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a b s t r a c t 
Existing approaches for friction (critical) stress determination are highly unsatisfactory because of empiri- 
cism associated with determination of dislocation “core-width” and nature of core-advance. This study, 
focusing on the a / 2 〈 011 〉 extended-dislocation (partials bounding a stacking-fault) in Face-Centered-Cubic 
(FCC) materials, rigorously derives the core-width with continuum strain-energy and atomistic misfit- 
energy considerations. The strain-energy is calculated using the fully-anisotropic Eshelby-Stroh formal- 
ism accommodating the inherent mixed characters of the a / 6 〈 112 〉 Shockley-partials constituting pure- 
edge/pure-screw a / 2 〈 011 〉 dislocations. The misfit-energy is determined from critical fault-energies of the 
slip-plane input to a novel misfit-model capturing the lattice structure of the slip-plane and involving 
the discrete Wigner-Seitz cell area at each lattice site, advancing over an 80-year old misfit-energy model 
that has missed the role of both concepts. For the first time in literature, the nature of motion of the 
a / 2 〈 011 〉 extended-dislocation’s core is rigorously derived from an optimized trajectory of its total-energy. 
It is shown that each a / 6 〈 112 〉 partial’s core moves intermittently (“zig-zag” motion), and not together, al- 
lowing the stacking-fault width to fluctuate during advance of the extended-dislocation. The critical stress 
is shown to involve a trajectory-dependent combination of Schmid factors for each Shockley-partial, also 
revealed for the first time. The proposed model is used to predict critical stress for multiple FCC mate- 
rials, including a high-entropy alloy (HEA), displaying excellent agreement with experiments. The work 
opens future avenues for rapid reliable assessment of a multitude of compositions across varying lattice 
structures (e.g. hexagonal lattices), advancing over prior exponential models for critical stress which can 
produce errors as high as two orders of magnitude. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
1. Introduction 

One of the most important mechanical properties in structural 
materials is the yield strength, notable as the first point of slope 
change in the stress-strain curve of the material. At this point, 
the sustained deformation of the material transitions from a re- 
coverable/elastic nature to an irrecoverable/inelastic nature. This 
inelasticity is associated with an operative underlying mechanism 
causing microstructural changes. The predominant mechanism in 
crystalline structural materials is the motion/“slip” of intrinsic de- 
fects in the crystal structure known as dislocations. Thus, the yield 
strength of the material is dictated by the Critical Resolved Shear 
Stress (CRSS) on the slip system of the dislocation required for the 
onset of dislocation slip. A fully predictive model for this CRSS, 
consistent with experimental measurements, is yet to emerge pre- 
cluding reliable prediction of the yield strength. The advent of such 
a predictive model is vital for informed exploration of the compo- 
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sitional design space for next-generation structural and functional 
alloys [1–8] . This study proposes such a model for the CRSS involv- 
ing no empirical parameters. 
1.1. Core structure fundamentals: disregistry and dislocation density 
distributions 

The CRSS is determined from the intrinsic lattice resistance or 
lattice friction to be overcome for dislocation motion. The lattice 
resistance is associated with atomic-scale restoring forces operat- 
ing across the slip plane of the dislocation. And in order to quantify 
this resistance, a clear understanding of the dislocation core is re- 
quired. The Peierls model of the dislocation is adopted for this pur- 
pose. This model of the dislocation core is presented here briefly, 
and the reader is referred to [9–11] for a detailed exposition. A dis- 
location introduces a “disregistry” in the crystal structure where 
one half-space of the crystal structure is relatively displaced as 
compared to the other half-space. Both half-spaces are separated 
by the slip plane on which the dislocation resides, and the rela- 
tive displacement introduced is given by the Burgers vector of the 
dislocation. This is illustrated with the help of the schematic in 
Fig. 1 (a, b). In the global coordinate system x 1 − x 2 − x 3 , consider 
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Fig. 1. Dislocation core-structure: (a) the x 1 − x 2 − x 3 coordinate system attached to a dislocation with Burgers vector ! b , the dislocation line aligned with x 3 axis and the slip 
plane as the x 1 − x 2 plane; (b) a three-dimensional visualization of the disregistry distribution across the slip plane, indicating the ( + ) and (-) half-spaces and displacement 
components u (±) 

b ( x 1 ) alluded to in the main text and (c) plots of the disregistry distribution f 0 ( x 1 ) = u (+) 
b ( x 1 ) − u (−) 

b ( x 1 ) and its derivative ρ0 ( x 1 ) , representing the dislocation 
core-width ξ (defined in Eq. (1) ). 
the dislocation line to be perfectly straight and aligned with the x 3 
axis and the normal to the slip plane be given by unit vector ˆ e 2 
along x 2 axis. In the x 1 − x 2 plane, the dislocation is positioned at 
( 0 , 0 ) . Now, consider the two half-spaces of the material separated 
by the slip plane i.e. the x 1 − x 3 plane. Denote the top half-space, 
where x 2 > 0 , to be the ( + ) half space and the bottom half-space, 
where x 2 < 0 , to be the (-) half-space. Consider the displacement 
field introduced by the dislocation to be given by u i ( x 1 , x 2 ) , where 
i = 1 , 2 , 3 . This displacement field does not vary along the dislo- 
cation line and is hence independent of x 3 . Consider the displace- 
ment of the ( + ) half-space taken at the slip plane. This is given by 
u i (+) ( x 1 ) = lim 

x 2 → 0 + u i ( x 1 , x 2 ) , and for the bottom half-space we can 
respectively define the displacement u i (−) ( x 1 ) = lim 

x 2 → 0 − u i ( x 1 , x 2 ) . 
Resolve the displacement along the direction of the Burgers vec- 
tors, yielding the scalar components u (±) 

b ( x 1 ) = u (±) 
i ( x 1 ) . b i / b , where 

! b = b i ̂  e i represents the Burgers vector of the dislocation with mag- 
nitude b and the Einstein summation convention is utilized in the 
equation. The disregistry distribution f ( x 1 ) can now be defined 
as the relative displacement along the Burgers vector at the slip- 
plane given by f ( x 1 ) = u (+) 

b ( x 1 ) − u (−) 
b ( x 1 ) . In the Peierls model of 

the dislocation, this disregistry-distribution is solved for from an 
integro-differential equation. This equation considers the balance 
of elastic forces resulting from the strain-field of the dislocation 
and the restoring atomistic force exerted by the lattice sustaining 
this displacement-field at the slip plane. Consequently, the disreg- 
istry distribution is given by 
f 0 ( x 1 ) = b 

2 + b 
π

tan −1 ( x 1 
ξ0 

)
(1) 

where b is the magnitude of the Burgers vector of the dislocation 
and ξ0 is defined as the “core-width” of the dislocation. The core- 
width is better represented by the dislocation density distribution 
ρ0 ( x 1 ) which is the derivative of the disregistry distribution. It is 
given by the equation 
ρ0 ( x 1 ) = b 

π

(
ξ0 

x 1 2 + ξ 2 
0 
)

(2) 
plotted in Fig. 1(c) . It is this core-width that strongly dictates the 
CRSS. Multiple approaches to predict this core-width have been 
proposed in literature [ 9 , 11–42 ]. However, they are challenged by 
multiple limitations that have precluded a reliable prediction for 
the CRSS, as discussed in the following section. This study ad- 

dresses all challenges to develop a robust framework for CRSS- 
prediction agreeing with available experimental data. 
1.2. Limitations of existing approaches 

In the classical formalism of the Peierls dislocation [ 9–11 , 14 ], 
the core-width was determined within assumptions of elastic 
isotropy, and the understanding that the atomistic restoring forces 
are dependent on the isotropic shear modulus µ. Extensions to 
account for elastic anisotropy have also been proposed in ana- 
lytical approaches by way of introducing an anisotropic coeffi- 
cient K or an anisotropic tensor H to calculate the expression for 
core-width [ 12 , 13 , 15–18 , 24 , 31 , 32 , 39 , 41 , 43 , 44 ]. Additional improve- 
ments were proposed to replace atomistic restoring-force law to 
include the ideal shear-strength on the slip system τmax instead 
of the modulus [ 16 , 18 , 31 , 45 , 46 ]. Further, to determine the CRSS 
from the core-width, analytical formulae were proposed in two 
limits, where either the core-width is very small (“narrow” dislo- 
cation core) or very high (“wide” dislocation core) [46] . While all 
of these advancements were critical to improve our understand- 
ing of the dislocation-core and the CRSS, there are existing limita- 
tions which the current study proposes to resolve. The fundamen- 
tal background is listed in (a) and (b) below, and the new approach 
emphasized in (c)-(f): 

a Elastic anisotropy: Crystalline materials are in general 
anisotropic, and their elastic constitution must be adequately 
accounted for without isotropic approximations. While the 
anisotropic coefficient K is a convenient introduction into the 
formalism, its determination involves some form of empiricism 
or underlying presumption regarding the elastic behavior 
surrounding the dislocation core, without direct consideration 
of the strain-energy itself. An unambiguous determination 
of the anisotropic coefficient directly from the anisotropic 
strain-energy of the dislocation core is required for accurate 
calculation of the core-width, as proposed in this study. 

b Atomistic fault energies: Planar fault energies for the slip sys- 
tem must be determined and incorporated to have the correct 
atomistic restoring-forces in the dislocation cores. The critical 
aspect here is that the restoring force operative across the slip 
plane of the dislocation core is in response to a planar disreg- 
istry between two half-spaces and not the same as a contin- 
uum shear across the slip plane. Thus, the use of shear-modulus 
µ and the ideal shear strength τmax is not appropriate for the 
restoring-force law. For the case of FCC materials as considered 
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in this study, the fault energy barriers correspond to the sta- 
ble intrinsic stacking fault energy γisf and the unstable stacking 
fault energy barrier γus on the Generalized Stacking Fault En- 
ergy (GSFE) landscape. These energy barriers can now be well- 
predicted using atomistic modeling tools such as Density Func- 
tional Theory (DFT) or Molecular Statics (MS), and must be in- 
corporated. 

c Influence of parent lattice structure: A central assumption 
in any existing model for critical stress lies in the calculation 
of the energy of misfit on the slip-plane. All existing mod- 
els to date, to the best of the authors’ knowledge, employ a 
one-dimensional series-summation for the misfit-energy which 
uses a discrete parameter a ′ corresponding to a certain inter- 
planar spacing of the lattice (a detailed exposition is deferred to 
Section 2.2.2 ). This choice dates back to the original model by 
Peierls [9] from over 80 years back. Such a model does not cap- 
ture the lattice-dependent distribution of the discrete atomic- 
positions on the slip-plane of the lattice. This study proposes a 
fundamental change in this misfit-energy model incorporating 
both the slip-plane lattice-structure and advancing the choice 
of a ′ to a more fundamental quantity known as the Wigner- 
Seitz cell area of the slip-plane lattice. 

d Mixed character of Shockley partials : Although prior models 
have been developed to treat dislocations with mixed charac- 
ter [ 16 , 17 , 38 , 46 , 47 ], a robust framework suited to a / 2 〈 011 〉 ex- 
tended dislocations is required. This is because even for a pure- 
edge/pure-screw character of the a / 2 〈 011 〉 extended dislocation, 
the nature of the individual a / 6 〈 112 〉 Shockley partials constitut- 
ing the extended dislocation is always mixed. To truly predict 
the CRSS in this case, the predictive model must accommodate 
mixed dislocation character, as proposed in this study. 

e Nature of motion of extended dislocation : In order to deter- 
mine the CRSS of extended dislocations, it is important to know 
how each of the Shockley partials of the dislocation moves 
through the lattice. In this description, it is common to pre- 
sume a nature of dislocation motion where both the Shock- 
ley partials are moving together simultaneously such that the 
fault-width between them does not change. This fundamental 
presumption is challenged in this study and it is shown that 
the Shockley partials can move intermittently or in a “zig-zag”
motion where, first the leading Shockley partial moves forward 
with the trailing-partial unmoved and then the trailing-partial 
moves with the leading partial fixed. Such a motion allows for 
the fault-width between the partials to fluctuate as the disloca- 
tion moves and is shown to be energetically preferred. 

f Resolved Shear Stress (RSS) on a / 6 〈 112 〉 Shockley partials and 
a / 2 〈 011 〉 extended-dislocation: The critical stress for disloca- 
tion motion is generally determined as the critical magnitude 
of the RSS on the slip-system, at which dislocation motion is 
initiated. And for a slip-system where the slip-plane normal is 
ˆ n and the direction of slip is ˆ m , the resolved shear stress is 
given by τRSS = ( σa ̂  n ) . ̂  m , where σa is the applied stress tensor. 
The slip-direction is parallel to the Burgers vector of the dislo- 
cations on the slip system and thus the same equation can be 
rewritten as τRSS = ( σa ̂  n ) . ̂ b , where ˆ b represents the unit vector 
along the direction of the Burgers vector. While the above for- 
mulation works well for single dislocations without partials or 
a stacking fault, it immediately poses a problem for the case 
of an a / 2 〈 011 〉 extended dislocation in FCC materials. This is 
because there are three Burgers vectors involved in the sys- 
tem, that of the two a / 6 〈 112 〉 Shockley partials and the a / 2 〈 011 〉 
dislocation that these partials constitute. For a given applied 
stress-tensor, there are three operative RSS magnitudes corre- 
sponding to each of the three Burgers vectors and it is funda- 
mental to know how they couple with each other in order to 

Fig. 2. Core-structure of an a / 2 〈 011 〉 extended dislocation in FCC materials: (a) An 
extended dislocation constituting a leading partial ! b LP , a trailing partial ! b TP and, a 
stacking fault of width d bounded by the two partials; the x 1 − x 2 − x 3 coordinate 
system attached to the extended dislocation is given; the leading partial is at posi- 
tion x 1 = s 1 and the trailing partial is at x 1 = −s 2 , yielding the fault-width between 
them as d = s 1 + s 2 (b) a schematic three-dimensional view of the extended dislo- 
cation is shown, indicating how the fault forms between the two partials; plots of 
the (c) disregistry distribution, f ( x 1 ) , and (d) the dislocation-density distribution, 
ρ( x 1 ) , of the extended dislocation, indicating the core-widths ξTP,LP of the trailing 
and leading partials respectively. 

determine the CRSS of the FCC slip-system. This has not been 
addressed till date, to the best of the authors’ knowledge, and 
will be rigorously derived in this study. 

1.3. Current approach 
The current study improves on all aforementioned fronts to 

develop a predictive model for the CRSS of FCC materials, with- 
out involving any empiricism. An energy-based approach is for- 
warded that predicts the core-width through a balance of contin- 
uum strain-energy and atomistic misfit-energy, subsequently uti- 
lized to predict the CRSS. The continuum strain-energy is deter- 
mined directly from the strain-field of the dislocation, fully ac- 
counting for material anisotropy through the Eshelby-Stroh for- 
malism. The misfit-energy is determined based on the GSFE land- 
scape, incorporating both γisf and γus fault-energy barriers, and the 
structure of the slip-plane lattice into the formalism. The predicted 
core-width is then utilized to determine the CRSS of a / 2 〈 011 〉 edge 
and screw dislocations. The individual Shockley partials a / 6 〈 112 〉 
are of mixed characters in both cases. The framework predicts the 
stacking fault width in addition to the core-widths of the Shock- 
ley partials, subsequently used to predict the CRSS, validated by 
comparison with experimental data. The methodology and results 
from the predictive framework are elaborated in the Section 2 be- 
low, presented concurrently for better clarity. The implications of 
the results and the proposed framework are discussed in Section 3 . 
Section 4 concludes the study with a summary of all proposed 
contributions of this study. 
2. Methodology and results 
2.1. Core-structure of the a / 2 〈 011 〉 extended dislocation 

The CRSS is predicted for the ! b F = a / 2 [ ̄1 ̄1 0 ] dislocation on a 
( 1 ̄1 1 ) plane in the FCC structure . This dislocation dissociates into 
two Shockley partials, a leading partial ! b LP = a / 6 [ ̄1 ̄2 ̄1 ] and a trail- 
ing partial ! b T P = a / 6 [ ̄2 ̄1 1 ] , schematically represented in Fig. 2(a) . 
Henceforth, any reference to the a / 2 〈 011 〉 extended dislocation im- 
plies reference to the dislocation ! b F considered in this study, with 
the connotation that the proposed analytical framework applies to 
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all extended dislocations of the a / 2 〈 011 〉 family in FCC materials. 
The proposed framework is developed and illustrated for both the 
edge and screw character of the extended dislocation. For each 
character, the global coordinate systems are respectively defined as 
follows: 

a For screw character: ˆ e 1 || [ 1 ̄1 ̄2 ] , ˆ e 2 || [ 1 ̄1 1 ] and ˆ e 3 || [ ̄1 ̄1 0 ] 
b For edge character: ˆ e 1 || [ ̄1 ̄1 0 ] , ˆ e 2 || [ 1 ̄1 1 ] and ˆ e 3 || [ ̄1 12 ] 

where ˆ e i is the unit vector along the global x i axes for i = 1 , 2 , 3 . 
The dislocation line is chosen to be aligned with the x 3 axis. Note 
that even though the a / 2 〈 011 〉 extended dislocation has a pure 
edge/screw character, the individual Shockley partials have a gen- 
eral mixed character in both cases, and the proposed framework 
offers capabilities to model this behavior. The magnitude of the 
full dislocation ! b F will be represented by b F , and that of the par- 
tials will be given by b P . The center of the leading partial’s core is 
located at x 1 = s 1 , while that of the trailing partial is at x 1 = −s 2 , 
so that the fault-width between them is given by d = s 1 + s 2 (re- 
fer Fig. 2 (a, b)). The core-structure of the extended dislocation is 
generally given by the following disregistry distribution 
f ( x 1 ) = b P + b P 

π

(
tan −1 (x 1 + s 2 

ξT P 
)

+ tan −1 (x 1 − s 1 
ξLP 

))
(3) 

The dislocation density distribution ρ( x 1 ) , calculated as the 
derivative of f ( x 1 ) , is given by: 
ρ( x 1 ) = b P 

π

(
ξT P 

( x 1 + s 2 ) 2 + ξ 2 
T P + ξLP 

( x 1 − s 1 ) 2 + ξ 2 
LP 

)
(4) 

In this study, the extended form is decomposed into the core- 
distributions of the individual partials. This is done since the Burg- 
ers vector directions of both partials are not aligned (refer Fig. 2 (a, 
b)) and are different vectors themselves. A separate treatment al- 
lows the approach to capture the core-energies better, particu- 
larly the strain-energies of both the cores, leading to a more ac- 
curate analysis. In that regard, the core disregistry distribution of 
the leading and trailing partials, and their corresponding disloca- 
tion density distributions are respectively given by the equations: 
f TP ( x 1 ) = b P 

2 + b P 
π

tan −1 (x 1 + s 2 
ξTP 

)

ρTP ( x 1 ) = b P 
π

(
ξTP 

( x 1 + s 2 ) 2 + ξ 2 
TP 

)
(5) 

f LP ( x 1 ) = b P 
2 + b P 

π
tan −1 (x 1 − s 1 

ξLP 
)

ρLP ( x 1 ) = b P 
π

(
ξLP 

( x 1 − s 1 ) 2 + ξ 2 
LP 

)
(6) 

Note that the above equations are an additive decomposition 
of the extended form Eqs. (3) and ( (4) ), since f T P ( x 1 ) + f LP ( x 1 ) = 
f ( x 1 ) and ρT P ( x 1 ) + ρLP ( x 1 ) = ρ( x 1 ) . Thus, the core structure of 
the a / 2 〈 011 〉 extended dislocation is completely characterized by 
the core-width ξT P of the trailing partial, core-width ξLP of the 
leading partial, and the positions s 1 and s 2 . These parameters are 
determined ab initio from an energy-minimization approach de- 
scribed below. 
2.2. Energy of the extended dislocation: continuum-strain energy and 
atomistic misfit energy 

The a / 2 〈 011 〉 extended dislocation has two components to its 
total energy, E T OT : (i) strain energy due to continuum strain-fields 
introduced by the dislocation, E ST RAIN , and (ii) atomistic misfit en- 
ergy at the core of the dislocation, E MI SF I T , due to the disreg- 
istries on its slip plane and the associated fault energy cost of 

the same. Both energy components depend on the parameters 
( ξT P , ξLP , s 1 , s 2 ) . Thus we have the relation: 

E T OT ( ξT P , ξLP , s 1 , s 2 ) = E ST RAIN ( ξT P , ξLP , s 1 , s 2 ) 
+ E MI SF I T ( ξT P , ξLP , s 1 , s 2 ) (7) 

Calculation of the individual energy components is described 
below. 
2.2.1. Elastic strain-energy: anisotropic formalism 

The continuum strain-energy E ST RAIN ( ξT P , ξLP , s 1 , s 2 ) of the ex- 
tended dislocation is determined by calculation of 3 anisotropic 
interaction coefficients K 11 , K 22 , and K 12 , each of which respec- 
tively captures the strain-energy of self-interaction of the leading 
partial, strain-energy of self-interaction of the trailing-partial and 
the strain-energy of interaction between the two partials. These 
coefficients are calculated directly from the strain-energies deter- 
mined from the anisotropic Eshelby-Stroh (E-S) formalism [ 4 8 , 4 9 ]. 
The methodology to determine K 12 is elucidated first. Consider the 
leading Shockley partial, with Burgers vector ! b LP and the trail- 
ing partial ! b T P , separated by a distance R as shown in Fig. 3(a) . 
The continuum strain-fields surrounding each partial are deter- 
mined from the E-S formalism and superposed to determine the 
net strain-field surrounding both partials. Subsequently, the strain- 
energy density is numerically integrated to determine the total 
strain-energy of interaction, E ⊥−⊥ (R ) at the chosen separation dis- 
tance R . In the integration of the strain-energy densities, a core- 
region within radius r 0 = 5 b P around the center of each partial 
is excluded since the continuum formalism does not hold in this 
core-region. By calculating the strain-energy E ⊥−⊥ (R ) at varying R , 
the interaction coefficient K 12 is determined ( Fig. 3 ( a )). This choice 
of r 0 does not change the K 12 calculation since irrespective of this 
choice, the gradient of change of E ⊥−⊥ (R ) is conserved. This proce- 
dure is elaborated further below. 

The E-S formalism is described briefly here and the reader is 
referred to [ 4 8 , 4 9 ] for a more detailed exposition. Following this 
formalism, the displacement-field for a dislocation with arbitrary 
Burgers vector, ! b , can be analytically expressed in terms of certain 
anisotropic E-S constants, given by the equation, 
u i ( x 1 , x 2 ) = 1 

2 π√ 
−1 

6 ∑ 
α=1 ηαA iαL sαb s ln ( x 1 + p αx 2 ) (8) 

where ηα = 1 for α ∈ { 1 , 2 , 3 } and ηα = −1 for α ∈ { 4 , 5 , 6 } , and 
{ p α, A iα, L sα} are the E-S constants. The E-S constants are solved 
for from the equations: 
∥∥( C i jkm ( δi 1 + p αδi 2 )( δm 1 + p αδm 2 ) ∥∥ = 0 (9) 
C i jkm ( δi 1 + p αδi 2 )( δm 1 + p αδm 2 ) A kα = 0 (10) 
L jα = −δi 2 C i jkm ( δm 1 + p αδm 2 ) A kα (11) 
where C i jkl is the fully-anisotropic elastic-constant tensor in the 
x 1 − x 2 − x 3 coordinate system and δi j is the Kronecker delta func- 
tion. The cubic elastic constants of the FCC materials considered in 
this study are listed in Table 1 . Given the displacement-field, the 
strain-field is calculated using the relation, 
ε i j = 1 

2 
(

∂ u i 
∂ x j + ∂ u j 

∂ x i 
)

(12) 
Substituting (8) in (12) , the strain-field is determined as, 

ε i j ( x 1 , x 2 ) = 1 
4 π√ 

−1 6 ∑ 
α=1 ηαL sαb s 

( x 1 + p αx 2 ) (A iα(
δ1j + p αδ2j ) + A jα( δ1i + p αδ2i ) )

(13) 
4 
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Fig. 3. Determining anisotropic interaction coefficient K to determine continuum strain-energy of a / 2 〈 011 〉 extended dislocation, illustrated using screw-character a / 2 〈 011 〉 
dislocation in Ni (a) A system composed of the trailing partial, ! b TP , and leading partial, ! b LP , is considered, separated by distance R ; the net strain-field around the partials is 
determined from the fully-anisotropy Eshelby-Stroh formalism, and the resulting contours of strain-energy density are shown ( b P = | ! b TP | = | ! b LP | ); the strain-energy density is 
numerically integrated to yield the energy of interaction E ⊥−⊥ (R ) as a function of the separation distance R , and the slope of variation of this function yields the anisotropic 
coefficient K 12 (corresponding to the interaction between the trailing partial and leading partial); note that K 12 is nearly identical for chosen core radius of r 0 = 3 b P ; the 
coefficients of self-interaction K 11 and K 22 can be computed similarly (b) The strain-energy of interaction between the distributed cores of the trailing and leading partials is 
illustrated; the elastic interaction energy, E 12 

elastic , is computed by integrating the interaction energy between infinitesimal fractionals d ! b TP and d ! b LP , by utilizing the computed 
interaction coefficient K 12 in (a); here ˆ b TP and ˆ b LP represent the unit vectors along the Burgers vectors of the trailing and leading partials respectively. 

Table 1 
Elastic constants (in GPa) of the FCC materials considered in 
this study. 

Material a 0 ( o A ) C 11 C 12 C 44 Ref. 
Ni 3.52 261 151 132 [50] 
Cu 3.61 171.2 123.8 75.6 [51] 
Au 4.08 201 170 46 [50] 
Ag 4.09 131.5 97.3 51.1 [50] 
FeNiCoCrMn 3.6 221 152 165 [52] 

In the current formulation, there are two partials with distinct 
Burgers vectors, ! b T P and ! b LP , that are linearly independent of each 
other and hence require independent calculations of their E-S con- 
stants. The anisotropic E-S constants are determined for each of the 
partials, and the strain-fields corresponding to both partials, repre- 
sented by ε T P 

i j ( x 1 , x 2 ) and ε LP 
i j ( x 1 , x 2 ) respectively, are determined 

from Eqs. (8) through (13) . These strain-fields are then superposed 
to determine the net strain-field surrounding both dislocations. For 
this purpose, the relative position of both partials in space is nec- 
essary. It is assumed, without any loss in generality, that the trail- 
ing partial is at the position ( 0 , −R / 2 ) and the leading partial is at 

position ( 0 , R / 2 ) . Subsequently, the total strain-field is given by the 
equation: 
ε i j ( x 1 , x 2 , R ) = ε T P i j (x 1 + R / 2 , x 2 ) + ε LP 

i j (x 1 − R / 2 , x 2 ) (14) 
The calculated strain-field ε i j is then used to determine the spa- 

tially varying strain-energy density, given by: 
e el ( x 1 , x 2 , R ) = 1 

2 C abcd ε ab ( x 1 , x 2 , R ) ε cd ( x 1 , x 2 , R ) (15) 
where C abcd are the components of the tensor of elastic constants 
in the x 1 − x 2 − x 3 system. The strain-energy density distribution 
is shown in Fig. 3 ( a ). Finally, the strain-energy per unit length of 
the dislocation line is calculated by spatially integrating the strain- 
energy density e el , given by: 
E ⊥−⊥ ( R ) = X max ∫ 

−X max 
X max ∫ 

−X max e el ( x 1 , x 2 , R ) d x 1 d x 2 (16) 
The integral in Eq. (16) is done numerically, over a discretized 

grid employing a sufficiently fine grid size ( ,x 1 / b P = ,x 2 / b P ≈ 0 . 2 ) 
and large limit of integration ( X max = 150 b P ) for convergence. The 
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Table 2 
Anisotropic coefficients K 11 , K 12 , and K 22 needed to compute the continuum strain-energy of the 
a / 2 〈 011 〉 extended dislocation (in units of ×10 2 GPa). 

Material Edge-character of extended dislocation Screw-character of extended dislocation 
K 11 K 22 K 12 K 11 K 22 K 12 

Ni −1.1092 −1.1092 −1.3535 −0.9324 −0.9324 −0.6661 
Cu −0.5715 −0.5715 −0.7361 −0.4417 −0.4417 −0.2394 
Au −0.4282 −0.4282 −0.5774 −0.3204 −0.3204 −0.1525 
Ag −0.4346 −0.4346 −0.5612 −0.3409 −0.3409 −0.1969 
FeNiCoCrMn −1.0741 −1.0741 −1.3174 −0.8622 −0.8622 −0.5382 

anisotropic interaction coefficient K 12 that captures the strain- 
energy of interaction is given by the equation: 
E ⊥−⊥ (R ) = C 0 + K 12 

∣∣! b LP · ! b T P ∣∣
2 π ln R (17) 

where C 0 is a constant value independent of R . To determine the 
core-parameters ( ξT P , ξLP , s 1 , s 2 ) of the a / 2 〈 011 〉 extended disloca- 
tion, it is only important to determine how the strain-energy of 
interaction changes with separation distance and thus C 0 is not rel- 
evant for this study. It is observed that the variation of E ⊥−⊥ (R ) 
with ( ln R ) is predominantly linear, allowing the anisotropic coef- 
ficient K 12 to be determined reliably from the slope of this vari- 
ation, as shown in Fig. 3 ( a ). Following the same procedure elab- 
orated above, the interaction coefficients K 11 (or K 22 ) can be de- 
termined by considering the interaction between two dislocations 
with the same Burgers vectors ! b LP (or ! b T P respectively). The com- 
puted anisotropic interaction coefficients are listed in Table 2 be- 
low. 

Once the interaction coefficients are known, the total contin- 
uum strain-energy E ST RAIN ( ξT P , ξLP , s 1 , s 2 ) for the extended dislo- 
cation can be determined. This is done by integrating the strain- 
energy of interaction between infinitesimal fractional dislocations 
within each dislocation core. For instance, the energy of interac- 
tion between cores of the trailing and leading partial E 12 

elastic is il- 
lustrated in Fig. 3 ( b ). The total strain-energy additionally includes 
the self-interaction within the cores of the trailing and leading par- 
tials as well ( E 11 

elastic and E 22 
elastic respectively), given by the equation: 

E ST RAIN ( ξT P , ξT P , s 1 , s 2 ) = E 11 
elastic + E 22 

elastic + E 12 
elastic (18) 

where each summand is given by the equations: 
E 11 

elastic = ∫ ∞ 
−∞ ∫ ∞ 

−∞ (K 11 / 2 π)
ρT P (x ) ρT P (y ) ln | x − y | d x d y 

E 22 
elastic = ∫ ∞ 

−∞ ∫ ∞ 
−∞ (K 22 / 2 π)

ρLP (x ) ρLP (y ) ln | x − y | d x d y 
E 12 

elastic = ∫ ∞ 
−∞ ∫ ∞ 

−∞ (K 12 / 2 π)
ρT P (x ) ρLP (y ) (ˆ b T P . ̂ b LP ) ln | x − y | d x d y 

(19) 
Each of the integrals in Eq. (19) is computed numerically, us- 

ing the integ routine in MATLAB®, and subsequently added (as per 
Eq. (18) ) to yield the continuum strain-energy of the extended dis- 
location E ST RAIN ( ξT P , ξLP , s 1 , s 2 ) . 
2.2.2. Atomistic misfit energy: Wigner-Seitz cell misfit (WS-M) energy 
model 

The misfit energy E MI SF I T ( ξT P , ξLP , s 1 , s 2 ) captures the atomistic 
energies associated with disregistries f T P,LP ( x 1 ) Eqs. (5) and ( (6) ) 
prevalent across the slip plane within the cores of both partials. 
These energies are determined from the Generalized Stacking Fault 
Energy (GSFE) curve of the slip system as mentioned in Section 1 . 
The GSFE curve for a slip system is determined by calculating the 
atomistic potential energy γ (δ) corresponding to a planar disreg- 
istry δ introduced between two rigid halves of the crystal struc- 
ture separated by the slip plane. This disregistry is introduced on 

Table 3 
Fault Energies for fcc metals used in this study: intrin- 
sic γisf ; unstable γus . 

Material γus ( mJ / m 2 ) γisf ( mJ / m 2 ) Ref. 
Ni 292 134 [54] 
Cu 180 41 [55] 
Au 134 33 [55] 
Ag 133 18 [55] 
FeNiCoCrMn 439 8 [52] 

the slip plane that separates the two halves along the direction of 
the Burgers vector of the slip system. The atomistic energies can 
be determined from atomistic simulation techniques such as Den- 
sity Functional Theory (DFT) or Molecular Statics (MS). This brief 
description suffices for the purposes of our study and the reader is 
referred to [53] for a more detailed exposition on the GSFE curve. 

For the FCC system, two critical energy barriers decisively dic- 
tate the GSFE curve, namely the unstable stacking fauly energy bar- 
rier γus and the stable stacking fault energy barrier γisf . These bar- 
riers are listed in Table 3 for all materials considered in this study. 
The complete GSFE curve is given by the equation: 
γ ( δ) = 

 
   
   

γus 
2 

(
1 − cos (2 πδ

b P 
))

for 0 ≤ δ ≤ b P 
2 or 3 b P 

2 ≤ δ ≤ 2 b P 
γisf + (γus − γisf 

2 )(
1 − cos (2 πδ

b P 
))

for b P 
2 ≤ δ ≤ 3 b P 

2 
(20) 

However, it must be noted that there are two Shockley partials 
with distinct Burgers vectors in this system, and the fault energy 
curve corresponding to each partial must be partitioned, as done 
here. The GSFE curve corresponding to both the trailing and lead- 
ing partials are given by the equations: 
γTP ( δ) = 

 
   
   

γus 
2 

(
1 − cos (2 πδ

b P 
))

for 0 ≤ δ ≤ b P 
2 

γisf + (γus − γisf 
2 )(

1 − cos (2 πδ
b P 

))
for b P 

2 ≤ δ ≤ b P (21) 

γLP ( δ) = 
 
   
   

γisf + (γus − γisf 
2 )(

1 − cos (2 πδ
b P 

))
for 0 ≤ δ ≤ b P 

2 
γus 
2 

(
1 − cos (2 πδ

b P 
))

for b P 
2 ≤ δ ≤ b P (22) 

Having described the GSFE curve for the slip system, the sub- 
sequent and, perhaps, the most critical step is to interpret the 
energy-barriers into the misfit-energy for the extended disloca- 
tion, for a given length L of the dislocation line. This step in- 
volves the disregistry function and a spatial summation over dis- 
crete lattice positions on the slip plane. Conventionally, the follow- 
ing Simple-Cubic-Row-Misfit (SC-M) model for the misfit-energy 
has been used in literature: 
E SC −M 

MI SF I T = ∞ ∑ 
m = −∞ γ

(
f (ma ′ ))(a ′ L ) (23) 

6 
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Fig. 4. Analytical models for misfit energy: (a) Conventional Simple-Cubic-Row-Misfit (SC-M) energy calculation where the underlying lattice is modeled as rows of atoms 
parallel to the dislocation line direction x 3 , spaced along x 1 at a discrete periodic distance a ′ ; the magnitude of a ′ is postulated to be the interplanar spacing along x 1 , which 
for the given crystallographic directions is a ′ = a / √ 

6 ; the misfit energy is taken as the sum of fault-energies e SC−M 
mis f it ( x m 1 ) at each discrete position x m 1 = ma ′ over the shaded 

region with area ( a ′ L ) (b) Proposed Wigner-Seitz Cell Misfit (WS-M) misfit energy calculation in this study, where the atomic structure of the underlying slip-plane lattice 
is captured; lattice vectors ! a 1 and ! a 2 are defined to map out all atomic sites on the slip plane, and the area ,A is the Wigner-Seitz (W-S) cell area around each atomic 
site; the misfit energy is a two-dimensional sum of fault-energies e WS−M 

mis f it ( x ( m,n ) 
1 ) at each atomic site x ( m,n ) 

1 = ( m ! a 1 + n ! a 2 ) . ̂ e 1 taken over the shaded W-S area; the spacing 
between consecutive atomic-rows, for the given crystallographic orientation, is given by 0 . 5 | ! a 1 | = 1 . 5 a / √ 

6 which is not equal to the magnitude of a ′ defined previously in 
the conventional SC-M model (refer main text for crystallographic definition of ! a 1 ). 
where the underlying lattice on the slip plane is modeled as rows 
of atoms parallel to the dislocation line (i.e. parallel to x 3 ) spaced 
apart by magnitude a ′ perpendicular to the dislocation line (i.e. 
along x 1 ; refer Fig. 2(a) for the coordinate system), γ is given by 
Eq. (20) and f by Eq. (3) . In short, the SC-M model determines 
the magnitude of disregistry u = f (x m 

1 ) , at each discrete position 
x m 

1 = ma ′ , and adds the energy cost associated with the disreg- 
istries i.e. summation of γ ( f ( x m 

1 = ma ′ ) ) , weighted with a planar 
area ( a ′ L ) parallel to the dislocation line. This SC-M model of the 
underlying lattice dates back to the original work of Peierls [9] , 
over 80 years back, where an expression for the lattice restoring 
force was first proposed and a simple-cubic lattice structure was 
chosen as the ansatz. It has since been widely adopted in several 
works such as those in refs. [ 13 , 17 , 24 , 38 , 46 , 56 , 57 ]. The finite mag- 
nitude of a ′ represents the discreteness of the underlying lattice 
and this value cannot be chosen arbitrarily. Till date, the value cho- 
sen for a ′ is the magnitude of the interplanar spacing along x 1 i.e. 
perpendicular to the dislocation line and on the slip-plane. The SC- 
M misfit energy model is schematically represented in Fig. 4(a) . 

There are multiple challenges with the conventional SC-M 
misfit-energy model which the current study proposes to improve 
upon. The primary drawback of the conventional SC-M model is 
that it does not account for the lattice structure of the slip-plane, 
where the positioning of individual atomic sites depends on mul- 
tiple factors such as the parent crystal structure, crystallography 
of the slip-plane and the character of the dislocation. Secondly, the 
spacing between consecutive rows of atomic sites on the slip plane 
is not equal to the interplanar spacing which is the value chosen 
for a ′ (indicated in Fig. 4(b) ). Furthermore, the cell-area ascribed 
to each atomic-site depends on both of the aforementioned fac- 
tors and requires more fundamental grounding than the rectangu- 
lar area assigned to each atomic-row (i.e. ( a ′ L ) in Fig. 4(a) and in 
Eq. (23) ) in the SC-M model. This study proposes a novel Wigner- 
Seitz Cell Misfit (WS-M) model which improves on all of the above 
aspects and further advances the concept of discrete a ′ -spacing to 
the discrete Wigner-Seitz (W-S) cell area surrounding each atomic 
site on the slip plane. This is schematically represented in Fig. 4(b) . 

The WS-M model defines two lattice-vectors on the slip plane, 
given by ! a 1 and ! a 2 such that every lattice site on the slip plane 
is given by ! x ( m,n ) = m ! a 1 + n ! a 2 , for integers m, n ∈ Z . These vec- 
tors are crystallographic lattice vectors that depend on the parent 
crystal structure (FCC, in this case) and the crystallography of the 
slip plane ( { 111 } slip plane in this case). These vectors define a 
primitive-cell for the slip-plane lattice, given by the shaded region 
in Fig. 4(b) . The reader is referred to ref. [58] for a detailed cover- 
age of concepts of primitive cell and the Wigner-Seitz (W-S) cell. 
The area enclosed within the cell is the same as the area of the 
W-S cell of the slip-plane lattice, illustrated schematically in Fig. 5 , 
and is a property unique to the slip-plane lattice. With the pro- 
posed advancements, the expression for the misfit energy is given 
by the equation: 
E WS −M 

MI SF I T = ∞ ∑ 
m = −∞ 

∞ ∑ 
n = −∞ γ

(
f (( m ! a 1 + n ! a 2 ) . ̂  e 1 ))( ,A ) (24) 

where ,A is the area of the W-S cell around each atomic site 
at position ! x ( m,n ) 

1 = m ! a 1 + n ! a 2 , γ is given by Eq. (20) and f by 
Eq. (3) . Note that the vectors ! a 1 and ! a 2 are two-dimensional, de- 
fined on the slip-plane of the dislocation which is the plane de- 
fined by the x 1 − x 3 axes. The disregistry function f is however 
only a function x 1 , therefore the argument for the disregistry func- 
tion in Eq. (24) is the x 1 component at each atomic-site given 
by ( m ! a 1 + n ! a 2 ) . ̂ e 1 , alternatively represented as x ( m,n ) 

1 in Fig. 4 ( b ). 
Also note that depending on the character of the extended dis- 
location, the orientation of the lattice with respect to the global 
x 1 − x 2 − x 3 axes changes (as seen in the distinct coordinate sys- 
tems defined in Section 2.1 previously). Consequently, the individ- 
ual atomic positions around the dislocation changes with charac- 
ter. The distinct lattice orientations and,consequently, atomic po- 
sitions are illustrated in Fig. 6 for edge and screw natures of the 
extended dislocation. These features are successfully captured by 
the proposed WS-M framework by defining the lattice vectors, ! a 1 
and ! a 2 , appropriately for each case at distinct orientations relative 
to the global axes on the x 1 − x 3 slip-plane (i.e. the ( 1 ̄1 1 ) plane). 
Note that in either case, the a ′ definition employed by the conven- 

7 
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Fig. 5. Schematic illustration of (a) the Wigner-Seitz (W-S) cell of the { 111 } slip-plane lattice and (b) the primitive-cell used for the proposed WS-M misfit-energy model; 
the area enclosed by both cells, ,A , is the same i.e. the W-S cell area, and is a property unique to the lattice, depending on the lattice-constant a as shown. 

Fig. 6. Lattice structure of the { 111 } slip plane, for edge and screw character of the a / 2 〈 011 〉 extended dislocation considered in this study: (a) Individual atomic positions on 
the slip-plane are shown, along with the lattice vectors ! a 1 , ! a 2 and the W-S area; the relative orientation of the lattice vectors with respect to the dislocation line direction 
(parallel to x 3 ) is dictated by the character of the dislocation (edge character in this case); the shaded cell is the primitive cell for the lattice-structure on the slip-plane 
adopted by the proposed WS-M approach; the actual atomic-spacing on the slip-plane does not match the a ′ value adopted by the conventional SC-M approach, which is 
the interplanar spacing along x 1 ( [ ̄1 ̄1 0 ] in this case) (b) Individual atomic positions on the slip-plane are shown, along with the lattice vectors ! a 1 , ! a 2 and the W-S area; the 
relative orientation of the lattice vectors with respect to the dislocation line direction (parallel to x 3 ) is dictated by the character of the dislocation (screw character in this 
case); the shaded cell is the primitive cell for the lattice-structure on the slip-plane adopted by the proposed WS-M approach; the actual atomic-spacing on the slip-plane 
does not match the a ′ value adopted by the SC-M approach, which is the interplanar spacing along x 1 ( [ 1 ̄1 ̄2 ] in this case) (c) The edge-case slip-plane lattice structure can be 
reproduced by periodic repetition of the emphasized atomic-sites within a band of length L 2 D = | ! a 1 | along the dislocation line; such a reduction is useful to feasibly compute 
the summation for the misfit energy (d) The screw-case slip-plane lattice structure can be reproduced by periodic repetition of the emphasized atomic-sites within a band 
of length L 2 D = | ! a 2 | along the dislocation line; such a reduction is useful to feasibly compute the summation for the misfit energy. 

8 



A.S.K. Mohammed, O.K. Celebi and H. Sehitoglu Acta Materialia 233 (2022) 117989 

Fig. 7. Direct correspondence between the misfit-energy of the system and the fault-energy barriers on the GSFE curve: (a) Atomic-structure of the slip-plane showing the 
positions of the trailing and leading partials with Burgers vectors ! b TP and ! b LP respectively; the disregistry distribution f ( x 1 ) is also plotted; consider the atomic-sites P 1 and 
P 2 where the magnitude of disregistry is given by f ( x ′ 1 ) and f ( x ′′ 1 ) respectively; the stack of atoms on { 111 } planes above and below each respective site P 1 and P 2 are 
shown, within the Wigner-Seitz (W-S) area ,A bounded by the lattice-vectors ! a 1 and ! a 2 ; these atoms constitute a 3D-cell housing a planar disregistry and the misfit-energy 
cost corresponding to the disregistry is given by the (b) A schematic representation of the simulation cell used to determine the Generalized Stacking Fault Energy (GSFE) 
curve, involving the lattice-vectors W-S area and planar disregistry identical to the 3D-cells in (a); the atomistic potential energy γ (δ) corresponding to planar disregistry δ
is computed; the GSFE curve, plotted for Ni here, is shown from which the misfit-energies γ ( f ( x ′ 1 ) ) and γ ( f ( x ′′ 1 ) ) , at sites P 1 and P 2 respectively, can be determined. 
tional SC-M approach does not match the actual atomic-spacing on 
the slip-plane lattice. 

The WS-M two-dimensional summation covering each atomic- 
site can be further reduced based on the symmetry of the slip- 
plane lattice. For instance, as shown in Figs. 6 (c, d), the atomic 
positions on the slip-plane for edge and screw character of the 
a / 2 〈 011 〉 extended dislocation can be described by periodic images 
of a narrow band of atomic-sites, repeating periodically along the 
dislocation line over a spacing of L 2 D . Consequently, the misfit- 
energy expression in Eq. (24) can be expressed as: 
E MI SF I T ( ξT P , ξLP , s 1 , s 2 ) = 1 

L 2 D 
∞ ∑ 

m = −∞ 
N 0 ∑ 

n = −N 0 γ
(

f (( m ! a 1 + n ! a 2 ) . ̂ e 1 ))( ,A ) 
(25) 

where ( L 2 D , N 0 ) = ( | ! a 1 | , 1 ) for the case of a a / 2 〈 011 〉 edge- 
dislocation, and ( L 2 D , N 0 ) = ( | ! a 2 | , 0 ) for the screw-dislocation case, 
γ is given by Eq. (20) and f by Eq. (3) . The energy is normalized by 
the length L 2 D to yield a misfit-energy measure that is normalized 
per unit length of the dislocation line. 

The description of the misfit-energy using lattice-vectors and 
W-S cell area has further significance. The lattice-vectors bound- 
ing the W-S area represent the smallest periodic primitive cell 
on the slip-plane, as shown in Fig. 6 (a, b). It is precisely the 
same cell that is employed in the calculation of the fault-energy 
curve γ (δ) using methods such as DFT, alluded to at the begin- 
ning of this subsection. For instance, consider the slip-plane lattice 
in Fig. 7 ( a ). On this plane, there is a disregistry distribution f ( x 1 ) 
introduced by the combination of the two Shockley partials, ! b T P 
and ! b LP , constituting the a / 2 〈 011 〉 extended dislocation considered 
in this study. Now consider an arbitrary atomic-site on this slip- 
plane, say P 1 , shown in Fig. 7 ( a ). Consider the stack of atoms on 
the { 111 } planes above and below P 1 , within the W-S area defined 
around the site, also shown in Fig. 7 ( a ). This stack of atoms and 
the W-S area define a three-dimensional (3D) cell which would 
have been in perfect FCC arrangement if not for the disregistry 

f ( x ′ 1 ) on the slip-plane at P 1 . The set of all 3D cells constructed 
around each atomic-site on the slip-plane yields the complete 3D 
crystal structure around the extended dislocation. If the “per-site”
misfit-energy corresponding to the disregistry within each 3D cell 
is known, then the aggregate sum of such misfit-energies over each 
atomic-site yields the total misfit-energy of the system. It is ele- 
gant to note that the per-site misfit-energy is known directly from 
the GSFE curve because the curve itself is obtained by simula- 
tions of disregistry introduced in a “simulation cell” identical to 
the 3D-cell defined at each site (refer Fig. 7 ( b )). Thus, there is 
a direct geometric correspondence that has been established be- 
tween the method of simulation to obtain the GSFE curve and its 
consequent application on the plane of disregistry of a dislocation 
to obtain the misfit-energy. Consequently, at site P 1 , for a disreg- 
istry of δ = f ( x ′ 1 ) introduced along ! b T P , the misfit-energy is equal 
to γ ( f ( x ′ 1 ) ) obtained directly from the GSFE curve as shown in 
Fig. 7 ( b ). Furthermore, since the GSFE curve is generally com- 
puted by allowing atomic-relaxations normal to the slip plane, di- 
rectly sampling the same fault-energy allows the WS-M model to 
inherit incorporation of such normal relaxations at each atomic- 
site. However, the magnitudes of these relaxations cannot be pre- 
dicted but only their influence is captured through use of fault- 
energies from the GSFE curve. By maintaining such a close cor- 
respondence between the energies computed on the GSFE curve 
and the misfit-energies within the crystal structure around the dis- 
location, it is asserted that the proposed framework leads to an 
accurate determination of the misfit-energy, advancing over prior 
frameworks. Nonetheless, it must be mentioned that one of the ef- 
fects that cannot yet be captured in the current framework is the 
coupled-influence of a varying disregistry distribution on the fault- 
energy at each atomic-site. This would be a promising avenue for 
future research to further improve the predictive accuracy of the 
proposed framework. 

A direct comparison between the conventional SC-M approach 
and the WS-M approach of the present study is shown in Fig. 8 . 
The distribution of e SC−M 

mis f it ( x m 
1 ) = γ ( f ( x m 

1 ) ) a ′ and e W S−M 
mis f it ( x ( m,n ) 

1 ) = 
9 
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Fig. 8. Comparison of the conventional SC-M and proposed WS-M approach for 
misfit-energy determination, noting a significant difference between predictions of 
the two approaches (the misfit-energies are computed for the case of the a / 2 〈 011 〉 
extended dislocation of screw-character in material Ni). 
γ ( f ( x ( m,n ) 

1 ) ),A / L 2 D are respectively shown, both of which repre- 
sent the local misfit energy at distinct lattice sites, x m 

1 = ma ′ and 
x ( m,n ) 

1 = ( m ! a 1 + n ! a 2 ) . ̂ e 1 , for the SC-M and WS-M approaches re- 
spectively. The proposed WS-M approach yields improved predic- 
tions for the misfit-energy as compared to the SC-M approach, val- 
idated by the agreement of the predicted CRSS with existing ex- 
perimental measurements in literature, shown later in this study, 
in Section 3 . 

The expression for the misfit-energy is rewritten in terms of 
the partitioned fault-energies (given by Eqs. (21) and (22) ) and 
disregistry functions of the individual Shockley partials (given by 
Eqs. (5) and (6) ), the total misfit energy of the system is given by 
the equation: 
E MI SF I T ( ξT P , ξLP , s 1 , s 2 ) = 1 

L 2 D 
 
   

N 0 ∑ 
n = −N 0 −1 ∑ 

m = −M max γT P ( f T P (x (m,n ) 
1 ))

,A 
...... + N 0 ∑ 

n = −N 0 M max ∑ 
m =0 γLP ( f LP (x (m,n ) 

1 ))
,A 

 
   
(26) 

where x ( m,n ) 
1 = ( m ! a 1 + n ! a 2 ) . ̂ e 1 . A large summation limit of M max is 

chosen, of the order of 10 4 , at which the computed misfit energy 
E MI SF I T ( ξT P , ξLP , s 1 , s 2 ) is sufficiently converged. The misfit-energy 
given by Eq. (26) is calculated per unit length of the dislocation- 
line. Now, the misfit energy can be computed as a function of the 
core parameters ( ξT P , ξLP , s 1 , s 2 ) of the extended dislocation. 
2.2.3. Determination of core-structure parameters 

At this stage, the continuum elastic energy 
E ELAST IC ( ξT P , ξLP , s 1 , s 2 ) and the atomistic misfit energy 
E MI SF I T ( ξT P , ξLP , s 1 , s 2 ) are known as a function of the dislocation 
core-parameters ( ξT P , ξLP , s 1 , s 2 ) from Eqs. (18) and (26) respec- 
tively. Thus, the total energy of the a / 2 〈 011 〉 extended dislocation 
E T OT ( ξT P , ξLP , s 1 , s 2 ) is also known as a function of the core- 
parameters from Eq. (7) . The core-parameters minimizing E T OT are 

sought by solving the equations 
∂ E T OT 
∂ ξT P = 0 ; ∂ E T OT 

∂ ξLP = 0 ; ∂ E T OT 
∂ s 1 = 0 ; ∂ E T OT 

∂ s 2 = 0 (27) 

The minimization routine is implemented using the fmincon 
routine in MATLAB®. The minimizing parameters ( ξ 0 

T P , ξ 0 
LP , s 0 1 , s 0 2 ) 

are then used to determine the CRSS. The variation of the total en- 
ergy about the energy-minimizing solution ( ξ 0 

T P , ξ 0 
LP , s 0 1 , s 0 2 ) is plot- 

ted in Figs. 9 and 10 , illustrated for the case of a screw-character 
a / 2 〈 011 〉 extended dislocation in Ag. Fig. 9 plots the variation of 
total energy against varying combinations of ( s 1 , s 2 ) which repre- 
sent the positions of the leading and trailing Shockley partials re- 
spectively. The core-widths for the partials are fixed at ( ξ 0 

T P , ξ 0 
LP ) . 

Note that the elastic and misfit energy display monotonic trends 
of opposing nature, as shown in Fig. 9 (a, b). The elastic-energy 
increases with reducing d = s 1 + s 2 , which is the fault-width be- 
tween the partials. This is because the separation distance between 
the dislocation cores is reducing and raises the elastic-energy of in- 
teraction. Contrastingly, the misfit-energy increases with increasing 
d = s 1 + s 2 because the faulted-region of the dislocation cores is 
now spread over a larger distance, thereby raising its total misfit- 
energy. Thus there exists a position ( s 0 1 , s 0 2 ) at which a balance be- 
tween the two energies is achieved to minimize the total energy 
E T OT 

The misfit energy has further undulations on a smaller magni- 
tude scale revealed by doing a line-scan of the misfit-energy land- 
scape across points A M O M B M (subscript M representing misfit), as 
shown in Fig. 9 ( b ) and plotted in 9 (c). There is a condition that 
is satisfied along this line which is that s 1 + s 2 = C, a constant, im- 
plying that the stacking-fault width between the partials remains 
the same. The undulating misfit-energy curve in Fig. 9 ( c ) reveals 
the existence of multiple local minima O i M = ( s i 1 , s i 2 ) where the ex- 
tended dislocation has the same misfit-energy. This corresponds 
exactly to the existence of multiple energetically-degenerate po- 
sitions for the Shockley partials on the slip-plane lattice. The ex- 
istence of such energetically-degenerate positions is further illus- 
trated in the landscape of E T OT in Fig. 9 ( d ), where analogous min- 
ima in total-energy exist at positions O = ( s 0 1 , s 0 2 ) , O 1 = ( s ′ 1 , s ′ 2 ) 
etc. Thus these minima represent multiple energetically-stable po- 
sitions of the a / 2 〈 011 〉 extended dislocation on the { 111 } slip-plane. 

The variation of the total energy E T OT with the core-widths 
of the partials ( ξT P , ξLP ) is shown in Fig. 10 , plotted at posi- 
tions ( s 0 1 , s 0 2 ) . Again, the elastic and misfit energy display mono- 
tonic trends of opposing nature, as shown in Fig. 10 (a, b). The 
elastic-energy increases with reducing core-widths. This is because 
the separation distances between fractional-dislocations within the 
dislocation cores are reducing, raising their elastic-energy of in- 
teraction. Contrastingly, the misfit-energy increases with increas- 
ing core-widths because the dislocation cores are spread over 
a larger span, increasing the total area of misfit and ultimately 
raising the misfit-energy. The total energy is minimized at core- 
widths ( ξ 0 

T P , ξ 0 
LP ) where a balance between the two opposing 

trends is achieved. Thus the equilibrium core-configuration of the 
a / 2 〈 011 〉 extended dislocation is described by the core-parameters 
( ξ 0 

T P , ξ 0 
LP , s 0 1 , s 0 2 ) and the equilibrium configurations are plotted in 

Fig. 11 for extended dislocations of edge and screw characters. Re- 
call that in each case, the individual Shockley partials are of a 
mixed character and the framework developed in the present study 
is capable of predicting their core-structure. The core-widths of the 
individual partials and the fault-width separating them differ con- 
siderably between the edge and screw characters. The methodol- 
ogy for prediction of the CRSS is presented in the next subsection. 
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Fig. 9. Variation of elastic E ELASTIC , misfit E MI SFI T , and total energies E TOT of the a / 2 〈 011 〉 extended dislocation plotted against the positions of leading and trailing partials 
( s 1 , s 2 ) respectively at the energy-minimizing core-widths ( ξ 0 

TP , ξ 0 
LP ) (shown here for the case of screw-character dislocation Ag); Variation of (a) elastic energy E ELASTIC and 

(b) misfit energy E MI SFI T , displaying opposing monotonic trends with respect to change in stacking-fault width s 1 + s 2 = d (c) Plot of the misfit-energy over a selected path 
A M O M B M shown in (b) illustrating the existence of multiple energy minima on the landscape (d) Plot of the total energy E TOT also illustrating the existence of multiple 
minima O ( s 0 1 , s 0 2 ) , O 1 ( s ′ 1 , s ′ 2 ) etc., each of which represents an energetically-degenerate position for the extended dislocation (as shown in the schematic insets); these 
minima lie along the line s 1 + s 2 = C, a constant, implying that in each of these positions the stacking-fault width between the partials is the same. 
2.3. CRSS of a / 2 〈 011 〉 extended dislocation 

The proposed framework is motivated from the Peierls-Nabarro 
(P-N) model [10] and advances the model to determine the CRSS of 
a / 2 〈 011 〉 extended dislocation in FCC materials. In short, the CRSS 
is determined from the maximum gradient on the energy land- 
scape. In the standard P-N approach, only the 1D misfit-energy 
landscape is considered. In this study, a novel approach is proposed 
where the total-energy landscape, E T OT is considered. The variation 
of the total-energy against the position of the individual Shock- 
ley partials is of interest i.e. Fig. 9 ( c ). The total-energy landscape 
is plotted again in Fig. 12(a) below, shown for a screw-character 
a / 2 〈 011 〉 dislocation in Ni. As discussed in Section 2.2.3 before, the 
total-energy landscape has multiple energetically-degenerate min- 
ima represented by points O = ( s 0 1 , s 0 2 ) , O 1 = ( s ′ 1 , s ′ 2 ) , etc., each 
representing an energetically stable position of the extended dis- 
location on the slip-plane. 

To determine the CRSS, the energy-trajectory undergone by the 
a / 2 〈 011 〉 extended dislocation in moving from one minimum, say 
O , to the next energetically-degenerate position, say O 1 , must be 
extracted. The energy trajectory depends on how the individual 
positions of the Shockley partials ( s 1 , s 2 ) vary in moving from O 
to O 1 . This variation in positions between the minima effectively 
represents the “path” taken by the a / 2 〈 011 〉 extended dislocation. 
In the proposed approach, the “Minimum-Energy Path” (MEP) be- 
tween the two minima is determined, along which the dislocation 
faces the least resistance to motion. For this purpose, a set of paths 
between the two minima is considered, given by ( s 1 (t) , s 2 (t) ) , 
with the path being parametrized by a monotonically increasing 

variable t . Considering the path to begin at the minimum O , it 
is known that for t = 0 , s 0 1 = s 1 (0) and s 0 2 = s 2 (0) . Also, every al- 
lowable path must exhibit a periodicity along the straight line 
s 1 + s 2 = C (passing through O and O 1 , shown by the dashed line 
in Fig. 12 ( a )), which is to say that at periodic intervals along the 
path, the stacking-fault width between the partials recovers to its 
equilibrium value C = s 0 1 + s 0 2 that it began with at O . The trajectory 
that connects the minima must be periodic function, connecting 
all the energetically-degenerate states lying at periodic intervals on 
the total-energy landscape. Therefore, a Fourier-series based model 
is chosen to define the path, described by the equations: 
s 1 ( t ) = s 0 1 + ( 1 √ 

2 )
(

t + C 0 + n ∑ 
k =1 C k (1 − cos 2 kπt 

C P ))

s 2 ( t ) = s 0 2 + ( 1 √ 
2 )

(
−t + C 0 + n ∑ 

k =1 C k (1 − cos 2 kπt 
C P )) (28) 

where the maximum number of periodic functions chosen is taken 
to be n = 4 , sufficient for the purposes of the study. Thus, the set of 
parameters ( C 0 , C 1 , C 2 , C 3 , C 4 , C P ) define a path on the total-energy 
landscape beginning at O . Note that the straight-path connecting 
O and O 1 is modeled by the parameter values C 0 = C 1 = C 2 = C 3 = 
C 4 = 0 , and for any C P . = 0 . For a different set of parameter values, 
the path is not straight but zig-zag in nature (shown by the solid- 
line path in Fig. 12 ( a )). The energy is computed at discretized 
points along the path, given by t i = i ,t , where ,t = 0 . 01 o A . The 
total cumulative energy along the path is summed to obtain the 
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Fig. 10. Variation of elastic E ELASTIC , misfit E MI SFI T , and total energies E TOT of the a / 2 〈 011 〉 extended dislocation plotted against the core-widths of trailing and leading partials 
( ξTP , ξLP ) respectively at the energy-minimizing positions of the partials ( s 0 1 , s 0 2 ) (shown here for the case of screw-character dislocation Ag); Variation of (a) elastic energy 
E ELASTIC and (b) misfit energy E MI SFI T , displaying opposing monotonic trends with respect to the partial core-widths ( ξTP , ξLP ) , summing together to yield (c) the total-energy 
E TOT behavior which exhibits a minimum at ( ξ 0 

TP , ξ 0 
LP ) . 

Fig. 11. Plot of the dislocation-density distributions corresponding to the energy-minimizing core-structure ( ξ 0 
TP , ξ 0 

LP , s 0 1 , s 0 2 ) of the a / 2 〈 011 〉 extended dislocation, shown for 
both edge and screw characters of the dislocation. 
following objective function: 
E PAT H ( C 0 , C 1 ..., C p ) = T max ∑ 

i =1 E T OT (s 1 ( t i ) , s 2 ( t i ) , ξ 0 
T P , ξ 0 

T P ) (29) 
The path parameters that minimize E PAT H are determined us- 

ing the unconstrained minimization routine fminunc in MATLAB®, 

and these parameters define the Minimum Energy Path (MEP). It 
is found that the MEP is not straight but has a wavy “zig-zag” na- 
ture, passing through the energetically-degenerate minima O , O 1 
etc. (shown by the solid-line path in Fig. 12 ( a )). The energy tra- 
jectory along the MEP is obtained from the landscape, and also 
compared to the trajectory along the straight path O O 1 , shown in 
Fig. 12 ( b ). Clearly, the MEP exhibits a lower energy barrier for the 
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Fig. 12. Total-energy landscape of the a / 2 〈 011 〉 extended dislocation for a screw-dislocation in Ni (a) Plot of total-energy E TOT against the position of the Shockley partials 
( s 1 , s 2 ) indicating possible paths traversing across the energy minima O = ( s 0 1 , s 0 2 ) , O 1 = ( s ′ 1 , s ′ 2 ) ; the dashed-line represents a straight-path in which the partials move 
together such that stacking-fault width between them is conserved i.e. s 1 + s 2 = C, is constant; the solid-line represents a zig-zag Minimum-Energy Path (MEP) where the 
partials don’t move together and move intermittently, passing through an intermediate transition state S (b) Energy trajectories along the straight-path shown in (a), and 
the Minimum Energy Path (MEP); the energy barriers along the MEP are significantly lower indicating that the zig-zag nature of motion is preferred; the maximum gradient 
of the energy trajectories yields the CRSS for the MEP and the straight path, given by τF and τ S 

F respectively (elaborated in main text) (c) Schematic representation of the 
motion of the partials along the MEP, in which the leading partial (i) moves first, (ii) increases the fault-width from d to d + ,d and then (iii) the trailing partial follows; a 
plot of the variation of the stacking-fault width during the motion is also given. 
path of the dislocation, and also exhibits an intermediate stable 
transition state S . The variation of the stacking-fault width d(t) = 
s 1 (t) + s 2 (t) is also determined and plotted in Fig. 12(c) showing 
how the fault-width does not remain constant but fluctuates dur- 
ing the motion of the dislocation. Fig. 13 shows the MEP deter- 
mination for the case of a / 2 〈 011 〉 edge-dislocation in Ni, and it is 
observed that the path is nearly straight with minor zig-zag be- 
havior. Thus, in addition to the non-straight MEP revealed by the 
approach, it is also revealed that the nature of motion of the dis- 
location can change with its character. 

The final critical step is to determine the CRSS. Till date, the 
conventional Peierls-Nabarro approach has been adopted where 
the CRSS is given by the equation: 
τ 1 D 

CRSS = max ( 1 
b F dE SC−M 

PN (δ) 
dδ

)
(30) 

where E SC−M 
PN (δ) = ∞ ∑ 

m = −∞ γ ( f ( ma ′ − δ) ) a ′ , for γ defined in 
Eq. (20) and f by Eq. (3) , motivated by the conventional SC- 
M misfit-energy model discussed in Section 2.2.2 (also refer 
Eq. (23) ). There are multiple challenges in adopting this approach 
for the case of the a / 2 〈 011 〉 extended dislocation. For instance, (i) 
the path of the individual Shockley partials is ignored in this ap- 
proach, (ii) the model presumes dependence on the total Burgers 
vector b F alone and seemingly has no dependence on the partial 
Burgers vector b P and (iii) Only the misfit-energy landscape is 
considered and in the one-dimensional form. 

In this study, a novel approach is proposed in which the CRSS 
is determined from the energy-trajectory corresponding to the zig- 
zag MEP path on the total-energy landscape, advancing on all 
aforementioned fronts. The proposed approach is thus named the 
Optimum-Energy-Trajectory (OET) approach for CRSS prediction for 
FCC materials. Suppose the a / 2 〈 011 〉 extended dislocation is subject 
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Fig. 13. Total-energy landscape of the a / 2 〈 011 〉 extended dislocation for a edge-dislocation in Ni (a) Plot of total-energy E TOT against the position of the Shockley partials 
( s 1 , s 2 ) indicating possible paths traversing across the energy minima O ( s 0 1 , s 0 2 ) , O 1 ( s ′ 1 , s ′ 2 ) ; the dashed-line represents a straight-path in which the partials move together 
such that stacking-fault width between them is conserved i.e. s 1 + s 2 = C, is constant; the solid-line represents a zig-zag Minimum-Energy Path (MEP) where the partials don’t 
move together and move intermittently, passing through an intermediate transition state S (b) Energy trajectories along the straight-path shown in (a), and the Minimum 
Energy Path (MEP); the energy barriers along the MEP are significantly lower indicating that the zig-zag nature of motion is preferred; the maximum gradient of the energy 
trajectories yields the CRSS for the MEP and the straight path, given by τF and τ S 

F respectively (elaborated in main text) (c) Schematic representation of the motion of the 
partials along the MEP, in which the leading partial (i) moves first, (ii) increases the fault-width from d to d + ,d and then (iii) the trailing partial follows; a plot of the 
variation of the stacking-fault width during the motion is also given. 
to the stress-tensor σa . The applied load is considered to be a uni- 
axial tensile load along the ˆ ν|| [ 1 ̄3 2 ] direction, consequently given 
by σa = σa ( ̂  ν ! ˆ ν) . This direction of loading was chosen so as to re- 
sult in the same Schmid factor for the trailing and leading Shockley 
partial. For motion of the dislocation, the change in Gibbs’ free en- 
ergy, dG , of the system must be considered, given by the equation: 
dG = d E T OT − dW (31) 
where d E T OT is the change in the total-energy of the system and 
dW is the change in the work-interaction energy with motion of 
the dislocation. This is given by: 
dW = ((

σa ̂  n slip ). ! b LP )d s 1 + ((
σa ̂  n slip ). ! b T P )( −d s 2 ) 

= σa b p ( S F LP d s 1 + S F T P ( −d s 2 ) ) 
= σa b p (S F LP s ′ 1 (t) − S F T P s ′ 2 (t) )dt (32) 

where ˆ n slip = 1 / √ 
3 [ 1 ̄1 1 ] is the normal to the slip-plane, d s 1 and 

d s 2 respectively represent the change in the positions of the lead- 
ing and trailing partials respectively, S F LP and S F T P are the Schmid 
factors corresponding to the leading and trailing partials respec- 
tively, and s 1 (t) , s 2 (t) parametrize the MEP. The Schmid fac- 
tors are given by the equations S F LP = ( ̂  ν · ˆ n slip )( ̂  ν · ˆ b LP ) and S F T P = 
( ̂  ν · ˆ n slip )( ̂  ν · ˆ b T P ) , where ˆ b T P and ˆ b LP are unit vectors along the 
Burgers vectors of the trailing and leading partials respectively. The 
negative sign attached to the s ′ 2 (t) term on the RHS is because s 2 
and s 1 are defined in opposite sense to each other (refer Fig. 2(a) ). 
At the onset of motion, the condition dG = 0 is achieved. With this 
condition, and from Eqs. (32) and (31) , it follows that the critical 
applied stress for motion is given by: 
σ cr. 

a = max ( 1 
( S F LP s ′ 1 (t) − S F T P s ′ 2 (t) ) 

(
1 
b p d E T OT 

dt 
))

(33) 
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Table 4 
Comparison of proposed analytical framework in this study against experiment and a commonly employed exponential model # of CRSS. 

Material Exponential CRSS 
model { ξISO ( o A ) , τ expo . 

F ( MPa ) } CRSS model of this 
Study { ξLP ( o A ) , τF ( MPa ) } ( Eq. (34) ) Experiment τF ( MPa ) 

Ni {1.47, 2539.8 } {4.29, 8.6 } 4.7–9 [ 65 , 66 ] 
Cu {1.60, 1310.8 } {3.70, 2.1 } 0.5–3.2 [ 65 , 67–69 ] 
Au {2.01, 555.2 } {4.78, 1.4 } 0.9 [70] 
Ag {1.91, 650.9 } {4.98, 1.3 } 0.3–0.7 [ 46 , 65 ] 
FeNiCoCrMn {1.04, 6469.0 } {2.01, 147.4 } 135–172 [ 71 , 72 ] 

The critical applied stress is resolved along the slip-system of 
the extended dislocation to determine the critical stress in the re- 
solved form, yielding the CRSS as: 
τF = σ cr . 

a SF FULL 
= SF FULL . max 

( 
1 (

SF LP s ’ 1 ( t ) − SF TP s ’ 2 ( t ) )
(

1 
b p dE TOT 

dt 
)) 

(34) 
where S F F ULL = ( ̂  ν · ˆ n slip )( ̂  ν · ˆ b F ) is the Schmid factor for the full ex- 
tended dislocation on its slip system, with ˆ b F representing the unit 
vector along the direction of the Burgers vector ! b F . Figs. 12 ( b ) and 
13 ( b ) show the comparison between the computed CRSS corre- 
sponding to a straight-path and the MEP, given by τ S 

F and τF re- 
spectively. It is observed that τF < τ S 

F , establishing the CRSS to be 
equal to τF corresponding to the MEP path. This is expected since 
the energy barriers and gradients along the MEP are both lower 
than the straight path. Thus, the CRSS for the a / 2 〈 011 〉 has been 
determined. 

Finally, the efficacy of the model is validated by comparing 
against a benchmark exponential relation commonly employed 
for predicting the CRSS [59–64] and by comparison with avail- 
able experimental data. This comparison is presented in Table 4 . 
The proposed framework significantly improves on the benchmark 
model by yielding CRSS predictions of the correct order, agree- 
ing well with experiments. Predictions of the framework are also 
compared with another popular approach that determines the 
core-width based on the shear strength τmax and an alternately- 
defined anisotropic factor K, subsequently applying the exponen- 
tial model for CRSS [ 31 , 45 ]. Comparisons are shown in table A1 of 
Appendix A yet again noting the significant improvement offered 
by the proposed framework. 

# τ expo . 
F = ( G / A ν ) exp ( −2 πξiso. / b F ) , employing the isotropic core- 

width ξISO = d { 111 } / 2 A ν , where A ν = 1 − ν for edge-character dislo- 
cation and A ν = 1 for screw-character dislocation, G is the isotropic 
shear modulus and ν is the Poisson’s ratio, listed in table A2 in 
Appendix A 
3. Discussions 

The current study proposes a predictive analytical framework 
for the CRSS of a / 2 〈 011 〉 extended dislocations in FCC materials. 
The proposed framework determines the core-parameters of the 
dislocation without any apriori assumptions and predicts the CRSS 
from these parameters for extended dislocations in FCC materials. 
The core-parameters, namely the core-widths of the Shockley par- 
tials ( ξT P and ξLP ) and their positions ( s 1 and s 2 ), are determined 
by a minimization of the total energy of the dislocation. Existing 
approaches have thus far involved assumptions or some form of 
empiricism associated with the calculation of the core-widths and 
in the formulations for the continuum strain energy or the atom- 
istic misfit energy. For instance, several works employ the isotropic 
formulae for core-widths ( ξEDGE = d { 111 } / (2(1 − ν)) for edge charac- 
ter or ξSCREW = d { 111 } / 2 for screw character, where d { 111 } is the in- 
terplanar spacing between consecutive { 111 } planes and ν is the 

Poisson’s ratio) even for anisotropic materials. Additionally, in cal- 
culation of the strain-energy, either isotropy is inherently assumed 
or an ad-hoc correctional-factor for anisotropy is employed (repre- 
sented by K) in the calculation of the core-width. In calculation of 
the misfit energy, the choice of a ′ as the discrete lattice parameter 
separating rows of atoms (in the conventional SC-M approach) is 
inconsistent with the underlying crystal structure of the slip plane. 
Furthermore, idealized limits of “narrow” or “wide” core-widths 
are commonly employed to afford use of simpler analytical expres- 
sions for the core-width and the CRSS [46] , without accurate basis 
for whether the core-widths in the material are at either limit in 
reality. The proposed formalism eliminates all such empiricism or 
assumptions and determines the core-parameters. 

The current study offers multiple advancements in prediction 
of the continuum strain-energy and atomistic misfit-energy of the 
extended dislocation. A fully-anisotropic calculation of the strain- 
energy is proposed employing the Eshelby-Stroh (E-S) formalism, 
determining the anisotropic interaction coefficients, K i j ( i, j = 1 , 2 ) 
directly from the E-S strain-fields and strain-energies. Such an ap- 
proach is particularly critical to evaluate the strain-energies of in- 
teractions between the a / 6 〈 112 〉 Shockley partials, which are gen- 
erally of mixed character even for a pure-edge or pure-screw char- 
acter of the a / 2 〈 011 〉 extended dislocation, as considered in this 
study. The proposed WS-M model offers a significant and neces- 
sary advancement over the current SC-M understanding of misfit- 
energy within the core of the dislocation. The proposed approach 
offers a framework which, for the first time, accommodates the 
complete crystal structure on the slip plane. It is shown that the 
conventional SC-M approach of representing the crystal structure 
as rows of atoms separated a ′ -distance apart is inaccurate. The cor- 
rect atomic-positions have a two-dimensionality which can only 
be captured by a two-lattice-vector ! a 1 − ! a 2 basis as done in this 
study, and the spacing between the atomic-rows is not equal to 
the conventional choice of a ′ that has so far been adopted (re- 
fer Fig. 6 ). Furthermore, at each atomic-site, a Wigner-Seitz (W- 
S) cell area is defined which provides a physically-motivated dis- 
crete domain assigned to each site and partitions the crystal struc- 
ture around the core into 3D-cells of disregistry, the fault-energies 
within which are exactly those that the GSFE simulation delivers 
(refer Section 2.2.2 and Fig. 7 ). The WS-M approach is also capa- 
ble of handling mixed dislocation character (for the a / 2 〈 011 〉 dislo- 
cation and/or its partials) since the lattice-vectors ! a 1 − ! a 2 can be 
accordingly defined depending on the relative orientation of the 
slip-plane crystal structure with respect to the dislocation-line di- 
rection. Each of these advancements offers sufficient physical fi- 
delity to reliably model the core-structures of dislocations in other 
crystal structures such as Hexagonally-Closed Packed (HCP) ma- 
terials. It can further be adapted for dislocations at interfaces of 
anisotropic media, allowing determination of core-structures and 
CRSS predictions for interface dislocations such on twin boundaries 
[ 73 , 74 ] or film-substrate interfaces [75] . Also from a conceptual 
standpoint, it would be a promising direction for future research 
to analyze the impact of individual advancements in this frame- 
work, for instance of (a) elastic anisotropy by comparing the CRSS 
predictions with isotropic values of the interaction coefficient K
against the anisotropically computed coefficient and (b) the misfit- 
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energy model, comparing the predictions from SC-M and WS-M 
models. 

The proposed framework deals with all core-parameters 
( ξT P , ξLP , s 1 , s 2 ) in a coupled manner, allowing the framework to 
capture a wide variety of core-structures, both narrow and wide. 
For instance, as seen in Fig. 11 , the approach predicts core- 
structures of a / 2 〈 011 〉 -screw dislocations in Ni which spans a width 
along x 1 that is about 15x smaller than that of the HEA FeNiC- 
oCrMn. Modeling such a range of cores, particularly in the narrow 
end, requires the model to capture the coupled-influence of both 
the unstable stacking fault energy barrier γus and the stable stack- 
ing fault energy barrier γisf as both can dictate the core-widths and 
the fault-width. This is unlike most treatments till date that treat 
the stacking fault width disjoint from the core-widths, thought to 
be respectively dependent on γisf and γus in a disjoint manner, and 
thus only capable of reliably modeling a well-dissociated disloca- 
tion (i.e. sufficiently large fault-width). 

The current approach establishes the contrasting trends in the 
continuum strain-energy and the atomistic misfit-energy with re- 
spect to the core-parameters ( ξT P , ξLP , s 1 , s 2 ) (refer Section 2.2.3 , 
Figs. 9 and 10 ). The existence of a total-energy minimum 
at ( ξ 0 

T P , ξ 0 
LP , s 0 1 , s 0 2 ) is illustrated and the existence of multiple 

energetically-degenerate minima on the total-energy landscape, 
E T OT , is also revealed. Knowledge of the energy-landscape to such 
detail is necessary to know the nature of motion undertaken by 
the dislocation under applied stress. In considering the a / 2 〈 011 〉 ex- 
tended dislocation, it can often be a tacit assumption that disloca- 
tion motion occurs by simultaneous motion of its partials, preserv- 
ing the fault-width in between. This study shows for the first time 
that such motion is energetically unfavorable as it would encounter 
a higher energy barrier. The existence of Minimum-Energy-Path 
(MEP) on the energy-landscape is proposed and solved for, estab- 
lishing the motion of the extended dislocation to occur in a “zig- 
zag” manner through intermittent motion of its individual partials. 
And it is this MEP that has led to the accurate prediction of the 
CRSS of the a / 2 〈 011 〉 extended dislocation. 

A novel Optimum-Energy-Trajectory (OET) approach to predict 
the CRSS of a / 2 〈 011 〉 extended dislocations is proposed advancing 
over the conventional Peierls-Nabarro framework. The proposed 
method is grounded in first-principles energetics and reveals the 
dependence of the CRSS on three Schmid factors – the Schmid 
factor of the a / 2 〈 011 〉 dislocation, S F F ULL and that corresponding to 
each partial, S F T P and S F LP . Dependencies of the CRSS on the gra- 
dients of the total-energy landscape d E T OT / dt along the MEP, and 
the gradient of motion of the individual partials, s ′ 1 (t) and s ′ 2 (t) , 
are clearly revealed for the first time in literature. The model re- 
veals why it is insufficient to consider the full Schmid factor S F F ULL 
alone since the motion of the extended dislocation is mediated 
by its individual partials. Further, the proposed framework is ca- 
pable of predicting the CRSS in the presence of an external stress 
causing unequal Schmid factors, S F T P . = S F LP , where the motion of 
one partial is more preferred than the other. Dependencies on the 
character of the dislocation, elastic anisotropy and the underly- 
ing crystal structure are captured by the total-energy landscape 
E T OT , ultimately influencing the MEP and the corresponding gradi- 
ents d E T OT / dt . To the best of the authors’ knowledge, the proposed 
framework is the first one in literature capable of accounting of 
all the aforementioned effects involved in the motion of the ex- 
tended dislocation. The efficacy of the predictions is illustrated by 
the agreement with experimental results in Table 4 , advancing over 
a commonly employed exponential model for the CRSS. 
4. Conclusions 

The current study proposes a predictive analytical framework 
for the core-widths and CRSS of a / 2 〈 011 〉 extended dislocation in 

Face-Centered-Cubic (FCC) materials, without involving any empiri- 
cism. The following advancements are offered: 

a The proposed framework accounts for the full elastic anisotropy 
in the material and the fault energies on the slip plane, predict- 
ing the core-width from an optimal balance between the con- 
tinuum strain-energies and atomistic-misfit energies. 

b A methodology to determine the anisotropic interaction coef- 
ficients K i j directly from the Eshelby-Stroh strain-fields around 
dislocations is proposed leading to accurate calculation of the 
strain-energy of interaction for arbitrary material anisotropy. 

c A novel Wigner-Seitz-Cell-Misfit (WS-M) energy model is pro- 
posed to predict the core-misfit energy through incorporation 
of the correct atomic positions on the slip-plane crystal struc- 
ture and the correct planar-domain ( ,A – Wigner-Seitz cell 
area) around each site over which the local fault-energy of dis- 
registry is prevalent. 

d A robust procedure to determine the core-parameters for the 
extended dislocation is proposed, determining both the core- 
widths of the Shockley partials and the stacking fault width 
simultaneously. This approach allows modeling dislocations 
whose cores can either be well-dissociated with large fault 
width (e.g. FeNiCoCrMn) or on the other extreme, narrow cores 
with such small width that the partial cores exhibit overlap 
(e.g. Ni). 

e The nature of motion of the extended dislocation is revealed by 
determining the Minimum-Energy-Path (MEP) of motion across 
the total-energy landscape. The MEP reveals a zig-zag nature of 
motion involving intermittent motion of the individual Shockley 
partials challenging the common notion that the partials move 
together. The zig-zag motion allows for a fluctuating stacking 
fault-width during motion of the extended dislocation. 

f A novel Optimum-Energy-Trajectory (OET) approach to pre- 
dict the CRSS of extended dislocations is proposed, grounded 
in first-principles energetics and incorporating the determined 
MEP of the dislocation. Dependencies on the total-energy gra- 
dient along the MEP, along with the gradients of motion of the 
individual partials and their Schmid factors are clearly estab- 
lished, developing a new analytical expression for the CRSS ad- 
vancing over the state-of-the-art understanding in the field. 

g The proposed framework is validated by comparison with avail- 
able experimental data and the advancement offered by the 
framework is established by comparison against a popular 
benchmark exponential relation. 
Thus, this study proposes a fully predictive model for dis- 

location slip in FCC materials, significantly advancing over the 
state-of-the-art models and addressing a major void in structure- 
property prediction for structural materials, now capable of being 
employed for design/exploration of material compositions with un- 
precedented yield strength. 
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Appendix A: Comparison of predictions from proposed models 
against existing models 

Table A1: Comparison of proposed analytical framework in this 
study against alternate prior model for core-width prediction and 
CRSS 

Material 
Exponential model for CRSS based on 
core-width calculated through K -factor and 
shear strength τmax [46] 

Proposed 
Approach in 
this study 

τmax 
(GPa) K

(GPa) ξK = K b F / 4 πτmax 
( o A ) τ expo . −K 

F 
(MPa) ξLP 

( o A ) τF 
(MPa) 

Cu 1.8 [46] 69.2 7.8 3 × 10 −4 3.70 2.1 
Ag 0.89 [46] 45.9 12.07 2 × 10 −7 4.78 1.4 
FeNiCoCrMn 4.4 [45] 149 6.86 5 × 10 −3 2.01 147.4 

# τ expo . −K 
F = (G/A ν ) exp (−2 πξK /b F ) , employing ξK = Kb F / (4 πτmax ) , 

A ν = 1 − ν for edge-character dislocation and A ν = 1 for screw- 
character dislocation, G is the isotropic shear modulus and ν is the 
Poisson’s ratio, listed in table A2 

Table A2: Isotropic shear modulus G and Poisson’s ratio ν for 
materials considered in this study (employed in calculations of 
Tables 3 and A1) 

Material G (GPa) ν

Ni 76 [76] 0.31 [76] 
Cu 45 [76] 0.35 [76] 
Au 27.6 [76] 0.42 [76] 
Ag 28.9 [76] 0.37 [76] 
FeNiCoCrMn 80 [77] 0.26 [77] 
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