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A B S T R A C T 

Many recent numerical studies have argued that cosmic rays (CRs) from supernovae (SNe) or active galactic nuclei (AGNs) could 

play a crucial role in galaxy formation, in particular by establishing a CR-pressure-dominated circumgalactic medium (CGM). 

But explicit CR-magnetohydrodynamics (CR-MHD) remains computationally expensive, and it is not clear whether those results 

can be applied to simulations that do not explicitly treat magnetic fields or resolved interstellar medium phase structure. We 

therefore present an intentionally extremely simplified ‘sub-grid’ model for CRs, which attempts to capture the key qualitative 

behaviors of greatest interest for those interested in simulations or semi-analytical models including some approximate CR 

effects on galactic ( � kpc) scales, while imposing negligible computational o v erhead. The model is numerically akin to some 

recently developed sub-grid models for radiative feedback, and allows for a simple constant parametrization of the CR dif fusi vity 

and/or streaming speed; it allows for an arbitrary distribution of sources (proportional to black hole accretion rates or star–particle 

SNe rates or g as/g alaxy star formation rates), and interpolates between the limits where CRs escape the galaxies with negligible 

losses and those where CRs lose most of their energy catastrophically before escape (rele v ant in e.g. starburst galaxies). The 

numerical equations are solved trivially alongside gravity in most codes. We compare this to explicit CR-MHD simulations and 

discuss where the (many) sub-grid approximations break down, and what drives the major sources of uncertainty. 
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1  I N T RO D U C T I O N  

In recent years, a number of different studies have shown by explicitly 

evolving cosmic ray (CR) dynamics coupled to the MHD equations in 

galaxy formation simulations that CRs could play a key role in galaxy 

formation (Jubelgas et al. 2008 ; Uhlig et al. 2012 ; W iener , Zweibel & 

Oh 2013b ; Salem & Bryan 2014 ; Pakmor et al. 2016 ; Simpson et al. 

2016 ; Ruszkowski, Yang & Zweibel 2017 ; Girichidis et al. 2018 ). 

Most notably, CRs from supernovae (SNe) or active galactic nuclei 

(AGNs) could provide an additional source of pressure in the halo or 

circumgalactic medium (CGM), which can suppress new inflows of 

cooling gas or re-accelerate outflows to intergalactic medium (IGM) 

scales, significantly altering galaxy formation (Salem, Bryan & 

Corlies 2016 ; Butsky & Quinn 2018 ; Holguin et al. 2019 ; Su et al. 

2019 , 2020 ; Buck et al. 2020 ; Butsky et al. 2020 ; Hopkins et al. 

2020b , 2021a , b , c ; Ji et al. 2020 , 2021 ). 

But it is computationally very expensive to explicitly incorporate 

CR transport in numerical simulations, and adds substantial com- 

putational complexity. Like radiation hydrodynamics (RHD), CRs 

represent a broad spectral distribution (so one would ideally desire 

to evolve a range of CRs momenta or rigidities, like wavelengths 

of light, as in Girichidis et al. 2020 , Ogrodnik, Hanasz & W ́olta ́nski 

2021 , Hopkins 2023 , and Hopkins et al. 2022b , c ), and mo v e locally at 

� E-mail: phopkins@caltech.edu 

up to the speed of light. One can reduce the complexity by integrating 

o v er energies to obtain a ‘single-bin’ approximation (for spectrally 

integrated quantities like the total CR energy or pressure), and using a 

moments-based method obtain an energy and flux (‘M1-like’) or pure 

energy (‘FLD-like’ or Fokker–Planck) equation for the CRs (Zweibel 

2013 ; Jiang & Oh 2018 ; Chan et al. 2019 ; Thomas & Pfrommer 

2019 ; Hopkins, Squire & Butsky 2022a ). Ho we ver, solving such 

equation explicitly still imposes severe time-step costs, e.g. explicitly 

integrating CR diffusion requires a time-step �t ≤ C �x 2 /κ where 

κ is the dif fusi vity, � x the numerical resolution, and C a Courant-like 

factor. For the observationally required values of κ (at the energies 

∼ 1 –10 GeV which dominate the CR pressure) needed to reproduce 

Solar system CR observations (Blasi & Amato 2012 ; Vladimirov 

et al. 2012 ; Gaggero et al. 2015 ; Cummings et al. 2016 ; Guo, Tian & 

Jin 2016 ; J ́ohannesson et al. 2016 ; Korsmeier & Cuoco 2016 ; Evoli 

et al. 2017 ; Amato & Blasi 2018 ; De La Torre Luque et al. 2021 ; 

Hopkins et al. 2022b ) and extragalactic γ -ray constraints (Chan et al. 

2019 ; Su et al. 2020 ; Hopkins et al. 2020b , 2021b , c ; Bustard & 

Zweibel 2021 ), this translates to �t � ( �x/ pc ) 2 yr . Higher-moment 

methods can remo v e this constraint at the expense of introducing the 

speed of light as a signal speed ( �t ≤ C �x/c), then employing 

a ‘reduced speed of light’ (RSOL) approximation, but this still 

requires the RSOL be much faster than any other signal speeds to 

obtain converged solutions (Chan et al. 2019 ), which by definition 

significantly reduces the time-steps. And while implicit numerical 

methods (e.g. Sharma, Colella & Martin 2010a ; Sharma & Hammett 
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2011 ; Kannan et al. 2016 ; Pakmor et al. 2016 ) can be stably integrated 

for somewhat longer time-steps they impose their own (often very 

large) o v erhead costs and typically scale poorly if a deep hierarchical 

time-step structure is adopted (Hopkins 2017 ). 

Moreo v er, it is not clear whether the cost or complexity of adding 

explicit CR transport is worthwhile, in simulations which neglect 

other key physics which are important for CR transport, losses, and 

coupling to gas, such as magnetic field dynamics, variation in local 

radiation energy densities, explicitly resolved neutral versus ionized 

phases of the interstellar medium (ISM), and individually time- 

resolved SNe and/or collimated AGN jets. In simulations like those 

in e.g. Vogelsberger et al. ( 2013 ), Crain et al. ( 2015 ), Grand et al. 

( 2017 ), Pillepich et al. ( 2018 ), and Buck et al. ( 2020 ), it is common 

practice to treat other forms of stellar and AGN feedback via sub-grid 

prescriptions that treat the ISM with some ‘ef fecti ve equation of state’ 

instead of resolving its structure, and insert key effects of SNe and 

AGN mechanical feedback ‘by hand’ (e.g. injecting thermal energy, 

‘kicking’ particles into outflows, or turning off cooling for some spec- 

ified period of time). Ideally, these models for mechanical feedback 

are calibrated directly to the results of higher resolution simulations 

that attempt to actually resolve those phenomena. Clearly, one would 

like to have a similar treatment for CRs. Ho we ver, the popular sub- 

grid model approaches abo v e cannot appropriately treat CRs: if the 

dominant effect of CRs is the introduction of non-thermal pressure 

terms, and their gradients are important on large scales like the CGM 

(far from their injection sites), then one cannot qualitatively approx- 

imate this with some ‘thermal + kinetic’ or ‘cooling turnoff’ type 

model. 

In this paper, therefore, we attempt to develop a simple sub-grid 

prescription for use in simulations of galactic or cosmological scales 

(specifically, simulations that do not attempt to resolve ISM phases 

or explicitly treat CR transport). Our goal is to design the simplest 

possible toy model which can capture the most important qualitative 

effects/behaviours of CRs in so far as they influence galaxy formation 

and CGM/IGM structure, which can be incorporated into simulations 

like those mentioned abo v e with essentially zero computational cost, 

and allow users to parametrize the CR transport parameters (whose 

detailed scaling is probably the most uncertain parameter go v erning 

CR effects on galaxies, see Butsk y & Quinn 2018 ; Butsk y et al. 

2020 ; Hopkins et al. 2021b ) in a simple manner. We stress that this is 

in no way a replacement for simulations which do explicitly model 

these physics: such simulations are necessary and crucial to inform 

models like those here, as well as to actually make quantitative 

predictions for CR observables (which the model we propose below 

is not appropriate for) in order to actually constrain the detailed role 

of CRs in galaxy formation. 

2  D E R I VAT I O N  

2.1 Local CR energy density and pr essur e 

2.1.1 Generalized large-scale CR transport equations 

Beginning from the fully general CR transport Vlasov equation, 

one can make a series of assumptions and transformations to pro- 

gressively make the equations simpler. First, assume Lorentz forces 

rapidly ensure a microscopically near -gyrotropic CR distrib ution 

function f , to obtain the focused CR transport equation (Le Roux 

et al. 2015 ) which is valid to leading order in O( r g /L ) (where r g 
is the CR gyro-radius, and L the macroscopic resolved scales in the 

simulations), with the standard quasi-linear theory scattering rate 

coefficients from Schlickeiser ( 1989 ). 

Next, take the first and second pitch-angle moments equations with 
an interpolated closure relation and expand to leading order in 
O( u/c), where u is the (non-relativistic) background fluid velocity 
to obtain the moments equations in Hopkins et al. ( 2022a ). Then 
integrate these over momentum–space, imposing the assumption 
of a fixed spectral shape for the CRs with most of the energy in 
ultrarelativistic CRs, to obtain the energy equations, equation (38) in 
Hopkins et al. ( 2022a ): 

D t e cr + ∇ · ( F e ̂  b ) ≈ S e − P cr : ∇u −
ν̄

c 2 

[

v̄ A F e − 3 χ v 2 A ( e cr + P cr ) 
]

, 

D t F e + c 2 ̂  b · ( ∇ · P cr ) ≈ −ν̄ [ F e − 3 χ v̄ A ( e cr + P cr ) ] + S F e , (1) 

where e cr , P cr ≈ e cr /3, P cr , F e are the CR energy density, scalar 

pressure, pressure tensor, and energy flux; u is the gas fluid velocity; 

D t X ≡ ∂ t X + ∇ · ( u X) is the conserv ati v e como ving deri v ati ve; S e 
and S F e represent sources and sinks; ˆ b is the unit magnetic field 

vector = B / | B | ; ν̄ is the appropriately spectrally averaged mean CR 

scattering rate ( = ν̄+ + ν̄−, the sum of contributions from forward 

and backward-propagating waves); c is the speed of light; v A is the 

appropriate Alfv ́en speed (Alfv ́en speed of modes with wavenumber 

∼1/ r g where r g is the gyro radius); v̄ A ≡ v A ( ̄ν+ − ν̄−) / ( ̄ν+ + ν̄−) 

is the signed ‘streaming speed’, and χ ≡ (1 − 〈 μ2 〉 )/2 is a 

completely general closure function that defines the (an)isotropy 

of P cr ≡ 3 P cr [ χ I + (1 − 3 χ ) ̂  b ̂ b ] for any gyrotropic CR f in terms 

of the second moment of the pitch-angle 〈 μ2 〉 . 
Next, take this and assume the CRs have reached flux-steady-state 

in the strong-scattering limit, i.e. D t F e → 0 (or equi v alently take 

the Newtonian limit, c → ∞ ), which occurs in a scattering time 

∼ ν̄−1 ∼ 30 yr for ∼ 1 GV CRs (Hopkins et al. 2021c ), leading to 

the strong-scattering limit with a close-to-isotropic CR distribution 

function ( χ → 1/3, P cr → P cr I ). In this limit, v̄ A approaches one of 

two limits: either v̄ A → 0 if CR scattering is symmetric in the Alfv ́en 

frame, or v̄ A → −SIGN ( ̂ b · ∇P cr ) v A if the scattering is asymmetric 

(as expected if modes excited by the CRs dominate scattering as in 

self-confinement models). This gives a CR energy equation we can 

write as 

∂ t e cr → ∇ ·
[

c 2 

3 ̄ν
ˆ b ̂ b ∇e cr − ( ̄v A ˆ b + u ) e cr 

]

− P cr ∇ · ( ̄v A ˆ b + u ) + 
v 2 A − v̄ 2 A 

c 2 
ν̄ ( e cr + P cr ) + S e . (2) 

2.1.2 Isotropized steady-state equations 

Now, we make a series of much stronger assumptions akin to 

those used to derive the commonly adopted (see e.g. Strong & 

Moskalenko 2001 ; Evoli et al. 2017 ) steady-state isotropic Fokker–

Planck equation for CRs: (1) assume the energy equation is in 

Eulerian steady-state ( ∂ t e cr → 0, which occurs on a bulk CR 

transport/injection time-scale ∼L 
2 / κ or e cr / S , which can range from 

∼ 10 7 yr in the dense ISM to ∼ 1 –10 Gyr in the CGM), and (2) 

that the magnetic fields are isotropically ‘tangled’ on scales of order 

the CR scattering mean-free-path and below the resolution scale, 

and we implicitly replace all quantities with their averages over the 

resolution-scale ‘tangling’, so that we can replace the anisotropic dif- 

fusion tensor κ‖ ≡ κ‖ ˆ b ̂ b = ( c 2 / 3 ̄ν) ̂  b ̂ b with an isotropic equi v alent 1 

1 For a more formal justification of this, see e.g. Braginskii ( 1965 ), Berezinskii 

et al. ( 1990 ), Zweibel ( 2013 ), and for a more practical example showing 

that this is an acceptable approximation at the order-of-magnitude level in 

simulations using explicitly anisotropic transport (including those studied 

here below), see Chan et al. ( 2019 ), Su et al. ( 2019 , 2020 ), Buck et al. ( 2020 ), 

Ji et al. ( 2020 ), and Hopkins et al. ( 2020b ). 
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〈∇ · ( κ‖ · ∇e cr ) 〉 ∼ ∇( κiso ∇e cr ) with κiso ∼ κ‖ / 3 = c 2 / 9 ̄ν, and like- 

wise replace v st → u + ( | ̄v A | / 
√ 

3 ) ˆ ∇ P cr . With these, and replacing 

P cr ≈ e cr /3, we obtain 

− ∇ · [ κiso ∇e cr − v st e cr ] ∼ −∇·v st 
3 e cr + 

4 ( v 2 A −v̄ 2 
A ) 

27 κiso 
e cr + S . (3) 

Here, the terms on the left-hand side represent the ‘dif fusi ve’ 

transport (in κ) and the ‘streaming’ plus ‘adv ectiv e/conv ectiv e’ 

transport (in v st ) – it is clear from the equation abo v e (though see 

appendix B in Hopkins et al. 2021c for more detailed discussion) that 

these are only meaningfully separable into classical ‘diffusion’ versus 

‘streaming’ behaviours if κ iso and v st are strictly constants: if we allow 

them to be arbitrary functions of position, then the coefficients are 

strictly degenerate (as we note below) and one cannot mathematically 

separate the two terms. On the right-hand side, we have the ‘adiabatic’ 

and ‘streaming loss’ term (in ∇ · v st ), the ‘dif fusi ve reacceleration 

(DRA)’ term (in ( v 2 A − v̄ 2 A )) and the S collects sources (at injection 

sites) and losses. Note that we define v st to collect the ‘streaming’ and 

adv ectiv e/conv ectiv e/adiabatic terms together on both sides (different 

from the usual convention), because our model is ultimately defined 

in an Eulerian frame of the galaxy. 

2.1.3 Spherically symmetric form away from a point source 

Next, separate S → j in − Q loss with injection j in and losses Q loss ≈
� loss e cr for some loss rate function � loss , 

2 and consider a point 

source with location defined as the origin ( j in = Ė cr δ( x )). Now 

make one more series of strong assumptions: take v st ≡ | v st | to be 

approximately constant, in a spherically symmetric ambient medium 

(so � → �( r, ... )), giving (away from r = 0 aka outside of sources, 

so j in → 0): 

1 

r 2 

∂ 

∂ r 

{

r 2 
[

v st e cr − κiso 
∂ e cr 

∂ r 

]}

= 

−
2 v st e cr 

3 r 
+ 

[

4 ( v 2 A − v̄ 2 A ) 

27 κiso 
− � loss 

]

e cr . (4) 

2.1.4 The ‘streaming + diffusion’ approximation with constant 

coefficients 

Even with all our simplifying assumptions and spherical symmetry, 

with 〈 κ iso 〉 = 〈 κ iso 〉 ( r ), equation ( 4 ) can only be solved numerically 

making a variety of additional assumptions about the form of κ iso 

and v̄ A , v A , etc. Ho we ver, it is useful at this point to note that 

for self-confinement models, the ‘DRA’ term in v 2 A − v̄ 2 A vanishes 

identically, and even for extrinsic turbulence models (where v̄ A → 0 

so this re-acceleration term is maximized), the term is orders-of- 

magnitude smaller than the � loss term for realistic values of κ iso 

(see discussion in Hopkins et al. 2022a , b ). We can therefore drop 

it safely. 3 Next note that the v st term includes only the ‘adv ectiv e’ 

2 For CR spectra dominated by ∼ 1 –10 GV protons with observation- 

ally fa v ored transport speeds (much faster than Alfv ́enic), the CR- 

spectrum-integrated loss function � loss is dominated by a combination of 

hadronic/pionic, Coulomb, and ionization losses, scaling as 

� loss ≈ 10 −16 cm 
3 s −1 (6 . 4 n n + 3 . 1 n e + 1 . 8 n H I ) , 

where n n , n e , and n H I are the number densities of nucleons, free electrons, 

and neutral atoms, respectively (Mannheim & Schlickeiser 1994 ). 
3 We stress that there is no inherent conflict between dropping this term here, 

and claims in some steady-state analytical Galactic cosmic ray transport 

models (with e.g. GALPROP, see Korsmeier & Cuoco 2022 ) that there is a 

and Alfv ́en velocities: v st = | u + v̄ A ˆ b / 
√ 

3 | , where | ̄v A | < v A , which 

is much smaller than the ef fecti ve ‘bulk’ streaming or diffusion 

or transport speed of CRs (given by v eff ∼ | κiso e 
−1 
cr ∇e cr | ) at least 

within the galaxy for any observ ationally allo wed dif fusi vities in 

Milky Way like and dwarf galaxies at the energies ( ∼ 1 –10 GeV) 

which dominate the total CR energy density e cr (see Blasi & Amato 

2012 ; Vladimirov et al. 2012 ; Gaggero et al. 2015 ; Cummings et al. 

2016 ; Guo et al. 2016 ; J ́ohannesson et al. 2016 ; Korsmeier & Cuoco 

2016 ; Evoli et al. 2017 ; Amato & Blasi 2018 ; Chan et al. 2019 ; 

Hopkins et al. 2020b , 2021b , c ; Su et al. 2020 ; Bustard & Zweibel 

2021 ; De La Torre Luque et al. 2021 ), though we will allow for 

some streaming outside the galaxy as discussed below. Typically in 

these studies the inferred v eff ∼ (10 2 –10 4 ) v A . This means we can 

neglect the ‘streaming + adiabatic loss term’ 2 v st e cr / (3 r) � v A /r 

as a dominant loss term for e cr (though we note below the ‘adiabatic’ 

part of this term can sometimes be non-negligible). 4 

Ho we ver, it is common in the literature to refer to ‘super-Alfv ́enic 

streaming’ arising from self-confinement moti v ated CR transport 

models. In these models, the scattering rate ν (and therefore κ) 

depends itself on e cr and its gradients, so it introduces ‘streaming like’ 

behaviour into κ iso . To capture this to leading order, in our spherically 

symmetric, time-invariant steady-state approximation, we assume we 

can expand the spherically a veraged, direction-a veraged ef fecti ve 

dif fusi vity as 〈 κiso 〉 ∼ 〈 c 2 / 9 ̄ν( r, ... ) 〉 ∼ κ0 + v κ r/ 2 + ... , where κ0 

and v κ are constants [and we write v κ ≡ 2 ( ∂ 〈 κiso [ r] 〉 / ∂ r) because 

this term has units of velocity]. This separates the behaviours of 

the scattering term κ iso into an ef fecti vely traditional ‘diffusion-like’ 

term κ0 and a ‘streaming-like’ term v κ . 

We stress that as shown in Hopkins et al. ( 2021c ), this is only an 

approximation to the mean behaviour of CR scattering models: actual 

self-confinement models, for example, produce coefficients which 

are complicated functions of e cr and its deri v ati ves in a manner which 

means that, in detail, the behaviour of equation ( 4 ) is neither truly 

that of a ‘diffusion’ or a ‘streaming’ equation. But large uncertainties 

remain in these models, so we choose to simply parametrize the 

coefficients as abo v e. With this, we define the ‘ef fecti ve streaming 

speed’ v st, eff ≡ v κ + v̄ A ≈ v κ . Note that here and throughout this 

paper, we use ‘streaming’ to refer to any transport term which 

produces ‘streaming-like dynamics’ in this sense, regardless of 

whether it originates via large-scale gradients in the scattering rate 

or κ with position, or Alfv ́enic streaming, or free-streaming at c or 

other processes. In the models here, these are all degenerate (they all 

‘preference’ for including DRA. Taking, for example, the fa v oured parameters 

from the model variant with the strongest DRA in Korsmeier & Cuoco ( 2022 ), 

then the DRA term ( ∝ v 2 A − v̄ 2 A ) in equation ( 4 ) is approximately ∼10 5 times 

smaller than the leading-order term in equation ( 4 ). Importantly, (1) there are 

many small correction terms which might manifest in very detailed models 

of full CR spectra of many species, which do not dominate the leading-order 

uncertainties in the transport of most of the CR energy to the CGM (the only 

quantity our models really attempt to capture); (2) the leading-order effect 

of DRA on the CR spectra is diffusion in momentum-space (the usual ‘ D pp ’ 

term) which can alter CR spectra shapes but has a much weaker effect on the 

bulk transport of total CR energy; and (3) such terms are at least partially 

degenerate with terms that cannot be captured in steady-state models, such as 

the adiabatic term, which most CR-MHD simulations find to be significantly 

larger, as we discuss below (Pfrommer et al. 2017 ; Chan et al. 2019 ; Buck 

et al. 2020 ; Butsky et al. 2020 ; Hopkins et al. 2022b ). 
4 This statement regarding v eff is somewhat radius ( r )-dependent: for constant 

streaming/dif fusion coef ficients, the streaming term will be less important at 

small r and more important at large- r . We discuss how large a correction this 

can be in more detail in Section 4 below. 
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produce essentially identical predictions), so we are agnostic to their 

physical origins. Ho we ver, we emphasize this is a dif ferent usage 

of the term ‘streaming’ than in some of the historical cosmic ray 

literature. 

2.1.5 Approximate closed-form analytical expression 

Now with all of these approximations, [which reduce equation ( 4 ) 

to r −2 
∂ r { r 2 [ v st e cr − κ ∂ r e cr ] } = −� e cr ], it becomes possible to 

solve equation ( 4 ) numerically, but it still does not have closed- 

form analytical solutions. Ho we ver gi ven the gross approximations 

we have already made, we can approximate the exact numerical 

solutions to more than sufficient accuracy (and capture all of the 

rele v ant limiting behaviours within the context allowed by our 

approximations) with the following simple closed-form solution: 5 

e cr ≈ 〈 ̇E cr 〉 t r 
4 π r ( κ0 + v st, eff r) exp 

{

−
∫ r 

0 ψ loss d r 
}

(5) 

= 
〈 ̇E cr 〉 t r e −τcr 

4 π r ( κ0 + v st, eff r) 

ψ loss ≈
� loss 

v st 

(

1 + 
κ � loss 

v 2 st 

)−1 / 2 

, (6) 

where we use 〈 ̇E cr 〉 t r to denote the time-averaged value of the source 

function Ė cr av eraged o v er approximately the bulk CR transport 

time (since the CR energy cannot instantly adjust to small-time-scale 

variations in Ė cr ). 

We can then approximate e cr by integrating over all sources. 

2.2 Couplings to gas 

If we again begin from the general CR-gas coupling terms described 

in Hopkins et al. ( 2022a , b ), including Lorentz forces, scattering, 

ionization, and Coulomb and catastrophic interactions, etc., and 

take all of the same limits assumed abo v e in Section 2.1 , then the 

remaining leading-order coupling terms to the gas momentum and 

energy equations can be written entirely in terms of e cr derived above. 

In the gas momentum equation, for the limits abo v e, the CR 

pressure tensor P cr ≈ P cr I ≈ ( e cr / 3) I is approximately isotropic and 

simply adds to the total isotropic gas pressure in the momentum 

equation as P gas → P gas , non −cr + P cr . 

In the gas thermochemistry, the CRs give rise to an ionization rate 

(for our assumed universal CR spectral shape) expressed in terms of 

the usual ζ parameter as ζcr ≈ 5 × 10 −18 s −1 ( e cr / eV cm 
−3 ) (note in 

some conventions ζ cr must be multiplied by ∼1.5 for atomic gas and 

∼2.3 for molecular gas). Though we caution that the ionization rate 

5 Equation ( 5 ) comes from combining the reduced equation ( 4 ) with v st, eff ≡
v st, 0 + v κ and κ ≡ κ0 + v κ r/ 2, together with the flux boundary condition in 

spherical symmetry 
∮ 

F cr · d A | r→ 0 = 4 π r 2 ( v st, 0 e cr − κ ∂ r e cr ) | r→ 0 = Ė cr . 

There is no closed-form exact analytical solution, but it is easy to verify 

by insertion that equation ( 5 ) satisfies both constraint equations in each of 

the four possible limits: (1) diffusion dominated ( κ0 � v st, eff r or v st, eff → 

0) with weak losses ( � → 0); (2) diffusion dominated with strong losses 

( � large, so ∂ r e cr ≈ −ψ e cr to leading order); (3) ‘streaming’ dominated 

( κ0 � v st, eff r or κ0 → 0) with weak losses; (4) ‘streaming’ dominated with 

strong losses. And it is trivial to verify from the form of equation ( 5 ) that 

the transition between each of these regimes occurs at the order-of-magnitude 

value where we would expect (i.e. between diffusion and streaming dominated 

when v st, eff r ∼ κ0 , or between negligible losses and loss-dominated when 
∫ 

ψ d r ∼ 1, equi v alent to the statement that the transport and loss times out 

to some radius r are roughly equal. 

depends primarily on low-energy ( ∼ MeV) CRs, which contribute 

little to the total energy, so there could be large variations in this owing 

to un-modelled variations in the CR spectrum (and there appears to be 

direct evidence for this in Milky Way GMCs; Indriolo et al. 2015 ). 

Still, this can provide a substantial impro v ement on the common 

practice of simply assuming a single uniform-in-space-and-time ζ cr . 

In the gas thermal energy equation, in addition to ionization 

heating parametrized via ζ abo v e, the energy lost by CRs in 

hadronic/pionic and Coulomb interactions is partially thermalized 

(and partially lost to escaping radiation/particles such as γ -rays; 

see Mannheim & Schlickeiser 1994 ; Guo & Oh 2008 ), giving 

ė th , gas ≈ e cr (0 . 9 n n + 1 . 6 n e ) × 10 −16 s −1 (where n n is the nucleon 

number density and n e the free-electron number density). Optionally, 

if one assumes that the CR scattering is dominated by CR self- 

e xcited wav es such that | ̄ν+ − ν̄−| / | ̄ν+ + ν̄−| ≈ 1, then one can also 

include the ‘streaming losses’ (which reflect asymmetric scattering 

transferring energy into these rapidly damped Alfv ́en waves which 

then thermalize on short time-scales, see W iener , Oh & Guo 2013a ; 

Wiener et al. 2013b ; Ruszkowski et al. 2017 ; Thomas & Pfrommer 

2019 ) which for the assumptions abo v e take the simple form: 

ė th , gas ≈ | v A ∇P cr | / 3. 

3  N U M E R I C A L  I MPLEMENTATI ON  

Numerically, we can estimate e cr , i , the value of e cr at the centre-of- 

mass location x i of cell i , by summing equation ( 5 ) o v er all sources: 

e cr , i ≈
∑ 

j 
〈 ̇E cr 〉 j e 

−τcr , ij 

4 π r ij ( κ0 + v st, eff r ij ) 
(7) 

→ e −�τcr , i 
∑ 

j 

(

〈 ̇E cr 〉 j e −�τcr , j 
)

F ( r ij ) (8) 

i.e. 

e cr , i ≈ Q 
atten 
i 

∑ 

j Ė 
atten 
cr , j F ( r ij ) (9) 

with r ij ≡ | x j − x i | , Q 
atten 
i ≡ e −�τcr , i , Ė 

atten 
cr , j ≡ Q 

atten 
j 〈 ̇E cr 〉 j . The 

source term 〈 ̇E cr 〉 j is defined below, and the second equality stems 

from the following definitions and approximations: 

τcr , ij ≡ �τcr , i + �τcr , j + 

(

r ij 
r max 

)2 
(10) 

�τcr , i ≡
ψ i 

loss 
2 

[

�x 2 i + 

(

ρgas , i 
|∇ρgas , i | 

)2 
]1 / 2 

(11) 

F ( r ij ) ≡ 1 
4 π r ij ( κ0 + v st, eff r ij ) 

e 
−r 2 

ij /r 
2 
max . (12) 

Here, we have approximated τcr , ij by the sum �τcr , i + �τcr , j , 

where �τcr , i is (half, to account for the averaging) the integral τ cr 

extrapolated from the location of cell i with a local Sobolev-length 

approximation, assuming a log-linear scaling ρ( r ) from r = 0 to r 

→ ∞ , based on the local gradient, giving the gradient scale-length 

ρ/ |∇ρ| e v aluated at x = x i , plus the integral through the single cell 

� x i ≡ ( � m i / ρ i ) 
1/3 . This is akin to a LEBRON-type local radiation- 

hydrodynamics approximation (Hopkins, Quataert & Murray 2011 ; 

Hopkins & Grudi ́c 2019 ; Hopkins et al. 2020a ). We average from 

both ‘endpoints’ i and j to approximate the integral in-between. 6 

6 This is convenient computationally as it reduces the computation to two 

local operations which can be done before and after the collective sum over 

sources, making the e v aluation of equation ( 7 ) formally equi v alent to the 

usual self-gravity e v aluation. Inte grating o v er the full ‘path’ of a CR group 

to e v aluate τcr , ij on the other hand would not only require e v aluation of the 

integral of ψ loss along the ray between source and target cell, but because the 

CR follows field lines and has a quasi-diffusive trajectory, we would have to 

inte grate o v er the entire v olume tra versed by CRs (see Section 4 ). 
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We also impose the term ( r ij / r max ) 
2 , which accounts for finite-CR- 

transport time effects which are otherwise ignored in our calculation 

abo v e which assumed that we were al w ays in steady state ( ∂ t e cr → 

0). In short, r max reflects the maximum distance that CRs would travel 

in some time t max , so we do not inadvertently assign CR energy 

densities to gas arbitrarily far away from sources. For the same 

transport approximations, we can calculate r max numerically for some 

t max , or approximate it 7 as 

r max ≡ t max v st, eff 
2 

[ 

1 + 

(

1 + 
16 κiso 

v 2 
st, eff t max 

)1 / 2 
] 

. (13) 

Note that this gives the correct behaviour in both limits of κ0 or v st, eff 

dominating. The choice of τ cr scaling with + ( r ij / r max ) 
2 ensures that 

in the dif fusi ve limit, this reproduces exactly the Gaussian ‘cutoff’ of 

the true constant- κ0 finite-time diffusion solution. In cosmological 

simulations, it is reasonable to take t max ≈ t Hubble ( z), the age of the 

Universe at redshift z, but one could also take it to be the time since 

the beginning of a simulation, or ideally the time since a source first 

formed or turned on (though this latter requires t max for individual 

sources which can complicate implementation in tree methods, where 

one may need to define an ‘ef fecti v e’ av erage t max for groups of 

sources which occupy the same tree node). 

In equation ( 7 ), approximating τ cr this way allows us to write e cr , i 

in a particularly useful form, after the → sign: we have a sum over 

all sources of a scalar, the ‘locally attenuated’ Ė 
atten 
cr , j ≡ 〈 ̇E cr 〉 j e −�τcr , j 

(which can be e v aluated and saved purely locally for each source 

particle, as a single number that depends only on the local particle/cell 

properties), times a function F ( r ij ) which depends on their distance. 

And then after the sum is complete, we account for ‘self-shielding’, 

essentially by multiplying the saved sum at each site i by e −�τcr , i , in 

cell i . 

In tree codes, such as GIZMO which we test below, the imple- 

mentation is then trivial and e cr , i can be computed with negligible 

cost alongside quantities like the gravitational forces. Specifically, all 

sources send one scalar, Ė 
atten 
cr , j , into the gravity force-tree, alongside 

the numbers needed for gravity, we perform the sum 
∑ 

j Ė 
atten 
cr , j F ( r ij ) 

in the tree, using r ij between the target cell i and all sources j 

to e v aluate F ij , then immediate after the tree-sum is complete 

multiply by the ‘shielding’ term e −�τcr , i , to obtain the updated e cr , i 

for that time-step. In the tree code, because the sum o v er Ė 
atten 
cr , j is 

linear, we can make the same approximation as we do for gravity 

for distant nodes (replacing the individual Ė 
atten 
cr , j with the sum in 

the tree node/branch/etc, and using the appropriate distance). It is 

immediately obvious how to generalize this to related multipole 

and other methods (although entirely Fourier-based methods require 

somewhat more o v erhead to correctly evaluate F ( r ij )). 

We can add the appropriate coupling terms to the gas, by inserting 

e cr , i , and corresponding P cr , i = e cr , i / 3, and their gradients, into all 

the existing Riemann problem and heating/cooling functions for 

the gas, exactly as described for our fully explicit CR dynamics 

treatments in Chan et al. ( 2019 ). 

7 Specifically, equation ( 13 ) is an approximate fitting function which is, by 

construction, asymptotically exact to the (already simplified) equations being 

integrated [e.g. equation ( 4 ) with constant κ , v st, eff ] in the limits where 

either κ or v st, eff dominates (and the other can be neglected), and is within 

∼ 10 per cent of the numerically integrated solution for all values of interest 

of the dimensionless ratio κiso /v 
2 
st, eff t max . It represents the distance enclosing 

1/2 of the total energy of an initial δ function ‘pulse’ of CRs injected at the 

origin, evolved according to equation ( 4 ), after a time t max . 

All that remains is to specify the source terms 〈 ̇E cr 〉 j . Depending on 

the type of simulation, different approximations may be most useful. 

Most of the CR energy density in typical dwarf-through-MW-mass 

galaxies (at ∼ GeV energies) is accelerated in SNe shocks, with 

εSNe 
cr ∼ 10 per cent of the ejecta kinetic energy ( E 

SNe 
ej ∼ 10 51 erg 

per SNe) going into CRs, so 〈 ̇E cr 〉 j ∼ εSNe 
cr E 

SNe 
ej 〈 Ṅ SNe 〉 j (where the 

av erage o v er Ṅ SNe should ef fecti v ely ‘smooth’ the SNe rate o v er 

some time-scale e.g. of order the local dynamical time or a constant 

of � Myr, to prevent spurious small-scale noise, since we assume 

steady-state solutions). In simulations which do not explicitly resolve 

young stellar populations (in time or space) the SNe rate and other 

forms of stellar feedback are commonly attached to star-forming 

gas-particles as sources, with 〈 Ṅ SNe 〉 j ∼ (1 /m SNe , eff ) 〈 Ṁ ∗〉 j , where 

m SNe , eff ∼ 100 M � depends on the assumptions about the stellar IMF 

and SNe progenitor mass range. In simulations which explicitly treat 

young stars and individual SNe, note that we still wish to have a 

continuum source for purposes of this CR sub-grid model (since it 

only applies in steady-state with some time-averaged injection rate), 

so we can take 〈 Ṅ SNe 〉 j ∼ 〈 R SNe ( t 
j 
∗ ) 〉 M 

j 
∗ , where R SNe is the SNe rate 

per unit stellar mass for a stellar population of age t j ∗ (used to compute 

all other stellar feedback effects in the code). If one wishes to include 

AGNs as CR sources (reflecting relativistic jets), then one can take 

〈 ̇E cr 〉 j ∼ εBH 
cr 〈 Ṁ BH 〉 j c 2 , where Ṁ BH is the accretion rate on to the 

black hole in the AGN source (again, averaged over some smoothing 

time if the accretion model allows for arbitrarily short-time-scale 

AGN variability, since we have assumed steady-state solutions) and 

εBH 
cr parametrizes the fraction of the accretion energy which does into 

escaping relativistic particles. One could also add source terms for 

resolved shocks, if one wished to model structure formation shocks, 

e.g. as CR sources. 

Note that this adds no numerical time-step constraints, outside 

of those already present for MHD (if CRs modify the velocities or 

accelerations of the gas , the usual Courant conditions apply). 

4  ASSUMPTI ONS  

Our sub-grid model makes many assumptions, which we have tried 

to enumerate in Section 2 . Here, we re vie w which are ‘reasonable’ 

or ‘safe’, and which are likely ‘poor’. 

To define ‘good’ versus ‘poor’ here: the key quantity of interest we 

wish to provide, for the community for whom this toy sub-grid model 

is intended and practically useful (e.g. large-volume galaxy formation 

simulations and semi-analytical models), is the cosmic ray pressure 

in the CGM (as for cosmological galaxy formation many studies 

have shown this can have some of the most dramatic effects, though 

it is far from the only way CRs can influence galaxy formation; 

see e.g. Salem, Bryan & Hummels 2014 and the many references 

in Section 1 ). But it is obvious (and supported by many detailed 

simulations and models; see e.g. Hopkins et al. 2021b ; Thomas, 

Pfrommer & Pakmor 2022 and references therein) that one can have 

reasonable models which behave (by construction) identically in the 

ISM and yet give order-of-magnitude differences in the CR pressure 

in the CGM, based on different assumptions about how to extrapolate 

the (deeply uncertain) CR transport parameters (e.g. κ , v st , etc.) to 

different plasma conditions. In principle these might be testable in 

the future (see discussion in Butsky et al. 2023 ), but at present there 

are fe w observ ational constraints at the scale of interest (assuming 

the model is constrained at the order-of-magnitude level already 

in the ISM by Solar system and γ -ray data). This means that –

for our limited purposes here – a ‘good’ or ‘safe’ or ‘reasonable’ 

assumption in our toy model is one which, if changed, would not 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
2
/2

/2
9
3
6
/7

1
0
4
0
6
8
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, S
a
n
 D

ie
g
o
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
3



Sub-grid CR transport 2941 

MNRAS 522, 2936–2950 (2023) 

change the average CR pressure on some scale by multiple orders- 

of-magnitude, in a way that could not be absorbed into the already 

explicitly parametrized uncertainties (e.g. parameters like κ or v st ) 

of the model. This, of course, is a much looser criterion than ‘could 

in principle be observationally measured’, let alone ‘can we justify 

the assumption formally or rigorously’. But it is the case of practical 

interest for the (intentionally extremely simplified) models here. 

4.1 Well-justified assumptions 

First, some assumptions we make are likely can actually be formally 

justified, as e.g. certain dropped terms are small compared to other 

terms we retain. As shown in Hopkins et al. ( 2022a ), for scales 

�r g (the CR gyro radius ∼ 0 . 1 au ) of interest, with non-relativistic 

MHD fluid motions, the gyrotropic expansion and expansion to 

leading-order in O( u/c) are well-moti v ated (i.e. CR gyro radii are 

small compared to the scales of application of the model, and the 

background fluid motions are non-relativistic; see e.g. Jokipii 1966 ; 

Skilling 1971 ). Likewise on scales � kpc much larger than the CR 

scattering mean-free-path, since CRs are not truly ‘collisionless’ like 

photons, the moments approach to CR dynamics and assumption of 

a near-isotropic CR distribution function and flux-steady state are 

also formally justified (Voelk 1975 ). And as shown in Hopkins et al. 

( 2022b ), for realistic dif fusi vities and CR spectra, neglecting terms 

such as the re-acceleration (though we discuss this further below) and 

certain other losses (e.g. ionization for low-energy protons, or losses 

for sub-dominant leptonic CRs) are also likely to be a very small 

source of error (they will at least al w ays be smaller than other terms 

we also neglect, such as the adiabatic term, so it is more important 

to discuss those terms in our breakdown below). 

4.2 Weakly justified, but plausible assumptions on galactic 

scales 

Ne xt, we hav e a group of assumptions that are not rigorously 

moti v ated, but work surprisingly ‘well’ in the loose practical sense 

we define abo v e, if we focus on scales ∼ 1 –100 kpc around galaxies. 

This includes the following. 

We inte grate o v er CR momentum to use spectrally integrated CR 

equations assuming the ultrarelativistic limit, which assumes the 

CR spectrum is self-similar. This usually works at an ‘acceptable’ 

level because most of the CR energy is around ∼ 1 –10 GeV even if 

the spectral shape varies (except perhaps near the galactic centre; see 

Chen, Bryan & Salem 2016 ; Salem et al. 2016 ; Butsky & Quinn 2018 ; 

Chan et al. 2019 ), and we only care about CR effects on galaxies 

(dominated by the total pressure, without strong dependence on CR 

spectral shape) and not CR observables (where the spectral shape 

is very important). The spectral shape variations would have to be 

extreme to change the total CR pressure at the order-of-magnitude 

le vel, and e ven if these did appear, since in any realistic model the 

CR transport parameters depend on rigidity, it is not obvious it could 

not be subsumed into an appropriate mean radial dependence of κ or 

v st on r . 

We assume magnetic fields are ‘tangled’ so we can approximate 

the dif fusi vity as isotropic, for analytical simplicity. This will break 

down badly on small scales, of course, but is plausible on large/CGM 

scales (see Ji et al. 2020 , 2021 ). More importantly, ho we ver, multiple 

previous studies have shown that this generally only introduces 

O(1) geometric corrections to the ef fecti ve transport speed and CR 

pressure even where magnetic fields are highly aligned (akin to 

other anisotropic diffusion processes; see Sharma, Parrish & Quataert 

2010b ; Parrish et al. 2012 ; Arth et al. 2014 ; Chen et al. 2016 ; Hopkins 

2017 ; Buck et al. 2020 ; Hopkins et al. 2020b ; Ji et al. 2020 ; Werhahn 

et al. 2021 ; Butsky et al. 2023 ), sub-dominant compared to other 

effects and easily absorbed into the ‘effective transport parameters’. 

Most noteworthy, the simulations we compare/calibrate to here all 

include strictly anisotropic transport along magnetic field lines, so 

this calibration is already automatically included in our analysis. 

We also neglect the ‘streaming losses’ at large CGM radii. This 

could in principle be a less-accurate assumption if the ef fecti ve 

streaming speed at these radii drops from highly super-Alfv ́enic 

(required near/within the galaxy) to strictly locked to the Alfv ́en 

speed and the Alfv ́en speed in the halo were very low, but recall we 

have assumed constant transport coefficients so this should not occur 

(though it could if one adopted very different transport models). And 

the observationally required values of the diffusivity/streaming speed 

within galaxies are so large that if they are constant, this introduces 

ne gligible error; moreo v er in the CGM it is e xtremely difficult 

in simulation models for this loss term to strongly suppress the 

pressure when various effects including out-of-equilibrium transport 

are considered (Thomas et al. 2022 ). But even the ‘worst-case’ 

version of this is unlikely to introduce order-of-magnitude reductions 

in the CR pressure. 

We use a LEBRON-type two-endpoint approximation for the 

‘attenuation’ τcr , ij ≈ �τcr , i + �τcr , j of CRs. This could in principle 

miss ‘shadowing’ effects by dense clumps in-between the CR sources 

and gas cells. In RHD, the accuracy of this approximation can be 

impro v ed (at greater computational expense) by replacing the two- 

endpoint approximation with a HealPix/TreeCol-type method or a 

full ray-tracing integration, but that assumes photons travel from 

sources on ‘straight-line’ (ray) trajectories until absorbed. But since 

the CRs are actually scattering/dif fusi v e and mo ving along tangled 

fields, this would not actually impro v e the accurac y significantly, 

and they are never in the truly ‘optically thin’ (aka ‘negligible 

scattering’) equi v alent limit. Our approximation captures the fact 

that for losses to strongly deplete the CRs, or shielding strongly 

suppress their effects, it must happen quasi-isotropically owing to 

the quasi-isotropic scattered CR trajectories near to the source or 

‘target’. Most importantly again, the simulations here to which we 

calibrate do not make this approximation, and yet we see only modest 

inhomogeneity actually appear at large radii, most of it owing not to 

‘shadowing’ but to the adiabatic terms discussed below, so it can be 

incorporated into our calibration of the models fairly easily. 

Spherical symmetry is obviously a poor approximation on small 

scales, but again, because CRs are ‘dif fusi ve’ and scatter, especially 

if fields are tangled, then CRs sample and implicitly smooth o v er 

an entire volume as they escape (and again, ‘shadowing’ or other 

‘optically thin-like’ RHD limits, do not apply to CRs). This means 

that even in an inhomogeneous medium, the ef fecti ve steady-state 

solution at a given point reflects some weighted av erage o v er the 

whole volume, suppressing the effects of anisotropy and producing 

quasi-spherical CR profiles (with only tens of per cent deviations) 

in full explicit CR-dynamics simulations (Butsky & Quinn 2018 ; 

Hopkins et al. 2021a ; Ji et al. 2021 ). Thus especially on CGM scales 

of greatest interest in many CR studies, this is a surprisingly ‘accept- 

able’ approximation as far as our (loose) criteria are concerned. 

4.3 Most uncertain assumptions 

The assumptions that likely drive the largest uncertainties (but are 

necessary for the simplicity of our model) on galactic scales include 

the following. 

We assume steady-state for the CR energy equation and contin- 

uous injection, which clearly breaks down on small scales, where 
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finite-source time and space structure (e.g. injection in super- 

bubbles and non-equilibrium effects given that the CR escape 

time is comparable to galaxy and GMC dynamical times) will 

be important. On very large scales, finite-travel-time effects mean 

energy steady-state cannot hold, as the diffusion time ∼ � 2 /κ ∼
(0 . 3 Gyr ) ( �/ 10 kpc ) 2 ( κ/ 10 29 cm 

2 s −1 ) becomes long. This is why 

we add the ‘ r max ’ term in our numerical method, to at least partially 

account for this. But the simple fact is that on large/CGM scales, 

it is quite possible that the CR properties are far from steady-state. 

This is especially a concern if one wishes to model CR injection 

from AGNs, where a bright quasar could introduce an enormous 

instantaneous CR injection rate, but this would last for a relatively 

short time, so the dynamics would resemble more of a ‘pulse’ of 

CRs propagating outwards (which could easily require multiple Gyr 

to reach the virial radius for the typical transport parameters invoked 

here), rather than a steady-state solution. 

We ne glect adiabatic/conv ectiv e terms. These generally hav e an 

order-unity effect on CR energies, and their sign can vary (enhancing 

CR densities in dense, collapsing gas, and decreasing it in outflows; 

Pfrommer et al. 2017 ; Chan et al. 2019 ). This means also that we 

will not capture the full local variation in e.g. the CR ionization 

rate, an issue exacerbated by the fact that we do not treat a full 

CR spectrum, so neglect the fact that low-energy CRs are more 

tightly coupled to the gas (Hopkins et al. 2022b ). And it means we 

cannot capture certain effects of CRs modifying the properties of 

local thermal instabilities, in the ‘partially coupled’ regime (Butsky 

et al. 2020 ). From the analysis in Chan et al. ( 2019 ) and Buck et al. 

( 2020 ), this appears to contribute significantly to the local (small- 

scale) fluctuations in the CR pressure seen in the full simulations at 

large radii, in a way that our sub-grid models simply do not capture 

(they necessarily predict much less scatter because of the neglect 

of these local dynamics). So while unlikely to change things at the 

order-of-magnitude level, this could bias the results (both in terms 

of the effects of CRs for a given diffusivity, or as we show below 

the inferred ‘best-fit’ dif fusi vity to full dynamical simulations) by 

as much as a factor of a few, via non-linear interaction channels in 

particular such as the effect of ‘partial’ adiabatic coupling on the non- 

linear evolution of the thermal instability in the CGM (Butsky et al. 

2020 ), and its non-linear effect in turn on accretion and clumpiness 

of the CGM (Ji et al. 2020 ). 

Finally, from a CR physics point of view, likely by far the least- 

accurate assumption we make is to assume that the CR transport 

coefficients are constant in space and time. In physically motivated 

models of CR transport, whether the scattering comes from self- 

confinement (SC) or extrinsic turbulence (ET), the prediction is that 

the scattering-rate coefficients should be strong functions of local 

plasma properties such as the magnetic field strength, Alfv ́en Mach 

number and dissipation rate of the local turbulence, gas density, 

temperature, ionized/neutral fractions, dust-to-gas ratio, and others 

(see e.g. Chandran 2000 ; Yan & Lazarian 2002 ; Farmer & Goldreich 

2004 ; Yan & Lazarian 2004 , 2008 ; Zweibel 2017 ; Thomas & 

Pfrommer 2019 ; Hopkins et al. 2021c ; Squire et al. 2021 ). This 

leads to scattering rates (hence transport coefficients) that can 

vary by orders-of-magnitude even within an ∼ kpc ‘patch’ of the 

ISM (for observ ational e vidence, see Abeysekara et al. 2017 ; H. 

E. S. S. Collaboration 2019 ), and the mean spherically averaged 

scattering-weight-weighted transport parameters can vary by orders- 

of-magnitude systematically as a function of galactocentric radius 

(Hopkins et al. 2021b , c ). But there are two problems if we wish to 

devise a sub-grid model to represent these physics. First, it is more 

difficult to design a simple and low-cost sub-grid model if the CRs 

scatter through a field with rapidly varying local dif fusi vity/streaming 

speed, since even some appropriate ‘average’ must be weighted over 

the entire scattering domain (i.e. we must know about all points 

along all possible scattering trajectories, not just the ‘line of sight’). 

But second and more challenging, it is not at all clear which (if 

any) of the models for CR scattering rates surv e yed in Hopkins 

et al. ( 2021c ) are correct, and these models disagree qualitatively 

in the scalings with these local properties (even the qualitative 

sense of whether scattering rates should increase or decrease with 

larger magnetic field strengths or turbulent dissipations rates remains 

contro v ersial). Moreo v er, Hopkins et al. ( 2022c ) show that the 

textbook (Jokipii 1966 ; Kulsrud & Pearce 1969 ) and state-of-the- 

art (Yan & Lazarian 2004 ; Thomas & Pfrommer 2019 ) theories for 

scattering from ET or SC all fail qualitatively in predicting Solar 

system CR properties at ∼ GeV energies, generically predicting 

orders-of-magnitude too-small or too-large κ (or v st ), and worse 

yet predicting that the CR scattering rates and residence times should 

actually be constant or increase with CR rigidity from ∼ GV–TV (the 

opposite of the observed behaviour). 8 As such, ‘constant dif fusi vity’ 

or ‘constant- v st, eff ’ approximations, while almost certainly incorrect, 

remain popular by necessity. Our intention with the simplified models 

presented here it to be agnostic to these uncertainties – to, as much as 

possible, allow users to insert their own assumptions and use these 

to attempt to constrain reasonable ‘ef fecti ve transport parameters’ 

constrained as very large-scale ef fecti ve averages (on e.g. scales of 

the virial radii of galaxies, for example). 

5  VA LI DATI ON  IN  N U M E R I C A L  SI MULATIO NS  

5.1 Analysis sample 

We now validate this sub-grid model by comparing its predictions 

for CR pressure to the results of fully explicit CR-MHD galaxy- 

formation simulations. The simulations are presented in Hopkins 

et al. ( 2020b ), run with GIZMO 
9 (Hopkins 2015 , 2016 ; Hopkins & 

Raives 2016 ) as part of the Feedback In Realistic Environments 

(FIRE) 10 project (Hopkins et al. 2014 , 2018 ). These are fully 

cosmological, high-resolution MHD simulations which follow the 

formation of galaxies from initial conditions at z � 100 to z = 0 and 

include explicit treatment of multiphase gas thermo-chemistry and 

radiative cooling, star formation, and stellar feedback from the stars 

that form in a variety of forms including mechanical (from stellar 

mass-loss, core-collapse, and Ia supernovae) and radiative (including 

radiation pressure and various photoheating and ionization terms), 

as well as CRs (with each individually time-resolved SNe injecting 

εSNe 
cr ∼ 10 per cent of the initial ejecta kinetic energy into CRs). The 

CR transport is evolved fully explicitly, with all rele v ant gas coupling 

terms in the original simulations, following the spectrally integrated 

8 These behaviours have also been noted for SC going back to at least Ce- 

sarsky & Kulsrud ( 1981 ) and for ET in Chandran ( 2000 ) and Yan & Lazarian 

( 2008 ). As re vie wed in Hopkins et al. ( 2022c ) and Kempski & Quataert 

( 2022 ), they relate fundamentally in SC to the fact that the CR distribution 

function appears in the ef fecti ve ‘dif fusion coef ficient’, rapidly forcing the 

system towards highly constrained equilibrium solutions, while for ET, they 

relate to the basic mathematical structure of the MHD equations coupled 

to the anisotropy of basic plasma processes such as Landau damping which 

become important for CRs at energies below ∼ TeV–PeV. Possible resolutions 

to these issues from a plasma-physics CR scattering theory perspective are 

re vie wed in both Hopkins et al. ( 2022c ) and Kempski & Quataert ( 2022 ). 
9 A public version of GIZMO is available at ht tp://www.tapir.calt ech.edu/ phop- 

kins/Site/GIZMO.html 
10 ht tp://fire.nort hwestern.edu 
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CR energy and flux equations allowing for fully anisotropic diffusion 

and streaming, with ν̄ = constant 11 and v̄ A = v A . These are useful 

because the uncertainty in true locally variable CR scattering rates, 

which is a physical uncertainty beyond the scope of our sub-grid 

model, does not enter here. 

Ho we ver, we will also consider a subset of simulations from study 

in Hopkins et al. ( 2021b , c ). These simulations adopt identical initial 

conditions and numerical methods, except that the scattering rates 

(hence parallel diffusion coefficient and streaming speed) are allowed 

to be complicated functions of the local plasma parameters (e.g. 

ionization state, density, magnetic field strength, turbulence, etc.), 

moti v ated by theoretical self-confinement and extrinsic turbulence 

models for CR scattering. We will restrict our comparisons to the 

subset of models which Hopkins et al. ( 2021c ) showed could be 

possibly consistent with existing CR observations, studied in more 

detail in Hopkins et al. ( 2021b ). 

In either case, we post-process snapshots from these simulations 

with our sub-grid model calculating e cr (or P cr ) exactly as we would 

‘on the fly’ per equation ( 7 ), and compare it to the true values given 

in-code from the explicit CR-MHD dynamics simulations. 

5.2 Results: post-processing comparisons 

5.2.1 Calibration 

Fig. 1 compares the radial profiles of the CR pressure calculated 

from our simple sub-grid model and the explicit-CR-dynamics 

simulations. Our initial reference case (halo m12i with constant 

ν̄ = 10 −9 s −1 (equi v alent to a local-steady-state anisotropic κ‖ = 

c 2 / 3 ̄ν = 3 × 10 29 cm 
2 s −1 ) is one shown in Hopkins et al. ( 2020b , 

2021c ) to be both a reasonable Milky Way analogue in its galaxy 

properties and to reproduce (for the chosen ν̄ or κ‖ ) various observa- 

tional constraints on CRs including γ -ray emission, grammage, and 

CR lifetime constraints from secondary-to-primary and radioactive 

isotope ratios (see references in Section 5.2.4 ). 12 Ho we ver, we 

stress that our modelling infrastructure is agnostic to the actual 

transport parameters and appears to work similarly well for a range 

of observ ationally allo wed v alues. Explicitly, the sub-grid model has 

two ‘free’ parameters: κ0 and v st, eff , which represent physical terms 

but must be calibrated at some level to the full simulations. Even for 

a simulation like this reference case where the in-code scattering 

11 A constant scattering rate ν̄ roughly translates to a constant paral- 

lel/anisotropic dif fusi vity κ‖ ≈ c 2 / 3 ̄ν, but we stress that the dif fusi vity 

emerges as a function of ν̄ and v̄ A from the explicitly evolved CR equa- 

tions when the CR flux equation approaches local quasi-steady-state. 
12 As we discuss below, when comparing this ‘fiducial’ diffusion coefficient 

κ in the simulations to typical quoted values in the CR literature of e.g. D xx , it 

is important to account for three things.(1) Since we integrate over the entire 

CR spectrum, κ here should be an energy-weighted average 〈 D xx 〉 o v er the 

CR spectrum, which boosts 〈 D xx 〉 by a factor of several over D xx [R = GV]. 

(2) The κ we quote is the parallel/anisotropic coefficient, while D xx refers to 

an isotropically averaged coefficient, which is ∼3 × lower than κ . And (3) the 

‘ef fecti ve’ κ we quote also (by definition) includes any advecti ve/convecti ve 

and/or streaming velocities, which are often quoted or fit separately in classic 

models for some D xx . Considering effects (1)–(3) abo v e, we can compare the 

best-fitting models from recent studies like Evoli, Aloisio & Blasi ( 2019 ) or 

Korsmeier & Cuoco ( 2022 ) which fit D xx [ R ∼ GV ] ∼ 10 28 cm 2 s −1 [com- 

bining with the fits to the full CR spectrum from Bisschoff, Potgieter & Aslam 

( 2019 ) to perform the spectral integration] and obtain the corresponding 

‘ef fecti ve’ κ ≈ 3 − 5 × 10 29 cm 2 s −1 for the best-fitting models therein. This 

is remarkably close to our ‘fiducial’ simulation choice (which is of course 

part of the reason we refer to it as ‘fiducial’). 

rate or parallel dif fusion coef ficient is taken to be a constant, 

recall that our sub-grid κ0 represents an isotropically angle-averaged 

‘dif fusi vity’, neglecting terms such as advection and adiabatic CR 

gains/losses and out-of-flux-equilibrium drift terms, treating CRs as 

if we can add sources independently, and further assuming spherical 

symmetry around each source (and the effects and accuracy of all 

these approximations will vary in both space and time). Likewise 

v st, eff implicitly represents all of these approximations plus, in the 

simulation, the actual streaming speed (the Alfv ́en speed), which is 

locally variable. So it is by no means obvious, a priori, that our sub- 

grid model will be able to fit the simulation results for any constant 

κ0 and v st, eff . 

None the less, Fig. 1 shows that we can obtain a quite reasonable 

match to the simulation profile if we adopt κ0 ≈ 5 × 10 28 cm 
2 s −1 and 

v st, eff ≈ 20 km s −1 . These are plausible values: if there were no other 

approximations in our model but we simply had isotropically tangled 

fields, then the isotropically averaged dif fusi vity in the simulation 

would be κiso ≈ κ‖ / 3 ≈ 10 29 cm 
2 s −1 – just a factor of ∼2 larger than 

κ0 we infer by essentially fitting the simulation profile. The difference 

owes to the (many) other assumptions reviewed in Section 4 . Notably, 

since the medium on small scales (within/near the galaxy) is not really 

spherically symmetric with a single point source at the centre, the 

profile has a higher ‘flat shelf’ in the centre than our toy sub-grid 

model would predict, which leads us to fit a slightly lower ‘effective’ 

dif fusi vity. This can be illustrated by simply considering two-point 

sources (where our toy model would predict a local maximum 

between the two, but in reality this would be diffused out). This 

also leads to some ‘tradeoff’ where in our toy model we tend to 

fit slightly lower κ0 and higher v st than were present in our original 

simulation: here, while ∼ 20 km s −1 is a plausible mean Alfv ́en speed 

v A , recall this is isotropically averaged so should be a factor ∼3 lower, 

if we were reco v ering e xactly the input simulation parameters. This 

demonstrates the importance of using ‘full’ simulations like those 

here to calibrate these sub-grid models, before applying them more 

broadly. 

With these choices, we can compare not just the radial trend of 

CR energy density, but also the values cell-to-cell (i.e. the scatter or 

difference therein in the curves in Fig. 1 ). Specifically, Fig. 2 shows 

the distribution of values of P cr inferred from our sub-grid model 

compared to those in the live simulation. This works remarkably 

well, reproducing the simulations to within a factor ∼2 scatter. 

Note that when P cr is v ery small, ev en a tin y inaccurac y in the sub- 

grid model could lead to an apparently large fractional discrepancy 

( | ln ( P 
sim 
cr /P 

subgrid 
cr ) | � 1), but this would be irrele v ant for the gas 

dynamics. We therefore also consider the effect on the total pressure, 

adding the CR pressure to the thermal and magnetic pressures in 

code. This allows us to see that the ‘tail’ of cases where the sub- 

grid model fails badly and in estimating P cr are mostly cases where 

the CR pressure is irrele v ant – so these will not produce significant 

effects on the simulation dynamics. From comparison with Fig. 1 , 

we can immediately see that the scatter in Fig. 2 is essentially 

equi v alent to the scatter in the ‘full’ simulation in P cr at a given 

galactocentric radius. By construction, the toy model here represents 

only the spatially spherically averaged, and cosmic-ray-transport- 

time time-averaged value of P cr at a given radius, so (as expected) 

e xhibits v ery little scatter in P cr at a given radius. Physically, the 

scatter in the full simulations arises from violations of homogeneity 

and spherical symmetry (e.g. winds, local sources, satellite galaxies, 

regions/phases of the ISM/CGM with rapid loss rates, regions where 

the local Alfv ́en speeds are much higher, and the ‘adiabatic terms’ 

– all effects our toy model averages out. The most important effect 

of this scatter which our model does not capture is likely an indirect 
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Figure 1. CR pressure P cr (median [ solid ] and ±3 σ range [ shaded ]) in spherical shells as a function of galactocentric radius r , comparing simulations and 

sub-grid model predictions. ‘Full simulation’ ( blue ) refers to values calculated for every gas cell in full cosmological numerical-hydrodynamic simulations which 

e xplicitly evolv e CR transport including anisotropic diffusion, advection, variable streaming speeds, adiabatic losses/gains, and catastrophic losses (Section 5 ). 

‘Sub-grid’ uses our simplified sub-grid model (Section 3 ) to estimate P cr = e cr /3. We compare different Milky Way-like galaxies at redshift z = 0 ( m12i , m12f , 

m12m ) and one dwarf (LMC-mass) galaxy ( m11i ). The ‘full simulations’ here assume a constant scattering rate ̄ν, equi v alent to a constant anisotropic/parallel 

dif fusi vity κ‖ = c 2 / 3 ̄ν = κ29 10 29 cm 2 s −1 plus streaming at the local Alfv ́en speed v A , and we compare simulations with three different values of κ29 spanning 

a reasonable range of observationally allowed values. We also compare three different Milky Way-mass galaxies ( m12f , m12m , and m12i ), the same galaxy at 

different cosmological times ( z = 0.2, all others at z = 0), and different galaxy masses ( m11i , an LMC-mass system). The sub-grid model has two free ‘ef fecti ve’ 

CR transport parameters ( κ0 and v st, eff ): we calibrate these by fitting the profile to the z = 0 snapshot of m12i with κ29 = 3 (center panel), then use these fitted 

values to extrapolate to all the other simulations shown here (assuming v st, eff = constant, and κ0 ∝ κ29 ). The sub-grid model can reasonably reproduce the CR 

pressure profile, especially in the CGM where it is most important. Ho we ver for massi ve galaxies with high scattering rates (lo w dif fusi vities) compared to what 

is observed ( m12i , κ29 � 0.3), the sub-grid model substantially o v erpredicts the CR pressure because most of the CR energy in the full simulation is actually 

lost to catastrophic (pionic) processes, in contradiction to γ -ray observations. 

effect: namely, that in the CGM, the scatter is largely related to 

variations in the adiabatic term (see references in Section 4.3 , who 

show this explicitly), because the CR diffusion/transport times are 

not necessarily extremely short compared to other bulk time-scales 

on such large scales ( ∼ 10 − 300 kpc). As shown in Butsky et al. 

( 2020 ), this leads to non-trivial differences in the behaviour of the 

thermal instability of the CGM (the toy model here is closest to 

the ‘decoupling limit’ considered in Butsky et al. 2020 , while the 
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Figure 2. Distribution o v er all gas cells (weighted by gas mass) of the 

sub-grid estimated pressure to the actual simulation pressure, for the m12i , 

κ29 = 3 simulation in Fig. 1 . We compare both the ratio of CR pressure 

specifically, P 
subgrid 
cr /P simulation 

cr ( red dotted ) and the ratio of total pressures 

P 
subgrid 
tot /P simulation 

tot ( black solid ). In a gas-mass-averaged sense, the CR 

pressure is generally estimated with factor ∼2 scatter, and the tail of cases 

where the sub-grid model for P cr is wrong by a large factor generally 

corresponds to cases where the CRs contribute little to the total pressure. 

simulations lie closest to one of the ‘intermediate’ cases per Ji et al. 

2020 ). It is worth thinking, in future work, of sub-grid models which 

might be able to (partially) capture this effect via introduction of 

a more complex ‘hybrid’ non-linear equation-of-state and cooling 

function in the gas that incorporates the transport parameters as well 

as the total CR pressure and gas thermochemistry. 

5.2.2 Validation 

While we demonstrated that we could reproduce the simulation 

results with a calibrated sub-grid model in Section 5.2.1 , a natural 

worry is that this calibration was simply fitted to one snapshot of 

one simulation, and cannot be extrapolated elsewhere – essential if 

we wish to apply the sub-grid model to new simulations. We next 

therefore validate the sub-grid model in four different ways. 

First, we compare snapshots at different times in our reference 

case from Section 5.2.1 , fixing κ0 and v st, eff . Second, we compare 

simulations of other MW-mass galaxies (with the identical physics 

and numerical code, and same assumptions about fixed true physical 

ν̄ or parallel κ‖ in code and v̄ A = v A ), using the same coefficients. 

Third, we compare simulations of galaxies at different mass scales, 

in particular dwarf galaxies, where v A and field morphologies could 

be totally different (as the magnetic field strengths and gas densities 

and galaxy morphologies are different), again using the same code 

and same physical assumptions. If our sub-grid model is to be 

successfully applied for an entire cosmological simulation (across 

different mass and redshift scales as a galaxy forms), then it must 

be able to reproduce these situations reasonably well without ‘re- 

calibration’. Fig. 1 shows that it can indeed do so. Note we do 

not bother showing the comparison of different snapshot times for 

simulation m12i , as the differences in time for that run are al w ays 

smaller than the g alaxy-to-g alaxy differences. 

Thus far these simulations all adopted the same true ν̄ (i.e. κ‖ ) 

in-code. If our sub-grid model is robust, a fourth calibration is to 

consider models with systematically different κ‖ . For the reasons 

abo v e (Section 5.2.1 ), we expect some systematic offset between 

κ0 and κ‖ . But if this is – to lowest order – a global systematic 

change between simulations, then if we consider simulations with 

10 × larger κ‖ , our inferred κ0 should also increase by a factor of 

∼10. Fig. 1 shows that this indeed works fairly accurately. 

Altogether, this suggests that we can approximate P cr to within 

a factor of a few across a broad range of galaxy types, cosmo- 

logical times, and plausible phenomenological (constant) diffu- 

sion/streaming coefficients, with a universal constant κ0 and v st, eff 

calibrated from full CR dynamics simulations. 

5.2.3 Application to models with non-constant diffusivity 

In Fig. 3 , we explore whether our simple sub-grid model can be 

applied even to model situations where the diffusion coefficient 

(or equi v alently CR scattering rate) is a complicated and highly 

variable function of local plasma properties. We compare to three 

simulations from Hopkins et al. ( 2021b , c ) as noted abo v e, which 

are constrained to be among the few in the set of models studied 

therein which are consistent with observational constrains on γ -ray 

emission and secondary-to-primary ratios in the Galaxy. In each of 

the three models plotted, the local scattering rates can vary by up to 

∼10 orders of magnitude in the ISM, and the functional dependence 

on e.g. strength of turbulence or magnetic fields is different in the 

different models. But qualitatively, in each of these models, the 

mean ef fecti ve dif fusi vity rises as a function of galactocentric radius 

on average in the CGM, to values up to � 10 31 cm 
2 s −1 at radii 

� 100 kpc – much more consistent with the lower limits to the 

ef fecti ve dif fusi vity in the distant CGM and IGM required by HST- 

COS observations around Milky Way-mass galaxies as shown in 

Butsky et al. ( 2023 ). For each, we treat the ‘ef fecti ve’ κ0 and v st, eff 

as parameters to be fit to the profiles (we show the values that give a 

best gas-mass-weighted fit to the profiles outside > 1 kpc), obtaining 

( κ0 / cm 
2 s −1 , v st, eff / km s −1 ) = (10 28 ,150), (10 28 , 100), (2 × 10 30 , 

200) for runs ‘Alfv ́en-Max’, ‘Fast-Max’, and ‘SC: f QLT = 100’, 

respectively. With this caveat, we see that all of the (observationally 

allowed) models are sufficiently ‘diffusive’ on average that they 

form a quasi-spherical profile that can be reasonably approximated 

by our sub-grid model for a given galaxy and time. The major 

caveat is that because the coefficients depend systematically on 

certain properties, there is no guarantee this would extrapolate to 

different galaxy masses or redshifts (or regions of the ISM with 

extreme parameters), without some physical prior (e.g. knowing the 

dependence on some local property like magnetic field strength, and 

then folding in some assumption on how the magnetic field strength 

depends on galaxy mass and redshift). Indeed, as shown in Hopkins 

et al. ( 2021c ), some of these models produce systematically different 

‘ef fecti ve dif fusi vity’ in small dwarf galaxies, despite this number 

being broadly similar in the ISM of the Milky Way. 

5.2.4 Observational constraints on model choices 

Of course, one cannot simply adopt totally arbitrary values of κ0 or 

v st, eff within our model and remain consistent with observations. As 

discussed e xtensiv ely in Hopkins et al. ( 2021c ), only a small subset 

of the possible model space of CR transport parameters in the ISM of 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
2
/2

/2
9
3
6
/7

1
0
4
0
6
8
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, S
a
n
 D

ie
g
o
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
3



2946 P . F . Hopkins et al. 

MNRAS 522, 2936–2950 (2023) 

Figure 3. As Fig. 1 , but comparing simulations of galaxy m12i from Hopkins et al. ( 2021c ) which adopt locally dynamically variable CR transport 

(dif fusion/scattering/streaming) coef ficients which are complicated functions of local plasma properties in the ISM, moti v ated by more physical self-confinement 

or extrinsic turbulence theories for CR scattering. Alfven-Max , Fast-Max , and SC: f QLT = 100 represent models (normalized to fit Solar system CR observations) 

where scattering rates specifically for ∼ 1 GeV protons scale with ISM plasma properties dimensionally as expected from Alfv ́enic turbulence, magnetosonic 

turbulence, or self-confinement via gyro-resonant instabilities. Here, we re-calibrate the sub-grid model parameters κ0 and v st, eff for each simulation, as they 

feature very different physics and ‘mean’ ef fecti ve coef ficients; ho we ver, we focus on a subset of models that are at least concei v ably consistent with Milky Way 

CR observations as discussed in Hopkins et al. ( 2021c ). With this constraint, it appears that the allowed range of ‘ef fecti ve’ κ0 and v st, eff is relatively modest, 

approximately following equation ( 14 ), and the average profiles can still be reasonably represented by our toy model (for some appropriate ‘ef fecti ve’ κ0 , v st, eff ) 

despite the true local scattering rates varying by large factors. 

Milky Way-like, low-redshift galaxies are consistent with the combi- 

nation of observations constraining ∼ 1 –10 GV protons, including 

their observed spectra and energy densities, primary-to-secondary 

and radioactive isotope ratios (constraining their grammage and 

residence times) around the Solar neighborhood, as well as γ -ray 

emission constraints integrated over our Galaxy as well as other Local 

Group galaxies. The ‘viable’ models from detailed comparison to 

these constraints include those in Fig. 1 with κ‖ ∼ 3 × 10 29 cm 
2 s −1 , 

as well as the models in Fig. 3 , which together fall into a relatively 

narrow range of allowed ‘effective isotropically averaged dif fusi vity 

around the Solar circle’, κ�
iso , eff ∼ κ0 + v st, eff r 

gal 
� . 

It is not our intention here to derive or re-make these arguments, 

but we do wish to emphasize that within the context of our simple 

model where κ0 and v st, eff are global constants, observations actually 

do constrain their approximate sum relatively well, requiring that the 

isotropically avera g ed sum obeys: 

κ�
iso , eff ≡ κ0 + v st, eff r 

gal 
� ∼ 10 29 cm 

2 s −1 (14) 

with r 
gal 
� ∼ 8 kpc. Again we stress that this is remarkably consistent 

with the constraint from many other recent studies of CR propagation 

in the Milky Way using classic models lik e GALPROP to mak e de- 

tailed models of the entire CR spectrum of all species observed, such 

as e.g. Evoli et al. ( 2019 ) or Korsmeier & Cuoco ( 2022 ), provided one 

properly accounts for the integration over all CR energies, difference 

between isotropic and anisotropic coefficients, and includes all of 

the rele v ant streaming/advecti ve/convecti ve/dif fusi ve velocity terms 

sometimes separated in those models. 

So ensuring that equation ( 14 ) is at least approximately (order-of- 

magnitude) satisfied in the ISM helps to ‘anchor’ the simple sub-grid 

models proposed here to much more detailed simulation literature 

models (e.g. Chan et al. 2019 ; Buck et al. 2020 ; Hopkins et al. 2021b ; 

Werhahn et al. 2021 ) which attempt to simultaneously fit a wide 

range of more detailed observational constraints, including the CR 

energy density at the Solar circle observed by e.g. (Cummings et al. 

2016 ) and γ -ray emission (both very crudely inversely proportional 

to the CR transport speed, for all else equal) observed in the Galaxy 

and nearby systems (Lacki et al. 2011 ; T ang, W ang & T am 2014 ; 

Griffin, Dai & Thompson 2016 ; Fu, Xia & Shen 2017 ; Wojaczy ́nski & 

Nied ́zwiecki 2017 ; Lopez et al. 2018 ; Wang & Fields 2018 ), as well as 

even more detailed fits to full CR spectra in the Solar circle including 

their residence times, radioactive isotope and secondary-to primary 

ratios (e.g. Blasi & Amato 2012 ; Vladimirov et al. 2012 ; Gaggero 

et al. 2015 ; Cummings et al. 2016 ; Guo et al. 2016 ; J ́ohannesson 

et al. 2016 ; Korsmeier & Cuoco 2016 ; Evoli et al. 2017 ; Amato & 

Blasi 2018 ; De La Torre Luque et al. 2021 ; Hopkins et al. 2022b ). 

That said, there is still some de generac y (at the extremely simple 

level of the model here) between κ0 and v st, eff in the ISM allowed 

by different models which fit present observations comparably 

well: for example equation ( 14 ) can be satisfied by a model with 

κ0 ∼ 10 29 cm 
2 s −1 and small v st, eff , or a model with large v st, eff ∼

40 km s −1 and small κ0 (the equi v alent of models with an ef fecti ve 

constant parallel/anisotropic dif fusi vity at ∼ GeV energies of κ‖ ∼
3 × 10 29 cm 

2 s −1 and small v st, ‖ , or models with v st, ‖ ∼ 120 km s −1 

– i.e. highly ‘super-Alfv ́enic streaming – and small κ‖ ). Ho we ver, 

these observational constraints effectively reduce the ‘degrees of 

freedom’ of these (simplified) sub-grid models to a single parameter, 

the relative ratio of κ0 to v st, eff in equation ( 14 ). Other observational 

probes that have recently been proposed to constrain the ef fecti ve run 

of κiso , eff with galactocentric radius r gal in the CGM, e.g. those in But- 

sky et al. ( 2023 ), can be used to further constrain this (which, for the 

simple models here, fa v ours relatively large v st, eff ∼ 100 –200 km s −1 

so that κiso , eff rises significantly with galactocentric radius). 13 It may 

13 One can also modify the assumed functional form of the CR ‘ef fecti ve dif fu- 

sivity’ if desired: consider e.g. a model with 〈 κiso 〉 ∼ κ0 + a r m . We then sim- 

ply replace κ0 + v st, eff r ij → κ0 + a r m ij in equation ( 12 ). For m < 2, we then 

take ψ loss → ( � loss /a) 1 / (2 −m ) [1 + κ0 � 
m/ (2 −m ) 
loss a −2 / (2 −m ) ] −1 / 2 in equation 

( 6 ), and r max → ( a t max / 2) 1 / (2 −m ) [1 + { 1 + (16 κ0 t max / [ a t max ] 
2 / (2 −m ) ) } 1 / 2 ] 

in equation ( 13 ). For m ≥ 2, the solutions take a different form and we can 

approximate �τcr , i → (1 / 2) MIN [( � loss /κ0 ) 
1 / 2 � , ( � loss /κ0 ) ( κ0 /a) 2 /m ] 
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also be possible to constrain these with more detailed models of 

Solar neighbourhood CRs incorporating the full CR spectrum and 

diffuse galactic emission, though if κ or v st, eff is spatially variable, 

or time-dependent terms in the transport equations are important, or 

the ef fecti ve CR scattering halo properties v ary with rigidity, such 

separation could pro v e more challenging (see discussion in Hopkins 

et al. 2022b ). 

5.2.5 Limitations and failures 

Despite its surprising success, the simplified toy model here has 

man y limitations. Ob viously, the model here cannot and should not 

be used to predict detailed CR observables (e.g. γ -ray or synchrotron 

emission, let alone detailed primary-to-secondary or isotopic ratios) 

which depend sensitively on spectrally dependent transport physics 

and terms that we have explicitly neglected here (see Chan et al. 

2019 ; Hopkins et al. 2022b , c ). 

At very low transport speeds ( κ0 � 10 29 cm s −1 ), our sub-grid 

model approximations break down, as the CRs become more tightly 

coupled to the gas, so terms we have neglected such as adiabatic 

g ains/losses, advection with g as, anisotropic and globally non- 

spherical behaviours (e.g. being trapped with the gas in a thin disc 

instead of diffusing to a thicker distribution), and out-of-equilibrium 

behaviours (whose convergence time is longer at lower κ) become 

progressively more important. Fortunately, this appears to be clearly 

ruled-out by present CR observations (Section 5.2.4 ), for the ∼ GeV 

CRs which dominate the total CR energy/pressure – i.e. our model 

assumptions work because observations appear to require reasonably 

high CR dif fusi vities. Ho we ver, it could still be the case that very low- 

energy CRs ( � 10 MeV), which are not important for the total CR 

pressure or energy density but dominate the CR ionization rate, could 

be much more tightly coupled to the gas (see e.g. Indriolo, Fields & 

McCall 2009 ; P ado vani, Galli & Glassgold 2009 ; Indriolo & McCall 

2012 ; Hopkins et al. 2022b ). This means that care is needed assuming 

that one can extrapolate from this sub-grid model (or any ‘single-bin’ 

CR model) to much lower energy CR dynamics. And of course if 

real CR transport parameters depend on local plasma properties there 

could be regimes of parameter space where the dif fusi vity is much 

lower. 

Similarly, our sub-grid model performs relatively poorly when 

CRs approach the proton calorimetric limit – i.e. when most of the 

CR energy is lost before CRs escape dense gas in their galactic 

vicinity. F or v ery lo w dif fusi vities as abo v e, this would occur in 

all galaxies (including Milky Way like through even small dwarf 

galaxies), but as noted this is not observed. Ho we ver, e ven for the 

observationally fa v oured dif fusi vities, this can and is observed to 

occur in extremely dense starburst galaxies (Lacki et al. 2011 ; Tang 

et al. 2014 ; Griffin et al. 2016 ; Fu et al. 2017 ; Wojaczy ́nski & 

Nied ́zwiecki 2017 ; Lopez et al. 2018 ; Wang & Fields 2018 ). In 

this limit our simple treatment of CR attenuation via local and self 

‘shielding’ is not particularly accurate (similar to the weakness in 

the LEBRON method for RHD, discussed in Hopkins et al. 2020a ). 

Ho we ver, essentially by definition in such a case, CRs pressures are 

exponentially suppressed so we are safely in the limit where CR 

pressure is a tiny portion of total pressure – hence getting the CR 

pressure exactly ‘correct’ in such a case is not particularly important 

(with � ≡ ( �x 2 i + ( ρgas i / |∇ρgas , i | ) 2 ) 1 / 2 ) in equation ( 6 ), and r max → 

2 ( κ0 t max ) 
1 / 2 for t max ≤ κ

2 /m −1 
0 a −2 /m or r max → ∞ otherwise, in equation 

( 13 ). With this formulation, we can better fit the constraints in Butsky et al. 

( 2023 ) by adopting m = 2, κ0 ∼ 5 × 10 28 cm 2 s −1 , and a ∼ 2 Gyr −1 . 

for predicting CR effects on galaxies. But it is important to attempt 

to capture the ‘transition’ to this regime – without some accounting 

for CR losses, one could severely overestimate the importance of CR 

pressure in dense starburst or high-redshift systems. Our simulation 

calibration sample largely does not reach these extreme conditions, 

so future tests in this regime would be particularly useful. 

Additionally, as discussed in Section 5.2.1 , our sub-grid model 

also becomes notably less accurate and robust ‘inside’ the galaxy, 

specifically at locations ‘between’ a number of comparable-strength 

sources (e.g. modelling variations in CR properties within the galaxy 

ISM at sub-kpc scales). This is not surprising, as assumptions like 

spherical symmetry are much more accurate on larger scales, and our 

model is really intended to accurately capture the behaviour of CR 

pressure on scales ‘outside’ a collection of dominant sources – e.g. 

in the CGM around a galaxy. This is an important caveat for a wide 

range of possible applications. 

5.3 Application in a full cosmological simulation 

We now test an actual ‘on-the-fly’ application of the sub-grid 

model. Specifically, we re-run the simulation m11i with κ‖ = 

3 × 10 29 cm 
2 s −1 analysed in Fig. 1 , from its cosmological initial 

conditions at z = 100, turning off the full on-the-fly dynamical 

explicit evolution of the CR energy density and flux used in the 

run in Fig. 1 , and instead using our proposed sub-grid model from 

Section 3 on the fly. We use the sub-grid model at every time-step and 

cell to compute e cr ( x , t), then use this CR energy density throughout 

the code to compute CR pressure forces, heating, and ionization rates 

identical to what is done in the ‘full CR dynamics’ simulation (so the 

CR heating, pressure effects, etc., are identical for a given e cr ( x , t) in 

the two runs, but we have replaced the actual CR transport algorithm). 

For reference, we also compare to the ‘pure hydrodynamics’ version 

of the same simulation, which was studied and compared in detail to 

the full CR dynamics run in Hopkins et al. ( 2020b ). That run adopts 

identical physics and numerics, but simply disables the explicit CR 

dynamics and MHD entirely. In Fig. 4 , we compare some basic 

properties (a sub-set of those studied in detail in Hopkins et al. 2020b ) 

in the simulation using the sub-grid model and full CR dynamics. 

Most importantly, Hopkins et al. ( 2020b ) show that in the full CR 

run (compared to ‘no CRs’ runs with or without magnetic fields), 

the additional pressure provided by CRs in the CGM suppresses 

accretion on to the galaxy, in turn suppressing the star formation rate 

and stellar mass of the galaxy by redshift z = 0 (we chose galaxy 

m11i in part because it exhibits some of the most dramatic effects 

of CRs of any galaxy simulated in Hopkins et al. 2020b ). This is the 

most important aspect of CRs for our sub-grid model to capture. 

The sub-grid model appears to capture the leading-order effects of 

CRs on galaxy formation remarkably well, at least in this particular 

case. The SFR and stellar mass growth history are very similar to the 

‘full CR dynamics’ run (modulo stochastic effects such as the detailed 

amplitude and timing of individual ‘bursty’ star formation events). 

The stellar mass and late-time SFR in the sub-grid run is slightly 

lower than the ‘full CRs’ run, but this offset is modest and results in 

a very small ( ∼ 0 . 1 dex) stellar mass difference at z = 0, within the 

range of run-to-run stochastic variations (Su et al. 2018 ; Genel et al. 

2019 ; Keller et al. 2019 ). Following the star formation history, the 

metallicity and rotation curve and baryonic mass distribution (stellar 

ef fecti ve radius and baryonic mass profile) are also reasonably well- 

reproduced. The sub-grid CR run does predict a lower metallicity 

compared to the explicit CR run, consistent with the slightly lower 

late-time SFR in the sub-grid run, suggesting that the sub-grid CR 

pressure in the CGM (probably somewhat o v erestimated) may have 
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Figure 4. Example application of the sub-grid model in a cosmological 

simulation of m11i (an LMC-mass system from Fig. 1 ) from z ∼ 100 

to z = 0. We compare three physics variations: (1) with no CRs or 

MHD; (2) with the full explicit single-bin CR dynamics, gas coupling 

and kinetic MHD from Hopkins et al. ( 2020b ), with parallel (anisotropic) 

κ‖ = 3 × 10 29 cm 2 s −1 and streaming at the Alfv ́en speed; (3) a run with no 

explicit CR dynamics or MHD, but adding our proposed sub-grid model, 

with constant κ0 = 0 . 5 × 10 29 cm 2 s −1 , v st, eff = 20 km s −1 , calibrated as 

Section 5.2.1 . We compare: Top: Archeological SFR versus cosmic time 

(averaged in ∼ 100 -Myr intervals). Second: Stellar mass versus scale factor a . 

Numbers give the value log ( M ∗/M �) at z = 0. Third: Mean stellar metallicity 

versus a . Numbers give 〈 [ Z ∗/ H ] 〉 at z = 0. Fourth: Spherically averaged radial 

density profile of all mass (including dark matter; thin ) and baryonic ( thick ) 

at z = 0, versus galactocentric radius r . Numbers give the stellar ef fecti ve 

radius R eff, ∗ in kpc at z = 0. Bottom: Circular velocity ( V 2 c ≡ G M tot ( < r ) /r ) 

profile. The sub-grid model appears to reasonably capture the zeroth-order 

(but not all) effects of CRs on galaxy formation. 

prevented some late-time recycling of enriched material which would 

otherwise have been re-accreted and formed stars later (boosting their 

metallicity) in the full/explicit CR dynamics run. Unfortunately, the 

difference is much smaller than typical systematic uncertainties in 

both metallicity measurements (Tremonti et al. 2004 ) and metal yield 

models or other galaxy formation ‘input’ physics (Ma et al. 2016 ). 

Another related discrepancy between ‘full CR dynamics’ and sub- 

grid models in Fig. 4 appears to be the weaker ‘core’ in the central 

dark matter density profile at < 1 kpc in the sub-grid model. This 

again is consistent with the stellar mass and SF history differences, 

as at precisely these masses the core strength is a strong function of 

stellar mass – more late star formation generates a stronger core (see 

Chan et al. 2015 ; O ̃ norbe et al. 2015 ; Lazar et al. 2020 ). Interestingly, 

a stronger core is present earlier in the sub-grid-model run (when its 

SFR is closer to the explicit CR dynamics run), which then slightly 

‘fills in’ as the late-time star formation ‘bursts’ are too weak to re- 

excavate it (similar to the process described in O ̃ norbe et al. 2015 ). 

All of these suggest that the sub-grid model performs reasonably 

well, though it may slightly o v erestimate the effects of CR feedback 

at late cosmic times (perhaps in part because the CRs are not infinitely 

dif fusi ve and therefore not perfectly smoothly distributed in the 

CGM, and their inhomogeneity modifies the thermal instability of 

that medium in turn; see Butsky et al. 2020 ). And in particular this 

reinforces the idea that the sub-grid model should not be taken too 

seriously at significantly sub-kpc scales. 

But in terms of computational cost: the ‘full CRs’ model is nearly 

an order of magnitude more computationally e xpensiv e than the ‘no 

CRs’ run, primarily owing to time-step limitations as discussed in 

Section 1 . Meanwhile, the ‘sub-grid’ model is actually faster than the 

‘no CRs’ run by a factor of ∼2–3, owing to the reduced stellar mass 

and SFR (less dense gas and fewer SNe, which require small time- 

steps). Thus while imperfect, the sub-grid model is able to capture 

some of the dominant CR effects at radically reduced computational 

expense, as desired. 

6  C O N C L U S I O N S  

We have presented an intentionally extremely simplified sub-grid 

model for CR ‘feedback’ in galaxy formation simulations or semi- 

analytical models, designed to impose negligible computational 

cost. We derive the model beginning from exact expressions for 

CR transport and dynamics, then making successive simplifying 

assumptions until we arrive at a simple, equilibrium steady-state 

isotropic analytical expression Section 2 . We then present a detailed 

numerical implementation which can be solved trivially alongside 

gravity in most numerical codes capable of galaxy-scale simulations 

or even purely analytically in semi-analytical models in spherical 

symmetry (Section 3 ). Given the many simplifying assumptions 

needed to render the model tractable and low-cost, we stress that 

caution is needed, and we discuss the rele v ant approximations and 

assumptions systematically in order to note where they will break 

down and where the dominant uncertainties in using this model will 

arise (Section 4 ). We then validate the model by comparing to detailed 

high-resolution simulations which explicitly follow anisotropic dif- 

fusion and streaming of CRs from individual SNe and shocked stellar 

winds in CR–MHD galaxy formation simulations (Section 5 ) to show 

that the most important effects of CRs can be reasonably captured to 

at least order-of-magnitude accuracy with this toy model. 

We stress that our goal here is to enable at least some exploration of 

the effect of CRs in simulations/semi-analytical models which either 

do not model CR transport explicitly owing to numerical limitations 

or cannot do so realistically owing to limited resolution, lack of mag- 
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netic fields, lack of explicit treatment of neutral ISM/CGM phases, or 

other challenges. We attempt to derive the simplest-possible model 

that captures the leading-order effects of CRs on galaxy dynamics –

the models here are clearly not suitable for predicting CR observables 

( γ -ray or synchrotron emission, secondary-to-primary ratios, etc.), 

nor for capturing more subtle effects (CR energy dependence and 

small-scale ISM variations in ionization rates, effects of CRs within 

acceleration regions and individual SNe bubbles, etc.). And the sub- 

grid model is designed to be accurate on relatively large coarse- 

graining scales in both space ( � kpc) and time ( � Myr), appropriate 

for g alactic astroph ysics and cosmology. In future work, it will be 

interesting to explore the effects of the CR model here in various 

contexts with broad parameter surv e ys, coupled to a smaller number 

of explicit CR-MHD simulations to follow the dynamics in more 

detail and better-calibrate the models. And future work understanding 

the CR transport coefficients themselves is still needed to inform 

all CR models. Here, we parametrize our model with constant 

transport coefficients, which can reproduce many CR observations 

if the ef fecti ve isotropic dif fusi vity is chosen within a narro w range 

around κ�
iso , eff ∼ 10 29 cm 

2 s −1 , but we stress that the approximation 

of constant in space-and-time CR transport coefficients is almost 

certainly incorrect in detail. But the true scaling of CR transport 

properties with local plasma properties remains deeply uncertain, 

and is a subject beyond our study here. 
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