dynamical time or a constant
of 2 Myr, to prevent spurious small-scale noise, since we assume
steady-state solutions). In simulations which do not explicitly resolve
young stellar populations (in time or space) the SNe rate and other
forms of stellar feedback are commonly attached to star-forming
gas-particles as sources, with (Ngne)/ ~ (1/msne, i) (M,)/, where
Mmsne, et ~ 100 Mg depends on the assumptions about the stellar IMF
and SNe progenitor mass range. In simulations which explicitly treat
young stars and individual SNe, note that we still wish to have a
continuum source for purposes of this CR sub-grid model (since it
only applies in steady-state with some time-averaged injection rate),
so we can take (Nsne)’ ~ (Rsne(t7)) M7, where Rsye is the SNe rate
per unit stellar mass for a stellar population of age ¢/ (used to compute
all other stellar feedback effects in the code). If one wishes to include
AGNs as CR sources (reflecting relativistic jets), then one can take
(Eer)j ~ €1 (Mpy)/ ¢, where Mpy is the accretion rate on to the
black hole in the AGN source (again, averaged over some smoothing
time if the accretion model allows for arbitrarily short-time-scale
AGN variability, since we have assumed steady-state solutions) and
€BH parametrizes the fraction of the accretion energy which does into
escaping relativistic particles. One could also add source terms for
resolved shocks, if one wished to model structure formation shocks,
e.g. as CR sources.

Note that this adds no numerical time-step constraints, outside
of those already present for MHD (if CRs modify the velocities or
accelerations of the gas, the usual Courant conditions apply).

4 ASSUMPTIONS

Our sub-grid model makes many assumptions, which we have tried
to enumerate in Section 2. Here, we review which are ‘reasonable’
or ‘safe’, and which are likely ‘poor’.

To define ‘good’ versus ‘poor’ here: the key quantity of interest we
wish to provide, for the community for whom this toy sub-grid model
isintended and practically useful (e.g. large-volume galaxy formation
simulations and semi-analytical models), is the cosmic ray pressure
in the CGM (as for cosmological galaxy formation many studies
have shown this can have some of the most dramatic effects, though
it is far from the only way CRs can influence galaxy formation;
see e.g. Salem, Bryan & Hummels 2014 and the many references
in Section 1). But it is obvious (and supported by many detailed
simulations and models; see e.g. Hopkins et al. 2021b; Thomas,
Pfrommer & Pakmor 2022 and references therein) that one can have
reasonable models which behave (by construction) identically in the
ISM and yet give order-of-magnitude differences in the CR pressure
in the CGM, based on different assumptions about how to extrapolate
the (deeply uncertain) CR transport parameters (e.g. k, vy, etc.) to
different plasma conditions. In principle these might be testable in
the future (see discussion in Butsky et al. 2023), but at present there
are few observational constraints at the scale of interest (assuming
the model is constrained at the order-of-magnitude level already
in the ISM by Solar system and y-ray data). This means that —
for our limited purposes here — a ‘good’ or ‘safe’ or ‘reasonable’
assumption in our toy model is one which, if changed, would not
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change the average CR pressure on some scale by multiple orders-
of-magnitude, in a way that could not be absorbed into the already
explicitly parametrized uncertainties (e.g. parameters like k or vy)
of the model. This, of course, is a much looser criterion than ‘could
in principle be observationally measured’, let alone ‘can we justify
the assumption formally or rigorously’. But it is the case of practical
interest for the (intentionally extremely simplified) models here.

4.1 Well-justified assumptions

First, some assumptions we make are likely can actually be formally
justified, as e.g. certain dropped terms are small compared to other
terms we retain. As shown in Hopkins et al. (2022a), for scales
>r, (the CR gyro radius ~ 0.1 au) of interest, with non-relativistic
MHD fluid motions, the gyrotropic expansion and expansion to
leading-order in O(u/c) are well-motivated (i.e. CR gyro radii are
small compared to the scales of application of the model, and the
background fluid motions are non-relativistic; see e.g. Jokipii 1966;
Skilling 1971). Likewise on scales 2 kpc much larger than the CR
scattering mean-free-path, since CRs are not truly ‘collisionless’ like
photons, the moments approach to CR dynamics and assumption of
a near-isotropic CR distribution function and flux-steady state are
also formally justified (Voelk 1975). And as shown in Hopkins et al.
(2022b), for realistic diffusivities and CR spectra, neglecting terms
such as the re-acceleration (though we discuss this further below) and
certain other losses (e.g. ionization for low-energy protons, or losses
for sub-dominant leptonic CRs) are also likely to be a very small
source of error (they will at least always be smaller than other terms
we also neglect, such as the adiabatic term, so it is more important
to discuss those terms in our breakdown below).

4.2 Weakly justified, but plausible assumptions on galactic
scales

Next, we have a group of assumptions that are not rigorously
motivated, but work surprisingly ‘well’ in the loose practical sense
we define above, if we focus on scales ~ 1-100 kpc around galaxies.
This includes the following.

We integrate over CR momentum to use spectrally integrated CR
equations assuming the ultrarelativistic limit, which assumes the
CR spectrum is self-similar. This usually works at an ‘acceptable’
level because most of the CR energy is around ~ 1-10 GeV even if
the spectral shape varies (except perhaps near the galactic centre; see
Chen, Bryan & Salem 2016; Salem et al. 2016; Butsky & Quinn 2018;
Chan et al. 2019), and we only care about CR effects on galaxies
(dominated by the total pressure, without strong dependence on CR
spectral shape) and not CR observables (where the spectral shape
is very important). The spectral shape variations would have to be
extreme to change the total CR pressure at the order-of-magnitude
level, and even if these did appear, since in any realistic model the
CR transport parameters depend on rigidity, it is not obvious it could
not be subsumed into an appropriate mean radial dependence of « or
Vg ON 7.

We assume magnetic fields are ‘tangled’ so we can approximate
the diffusivity as isotropic, for analytical simplicity. This will break
down badly on small scales, of course, but is plausible on large/CGM
scales (see Ji et al. 2020, 2021). More importantly, however, multiple
previous studies have shown that this generally only introduces
O(1) geometric corrections to the effective transport speed and CR
pressure even where magnetic fields are highly aligned (akin to
other anisotropic diffusion processes; see Sharma, Parrish & Quataert
2010b; Parrish et al. 2012; Arth et al. 2014; Chen et al. 2016; Hopkins
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2017; Buck et al. 2020; Hopkins et al. 2020b; Ji et al. 2020; Werhahn
et al. 2021; Butsky et al. 2023), sub-dominant compared to other
effects and easily absorbed into the ‘effective transport parameters’.
Most noteworthy, the simulations we compare/calibrate to here all
include strictly anisotropic transport along magnetic field lines, so
this calibration is already automatically included in our analysis.

We also neglect the ‘streaming losses’ at large CGM radii. This
could in principle be a less-accurate assumption if the effective
streaming speed at these radii drops from highly super-Alfvénic
(required near/within the galaxy) to strictly locked to the Alfvén
speed and the Alfvén speed in the halo were very low, but recall we
have assumed constant transport coefficients so this should not occur
(though it could if one adopted very different transport models). And
the observationally required values of the diffusivity/streaming speed
within galaxies are so large that if they are constant, this introduces
negligible error; moreover in the CGM it is extremely difficult
in simulation models for this loss term to strongly suppress the
pressure when various effects including out-of-equilibrium transport
are considered (Thomas et al. 2022). But even the ‘worst-case’
version of this is unlikely to introduce order-of-magnitude reductions
in the CR pressure.

We use a LEBRON-type two-endpoint approximation for the
‘attenuation’ T, ;j & AT ; + AT, ; of CRs. This could in principle
miss ‘shadowing’ effects by dense clumps in-between the CR sources
and gas cells. In RHD, the accuracy of this approximation can be
improved (at greater computational expense) by replacing the two-
endpoint approximation with a HealPix/TreeCol-type method or a
full ray-tracing integration, but that assumes photons travel from
sources on ‘straight-line’ (ray) trajectories until absorbed. But since
the CRs are actually scattering/diffusive and moving along tangled
fields, this would not actually improve the accuracy significantly,
and they are never in the truly ‘optically thin’ (aka ‘negligible
scattering’) equivalent limit. Our approximation captures the fact
that for losses to strongly deplete the CRs, or shielding strongly
suppress their effects, it must happen quasi-isotropically owing to
the quasi-isotropic scattered CR trajectories near to the source or
‘target’. Most importantly again, the simulations here to which we
calibrate do not make this approximation, and yet we see only modest
inhomogeneity actually appear at large radii, most of it owing not to
‘shadowing’ but to the adiabatic terms discussed below, so it can be
incorporated into our calibration of the models fairly easily.

Spherical symmetry is obviously a poor approximation on small
scales, but again, because CRs are ‘diffusive’ and scatter, especially
if fields are tangled, then CRs sample and implicitly smooth over
an entire volume as they escape (and again, ‘shadowing’ or other
‘optically thin-like’ RHD limits, do not apply to CRs). This means
that even in an inhomogeneous medium, the effective steady-state
solution at a given point reflects some weighted average over the
whole volume, suppressing the effects of anisotropy and producing
quasi-spherical CR profiles (with only tens of percent deviations)
in full explicit CR-dynamics simulations (Butsky & Quinn 2018;
Hopkins et al. 2021a; Ji et al. 2021). Thus especially on CGM scales
of greatest interest in many CR studies, this is a surprisingly ‘accept-
able’ approximation as far as our (loose) criteria are concerned.

4.3 Most uncertain assumptions

The assumptions that likely drive the largest uncertainties (but are
necessary for the simplicity of our model) on galactic scales include
the following.

We assume steady-state for the CR energy equation and contin-
uous injection, which clearly breaks down on small scales, where
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finite-source time and space structure (e.g. injection in super-
bubbles and non-equilibrium effects given that the CR escape
time is comparable to galaxy and GMC dynamical times) will
be important. On very large scales, finite-travel-time effects mean
energy steady-state cannot hold, as the diffusion time ~ £€2/k ~
(0.3Gyr) (£/10kpc)? (k/10%° cm? s~") becomes long. This is why
we add the ‘7.’ term in our numerical method, to at least partially
account for this. But the simple fact is that on large/CGM scales,
it is quite possible that the CR properties are far from steady-state.
This is especially a concern if one wishes to model CR injection
from AGNSs, where a bright quasar could introduce an enormous
instantaneous CR injection rate, but this would last for a relatively
short time, so the dynamics would resemble more of a ‘pulse’ of
CRs propagating outwards (which could easily require multiple Gyr
to reach the virial radius for the typical transport parameters invoked
here), rather than a steady-state solution.

We neglect adiabatic/convective terms. These generally have an
order-unity effect on CR energies, and their sign can vary (enhancing
CR densities in dense, collapsing gas, and decreasing it in outflows;
Pfrommer et al. 2017; Chan et al. 2019). This means also that we
will not capture the full local variation in e.g. the CR ionization
rate, an issue exacerbated by the fact that we do not treat a full
CR spectrum, so neglect the fact that low-energy CRs are more
tightly coupled to the gas (Hopkins et al. 2022b). And it means we
cannot capture certain effects of CRs modifying the properties of
local thermal instabilities, in the ‘partially coupled’ regime (Butsky
et al. 2020). From the analysis in Chan et al. (2019) and Buck et al.
(2020), this appears to contribute significantly to the local (small-
scale) fluctuations in the CR pressure seen in the full simulations at
large radii, in a way that our sub-grid models simply do not capture
(they necessarily predict much less scatter because of the neglect
of these local dynamics). So while unlikely to change things at the
order-of-magnitude level, this could bias the results (both in terms
of the effects of CRs for a given diffusivity, or as we show below
the inferred ‘best-fit’ diffusivity to full dynamical simulations) by
as much as a factor of a few, via non-linear interaction channels in
particular such as the effect of ‘partial’ adiabatic coupling on the non-
linear evolution of the thermal instability in the CGM (Butsky et al.
2020), and its non-linear effect in turn on accretion and clumpiness
of the CGM (Ji et al. 2020).

Finally, from a CR physics point of view, likely by far the least-
accurate assumption we make is to assume that the CR transport
coefficients are constant in space and time. In physically motivated
models of CR transport, whether the scattering comes from self-
confinement (SC) or extrinsic turbulence (ET), the prediction is that
the scattering-rate coefficients should be strong functions of local
plasma properties such as the magnetic field strength, Alfvén Mach
number and dissipation rate of the local turbulence, gas density,
temperature, ionized/neutral fractions, dust-to-gas ratio, and others
(see e.g. Chandran 2000; Yan & Lazarian 2002; Farmer & Goldreich
2004; Yan & Lazarian 2004, 2008; Zweibel 2017; Thomas &
Pfrommer 2019; Hopkins et al. 2021c; Squire et al. 2021). This
leads to scattering rates (hence transport coefficients) that can
vary by orders-of-magnitude even within an ~kpc ‘patch’ of the
ISM (for observational evidence, see Abeysekara et al. 2017; H.
E. S. S. Collaboration 2019), and the mean spherically averaged
scattering-weight-weighted transport parameters can vary by orders-
of-magnitude systematically as a function of galactocentric radius
(Hopkins et al. 2021b, c). But there are two problems if we wish to
devise a sub-grid model to represent these physics. First, it is more
difficult to design a simple and low-cost sub-grid model if the CRs
scatter through a field with rapidly varying local diffusivity/streaming
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speed, since even some appropriate ‘average’ must be weighted over
the entire scattering domain (i.e. we must know about all points
along all possible scattering trajectories, not just the ‘line of sight’).
But second and more challenging, it is not at all clear which (if
any) of the models for CR scattering rates surveyed in Hopkins
et al. (2021c¢) are correct, and these models disagree qualitatively
in the scalings with these local properties (even the qualitative
sense of whether scattering rates should increase or decrease with
larger magnetic field strengths or turbulent dissipations rates remains
controversial). Moreover, Hopkins et al. (2022c) show that the
textbook (Jokipii 1966; Kulsrud & Pearce 1969) and state-of-the-
art (Yan & Lazarian 2004; Thomas & Pfrommer 2019) theories for
scattering from ET or SC all fail qualitatively in predicting Solar
system CR properties at ~GeV energies, generically predicting
orders-of-magnitude too-small or too-large k (or vy), and worse
yet predicting that the CR scattering rates and residence times should
actually be constant or increase with CR rigidity from ~ GV-TV (the
opposite of the observed behaviour).® As such, ‘constant diffusivity’
or ‘constant-vg, .’ approximations, while almost certainly incorrect,
remain popular by necessity. Our intention with the simplified models
presented here it to be agnostic to these uncertainties — to, as much as
possible, allow users to insert their own assumptions and use these
to attempt to constrain reasonable ‘effective transport parameters’
constrained as very large-scale effective averages (on e.g. scales of
the virial radii of galaxies, for example).

5 VALIDATION IN NUMERICAL SIMULATIONS

5.1 Analysis sample

We now validate this sub-grid model by comparing its predictions
for CR pressure to the results of fully explicit CR-MHD galaxy-
formation simulations. The simulations are presented in Hopkins
et al. (2020b), run with GizMmo® (Hopkins 2015, 2016; Hopkins &
Raives 2016) as part of the Feedback In Realistic Environments
(FIRE)'® project (Hopkins et al. 2014, 2018). These are fully
cosmological, high-resolution MHD simulations which follow the
formation of galaxies from initial conditions at z 2 100 to z = 0 and
include explicit treatment of multiphase gas thermo-chemistry and
radiative cooling, star formation, and stellar feedback from the stars
that form in a variety of forms including mechanical (from stellar
mass-loss, core-collapse, and Ia supernovae) and radiative (including
radiation pressure and various photoheating and ionization terms),
as well as CRs (with each individually time-resolved SNe injecting
€3Ne ~ 10 per cent of the initial ejecta kinetic energy into CRs). The
CR transport is evolved fully explicitly, with all relevant gas coupling
terms in the original simulations, following the spectrally integrated

8These behaviours have also been noted for SC going back to at least Ce-
sarsky & Kulsrud (1981) and for ET in Chandran (2000) and Yan & Lazarian
(2008). As reviewed in Hopkins et al. (2022c) and Kempski & Quataert
(2022), they relate fundamentally in SC to the fact that the CR distribution
function appears in the effective ‘diffusion coefficient’, rapidly forcing the
system towards highly constrained equilibrium solutions, while for ET, they
relate to the basic mathematical structure of the MHD equations coupled
to the anisotropy of basic plasma processes such as Landau damping which
become important for CRs at energies below ~ TeV—-PeV. Possible resolutions
to these issues from a plasma-physics CR scattering theory perspective are
reviewed in both Hopkins et al. (2022c) and Kempski & Quataert (2022).

9 A public version of GIZMO is available at http://www.tapir.caltech.edu/ phop-
kins/Site/GIZMO.html

1Ohttp://fire.northwestern.edu
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CR energy and flux equations allowing for fully anisotropic diffusion
and streaming, with 7 = constant!' and o, = v4. These are useful
because the uncertainty in true locally variable CR scattering rates,
which is a physical uncertainty beyond the scope of our sub-grid
model, does not enter here.

However, we will also consider a subset of simulations from study
in Hopkins et al. (2021b, ¢). These simulations adopt identical initial
conditions and numerical methods, except that the scattering rates
(hence parallel diffusion coefficient and streaming speed) are allowed
to be complicated functions of the local plasma parameters (e.g.
ionization state, density, magnetic field strength, turbulence, etc.),
motivated by theoretical self-confinement and extrinsic turbulence
models for CR scattering. We will restrict our comparisons to the
subset of models which Hopkins et al. (2021c) showed could be
possibly consistent with existing CR observations, studied in more
detail in Hopkins et al. (2021b).

In either case, we post-process snapshots from these simulations
with our sub-grid model calculating e, (or P,) exactly as we would
‘on the fly’ per equation (7), and compare it to the true values given
in-code from the explicit CR-MHD dynamics simulations.

5.2 Results: post-processing comparisons
5.2.1 Calibration

Fig. 1 compares the radial profiles of the CR pressure calculated
from our simple sub-grid model and the explicit-CR-dynamics
simulations. Our initial reference case (halo m12i with constant
D =10"?s"! (equivalent to a local-steady-state anisotropic k| =
c?/39 =3 x 10¥ cm®s™!) is one shown in Hopkins et al. (2020b,
2021c) to be both a reasonable Milky Way analogue in its galaxy
properties and to reproduce (for the chosen ¥ or « ) various observa-
tional constraints on CRs including y-ray emission, grammage, and
CR lifetime constraints from secondary-to-primary and radioactive
isotope ratios (see references in Section 5.2.4).'> However, we
stress that our modelling infrastructure is agnostic to the actual
transport parameters and appears to work similarly well for a range
of observationally allowed values. Explicitly, the sub-grid model has
two ‘free’ parameters: ko and vy .fr, Which represent physical terms
but must be calibrated at some level to the full simulations. Even for
a simulation like this reference case where the in-code scattering

ITA constant scattering rate v roughly translates to a constant paral-
lel/anisotropic diffusivity « ~ c?/3 1, but we stress that the diffusivity
emerges as a function of v and 94 from the explicitly evolved CR equa-
tions when the CR flux equation approaches local quasi-steady-state.

12 As we discuss below, when comparing this ‘fiducial’ diffusion coefficient
k in the simulations to typical quoted values in the CR literature of e.g. Dy, it
is important to account for three things.(1) Since we integrate over the entire
CR spectrum, « here should be an energy-weighted average (D) over the
CR spectrum, which boosts (Dy,) by a factor of several over D[R = GV].
(2) The k we quote is the parallel/anisotropic coefficient, while Dy, refers to
an isotropically averaged coefficient, which is ~3x lower than x. And (3) the
‘effective’ k we quote also (by definition) includes any advective/convective
and/or streaming velocities, which are often quoted or fit separately in classic
models for some D,,. Considering effects (1)—(3) above, we can compare the
best-fitting models from recent studies like Evoli, Aloisio & Blasi (2019) or
Korsmeier & Cuoco (2022) which fit D[R ~ GV] ~ 10 cm?s~! [com-
bining with the fits to the full CR spectrum from Bisschoff, Potgieter & Aslam
(2019) to perform the spectral integration] and obtain the corresponding
‘effective’ k ~ 3 — 5 x 10> cm?s~! for the best-fitting models therein. This
is remarkably close to our ‘fiducial’ simulation choice (which is of course
part of the reason we refer to it as ‘fiducial’).
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rate or parallel diffusion coefficient is taken to be a constant,
recall that our sub-grid x( represents an isotropically angle-averaged
‘diffusivity’, neglecting terms such as advection and adiabatic CR
gains/losses and out-of-flux-equilibrium drift terms, treating CRs as
if we can add sources independently, and further assuming spherical
symmetry around each source (and the effects and accuracy of all
these approximations will vary in both space and time). Likewise
vy ef implicitly represents all of these approximations plus, in the
simulation, the actual streaming speed (the Alfvén speed), which is
locally variable. So it is by no means obvious, a priori, that our sub-
grid model will be able to fit the simulation results for any constant
Ko and Vg, eff.

None the less, Fig. 1 shows that we can obtain a quite reasonable
match to the simulation profile if we adopt kg =~ 5 x 10?8 cm? s~! and
Vst eff ~ 20 km s~!. These are plausible values: if there were no other
approximations in our model but we simply had isotropically tangled
fields, then the isotropically averaged diffusivity in the simulation
would be kiso & /3 ~ 10% cm? s~! —just a factor of ~2 larger than
ko we infer by essentially fitting the simulation profile. The difference
owes to the (many) other assumptions reviewed in Section 4. Notably,
since the medium on small scales (within/near the galaxy) is not really
spherically symmetric with a single point source at the centre, the
profile has a higher ‘flat shelf” in the centre than our toy sub-grid
model would predict, which leads us to fit a slightly lower ‘effective’
diffusivity. This can be illustrated by simply considering two-point
sources (where our toy model would predict a local maximum
between the two, but in reality this would be diffused out). This
also leads to some ‘tradeoff’ where in our toy model we tend to
fit slightly lower « and higher vy than were present in our original
simulation: here, while ~ 20 km s~! is a plausible mean Alfvén speed
v4, recall this is isotropically averaged so should be a factor ~3 lower,
if we were recovering exactly the input simulation parameters. This
demonstrates the importance of using ‘full’ simulations like those
here to calibrate these sub-grid models, before applying them more
broadly.

With these choices, we can compare not just the radial trend of
CR energy density, but also the values cell-to-cell (i.e. the scatter or
difference therein in the curves in Fig. 1). Specifically, Fig. 2 shows
the distribution of values of P, inferred from our sub-grid model
compared to those in the live simulation. This works remarkably
well, reproducing the simulations to within a factor ~2 scatter.
Note that when P, is very small, even a tiny inaccuracy in the sub-
grid model could lead to an apparently large fractional discrepancy
(| In (PSim/ psueeridy] 5 1), but this would be irrelevant for the gas
dynamics. We therefore also consider the effect on the total pressure,
adding the CR pressure to the thermal and magnetic pressures in
code. This allows us to see that the ‘tail’ of cases where the sub-
grid model fails badly and in estimating P, are mostly cases where
the CR pressure is irrelevant — so these will not produce significant
effects on the simulation dynamics. From comparison with Fig. 1,
we can immediately see that the scatter in Fig. 2 is essentially
equivalent to the scatter in the ‘full’ simulation in P at a given
galactocentric radius. By construction, the toy model here represents
only the spatially spherically averaged, and cosmic-ray-transport-
time time-averaged value of P, at a given radius, so (as expected)
exhibits very little scatter in P, at a given radius. Physically, the
scatter in the full simulations arises from violations of homogeneity
and spherical symmetry (e.g. winds, local sources, satellite galaxies,
regions/phases of the ISM/CGM with rapid loss rates, regions where
the local Alfvén speeds are much higher, and the ‘adiabatic terms’
— all effects our toy model averages out. The most important effect
of this scatter which our model does not capture is likely an indirect
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Figure 1. CR pressure P (median [solid] and 43 o range [shaded]) in spherical shells as a function of galactocentric radius r, comparing simulations and
sub-grid model predictions. ‘Full simulation’ (blue) refers to values calculated for every gas cell in full cosmological numerical-hydrodynamic simulations which
explicitly evolve CR transport including anisotropic diffusion, advection, variable streaming speeds, adiabatic losses/gains, and catastrophic losses (Section 5).
‘Sub-grid” uses our simplified sub-grid model (Section 3) to estimate P, = e/3. We compare different Milky Way-like galaxies at redshift z = 0 (m12i, m12f,
m12m) and one dwarf (LMC-mass) galaxy (m11i). The ‘full simulations’ here assume a constant scattering rate v, equivalent to a constant anisotropic/parallel
diffusivity k| = c2 /30 = ko9 102 cm? s~! plus streaming at the local Alfvén speed vy, and we compare simulations with three different values of k29 spanning
a reasonable range of observationally allowed values. We also compare three different Milky Way-mass galaxies (m12f, m12m, and m12i), the same galaxy at
different cosmological times (z = 0.2, all others at z = 0), and different galaxy masses (m11i, an LMC-mass system). The sub-grid model has two free ‘effective’
CR transport parameters (ko and vy, eff): we calibrate these by fitting the profile to the z = 0 snapshot of m12i with k29 = 3 (center panel), then use these fitted
values to extrapolate to all the other simulations shown here (assuming v eff = constant, and ko  k29). The sub-grid model can reasonably reproduce the CR
pressure profile, especially in the CGM where it is most important. However for massive galaxies with high scattering rates (low diffusivities) compared to what
is observed (m12i, k29 < 0.3), the sub-grid model substantially overpredicts the CR pressure because most of the CR energy in the full simulation is actually
lost to catastrophic (pionic) processes, in contradiction to y-ray observations.

effect: namely, that in the CGM, the scatter is largely related to on such large scales (~ 10 — 300 kpc). As shown in Butsky et al.

variations in the adiabatic term (see references in Section 4.3, who
show this explicitly), because the CR diffusion/transport times are
not necessarily extremely short compared to other bulk time-scales
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(2020), this leads to non-trivial differences in the behaviour of the
thermal instability of the CGM (the toy model here is closest to
the ‘decoupling limit’ considered in Butsky et al. 2020, while the
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Figure 2. Distribution over all gas cells (weighted by gas mass) of the
sub-grid estimated pressure to the actual simulation pressure, for the m12i,
k29 = 3 simulation in Fig. 1. We compare both the ratio of CR pressure
specifically, P berid JPSmulation (red dotted) and the ratio of total pressures
Ptf,utbg“d/P[g'{m“m"“ (black solid). In a gas-mass-averaged sense, the CR
pressure is generally estimated with factor ~2 scatter, and the tail of cases
where the sub-grid model for P. is wrong by a large factor generally
corresponds to cases where the CRs contribute little to the total pressure.

simulations lie closest to one of the ‘intermediate’ cases per Ji et al.
2020). It is worth thinking, in future work, of sub-grid models which
might be able to (partially) capture this effect via introduction of
a more complex ‘hybrid’ non-linear equation-of-state and cooling
function in the gas that incorporates the transport parameters as well
as the total CR pressure and gas thermochemistry.

5.2.2 Validation

While we demonstrated that we could reproduce the simulation
results with a calibrated sub-grid model in Section 5.2.1, a natural
worry is that this calibration was simply fitted to one snapshot of
one simulation, and cannot be extrapolated elsewhere — essential if
we wish to apply the sub-grid model to new simulations. We next
therefore validate the sub-grid model in four different ways.

First, we compare snapshots at different times in our reference
case from Section 5.2.1, fixing ¢ and v . Second, we compare
simulations of other MW-mass galaxies (with the identical physics
and numerical code, and same assumptions about fixed true physical
v or parallel x| in code and U4 = v,), using the same coefficients.
Third, we compare simulations of galaxies at different mass scales,
in particular dwarf galaxies, where v4 and field morphologies could
be totally different (as the magnetic field strengths and gas densities
and galaxy morphologies are different), again using the same code
and same physical assumptions. If our sub-grid model is to be
successfully applied for an entire cosmological simulation (across
different mass and redshift scales as a galaxy forms), then it must
be able to reproduce these situations reasonably well without ‘re-
calibration’. Fig. 1 shows that it can indeed do so. Note we do
not bother showing the comparison of different snapshot times for
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simulation m12i, as the differences in time for that run are always
smaller than the galaxy-to-galaxy differences.

Thus far these simulations all adopted the same true ¥ (i.e. k)
in-code. If our sub-grid model is robust, a fourth calibration is to
consider models with systematically different « . For the reasons
above (Section 5.2.1), we expect some systematic offset between
ko and k. But if this is — to lowest order — a global systematic
change between simulations, then if we consider simulations with
10 x larger «, our inferred «¢ should also increase by a factor of
~10. Fig. 1 shows that this indeed works fairly accurately.

Altogether, this suggests that we can approximate P, to within
a factor of a few across a broad range of galaxy types, cosmo-
logical times, and plausible phenomenological (constant) diffu-
sion/streaming coefficients, with a universal constant k¢ and vy e
calibrated from full CR dynamics simulations.

5.2.3 Application to models with non-constant diffusivity

In Fig. 3, we explore whether our simple sub-grid model can be
applied even to model situations where the diffusion coefficient
(or equivalently CR scattering rate) is a complicated and highly
variable function of local plasma properties. We compare to three
simulations from Hopkins et al. (2021b, ¢) as noted above, which
are constrained to be among the few in the set of models studied
therein which are consistent with observational constrains on y-ray
emission and secondary-to-primary ratios in the Galaxy. In each of
the three models plotted, the local scattering rates can vary by up to
~10 orders of magnitude in the ISM, and the functional dependence
on e.g. strength of turbulence or magnetic fields is different in the
different models. But qualitatively, in each of these models, the
mean effective diffusivity rises as a function of galactocentric radius
on average in the CGM, to values up to > 103 cm?s~! at radii
2 100 kpc — much more consistent with the lower limits to the
effective diffusivity in the distant CGM and IGM required by HST-
COS observations around Milky Way-mass galaxies as shown in
Butsky et al. (2023). For each, we treat the ‘effective’ ko and vy, cfr
as parameters to be fit to the profiles (we show the values that give a
best gas-mass-weighted fit to the profiles outside > 1 kpc), obtaining
(ko/cm? 571, vy op/kms™) = (10%,150), (10%, 100), (2 x 10%,
200) for runs ‘Alfvén-Max’, ‘Fast-Max’, and ‘SC:fqir = 100,
respectively. With this caveat, we see that all of the (observationally
allowed) models are sufficiently ‘diffusive’ on average that they
form a quasi-spherical profile that can be reasonably approximated
by our sub-grid model for a given galaxy and time. The major
caveat is that because the coefficients depend systematically on
certain properties, there is no guarantee this would extrapolate to
different galaxy masses or redshifts (or regions of the ISM with
extreme parameters), without some physical prior (e.g. knowing the
dependence on some local property like magnetic field strength, and
then folding in some assumption on how the magnetic field strength
depends on galaxy mass and redshift). Indeed, as shown in Hopkins
etal. (2021c), some of these models produce systematically different
‘effective diffusivity’ in small dwarf galaxies, despite this number
being broadly similar in the ISM of the Milky Way.

5.2.4 Observational constraints on model choices

Of course, one cannot simply adopt totally arbitrary values of «( or
Vgt eff Within our model and remain consistent with observations. As
discussed extensively in Hopkins et al. (2021c), only a small subset
of the possible model space of CR transport parameters in the ISM of
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Figure 3. As Fig. 1, but comparing simulations of galaxy m12i from Hopkins et al. (2021c) which adopt locally dynamically variable CR transport
(diffusion/scattering/streaming) coefficients which are complicated functions of local plasma properties in the ISM, motivated by more physical self-confinement
or extrinsic turbulence theories for CR scattering. Alfven-Max, Fast-Max, and SC:fqrr = 100 represent models (normalized to fit Solar system CR observations)
where scattering rates specifically for ~ 1 GeV protons scale with ISM plasma properties dimensionally as expected from Alfvénic turbulence, magnetosonic
turbulence, or self-confinement via gyro-resonant instabilities. Here, we re-calibrate the sub-grid model parameters xo and vy o for each simulation, as they
feature very different physics and ‘mean’ effective coefficients; however, we focus on a subset of models that are at least conceivably consistent with Milky Way
CR observations as discussed in Hopkins et al. (2021c). With this constraint, it appears that the allowed range of ‘effective’ «( and vy, cf is relatively modest,
approximately following equation (14), and the average profiles can still be reasonably represented by our toy model (for some appropriate ‘effective’ ko, vy, eff)

despite the true local scattering rates varying by large factors.

Milky Way-like, low-redshift galaxies are consistent with the combi-
nation of observations constraining ~ 1-10 GV protons, including
their observed spectra and energy densities, primary-to-secondary
and radioactive isotope ratios (constraining their grammage and
residence times) around the Solar neighborhood, as well as y-ray
emission constraints integrated over our Galaxy as well as other Local
Group galaxies. The ‘viable’ models from detailed comparison to
these constraints include those in Fig. 1 with xj ~ 3 x 10¥ cm?s~!,
as well as the models in Fig. 3, which together fall into a relatively
narrow range of allowed ‘effective isotropically averaged diffusivity
around the Solar circle’, k2, . ~ Ko -+ Vst eff 75 -

It is not our intention here to derive or re-make these arguments,
but we do wish to emphasize that within the context of our simple
model where k( and vy . are global constants, observations actually
do constrain their approximate sum relatively well, requiring that the
isotropically averaged sum obeys:

o = gal 29 2 —1
Kiso,eff = K0 + Usterr 7'g ~ 107 cm™s (14)

with réal ~ 8 kpc. Again we stress that this is remarkably consistent
with the constraint from many other recent studies of CR propagation
in the Milky Way using classic models like GALPROP to make de-
tailed models of the entire CR spectrum of all species observed, such
ase.g. Evolietal. (2019) or Korsmeier & Cuoco (2022), provided one
properly accounts for the integration over all CR energies, difference
between isotropic and anisotropic coefficients, and includes all of
the relevant streaming/advective/convective/diffusive velocity terms
sometimes separated in those models.

So ensuring that equation (14) is at least approximately (order-of-
magnitude) satisfied in the ISM helps to ‘anchor’ the simple sub-grid
models proposed here to much more detailed simulation literature
models (e.g. Chan et al. 2019; Buck et al. 2020; Hopkins et al. 2021b;
Werhahn et al. 2021) which attempt to simultaneously fit a wide
range of more detailed observational constraints, including the CR
energy density at the Solar circle observed by e.g. (Cummings et al.
2016) and y-ray emission (both very crudely inversely proportional
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to the CR transport speed, for all else equal) observed in the Galaxy
and nearby systems (Lacki et al. 2011; Tang, Wang & Tam 2014;
Griffin, Dai & Thompson 2016; Fu, Xia & Shen 2017; Wojaczynski &
NiedZwiecki2017; Lopez et al. 2018; Wang & Fields 2018), as well as
even more detailed fits to full CR spectra in the Solar circle including
their residence times, radioactive isotope and secondary-to primary
ratios (e.g. Blasi & Amato 2012; Vladimirov et al. 2012; Gaggero
et al. 2015; Cummings et al. 2016; Guo et al. 2016; Jéhannesson
et al. 2016; Korsmeier & Cuoco 2016; Evoli et al. 2017; Amato &
Blasi 2018; De La Torre Luque et al. 2021; Hopkins et al. 2022b).
That said, there is still some degeneracy (at the extremely simple
level of the model here) between k( and vy ¢ in the ISM allowed
by different models which fit present observations comparably
well: for example equation (14) can be satisfied by a model with
Ko ~ 10 cm?s~! and small vy ., or a model with large vy, o ~
40kms~! and small « (the equivalent of models with an effective
constant parallel/anisotropic diffusivity at ~ GeV energies of x| ~
3 x 10 cm? s~! and small vy |, or models with vy | ~ 120kms™!
—i.e. highly ‘super-Alfvénic streaming — and small « ). However,
these observational constraints effectively reduce the ‘degrees of
freedom’ of these (simplified) sub-grid models to a single parameter,
the relative ratio of k¢ to vy e in equation (14). Other observational
probes that have recently been proposed to constrain the effective run
of Kiso. off With galactocentric radius 2% in the CGM, e.g. those in But-
sky et al. (2023), can be used to further constrain this (which, for the
simple models here, favours relatively large v e ~ 100-200 km s7!
s0 that kg, off Tises significantly with galactocentric radius).'3 It may

130ne can also modify the assumed functional form of the CR ‘effective diffu-
sivity’ if desired: consider e.g. a model with (kiso) ~ ko + a ™. We then sim-
ply replace ko + v, eff 7ij —> ko +a ri';.' in equation (12). For m < 2, we then
take Yioss = (Woss/a) /@™ [1 4 kg \Iflrgs/fzfm)a’z/(z’m)]’lﬂ in equation
(6), and rpax — (a tmax/z)l/(z_m) [1+ {1 + (16 k0 tmax/[a lmax]z/(z_m))}l/zl
in equation (13). For m > 2, the solutions take a different form and we can
approximate  Ater j — (1/2) MIN[(Wioss/k0)"/2 £, (Wioss/k0) (ko /@)*/™]
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also be possible to constrain these with more detailed models of
Solar neighbourhood CRs incorporating the full CR spectrum and
diffuse galactic emission, though if k or vy, s is spatially variable,
or time-dependent terms in the transport equations are important, or
the effective CR scattering halo properties vary with rigidity, such
separation could prove more challenging (see discussion in Hopkins
et al. 2022b).

5.2.5 Limitations and failures

Despite its surprising success, the simplified toy model here has
many limitations. Obviously, the model here cannot and should not
be used to predict detailed CR observables (e.g. y-ray or synchrotron
emission, let alone detailed primary-to-secondary or isotopic ratios)
which depend sensitively on spectrally dependent transport physics
and terms that we have explicitly neglected here (see Chan et al.
2019; Hopkins et al. 2022b, c).

At very low transport speeds (ko < 10 cms™"), our sub-grid
model approximations break down, as the CRs become more tightly
coupled to the gas, so terms we have neglected such as adiabatic
gains/losses, advection with gas, anisotropic and globally non-
spherical behaviours (e.g. being trapped with the gas in a thin disc
instead of diffusing to a thicker distribution), and out-of-equilibrium
behaviours (whose convergence time is longer at lower «) become
progressively more important. Fortunately, this appears to be clearly
ruled-out by present CR observations (Section 5.2.4), for the ~ GeV
CRs which dominate the total CR energy/pressure — i.e. our model
assumptions work because observations appear to require reasonably
high CR diffusivities. However, it could still be the case that very low-
energy CRs (< 10 MeV), which are not important for the total CR
pressure or energy density but dominate the CR ionization rate, could
be much more tightly coupled to the gas (see e.g. Indriolo, Fields &
McCall 2009; Padovani, Galli & Glassgold 2009; Indriolo & McCall
2012; Hopkins et al. 2022b). This means that care is needed assuming
that one can extrapolate from this sub-grid model (or any ‘single-bin’
CR model) to much lower energy CR dynamics. And of course if
real CR transport parameters depend on local plasma properties there
could be regimes of parameter space where the diffusivity is much
lower.

Similarly, our sub-grid model performs relatively poorly when
CRs approach the proton calorimetric limit — i.e. when most of the
CR energy is lost before CRs escape dense gas in their galactic
vicinity. For very low diffusivities as above, this would occur in
all galaxies (including Milky Way like through even small dwarf
galaxies), but as noted this is not observed. However, even for the
observationally favoured diffusivities, this can and is observed to
occur in extremely dense starburst galaxies (Lacki et al. 2011; Tang
et al. 2014; Griffin et al. 2016; Fu et al. 2017; Wojaczynski &
NiedZwiecki 2017; Lopez et al. 2018; Wang & Fields 2018). In
this limit our simple treatment of CR attenuation via local and self
‘shielding’ is not particularly accurate (similar to the weakness in
the LEBRON method for RHD, discussed in Hopkins et al. 2020a).
However, essentially by definition in such a case, CRs pressures are
exponentially suppressed so we are safely in the limit where CR
pressure is a tiny portion of total pressure — hence getting the CR
pressure exactly ‘correct’ in such a case is not particularly important

(with € = (Ax? + (0gasi /|V peas, i1 ))/?) in equation (6), and rmax —
2 (ko tmax)l/2 for tmax < Kg/m_l a=2/m or rmax — 00 otherwise, in equation
(13). With this formulation, we can better fit the constraints in Butsky et al.
(2023) by adopting m =2, kg ~ 5 x 1028 cm?s~!, and a ~ 2 Gyr~!.
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for predicting CR effects on galaxies. But it is important to attempt
to capture the ‘transition’ to this regime — without some accounting
for CR losses, one could severely overestimate the importance of CR
pressure in dense starburst or high-redshift systems. Our simulation
calibration sample largely does not reach these extreme conditions,
so future tests in this regime would be particularly useful.

Additionally, as discussed in Section 5.2.1, our sub-grid model
also becomes notably less accurate and robust ‘inside’ the galaxy,
specifically at locations ‘between’ a number of comparable-strength
sources (e.g. modelling variations in CR properties within the galaxy
ISM at sub-kpc scales). This is not surprising, as assumptions like
spherical symmetry are much more accurate on larger scales, and our
model is really intended to accurately capture the behaviour of CR
pressure on scales ‘outside’ a collection of dominant sources — e.g.
in the CGM around a galaxy. This is an important caveat for a wide
range of possible applications.

5.3 Application in a full cosmological simulation

We now test an actual ‘on-the-fly’ application of the sub-grid
model. Specifically, we re-run the simulation mlli with x| =
3 x 10¥ cm?s~! analysed in Fig. 1, from its cosmological initial
conditions at z = 100, turning off the full on-the-fly dynamical
explicit evolution of the CR energy density and flux used in the
run in Fig. 1, and instead using our proposed sub-grid model from
Section 3 on the fly. We use the sub-grid model at every time-step and
cell to compute e, (X, t), then use this CR energy density throughout
the code to compute CR pressure forces, heating, and ionization rates
identical to what is done in the ‘full CR dynamics’ simulation (so the
CR heating, pressure effects, etc., are identical for a given e.(x, t)in
the two runs, but we have replaced the actual CR transport algorithm).
For reference, we also compare to the ‘pure hydrodynamics’ version
of the same simulation, which was studied and compared in detail to
the full CR dynamics run in Hopkins et al. (2020b). That run adopts
identical physics and numerics, but simply disables the explicit CR
dynamics and MHD entirely. In Fig. 4, we compare some basic
properties (a sub-set of those studied in detail in Hopkins et al. 2020b)
in the simulation using the sub-grid model and full CR dynamics.
Most importantly, Hopkins et al. (2020b) show that in the full CR
run (compared to ‘no CRs’ runs with or without magnetic fields),
the additional pressure provided by CRs in the CGM suppresses
accretion on to the galaxy, in turn suppressing the star formation rate
and stellar mass of the galaxy by redshift z = 0 (we chose galaxy
ml1li in part because it exhibits some of the most dramatic effects
of CRs of any galaxy simulated in Hopkins et al. 2020b). This is the
most important aspect of CRs for our sub-grid model to capture.
The sub-grid model appears to capture the leading-order effects of
CRs on galaxy formation remarkably well, at least in this particular
case. The SFR and stellar mass growth history are very similar to the
“full CR dynamics’ run (modulo stochastic effects such as the detailed
amplitude and timing of individual ‘bursty’ star formation events).
The stellar mass and late-time SFR in the sub-grid run is slightly
lower than the ‘full CRs’ run, but this offset is modest and results in
a very small (~ 0.1 dex) stellar mass difference at z = 0, within the
range of run-to-run stochastic variations (Su et al. 2018; Genel et al.
2019; Keller et al. 2019). Following the star formation history, the
metallicity and rotation curve and baryonic mass distribution (stellar
effective radius and baryonic mass profile) are also reasonably well-
reproduced. The sub-grid CR run does predict a lower metallicity
compared to the explicit CR run, consistent with the slightly lower
late-time SFR in the sub-grid run, suggesting that the sub-grid CR
pressure in the CGM (probably somewhat overestimated) may have
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Figure 4. Example application of the sub-grid model in a cosmological
simulation of m11i (an LMC-mass system from Fig. 1) from z ~ 100
to z = 0. We compare three physics variations: (1) with no CRs or
MHD; (2) with the full explicit single-bin CR dynamics, gas coupling
and kinetic MHD from Hopkins et al. (2020b), with parallel (anisotropic)
K| =3x 10% ¢cm? s~! and streaming at the Alfvén speed; (3) a run with no
explicit CR dynamics or MHD, but adding our proposed sub-grid model,
with constant xo = 0.5 x 102 cm?s~!, Ugt, off = 20km s7!, calibrated as
Section 5.2.1. We compare: Top: Archeological SFR versus cosmic time
(averaged in ~ 100 -Myr intervals). Second: Stellar mass versus scale factor a.
Numbers give the value log (M«/M¢) at z = 0. Third: Mean stellar metallicity
versus a. Numbers give ([Z,/H]) at z = 0. Fourth: Spherically averaged radial
density profile of all mass (including dark matter; thin) and baryonic (thick)
at z = 0, versus galactocentric radius r. Numbers give the stellar effective
radius Refr, « in kpe at z = 0. Bottom: Circular velocity (ch =G M(<r)/r)
profile. The sub-grid model appears to reasonably capture the zeroth-order
(but not all) effects of CRs on galaxy formation.
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prevented some late-time recycling of enriched material which would
otherwise have been re-accreted and formed stars later (boosting their
metallicity) in the full/explicit CR dynamics run. Unfortunately, the
difference is much smaller than typical systematic uncertainties in
both metallicity measurements (Tremonti et al. 2004) and metal yield
models or other galaxy formation ‘input’ physics (Ma et al. 2016).
Another related discrepancy between ‘full CR dynamics’ and sub-
grid models in Fig. 4 appears to be the weaker ‘core’ in the central
dark matter density profile at < 1 kpc in the sub-grid model. This
again is consistent with the stellar mass and SF history differences,
as at precisely these masses the core strength is a strong function of
stellar mass — more late star formation generates a stronger core (see
Chan et al. 2015; Ofiorbe et al. 2015; Lazar et al. 2020). Interestingly,
a stronger core is present earlier in the sub-grid-model run (when its
SER is closer to the explicit CR dynamics run), which then slightly
“fills in’ as the late-time star formation ‘bursts’ are too weak to re-
excavate it (similar to the process described in Ofiorbe et al. 2015).

All of these suggest that the sub-grid model performs reasonably
well, though it may slightly overestimate the effects of CR feedback
at late cosmic times (perhaps in part because the CRs are not infinitely
diffusive and therefore not perfectly smoothly distributed in the
CGM, and their inhomogeneity modifies the thermal instability of
that medium in turn; see Butsky et al. 2020). And in particular this
reinforces the idea that the sub-grid model should not be taken too
seriously at significantly sub-kpc scales.

But in terms of computational cost: the ‘full CRs’ model is nearly
an order of magnitude more computationally expensive than the ‘no
CRs’ run, primarily owing to time-step limitations as discussed in
Section 1. Meanwhile, the ‘sub-grid’ model is actually faster than the
‘no CRs’ run by a factor of ~2-3, owing to the reduced stellar mass
and SFR (less dense gas and fewer SNe, which require small time-
steps). Thus while imperfect, the sub-grid model is able to capture
some of the dominant CR effects at radically reduced computational
expense, as desired.

6 CONCLUSIONS

We have presented an intentionally extremely simplified sub-grid
model for CR ‘feedback’ in galaxy formation simulations or semi-
analytical models, designed to impose negligible computational
cost. We derive the model beginning from exact expressions for
CR transport and dynamics, then making successive simplifying
assumptions until we arrive at a simple, equilibrium steady-state
isotropic analytical expression Section 2. We then present a detailed
numerical implementation which can be solved trivially alongside
gravity in most numerical codes capable of galaxy-scale simulations
or even purely analytically in semi-analytical models in spherical
symmetry (Section 3). Given the many simplifying assumptions
needed to render the model tractable and low-cost, we stress that
caution is needed, and we discuss the relevant approximations and
assumptions systematically in order to note where they will break
down and where the dominant uncertainties in using this model will
arise (Section 4). We then validate the model by comparing to detailed
high-resolution simulations which explicitly follow anisotropic dif-
fusion and streaming of CRs from individual SNe and shocked stellar
winds in CR-MHD galaxy formation simulations (Section 5) to show
that the most important effects of CRs can be reasonably captured to
at least order-of-magnitude accuracy with this toy model.

We stress that our goal here is to enable at least some exploration of
the effect of CRs in simulations/semi-analytical models which either
do not model CR transport explicitly owing to numerical limitations
or cannot do so realistically owing to limited resolution, lack of mag-
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netic fields, lack of explicit treatment of neutral ISM/CGM phases, or
other challenges. We attempt to derive the simplest-possible model
that captures the leading-order effects of CRs on galaxy dynamics —
the models here are clearly not suitable for predicting CR observables
(y-ray or synchrotron emission, secondary-to-primary ratios, etc.),
nor for capturing more subtle effects (CR energy dependence and
small-scale ISM variations in ionization rates, effects of CRs within
acceleration regions and individual SNe bubbles, etc.). And the sub-
grid model is designed to be accurate on relatively large coarse-
graining scales in both space (2 kpc) and time (= Myr), appropriate
for galactic astrophysics and cosmology. In future work, it will be
interesting to explore the effects of the CR model here in various
contexts with broad parameter surveys, coupled to a smaller number
of explicit CR-MHD simulations to follow the dynamics in more
detail and better-calibrate the models. And future work understanding
the CR transport coefficients themselves is still needed to inform
all CR models. Here, we parametrize our model with constant
transport coefficients, which can reproduce many CR observations
if the effective isotropic diffusivity is chosen within a narrow range
around k2, . ~ 10 cm? s~ but we stress that the approximation
of constant in space-and-time CR transport coefficients is almost
certainly incorrect in detail. But the true scaling of CR transport
properties with local plasma properties remains deeply uncertain,
and is a subject beyond our study here.
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