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focusing on the a/2<011) extended-dislocation (partials bounding a stacking-fault) in Face-Centered-Cubic
(FCC) materials, rigorously derives the core-width with continuum strain-energy and atomistic misfit-
energy considerations. The strain-energy is calculated using the fully-anisotropic Eshelby-Stroh formal-

Keywords: ism accommodating the inherent mixed characters of the a/6(112) Shockley-partials constituting pure-
Dislocations edge/pure-screw a/2(011) dislocations. The misfit-energy is determined from critical fault-energies of the
Core width slip-plane input to a novel misfit-model capturing the lattice structure of the slip-plane and involving
lSri'ticlal stress the discrete Wigner-Seitz cell area at each lattice site, advancing over an 80-year old misfit-energy model
el1eris

that has missed the role of both concepts. For the first time in literature, the nature of motion of the
a/z(Oll) extended-dislocation’s core is rigorously derived from an optimized trajectory of its total-energy.
It is shown that each 0/6(112) partial’'s core moves intermittently (“zig-zag” motion), and not together, al-
lowing the stacking-fault width to fluctuate during advance of the extended-dislocation. The critical stress
is shown to involve a trajectory-dependent combination of Schmid factors for each Shockley-partial, also
revealed for the first time. The proposed model is used to predict critical stress for multiple FCC mate-
rials, including a high-entropy alloy (HEA), displaying excellent agreement with experiments. The work
opens future avenues for rapid reliable assessment of a multitude of compositions across varying lattice
structures (e.g. hexagonal lattices), advancing over prior exponential models for critical stress which can
produce errors as high as two orders of magnitude.

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Stacking fault

1. Introduction sitional design space for next-generation structural and functional

alloys [1-8]. This study proposes such a model for the CRSS involv-
One of the most important mechanical properties in structural ing no empirical parameters.

materials is the yield strength, notable as the first point of slope

change in the stress-strain curve of the material. At this point, 1.1. Core structure fundamentals: disregistry and dislocation density

the sustained deformation of the material transitions from a re- distributions

coverable/elastic nature to an irrecoverable/inelastic nature. This

inelasticity is associated with an operative underlying mechanism The CRSS is determined from the intrinsic lattice resistance or

causing microstructural changes. The predominant mechanism in lattice friction to be overcome for dislocation motion. The lattice

crystalline structural materials is the motion/“slip” of intrinsic de- resistance is associated with atomic-scale restoring forces operat-

fects in the crystal structure known as dislocations. Thus, the yield ing across the slip plane of the dislocation. And in order to quantify

strength of the material is dictated by the Critical Resolved Shear ~ this resistance, a clear understanding of the dislocation core is re-
Stress (CRSS) on the slip system of the dislocation required for the quired. The Peierls model of the dislocation is adopted for this pur-

onset of dislocation slip. A fully predictive model for this CRSS, ~ Pose. This model of the dislocation core is presented here briefly,
consistent with experimental measurements, is yet to emerge pre- ~ and the reader is referred to [9-11] for a detailed exposition. A dis-
cluding reliable prediction of the yield strength. The advent of such location introduces a “disregistry” in th? crysta.l structure where
a predictive model is vital for informed exploration of the compo- ~ ©ne half-space of the crystal structure is relatively displaced as

compared to the other half-space. Both half-spaces are separated

by the slip plane on which the dislocation resides, and the rela-

* Corresponding author. tiye displacemgnt. inFroduced is g_iven by the Burgers vector of the
E-mail address: huseyin@illinois.edu (H. Sehitoglu). dislocation. This is illustrated with the help of the schematic in
1 Both authors contributed equally to this paper Fig. 1(a, b). In the global coordinate system x; — X, — X3, consider
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Fig. 1. Dislocation core-structure: (a) the x; — x, — x3 coordinate system attached to a dislocation with Burgers vector b, the dislocation line aligned with x5 axis and the slip
plane as the x; — x, plane; (b) a three-dimensional visualization of the disregistry distribution across the slip plane, indicating the (+) and (-) half-spaces and displacement
components u* (x;) alluded to in the main text and (c) plots of the disregistry distribution fo(x;) = u" (1) — u{” (x) and its derivative po (), representing the dislocation

core-width & (defined in Eq. (1)).

the dislocation line to be perfectly straight and aligned with the x3
axis and the normal to the slip plane be given by unit vector é,
along x, axis. In the x; — x, plane, the dislocation is positioned at
(0, 0). Now, consider the two half-spaces of the material separated
by the slip plane i.e. the x; — x3 plane. Denote the top half-space,
where x, > 0, to be the (+) half space and the bottom half-space,
where x; < 0, to be the (-) half-space. Consider the displacement
field introduced by the dislocation to be given by u;(xq, x;), where
i=1,2,3. This displacement field does not vary along the dislo-
cation line and is hence independent of x3. Consider the displace-
ment of the (+) half-space taken at the slip plane. This is given by
u; ™ (x7) = Xlin& u;(x1,X), and for the bottom half-space we can
2—)

respectively define the displacement u;(™)(x;) = lir% U;j(Xq1,%2).
X—>0~

Resolve the displacement along the direction of the Burgers vec-
tors, yielding the scalar components ”z(;i) (x1) = ul.(*) (xl).bi/b, where
b = b;é; represents the Burgers vector of the dislocation with mag-
nitude b and the Einstein summation convention is utilized in the
equation. The disregistry distribution f(x;) can now be defined
as the relative displacement along the Burgers vector at the slip-
plane given by f(x;) = u$" (x;) —u{~ (x;). In the Peierls model of
the dislocation, this disregistry-distribution is solved for from an
integro-differential equation. This equation considers the balance
of elastic forces resulting from the strain-field of the dislocation
and the restoring atomistic force exerted by the lattice sustaining
this displacement-field at the slip plane. Consequently, the disreg-
istry distribution is given by

foix) = 5 + 2tan () M)
where b is the magnitude of the Burgers vector of the dislocation
and &, is defined as the “core-width” of the dislocation. The core-
width is better represented by the dislocation density distribution
Po(x1) which is the derivative of the disregistry distribution. It is
given by the equation

b
Po(X1) = 7T<X12$—io-§§) (2)

plotted in Fig. 1(c). It is this core-width that strongly dictates the
CRSS. Multiple approaches to predict this core-width have been
proposed in literature [9,11-42]. However, they are challenged by
multiple limitations that have precluded a reliable prediction for
the CRSS, as discussed in the following section. This study ad-

dresses all challenges to develop a robust framework for CRSS-
prediction agreeing with available experimental data.

1.2. Limitations of existing approaches

In the classical formalism of the Peierls dislocation [9-11,14],
the core-width was determined within assumptions of elastic
isotropy, and the understanding that the atomistic restoring forces
are dependent on the isotropic shear modulus u. Extensions to
account for elastic anisotropy have also been proposed in ana-
lytical approaches by way of introducing an anisotropic coeffi-
cient K or an anisotropic tensor H to calculate the expression for
core-width [12,13,15-18,24,31,32,39,41,43,44]. Additional improve-
ments were proposed to replace atomistic restoring-force law to
include the ideal shear-strength on the slip system tmax instead
of the modulus [16,18,31,45,46]. Further, to determine the CRSS
from the core-width, analytical formulae were proposed in two
limits, where either the core-width is very small (“narrow” dislo-
cation core) or very high (“wide” dislocation core) [46]. While all
of these advancements were critical to improve our understand-
ing of the dislocation-core and the CRSS, there are existing limita-
tions which the current study proposes to resolve. The fundamen-
tal background is listed in (a) and (b) below, and the new approach
emphasized in (c)-(f):

a Elastic anisotropy: Crystalline materials are in general
anisotropic, and their elastic constitution must be adequately
accounted for without isotropic approximations. While the
anisotropic coefficient K is a convenient introduction into the
formalism, its determination involves some form of empiricism
or underlying presumption regarding the elastic behavior
surrounding the dislocation core, without direct consideration
of the strain-energy itself. An unambiguous determination
of the anisotropic coefficient directly from the anisotropic
strain-energy of the dislocation core is required for accurate
calculation of the core-width, as proposed in this study.

b Atomistic fault energies: Planar fault energies for the slip sys-
tem must be determined and incorporated to have the correct
atomistic restoring-forces in the dislocation cores. The critical
aspect here is that the restoring force operative across the slip
plane of the dislocation core is in response to a planar disreg-
istry between two half-spaces and not the same as a contin-
uum shear across the slip plane. Thus, the use of shear-modulus
i and the ideal shear strength Tmax is not appropriate for the
restoring-force law. For the case of FCC materials as considered
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in this study, the fault energy barriers correspond to the sta-
ble intrinsic stacking fault energy y; and the unstable stacking
fault energy barrier yys on the Generalized Stacking Fault En-
ergy (GSFE) landscape. These energy barriers can now be well-
predicted using atomistic modeling tools such as Density Func-
tional Theory (DFT) or Molecular Statics (MS), and must be in-
corporated.

Influence of parent lattice structure: A central assumption

in any existing model for critical stress lies in the calculation

of the energy of misfit on the slip-plane. All existing mod-

els to date, to the best of the authors’ knowledge, employ a

one-dimensional series-summation for the misfit-energy which

uses a discrete parameter a’ corresponding to a certain inter-
planar spacing of the lattice (a detailed exposition is deferred to

Section 2.2.2). This choice dates back to the original model by

Peierls [9] from over 80 years back. Such a model does not cap-

ture the lattice-dependent distribution of the discrete atomic-

positions on the slip-plane of the lattice. This study proposes a

fundamental change in this misfit-energy model incorporating

both the slip-plane lattice-structure and advancing the choice
of a’ to a more fundamental quantity known as the Wigner-

Seitz cell area of the slip-plane lattice.

d Mixed character of Shockley partials: Although prior models
have been developed to treat dislocations with mixed charac-
ter [16,17,38,46,47], a robust framework suited to %,(011) ex-
tended dislocations is required. This is because even for a pure-
edge/pure-screw character of the a/2(011) extended dislocation,
the nature of the individual a/6(112) Shockley partials constitut-
ing the extended dislocation is always mixed. To truly predict
the CRSS in this case, the predictive model must accommodate
mixed dislocation character, as proposed in this study.

e Nature of motion of extended dislocation: In order to deter-
mine the CRSS of extended dislocations, it is important to know
how each of the Shockley partials of the dislocation moves
through the lattice. In this description, it is common to pre-
sume a nature of dislocation motion where both the Shock-
ley partials are moving together simultaneously such that the
fault-width between them does not change. This fundamental
presumption is challenged in this study and it is shown that
the Shockley partials can move intermittently or in a “zig-zag”
motion where, first the leading Shockley partial moves forward
with the trailing-partial unmoved and then the trailing-partial
moves with the leading partial fixed. Such a motion allows for
the fault-width between the partials to fluctuate as the disloca-
tion moves and is shown to be energetically preferred.

f Resolved Shear Stress (RSS) on a/6(112) Shockley partials and
0/2(011) extended-dislocation: The critical stress for disloca-
tion motion is generally determined as the critical magnitude
of the RSS on the slip-system, at which dislocation motion is
initiated. And for a slip-system where the slip-plane normal is
i and the direction of slip is 171, the resolved shear stress is
given by tgss = (0qf).1h, where oq is the applied stress tensor.
The slip-direction is parallel to the Burgers vector of the dislo-
cations on the slip system and thus the same equation can be
rewritten as Tggs = (@ﬁ)ﬁ, where b represents the unit vector

along the direction of the Burgers vector. While the above for-
mulation works well for single dislocations without partials or
a stacking fault, it immediately poses a problem for the case
of an a/z(Oll) extended dislocation in FCC materials. This is
because there are three Burgers vectors involved in the sys-
tem, that of the two a/6(112) Shockley partials and the a/z(Oll)
dislocation that these partials constitute. For a given applied
stress-tensor, there are three operative RSS magnitudes corre-
sponding to each of the three Burgers vectors and it is funda-
mental to know how they couple with each other in order to

(o]
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Fig. 2. Core-structure of an “/2(011> extended dislocation in FCC materials: (a) An
extended dislocation constituting a leading partial byp, a trailing partial brp and, a
stacking fault of width d bounded by the two partials; the x; — x, — x3 coordinate
system attached to the extended dislocation is given; the leading partial is at posi-
tion x; = s; and the trailing partial is at x; = —s,, yielding the fault-width between
them as d = s; + s, (b) a schematic three-dimensional view of the extended dislo-
cation is shown, indicating how the fault forms between the two partials; plots of
the (c) disregistry distribution, f(x;), and (d) the dislocation-density distribution,
p(x1), of the extended dislocation, indicating the core-widths &rp;p of the trailing
and leading partials respectively.

determine the CRSS of the FCC slip-system. This has not been
addressed till date, to the best of the authors’ knowledge, and
will be rigorously derived in this study.

1.3. Current approach

The current study improves on all aforementioned fronts to
develop a predictive model for the CRSS of FCC materials, with-
out involving any empiricism. An energy-based approach is for-
warded that predicts the core-width through a balance of contin-
uum strain-energy and atomistic misfit-energy, subsequently uti-
lized to predict the CRSS. The continuum strain-energy is deter-
mined directly from the strain-field of the dislocation, fully ac-
counting for material anisotropy through the Eshelby-Stroh for-
malism. The misfit-energy is determined based on the GSFE land-
scape, incorporating both y;s and yys fault-energy barriers, and the
structure of the slip-plane lattice into the formalism. The predicted
core-width is then utilized to determine the CRSS of a/2(011) edge
and screw dislocations. The individual Shockley partials 0/6(112)
are of mixed characters in both cases. The framework predicts the
stacking fault width in addition to the core-widths of the Shock-
ley partials, subsequently used to predict the CRSS, validated by
comparison with experimental data. The methodology and results
from the predictive framework are elaborated in the Section 2 be-
low, presented concurrently for better clarity. The implications of
the results and the proposed framework are discussed in Section 3.
Section 4 concludes the study with a summary of all proposed
contributions of this study.

2. Methodology and results

2.1. Core-structure of the a/2(011) extended dislocation

The CRSS is predicted for the br = %[110] dislocation on a
(111) plane in the FCC structure. This dislocation dissociates into

two Shockley partials, a leading partial b;p = 0/6[121] and a trail-
ing partial brp = a/6[iil], schematically represented in Fig. 2(a).
Henceforth, any reference to the a/Z(Oll) extended dislocation im-

plies reference to the dislocation by considered in this study, with
the connotation that the proposed analytical framework applies to
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all extended dislocations of the a/z(Oll) family in FCC materials.
The proposed framework is developed and illustrated for both the
edge and screw character of the extended dislocation. For each
character, the global coordinate systems are respectively defined as
follows:

a For screw character: &||[112], &||[111] and &;]|[110]
b For edge character: é;]|[110], &,||[111] and é3]|[112]

where é; is the unit vector along the global x; axes for i =1, 2, 3.
The dislocation line is chosen to be aligned with the x5 axis. Note
that even though the a/z(Oll) extended dislocation has a pure
edge/screw character, the individual Shockley partials have a gen-
eral mixed character in both cases, and the proposed framework
offers capabilities to model this behavior. The magnitude of the
full dislocation by will be represented by bg, and that of the par-
tials will be given by bp. The center of the leading partial’'s core is
located at x; = s;, while that of the trailing partial is at x; = —s,
so that the fault-width between them is given by d =s; + s, (re-
fer Fig. 2 (a, b)). The core-structure of the extended dislocation is
generally given by the following disregistry distribution

Fx1) = bp + %(tan‘l ("1 g :2) +tan~! (" gf )) 3)

The dislocation density distribution p(xq), calculated as the
derivative of f(xq), is given by:

o(x )_< §rp n &ip ) (4)

(%1 +52) +§TP (X1 *51)2 +EL2P

In this study, the extended form is decomposed into the core-
distributions of the individual partials. This is done since the Burg-
ers vector directions of both partials are not aligned (refer Fig. 2(a,
b)) and are different vectors themselves. A separate treatment al-
lows the approach to capture the core-energies better, particu-
larly the strain-energies of both the cores, leading to a more ac-
curate analysis. In that regard, the core disregistry distribution of
the leading and trailing partials, and their corresponding disloca-
tion density distributions are respectively given by the equations:

Jrr(x1) = % + th (X]; sz>

:

Note that the above equations are an additive decomposition
of the extended form Egs. (3) and ((4)), since frp(xq) + fip(X1) =
f(xq) and prp(x1) + pp(x1) = p(x1). Thus, the core structure of
the a/2(011) extended dislocation is completely characterized by
the core-width &rp of the trailing partial, core-width &p of the
leading partial, and the positions s; and s,. These parameters are
determined ab initio from an energy-minimization approach de-
scribed below.

2.2. Energy of the extended dislocation: continuum-strain energy and
atomistic misfit energy

The a/2(011) extended dislocation has two components to its
total energy, Eror: (i) strain energy due to continuum strain-fields
introduced by the dislocation, Esrgay, and (ii) atomistic misfit en-
ergy at the core of the dislocation, Epjspir, due to the disreg-
istries on its slip plane and the associated fault energy cost of
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the same. Both energy components depend on the parameters
(&7p, &1p. S1.52). Thus we have the relation:

Eror (§1p. &1p. $1. S2) = Estrav(§1p, &1p. 1. 52)
+ Emiseir (§1p. §1p. 51, 52) (7)

Calculation of the individual energy components is described
below.

2.2.1. Elastic strain-energy: anisotropic formalism

The continuum strain-energy Esrran (E7p, &1p, S1,52) of the ex-
tended dislocation is determined by calculation of 3 anisotropic
interaction coefficients Kj;, K5, and Kjy, each of which respec-
tively captures the strain-energy of self-interaction of the leading
partial, strain-energy of self-interaction of the trailing-partial and
the strain-energy of interaction between the two partials. These
coefficients are calculated directly from the strain-energies deter-
mined from the anisotropic Eshelby-Stroh (E-S) formalism [48,49].
The methodology to determine Kj, is elucidated first. Consider the
leading Shockley partial, with Burgers vector b;p and the trail-
ing partial brp, separated by a distance R as shown in Fig. 3(a).
The continuum strain-fields surrounding each partial are deter-
mined from the E-S formalism and superposed to determine the
net strain-field surrounding both partials. Subsequently, the strain-
energy density is numerically integrated to determine the total
strain-energy of interaction, E; _ (R) at the chosen separation dis-
tance R. In the integration of the strain-energy densities, a core-
region within radius ry = 5bp around the center of each partial
is excluded since the continuum formalism does not hold in this
core-region. By calculating the strain-energy E, ; (R) at varying R,
the interaction coefficient Ki, is determined (Fig. 3 (a)). This choice
of ry does not change the Kj, calculation since irrespective of this
choice, the gradient of change of E, _, (R) is conserved. This proce-
dure is elaborated further below.

The E-S formalism is described briefly here and the reader is
referred to [48,49] for a more detailed exposition. Following this
formalism, the displacement-field for a dislocation with arbitrary
Burgers vector, b, can be analytically expressed in terms of certain
anisotropic E-S constants, given by the equation,

1 6
Uij(X1,X) = ———— AigLsa bs In(X1 + paX 8
i(X1,%2) 2nﬁ;na iaLsabs IN(X1 + paX2) (8)
where 1y =1 for a €{1,2,3} and ny = -1 for « € {4,5, 6}, and
{Po,Aig. Lsw} are the E-S constants. The E-S constants are solved
for from the equations:

|| Cijiom (Bi1 + Padi2) (Bt + Padma) | =0 9)
Gijkm (8i1 + Pa0i2) (Om1 + PaOm2)Ake =0 (10)
Liw = —02GCijtn (Om1 + PaOm2)Axa (11)

where G, is the fully-anisotropic elastic-constant tensor in the
X1 — Xy — X3 coordinate system and §;; is the Kronecker delta func-
tion. The cubic elastic constants of the FCC materials considered in
this study are listed in Table 1. Given the displacement-field, the
strain-field is calculated using the relation,

. 1 Bui Buj
&ij = 2<8xj+8x,- (12)

Substituting (8) in (12), the strain-field is determined as,

Z 1o Lsabs
47‘[«/ (X1 + paX2)

&ij(X1,%2) = (Aiec(81) + PaS2j) + Ajur (S1i + Pubai))

(13)
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(a)  Anisotropic interaction coefficient, K | (b) Elastic interaction energy
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Fig. 3. Determining anisotropic interaction coefficient K to determine continuum strain-energy of a/2(011) extended dislocation, illustrated using screw-character 0/2(011)
dislocation in Ni (a) A system composed of the trailing partial, byp, and leading partial, b;p, is considered, separated by distance R; the net strain-field around the partials is
determined from the fully-anisotropy Eshelby-Stroh formalism, and the resulting contours of strain-energy density are shown (bp = |brp| = |byp|); the strain-energy density is
numerically integrated to yield the energy of interaction E; _; (R) as a function of the separation distance R, and the slope of variation of this function yields the anisotropic
coefficient Ky, (corresponding to the interaction between the trailing partial and leading partial); note that Kj, is nearly identical for chosen core radius of ro = 3bp; the
coefficients of self-interaction Kj; and K>, can be computed similarly (b) The strain-energy of interaction between the distributed cores of the trailing and leading partials is
illustrated; the elastic interaction energy, Eemsm is computed by integrating the interaction energy between infinitesimal fractionals dbrp and db;p, by utilizing the computed

interaction coefficient K, in (a); here pr and pr represent the unit vectors along the Burgers vectors of the trailing and leading partials respectively.

Table 1 i R . L
Elastic constants (in GPa) of the FCC materials considered in pOSltI.OI‘l .(0’ /2)’ SubSEquently' the total strain-field is gtven by the
this study. equation:
. [
Material ap(A)  Cp Ciy Cas Ref. &ij(x1, %2, R) = giTjP (X] + R/27 Xz) + gl(.JE (Xl _ R/Z’ Xz) (14)
Ni 3.52 261 151 132 [50]
Cu 361 1712 1238 756  [51] The calculated strain-field ¢;; is then used to determine the spa-
Au 408 201 170 46 [50] tially varying strain-energy density, given by:
Ag 4.09 1315 973 51.1  [50] y varying &y Y. 8 v
FeNiCoCrMn 3.6 221 152 165  [52]

1
€er(X1,X2,R) = 5 abcdgab(xl’xLR)Ecd(xl)XZ’R) (15)

where Cy,.4 are the components of the tensor of elastic constants
in the x; — X, —x3 system. The strain-energy density distribution
is shown in Fig. 3 (a). Finally, the strain-energy per unit length of
the dislocation line is calculated by spatially integrating the strain-
energy density e, given by:

In the current formulation, there are two partials with distinct
Burgers vectors, brp and byp, that are linearly independent of each
other and hence require independent calculations of their E-S con-
stants. The anisotropic E-S constants are determined for each of the

partials, and the strain-fields corresponding to both partials, repre- Xmax  Xmax

sented by 5iTjP(x1,x2) and 8}}’()(1,)(2) respectively, are determined Ei_ (R)= / / €01 (X1, X2, R)dx;dx, (16)
from Eqgs. (8) through (13). These strain-fields are then superposed A

to determine the net strain-field surrounding both dislocations. For

this purpose, the relative position of both partials in space is nec- The integral in Eq. (16) is done numerically, over a discretized
essary. It is assumed, without any loss in generality, that the trail- grid employing a sufficiently fine grid size (Axl/bp = sz/bp ~0.2)

ing partial is at the position (0, *R/Z) and the leading partial is at and large limit of integration (Xmax = 150bp) for convergence. The



A.S.K. Mohammed, O.K. Celebi and H. Sehitoglu

Table 2
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Anisotropic coefficients Ky, Kip, and Kj; needed to compute the continuum strain-energy of the

0/2(011> extended dislocation (in units of x10% GPa).

Material Edge-character of extended dislocation  Screw-character of extended dislocation
Kit Kz Kiz Ku Kz Kip
Ni -1.1092 -1.1092 —-1.3535 —0.9324 -0.9324 —0.6661
Cu -0.5715 -0.5715 —0.7361 —0.4417 —0.4417 —0.2394
Au —0.4282 —0.4282 -0.5774 —0.3204 —0.3204 —0.1525
Ag —0.4346 —0.4346 —0.5612 —0.3409 —0.3409 —0.1969
FeNiCoCrMn -1.0741 -1.0741 -1.3174 —0.8622 —0.8622 —0.5382
anisotropic interaction coefficient K;, that captures the strain- Table 3

energy of interaction is given by the equation:

o B

Ei_ (R) =Co+Kpp InR (17)

where Cp is a constant value independent of R. To determine the
core-parameters (&rp, &ip, 51, 52) of the a/z(Oll) extended disloca-
tion, it is only important to determine how the strain-energy of
interaction changes with separation distance and thus Cj is not rel-
evant for this study. It is observed that the variation of E; | (R)
with (InR) is predominantly linear, allowing the anisotropic coef-
ficient K to be determined reliably from the slope of this vari-
ation, as shown in Fig. 3 (a). Following the same procedure elab-
orated above, the interaction coefficients Kj; (or Ky;) can be de-
termined by considering the interaction between two dislocations
with the same Burgers vectors b;p (or brp respectively). The com-
puted anisotropic interaction coefficients are listed in Table 2 be-
low.

Once the interaction coefficients are known, the total contin-
uum strain-energy Estraiv(E7p. &1p. S1.52) for the extended dislo-
cation can be determined. This is done by integrating the strain-
energy of interaction between infinitesimal fractional dislocations
within each dislocation core. For instance, the energy of interac-
tion between cores of the trailing and leading partial Eglzasm is il-
lustrated in Fig. 3 (b). The total strain-energy additionally includes
the self-interaction within the cores of the trailing and leading par-

tials as well (EJL . and E22_. respectively), given by the equation:
11 22 12
Estraiv (STP* %_TP’ 51,82) = Eelastic + Eelastic + Eelastic (18)

where each summand is given by the equations:
Eltuie = S5 1% (K22 ) oo pro(y) In x - yldcly

B gie = 7% 7% (K92 ) 0 pun ) n e - ylaxdy

Egﬁ,stic = f_oooo f_ozo (Klz/Zn)pTP(X)pLP(y) (BTP~BLP) In |x — y|dxdy
(19)

Each of the integrals in Eq. (19) is computed numerically, us-
ing the integ routine in MATLAB®, and subsequently added (as per
Eq. (18)) to yield the continuum strain-energy of the extended dis-
location Esrpaiy (§7p. €Lp. S1, 52)-

2.2.2. Atomistic misfit energy: Wigner-Seitz cell misfit (WS-M) energy
model

The misfit energy Epyseir (E7p. ELp. S1.S2) captures the atomistic
energies associated with disregistries frp;p(x1) Eqs. (5) and ((6))
prevalent across the slip plane within the cores of both partials.
These energies are determined from the Generalized Stacking Fault
Energy (GSFE) curve of the slip system as mentioned in Section 1.
The GSFE curve for a slip system is determined by calculating the
atomistic potential energy y (§) corresponding to a planar disreg-
istry § introduced between two rigid halves of the crystal struc-
ture separated by the slip plane. This disregistry is introduced on

Fault Energies for fcc metals used in this study: intrin-
sic Yisr; unstable .

Material YVus (m]/mz) yisf(mj/mz) Ref.
Ni 292 134 [54]
Cu 180 4 (55]
Au 134 33 (55]
Ag 133 18 (55]
FeNiCoCrMn 439 8 (52]

the slip plane that separates the two halves along the direction of
the Burgers vector of the slip system. The atomistic energies can
be determined from atomistic simulation techniques such as Den-
sity Functional Theory (DFT) or Molecular Statics (MS). This brief
description suffices for the purposes of our study and the reader is
referred to [53] for a more detailed exposition on the GSFE curve.

For the FCC system, two critical energy barriers decisively dic-
tate the GSFE curve, namely the unstable stacking fauly energy bar-
rier yys and the stable stacking fault energy barrier y;s . These bar-
riers are listed in Table 3 for all materials considered in this study.
The complete GSFE curve is given by the equation:

276 b 3b
%(17cos(b—[)>>for0585 7” or TP <8 <2bp

X Yus — Vist 27§ bp 3bp
Vist + (T) (1 — cos (TP))for 5 = 8 < -5

However, it must be noted that there are two Shockley partials
with distinct Burgers vectors in this system, and the fault energy
curve corresponding to each partial must be partitioned, as done
here. The GSFE curve corresponding to both the trailing and lead-
ing partials are given by the equations:

v() =

@(1 — cos (2;1—8>>for 0<6< bzi

Ym(8) = 3 (21)
Vlsf+(y“55yi5f)(l cos (?))for % <8 <bp
Vist + (Vus ; ViSf)(] cos (@) for0 <6 < %

7ip(8) = e s by (22)
7( — cos (TP>)for 5 < 8 <bp

Having described the GSFE curve for the slip system, the sub-
sequent and, perhaps, the most critical step is to interpret the
energy-barriers into the misfit-energy for the extended disloca-
tion, for a given length L of the dislocation line. This step in-
volves the disregistry function and a spatial summation over dis-
crete lattice positions on the slip plane. Conventionally, the follow-
ing Simple-Cubic-Row-Misfit (SC-M) model for the misfit-energy
has been used in literature:

> 7(f(md)) (L)

m=—oo

SC-M _
EMISFIT -

(23)
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(a) SC-M Misfit-Energy model (b)
(Conventional)
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= (m&l + naz). él

Fig. 4. Analytical models for misfit energy: (a) Conventional Simple-Cubic-Row-Misfit (SC-M) energy calculation where the underlying lattice is modeled as rows of atoms
parallel to the dislocation line direction x3, spaced along x; at a discrete periodic distance a’; the magnitude of a’ is postulated to be the interplanar spacing along x;, which

for the given crystallographic directions is a’ = a/\/g; the misfit energy is taken as the sum of fault-energies e

;ﬁ;f"g (x7) at each discrete position X' = ma’ over the shaded

region with area (a’'L) (b) Proposed Wigner-Seitz Cell Misfit (WS-M) misfit energy calculation in this study, where the atomic structure of the underlying slip-plane lattice
is captured; lattice vectors @; and @, are defined to map out all atomic sites on the slip plane, and the area AA is the Wigner-Seitz (W-S) cell area around each atomic

site; the misfit energy is a two-dimensional sum of fault-energies e‘r’nvgﬁ’t”

(x('" M) at each atomic site x|

(M) — (md, + nd,).é; taken over the shaded W-S area; the spacing

between consecutive atomic-rows, for the given crystallographic orientation, is given by 0.5|d;| = 1 5‘1/ /6 which is not equal to the magnitude of a’ defined previously in

the conventional SC-M model (refer main text for crystallographic definition of a;).

where the underlying lattice on the slip plane is modeled as rows
of atoms parallel to the dislocation line (i.e. parallel to x3) spaced
apart by magnitude a’ perpendicular to the dislocation line (i.e.
along xq; refer Fig. 2(a) for the coordinate system), y is given by
Eq. (20) and f by Eq. (3). In short, the SC-M model determines
the magnitude of disregistry u = f(x]'), at each discrete position
x' =mad’, and adds the energy cost associated with the disreg-
istries i.e. summation of y (f(x]' = ma’)), weighted with a planar
area (a’L) parallel to the dislocation line. This SC-M model of the
underlying lattice dates back to the original work of Peierls [9],
over 80 years back, where an expression for the lattice restoring
force was first proposed and a simple-cubic lattice structure was
chosen as the ansatz. It has since been widely adopted in several
works such as those in refs. [13,17,24,38,46,56,57]. The finite mag-
nitude of a’ represents the discreteness of the underlying lattice
and this value cannot be chosen arbitrarily. Till date, the value cho-
sen for a’ is the magnitude of the interplanar spacing along x; i.e.
perpendicular to the dislocation line and on the slip-plane. The SC-
M misfit energy model is schematically represented in Fig. 4(a).
There are multiple challenges with the conventional SC-M
misfit-energy model which the current study proposes to improve
upon. The primary drawback of the conventional SC-M model is
that it does not account for the lattice structure of the slip-plane,
where the positioning of individual atomic sites depends on mul-
tiple factors such as the parent crystal structure, crystallography
of the slip-plane and the character of the dislocation. Secondly, the
spacing between consecutive rows of atomic sites on the slip plane
is not equal to the interplanar spacing which is the value chosen
for a’ (indicated in Fig. 4(b)). Furthermore, the cell-area ascribed
to each atomic-site depends on both of the aforementioned fac-
tors and requires more fundamental grounding than the rectangu-
lar area assigned to each atomic-row (i.e. (a’L) in Fig. 4(a) and in
Eq. (23)) in the SC-M model. This study proposes a novel Wigner-
Seitz Cell Misfit (WS-M) model which improves on all of the above
aspects and further advances the concept of discrete a’-spacing to
the discrete Wigner-Seitz (W-S) cell area surrounding each atomic
site on the slip plane. This is schematically represented in Fig. 4(b).

The WS-M model defines two lattice-vectors on the slip plane,
given by @; and @, such that every lattice site on the slip plane
is given by X" = ma; + nd,, for integers m, n € Z. These vec-
tors are crystallographic lattice vectors that depend on the parent
crystal structure (FCC, in this case) and the crystallography of the
slip plane ({111} slip plane in this case). These vectors define a
primitive-cell for the slip-plane lattice, given by the shaded region
in Fig. 4(b). The reader is referred to ref. [58] for a detailed cover-
age of concepts of primitive cell and the Wigner-Seitz (W-S) cell.
The area enclosed within the cell is the same as the area of the
W-S cell of the slip-plane lattice, illustrated schematically in Fig. 5,
and is a property unique to the slip-plane lattice. With the pro-
posed advancements, the expression for the misfit energy is given
by the equation:

o0 o0
Eviser = > > v(f((ma; + ndy).6,))(AA) (24)
M=—00 N=—00
where AA is the area of the W-S cell around each atomic site
at position ﬁm'”) = md, +nd,, y is given by Eq. (20) and f by
Eq. (3). Note that the vectors @; and a, are two-dimensional, de-
fined on the slip-plane of the dislocation which is the plane de-
fined by the x; —x3 axes. The disregistry function f is however
only a function x;, therefore the argument for the disregistry func-
tion in Eq. (24) is the x; component at each atomic-site given
by (md; + nd,).é;, alternatively represented as xgm’") in Fig. 4 (b).
Also note that depending on the character of the extended dis-
location, the orientation of the lattice with respect to the global
X1 — Xy — X3 axes changes (as seen in the distinct coordinate sys-
tems defined in Section 2.1 previously). Consequently, the individ-
ual atomic positions around the dislocation changes with charac-
ter. The distinct lattice orientations and,consequently, atomic po-
sitions are illustrated in Fig. 6 for edge and screw natures of the
extended dislocation. These features are successfully captured by
the proposed WS-M framework by defining the lattice vectors, a;
and @,, appropriately for each case at distinct orientations relative
to the global axes on the x; — x5 slip-plane (i.e. the (111) plane).
Note that in either case, the a’ definition employed by the conven-
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Fig. 5. Schematic illustration of (a) the Wigner-Seitz (W-S) cell of the {111} slip-plane lattice and (b) the primitive-cell used for the proposed WS-M misfit-energy model;
the area enclosed by both cells, AA, is the same i.e. the W-S cell area, and is a property unique to the lattice, depending on the lattice-constant a as shown.

°
®
[ ]
L ]
[ ]
4
q
° ° ° ° ° [ ] ¢ N
(c) 0.5[d,za |[@ __ M@ |sin30° # @
. __ 2 vy = [111] % = [117] |a{]| sin30° # a
xp, = [111] x, = [110]
- L AR Y
Le7e e xs = [1T0]Y N @\
x3 = [112] P 4 \
-, L] ® e - \
\
A\
I\
a,|Ne
A
My Lzp = |dy]

Fig. 6. Lattice structure of the {111} slip plane, for edge and screw character of the a/2(011) extended dislocation considered in this study: (a) Individual atomic positions on
the slip-plane are shown, along with the lattice vectors a;, @, and the W-S area; the relative orientation of the lattice vectors with respect to the dislocation line direction
(parallel to x3) is dictated by the character of the dislocation (edge character in this case); the shaded cell is the primitive cell for the lattice-structure on the slip-plane
adopted by the proposed WS-M approach; the actual atomic-spacing on the slip-plane does not match the a’ value adopted by the conventional SC-M approach, which is
the interplanar spacing along x; ([110] in this case) (b) Individual atomic positions on the slip-plane are shown, along with the lattice vectors d;, @, and the W-S area; the
relative orientation of the lattice vectors with respect to the dislocation line direction (parallel to x3) is dictated by the character of the dislocation (screw character in this
case); the shaded cell is the primitive cell for the lattice-structure on the slip-plane adopted by the proposed WS-M approach; the actual atomic-spacing on the slip-plane
does not match the a’ value adopted by the SC-M approach, which is the interplanar spacing along x; ([112] in this case) (c) The edge-case slip-plane lattice structure can be
reproduced by periodic repetition of the emphasized atomic-sites within a band of length L,p = |@;| along the dislocation line; such a reduction is useful to feasibly compute
the summation for the misfit energy (d) The screw-case slip-plane lattice structure can be reproduced by periodic repetition of the emphasized atomic-sites within a band
of length Lyp = |@,| along the dislocation line; such a reduction is useful to feasibly compute the summation for the misfit energy.
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Fig. 7. Direct correspondence between the misfit-energy of the system and the fault-energy barriers on the GSFE curve: (a) Atomic-structure of the slip-plane showing the
positions of the trailing and leading partials with Burgers vectors brp and by respectively; the disregistry distribution f(x;) is also plotted; consider the atomic-sites P; and
P, where the magnitude of disregistry is given by f(x’;) and f(x”;) respectively; the stack of atoms on {111} planes above and below each respective site P; and P, are
shown, within the Wigner-Seitz (W-S) area AA bounded by the lattice-vectors a; and d; these atoms constitute a 3D-cell housing a planar disregistry and the misfit-energy
cost corresponding to the disregistry is given by the (b) A schematic representation of the simulation cell used to determine the Generalized Stacking Fault Energy (GSFE)
curve, involving the lattice-vectors W-S area and planar disregistry identical to the 3D-cells in (a); the atomistic potential energy y (8) corresponding to planar disregistry &
is computed; the GSFE curve, plotted for Ni here, is shown from which the misfit-energies y (f(x'1)) and y (f(x”1)), at sites P; and P, respectively, can be determined.

tional SC-M approach does not match the actual atomic-spacing on
the slip-plane lattice.

The WS-M two-dimensional summation covering each atomic-
site can be further reduced based on the symmetry of the slip-
plane lattice. For instance, as shown in Figs. 6 (c, d), the atomic
positions on the slip-plane for edge and screw character of the
0/2(011) extended dislocation can be described by periodic images
of a narrow band of atomic-sites, repeating periodically along the
dislocation line over a spacing of L,p. Consequently, the misfit-
energy expression in Eq. (24) can be expressed as:

1

Emiseir (§1p. &1p. 51, 52) = L

[e'e) No
> Y v(f((mdy +nay).1))(AA)

M=-00 n=—N
(25)

where (Lyp,Ng) = (|d@;],1) for the case of a a/z(Oll) edge-
dislocation, and (Lyp, Ng) = (|@3]|, 0) for the screw-dislocation case,
y is given by Eq. (20) and f by Eq. (3). The energy is normalized by
the length L,p to yield a misfit-energy measure that is normalized
per unit length of the dislocation line.

The description of the misfit-energy using lattice-vectors and
W-S cell area has further significance. The lattice-vectors bound-
ing the W-S area represent the smallest periodic primitive cell
on the slip-plane, as shown in Fig. 6 (a, b). It is precisely the
same cell that is employed in the calculation of the fault-energy
curve y(8) using methods such as DFT, alluded to at the begin-
ning of this subsection. For instance, consider the slip-plane lattice
in Fig. 7 (a). On this plane, there is a disregistry distribution f(x;)
introduced by the combination of the two Shockley partials, brp
and bjp, constituting the a/2(011) extended dislocation considered
in this study. Now consider an arbitrary atomic-site on this slip-
plane, say P;, shown in Fig. 7 (a). Consider the stack of atoms on
the {111} planes above and below P;, within the W-S area defined
around the site, also shown in Fig. 7 (a). This stack of atoms and
the W-S area define a three-dimensional (3D) cell which would
have been in perfect FCC arrangement if not for the disregistry

f('1) on the slip-plane at P;. The set of all 3D cells constructed
around each atomic-site on the slip-plane yields the complete 3D
crystal structure around the extended dislocation. If the “per-site”
misfit-energy corresponding to the disregistry within each 3D cell
is known, then the aggregate sum of such misfit-energies over each
atomic-site yields the total misfit-energy of the system. It is ele-
gant to note that the per-site misfit-energy is known directly from
the GSFE curve because the curve itself is obtained by simula-
tions of disregistry introduced in a “simulation cell” identical to
the 3D-cell defined at each site (refer Fig. 7 (b)). Thus, there is
a direct geometric correspondence that has been established be-
tween the method of simulation to obtain the GSFE curve and its
consequent application on the plane of disregistry of a dislocation
to obtain the misfit-energy. Consequently, at site Pj, for a disreg-
istry of 8 = f(x';) introduced along brp, the misfit-energy is equal
to y(f(x'1)) obtained directly from the GSFE curve as shown in
Fig. 7 (b). Furthermore, since the GSFE curve is generally com-
puted by allowing atomic-relaxations normal to the slip plane, di-
rectly sampling the same fault-energy allows the WS-M model to
inherit incorporation of such normal relaxations at each atomic-
site. However, the magnitudes of these relaxations cannot be pre-
dicted but only their influence is captured through use of fault-
energies from the GSFE curve. By maintaining such a close cor-
respondence between the energies computed on the GSFE curve
and the misfit-energies within the crystal structure around the dis-
location, it is asserted that the proposed framework leads to an
accurate determination of the misfit-energy, advancing over prior
frameworks. Nonetheless, it must be mentioned that one of the ef-
fects that cannot yet be captured in the current framework is the
coupled-influence of a varying disregistry distribution on the fault-
energy at each atomic-site. This would be a promising avenue for
future research to further improve the predictive accuracy of the
proposed framework.

A direct comparison between the conventional SC-M approach
and the WS-M approach of the present study is shown in Fig. 8.

The distribution of efncl.;f"i”t(xT) =y(f(xM)d and e%ﬁ}i’;”(xgm’")) =
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Fig. 8. Comparison of the conventional SC-M and proposed WS-M approach for
misfit-energy determination, noting a significant difference between predictions of
the two approaches (the misfit-energies are computed for the case of the a/z(Oll)
extended dislocation of screw-character in material Ni).

(m,
y(f (le n)))AA/LZD are respectively shown, both of which repre-

sent the local misfit energy at distinct lattice sites, x]' = ma’ and
(m n)

= (md; + na,).é;, for the SC-M and WS-M approaches re-
spectlvely. The proposed WS-M approach yields improved predic-
tions for the misfit-energy as compared to the SC-M approach, val-
idated by the agreement of the predicted CRSS with existing ex-
perimental measurements in literature, shown later in this study,
in Section 3.

The expression for the misfit-energy is rewritten in terms of
the partitioned fault-energies (given by Eqs. (21) and (22)) and
disregistry functions of the individual Shockley partials (given by
Egs. (5) and (6)), the total misfit energy of the system is given by
the equation:

Y X vee(fre(x™"))AA
Ewnsrir (§1p, €1p, 51, 52) = o =M mz&éwm‘}\“/,max
e + Z Z )/Lp(pr(Xgm'n)))AA
n=—Ny m=0
(26)
where x(m " — (md, + nd).¢;. A large summation limit of Mmay is

chosen, of the order of 104, at which the computed misfit energy
Emiseir (E1p, E1py S1, S2) is sufficiently converged. The misfit-energy
given by Eq. (26) is calculated per unit length of the dislocation-
line. Now, the misfit energy can be computed as a function of the
core parameters (£7p, &1p, 51, 57) of the extended dislocation.

2.2.3. Determination of core-structure parameters

At this stage, the continuum elastic energy
Egrastic(Erp. &p.S1.52)  and  the  atomistic misfit  energy
Enuseir (E1p, &1p, 51, 52) are known as a function of the dislocation
core-parameters (&rp, &1p, S1.S2) from Egs. (18) and (26) respec-
tively. Thus, the total energy of the a/2(011) extended dislocation
Eror (étp. &1p. S1.5) is also known as a function of the core-
parameters from Eq. (7). The core-parameters minimizing Eror are
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sought by solving the equations

dEror
0&rp

0Eror
- —o;
0&p

0Eror
851

0Eror

0; 852

=0 (27)

The minimization routine is implemented using the fmincon
routine in MATLAB®. The minimizing parameters (£0,, &0, 59,59)
are then used to determine the CRSS. The variation of the total en-
ergy about the energy-minimizing solution (&TP, SLP, sO) is plot-
ted in Figs. 9 and 10, illustrated for the case of a screw-character
a/2(011) extended dislocation in Ag. Fig. 9 plots the variation of
total energy against varying combinations of (s1,s) which repre-
sent the positions of the leading and trailing Shockley partials re-
spectively. The core-widths for the partials are fixed at (£%,, &%)
Note that the elastic and misfit energy display monotonic trends
of opposing nature, as shown in Fig. 9 (a, b). The elastic-energy
increases with reducing d = sy + S, which is the fault-width be-
tween the partials. This is because the separation distance between
the dislocation cores is reducing and raises the elastic-energy of in-
teraction. Contrastingly, the misfit-energy increases with increasing
d = sy +5s, because the faulted-region of the dislocation cores is
now spread over a larger distance, thereby raising its total misfit-
energy. Thus there exists a position (s?, sg) at which a balance be-
tween the two energies is achieved to minimize the total energy
Eror

The misfit energy has further undulations on a smaller magni-
tude scale revealed by doing a line-scan of the misfit-energy land-
scape across points AyOpBy (subscript M representing misfit), as
shown in Fig. 9 (b) and plotted in 9 (c). There is a condition that
is satisfied along this line which is that s; + s, = C, a constant, im-
plying that the stacking-fault width between the partials remains
the same. The undulating misfit-energy curve in Fig. 9 (c) reveals
the existence of multiple local minima 0}, = (s}, s,) where the ex-
tended dislocation has the same misfit-energy. This corresponds
exactly to the existence of multiple energetically-degenerate po-
sitions for the Shockley partials on the slip-plane lattice. The ex-
istence of such energetically-degenerate positions is further illus-
trated in the landscape of Eror in Fig. 9 (d), where analogous min-
ima in total-energy exist at positions 0= (s9,59), 0y = (s'1,5'2)
etc. Thus these minima represent multiple energetically-stable po-
sitions of the a/2(011) extended dislocation on the {111} slip-plane.

The variation of the total energy Eror with the core-widths
of the partials (&rp,&p) is shown in Fig. 10, plotted at posi-
tions (s?,sg). Again, the elastic and misfit energy display mono-
tonic trends of opposing nature, as shown in Fig. 10 (a, b). The
elastic-energy increases with reducing core-widths. This is because
the separation distances between fractional-dislocations within the
dislocation cores are reducing, raising their elastic-energy of in-
teraction. Contrastingly, the misfit-energy increases with increas-
ing core-widths because the dislocation cores are spread over
a larger span, increasing the total area of misfit and ultimately
raising the misfit-energy. The total energy is minimized at core-
widths (S})P, ELOP) where a balance between the two opposing
trends is achieved. Thus the equilibrium core-configuration of the
a/z(Oll) extended dislocation is described by the core-parameters
(€25, £2,.59.59) and the equilibrium configurations are plotted in
Fig. 11 for extended dislocations of edge and screw characters. Re-
call that in each case, the individual Shockley partials are of a
mixed character and the framework developed in the present study
is capable of predicting their core-structure. The core-widths of the
individual partials and the fault-width separating them differ con-
siderably between the edge and screw characters. The methodol-
ogy for prediction of the CRSS is presented in the next subsection.
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Fig. 9. Variation of elastic Egjasric, misfit Eyyspir, and total energies Eror of the a/2(011> extended dislocation plotted against the positions of leading and trailing partials
(s1,52) respectively at the energy-minimizing core-widths (&%, £%) (shown here for the case of screw-character dislocation Ag); Variation of (a) elastic energy Egjasric and
(b) misfit energy Enysrir, displaying opposing monotonic trends with respect to change in stacking-fault width s; +s, = d (c) Plot of the misfit-energy over a selected path
AmOpMBym shown in (b) illustrating the existence of multiple energy minima on the landscape (d) Plot of the total energy Eror also illustrating the existence of multiple
minima 0(s?,s9), 01(s'1,5'3) etc, each of which represents an energetically-degenerate position for the extended dislocation (as shown in the schematic insets); these
minima lie along the line s; + s, = C, a constant, implying that in each of these positions the stacking-fault width between the partials is the same.

2.3. CRSS of 9,(011) extended dislocation

The proposed framework is motivated from the Peierls-Nabarro
(P-N) model [10] and advances the model to determine the CRSS of
a/2(011) extended dislocation in FCC materials. In short, the CRSS
is determined from the maximum gradient on the energy land-
scape. In the standard P-N approach, only the 1D misfit-energy
landscape is considered. In this study, a novel approach is proposed
where the total-energy landscape, Eror is considered. The variation
of the total-energy against the position of the individual Shock-
ley partials is of interest i.e. Fig. 9 (c). The total-energy landscape
is plotted again in Fig. 12(a) below, shown for a screw-character
a/2(011) dislocation in Ni. As discussed in Section 2.2.3 before, the
total-energy landscape has multiple energetically-degenerate min-
ima represented by points O = (s9,59), 0; = (s'1,5'3), etc., each
representing an energetically stable position of the extended dis-
location on the slip-plane.

To determine the CRSS, the energy-trajectory undergone by the
0/2(011) extended dislocation in moving from one minimum, say
0, to the next energetically-degenerate position, say O;, must be
extracted. The energy trajectory depends on how the individual
positions of the Shockley partials (sq,s;) vary in moving from O
to 04. This variation in positions between the minima effectively
represents the “path” taken by the a/z(Oll) extended dislocation.
In the proposed approach, the “Minimum-Energy Path” (MEP) be-
tween the two minima is determined, along which the dislocation
faces the least resistance to motion. For this purpose, a set of paths
between the two minima is considered, given by (s1(t),s(t)),
with the path being parametrized by a monotonically increasing

1

variable t. Considering the path to begin at the minimum O, it
is known that for t =0, s9 =5;(0) and s9 =5,(0). Also, every al-
lowable path must exhibit a periodicity along the straight line
S1 + sy = C (passing through O and 04, shown by the dashed line
in Fig. 12 (a)), which is to say that at periodic intervals along the
path, the stacking-fault width between the partials recovers to its
equilibrium value C = s9 +sJ that it began with at 0. The trajectory
that connects the minima must be periodic function, connecting
all the energetically-degenerate states lying at periodic intervals on
the total-energy landscape. Therefore, a Fourier-series based model
is chosen to define the path, described by the equations:

n
si(t) =9+ (%) (t +GCo + k; (1 = cos 2’&”))

n
) (—t +GCo+ X G(1-cos zgf))
k=1

(28)
s2(t) =9+ (%

where the maximum number of periodic functions chosen is taken
to be n = 4, sufficient for the purposes of the study. Thus, the set of
parameters (Cy, Cq, Gy, C3,C4,Cp) define a path on the total-energy
landscape beginning at O. Note that the straight-path connecting
0 and O, is modeled by the parameter values Cp =C; =C, =C3 =
C4 =0, and for any Cp # 0. For a different set of parameter values,
the path is not straight but zig-zag in nature (shown by the solid-
line path in Fig. 12 (a)). The energy is computed at discretized

points along the path, given by t; = iAt, where At =0.01 X The
total cumulative energy along the path is summed to obtain the
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Fig. 10. Variation of elastic Egjstic, misfit Eyyseir, and total energies Eror of the 0/2(011> extended dislocation plotted against the core-widths of trailing and leading partials
(&rp. &1p) respectively at the energy-minimizing positions of the partials (s9,s3) (shown here for the case of screw-character dislocation Ag); Variation of (a) elastic energy
Egrastic and (b) misfit energy Ewyserr, displaying opposing monotonic trends with respect to the partial core-widths (&rp, &1p), summing together to yield (c) the total-energy
Eror behavior which exhibits a minimum at (£2,, £2,).
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Fig. 11. Plot of the dislocation-density distributions corresponding to the energy-minimizing core-structure (é}’P, Efp,s?,sg) of the a/2(011) extended dislocation, shown for
both edge and screw characters of the dislocation.

following objective function:

Tiax

Eparti (Co. C1.... Cp) = > Eror (s1(t:). 52(6)). €0, &) (29)

i=1

The path parameters that minimize Epsry are determined us-
ing the unconstrained minimization routine fminunc in MATLAB®,

12

and these parameters define the Minimum Energy Path (MEP). It
is found that the MEP is not straight but has a wavy “zig-zag” na-
ture, passing through the energetically-degenerate minima O, O,
etc. (shown by the solid-line path in Fig. 12 (a)). The energy tra-
jectory along the MEP is obtained from the landscape, and also
compared to the trajectory along the straight path 00,, shown in
Fig. 12 (b). Clearly, the MEP exhibits a lower energy barrier for the
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Fig. 12. Total-energy landscape of the a/2<011) extended dislocation for a screw-dislocation in Ni (a) Plot of total-energy Eror against the position of the Shockley partials
(s1,57) indicating possible paths traversing across the energy minima O = (s?,sg), 01 = (s'1,5'2); the dashed-line represents a straight-path in which the partials move
together such that stacking-fault width between them is conserved i.e. s; +s, =C, is constant; the solid-line represents a zig-zag Minimum-Energy Path (MEP) where the
partials don’t move together and move intermittently, passing through an intermediate transition state S (b) Energy trajectories along the straight-path shown in (a), and
the Minimum Energy Path (MEP); the energy barriers along the MEP are significantly lower indicating that the zig-zag nature of motion is preferred; the maximum gradient
of the energy trajectories yields the CRSS for the MEP and the straight path, given by 7z and 72 respectively (elaborated in main text) (c) Schematic representation of the
motion of the partials along the MEP, in which the leading partial (i) moves first, (ii) increases the fault-width from d to d + Ad and then (iii) the trailing partial follows; a

plot of the variation of the stacking-fault width during the motion is also given.

path of the dislocation, and also exhibits an intermediate stable
transition state S. The variation of the stacking-fault width d(t) =
s1(t) +s,(t) is also determined and plotted in Fig. 12(c) showing
how the fault-width does not remain constant but fluctuates dur-
ing the motion of the dislocation. Fig. 13 shows the MEP deter-
mination for the case of a/z(Oll) edge-dislocation in Ni, and it is
observed that the path is nearly straight with minor zig-zag be-
havior. Thus, in addition to the non-straight MEP revealed by the
approach, it is also revealed that the nature of motion of the dis-
location can change with its character.

The final critical step is to determine the CRSS. Till date, the
conventional Peierls-Nabarro approach has been adopted where
the CRSS is given by the equation:

)

1 dESS™M ()

7lBs = max <bF 0 (30)

13

where E3.M(8) = %O: y(f(ma' —8))d/, for y defined in
m=-o0

Eq. (20) and f by Eq. (3), motivated by the conventional SC-
M misfit-energy model discussed in Section 2.2.2 (also refer
Eq. (23)). There are multiple challenges in adopting this approach
for the case of the a/z(Oll) extended dislocation. For instance, (i)
the path of the individual Shockley partials is ignored in this ap-
proach, (ii) the model presumes dependence on the total Burgers
vector br alone and seemingly has no dependence on the partial
Burgers vector bp and (iii) Only the misfit-energy landscape is
considered and in the one-dimensional form.

In this study, a novel approach is proposed in which the CRSS
is determined from the energy-trajectory corresponding to the zig-
zag MEP path on the total-energy landscape, advancing on all
aforementioned fronts. The proposed approach is thus named the
Optimum-Energy-Trajectory (OET) approach for CRSS prediction for
FCC materials. Suppose the a/2(011) extended dislocation is subject
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Fig. 13. Total-energy landscape of the a/2(011) extended dislocation for a edge-dislocation in Ni (a) Plot of total-energy Eror against the position of the Shockley partials
(51, S2) indicating possible paths traversing across the energy minima O(s?,sg), 01(s'1,5'7); the dashed-line represents a straight-path in which the partials move together
such that stacking-fault width between them is conserved i.e. s; + s, = C, is constant; the solid-line represents a zig-zag Minimum-Energy Path (MEP) where the partials don’t
move together and move intermittently, passing through an intermediate transition state S (b) Energy trajectories along the straight-path shown in (a), and the Minimum
Energy Path (MEP); the energy barriers along the MEP are significantly lower indicating that the zig-zag nature of motion is preferred; the maximum gradient of the energy
trajectories yields the CRSS for the MEP and the straight path, given by 7z and 7 respectively (elaborated in main text) (c) Schematic representation of the motion of the
partials along the MEP, in which the leading partial (i) moves first, (ii) increases the fault-width from d to d + Ad and then (iii) the trailing partial follows; a plot of the

variation of the stacking-fault width during the motion is also given.

to the stress-tensor og. The applied load is considered to be a uni-
axial tensile load along the $||[132] direction, consequently given
by o4 = 04(D ® D). This direction of loading was chosen so as to re-

sult in the same Schmid factor for the trailing and leading Shockley
partial. For motion of the dislocation, the change in Gibbs’ free en-
ergy, dG, of the system must be considered, given by the equation:

dG = dEror — dW (31)

where dE7or is the change in the total-energy of the system and
dW is the change in the work-interaction energy with motion of
the dislocation. This is given by:

((@ﬁszip)’;u’) dsy + ((277511‘1;) ~ETP) (—dsy)
O’abp(sﬁ_pdsl +5Frp(—d52))
Oabp (SH.PS/I (t) — SFrps’> (t))dt

dw

(32)

14

where fig;, = 1/@[111] is the normal to the slip-plane, ds; and
ds, respectively represent the change in the positions of the lead-
ing and trailing partials respectively, SFp and SFp are the Schmid
factors corresponding to the leading and trailing partials respec-
tively, and s;{(t), so(t) parametrize the MEP. The Schmid fac-
tors are given by the equations SFp = (¥ - fig;,) (D - byp) andSFrp =
(\‘)~ﬁs,ip)(f)~l37p), where byp and byp are unit vectors along the
Burgers vectors of the trailing and leading partials respectively. The
negative sign attached to the s,(t) term on the RHS is because s,
and s; are defined in opposite sense to each other (refer Fig. 2(a)).
At the onset of motion, the condition dG = 0 is achieved. With this
condition, and from Eqgs. (32) and (31), it follows that the critical
applied stress for motion is given by:

1 1 dEror
(SFps’1(t) — SFps'(t)) \ by dt

o = max ( (33)
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Table 4
Comparison of proposed analytical framework in this study against experiment and a commonly employed exponential model* of CRSS.
Material Exponential CRSS CRSS model of this Experimenttg (MPa)
o
model{&iso (A). 727 (MPa)} Study{&up (A). 7 (MPa)}(Eq. (34))
Ni {1.47, 2539.8} {4.29, 8.6} 4.7-9 [65,66]
Cu {1.60, 1310.8} {3.70, 2.1} 0.5-3.2 [65,67-69]
Au {2.01, 555.2} {4.78, 1.4} 0.9 [70]
Ag {1.91, 650.9} {4.98, 1.3} 0.3-0.7 [46,65]
FeNiCoCrMn {1.04, 6469.0} {2.01, 147.4} 135-172 [71,72]

The critical applied stress is resolved along the slip-system of
the extended dislocation to determine the critical stress in the re-
solved form, yielding the CRSS as:

Tr = 0y SFurr

= SFFULL~ max (34)

1 (1 dETOT)
(SFips'1 (t) — SFps 5 (t)) \ bp dt

where SFyp = (D - fig;p) (D - br) is the Schmid factor for the full ex-

tended dislocation on its slip system, with by representing the unit
vector along the direction of the Burgers vector bg. Figs. 12 (b) and
13 (b) show the comparison between the computed CRSS corre-
sponding to a straight-path and the MEP, given by TE and 1 re-
spectively. It is observed that 7p < r,§, establishing the CRSS to be
equal to ¢ corresponding to the MEP path. This is expected since
the energy barriers and gradients along the MEP are both lower
than the straight path. Thus, the CRSS for the a/z(Oll) has been
determined.

Finally, the efficacy of the model is validated by comparing
against a benchmark exponential relation commonly employed
for predicting the CRSS [59-64] and by comparison with avail-
able experimental data. This comparison is presented in Table 4.
The proposed framework significantly improves on the benchmark
model by yielding CRSS predictions of the correct order, agree-
ing well with experiments. Predictions of the framework are also
compared with another popular approach that determines the
core-width based on the shear strength tmax and an alternately-
defined anisotropic factor K, subsequently applying the exponen-
tial model for CRSS [31,45]. Comparisons are shown in table A1 of
Appendix A yet again noting the significant improvement offered
by the proposed framework.

#rpP = (G/Av) exp(—27 SisoA/bF), employing the isotropic core-

width 5o = d{m}/ZAv' where A, =1 — v for edge-character dislo-
cation and A, = 1 for screw-character dislocation, G is the isotropic
shear modulus and v is the Poisson’s ratio, listed in table A2 in
Appendix A

3. Discussions

The current study proposes a predictive analytical framework
for the CRSS of a/2(011) extended dislocations in FCC materials.
The proposed framework determines the core-parameters of the
dislocation without any apriori assumptions and predicts the CRSS
from these parameters for extended dislocations in FCC materials.
The core-parameters, namely the core-widths of the Shockley par-
tials (¢rp and &;p) and their positions (s; and s, ), are determined
by a minimization of the total energy of the dislocation. Existing
approaches have thus far involved assumptions or some form of
empiricism associated with the calculation of the core-widths and
in the formulations for the continuum strain energy or the atom-
istic misfit energy. For instance, several works employ the isotropic
formulae for core-widths (§gpge = d311)/ @(1 — v)) for edge charac-

ter or Escrpyy = d{lll}/z for screw character, where dy41y is the in-
terplanar spacing between consecutive {111} planes and v is the
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Poisson’s ratio) even for anisotropic materials. Additionally, in cal-
culation of the strain-energy, either isotropy is inherently assumed
or an ad-hoc correctional-factor for anisotropy is employed (repre-
sented by K) in the calculation of the core-width. In calculation of
the misfit energy, the choice of a’ as the discrete lattice parameter
separating rows of atoms (in the conventional SC-M approach) is
inconsistent with the underlying crystal structure of the slip plane.
Furthermore, idealized limits of “narrow” or “wide” core-widths
are commonly employed to afford use of simpler analytical expres-
sions for the core-width and the CRSS [46], without accurate basis
for whether the core-widths in the material are at either limit in
reality. The proposed formalism eliminates all such empiricism or
assumptions and determines the core-parameters.

The current study offers multiple advancements in prediction
of the continuum strain-energy and atomistic misfit-energy of the
extended dislocation. A fully-anisotropic calculation of the strain-
energy is proposed employing the Eshelby-Stroh (E-S) formalism,
determining the anisotropic interaction coefficients, K;; (i, j =1,2)
directly from the E-S strain-fields and strain-energies. Such an ap-
proach is particularly critical to evaluate the strain-energies of in-
teractions between the a/6(112) Shockley partials, which are gen-
erally of mixed character even for a pure-edge or pure-screw char-
acter of the a/2(011) extended dislocation, as considered in this
study. The proposed WS-M model offers a significant and neces-
sary advancement over the current SC-M understanding of misfit-
energy within the core of the dislocation. The proposed approach
offers a framework which, for the first time, accommodates the
complete crystal structure on the slip plane. It is shown that the
conventional SC-M approach of representing the crystal structure
as rows of atoms separated a’-distance apart is inaccurate. The cor-
rect atomic-positions have a two-dimensionality which can only
be captured by a two-lattice-vector @; — @, basis as done in this
study, and the spacing between the atomic-rows is not equal to
the conventional choice of a’ that has so far been adopted (re-
fer Fig. 6). Furthermore, at each atomic-site, a Wigner-Seitz (W-
S) cell area is defined which provides a physically-motivated dis-
crete domain assigned to each site and partitions the crystal struc-
ture around the core into 3D-cells of disregistry, the fault-energies
within which are exactly those that the GSFE simulation delivers
(refer Section 2.2.2 and Fig. 7). The WS-M approach is also capa-
ble of handling mixed dislocation character (for the a/2(011) dislo-
cation and/or its partials) since the lattice-vectors @; — a, can be
accordingly defined depending on the relative orientation of the
slip-plane crystal structure with respect to the dislocation-line di-
rection. Each of these advancements offers sufficient physical fi-
delity to reliably model the core-structures of dislocations in other
crystal structures such as Hexagonally-Closed Packed (HCP) ma-
terials. It can further be adapted for dislocations at interfaces of
anisotropic media, allowing determination of core-structures and
CRSS predictions for interface dislocations such on twin boundaries
[73,74] or film-substrate interfaces [75]. Also from a conceptual
standpoint, it would be a promising direction for future research
to analyze the impact of individual advancements in this frame-
work, for instance of (a) elastic anisotropy by comparing the CRSS
predictions with isotropic values of the interaction coefficient K
against the anisotropically computed coefficient and (b) the misfit-
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energy model, comparing the predictions from SC-M and WS-M
models.

The proposed framework deals with all core-parameters
(&t1p. E1p, S1,52) in a coupled manner, allowing the framework to
capture a wide variety of core-structures, both narrow and wide.
For instance, as seen in Fig. 11, the approach predicts core-
structures of a/2(011)—screw dislocations in Ni which spans a width
along x; that is about 15x smaller than that of the HEA FeNiC-
oCrMn. Modeling such a range of cores, particularly in the narrow
end, requires the model to capture the coupled-influence of both
the unstable stacking fault energy barrier yys and the stable stack-
ing fault energy barrier y; as both can dictate the core-widths and
the fault-width. This is unlike most treatments till date that treat
the stacking fault width disjoint from the core-widths, thought to
be respectively dependent on y; and yys in a disjoint manner, and
thus only capable of reliably modeling a well-dissociated disloca-
tion (i.e. sufficiently large fault-width).

The current approach establishes the contrasting trends in the
continuum strain-energy and the atomistic misfit-energy with re-
spect to the core-parameters (£rp, &ip,S1,52) (refer Section 2.2.3,
Figs. 9 and 10). The existence of a total-energy minimum
at (&2, €5.59,59) is illustrated and the existence of multiple
energetically-degenerate minima on the total-energy landscape,
Eror, is also revealed. Knowledge of the energy-landscape to such
detail is necessary to know the nature of motion undertaken by
the dislocation under applied stress. In considering the a/z(Oll) ex-
tended dislocation, it can often be a tacit assumption that disloca-
tion motion occurs by simultaneous motion of its partials, preserv-
ing the fault-width in between. This study shows for the first time
that such motion is energetically unfavorable as it would encounter
a higher energy barrier. The existence of Minimum-Energy-Path
(MEP) on the energy-landscape is proposed and solved for, estab-
lishing the motion of the extended dislocation to occur in a “zig-
zag” manner through intermittent motion of its individual partials.
And it is this MEP that has led to the accurate prediction of the
CRSS of the %,(011) extended dislocation.

A novel Optimum-Energy-Trajectory (OET) approach to predict
the CRSS of a/2(011) extended dislocations is proposed advancing
over the conventional Peierls-Nabarro framework. The proposed
method is grounded in first-principles energetics and reveals the
dependence of the CRSS on three Schmid factors - the Schmid
factor of the a/2(011) dislocation, SFqy;; and that corresponding to
each partial, SFp and SFp. Dependencies of the CRSS on the gra-
dients of the total-energy landscape dETOT/dt along the MEP, and
the gradient of motion of the individual partials, s} (t) and s,(t),
are clearly revealed for the first time in literature. The model re-
veals why it is insufficient to consider the full Schmid factor SFqy;
alone since the motion of the extended dislocation is mediated
by its individual partials. Further, the proposed framework is ca-
pable of predicting the CRSS in the presence of an external stress
causing unequal Schmid factors, SFyp # SFp, where the motion of
one partial is more preferred than the other. Dependencies on the
character of the dislocation, elastic anisotropy and the underly-
ing crystal structure are captured by the total-energy landscape
Eror, ultimately influencing the MEP and the corresponding gradi-
ents dETOT/dt. To the best of the authors’ knowledge, the proposed
framework is the first one in literature capable of accounting of
all the aforementioned effects involved in the motion of the ex-
tended dislocation. The efficacy of the predictions is illustrated by
the agreement with experimental results in Table 4, advancing over
a commonly employed exponential model for the CRSS.

4. Conclusions

The current study proposes a predictive analytical framework
for the core-widths and CRSS of a/2(011) extended dislocation in
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Face-Centered-Cubic (FCC) materials, without involving any empiri-
cism. The following advancements are offered:

a The proposed framework accounts for the full elastic anisotropy
in the material and the fault energies on the slip plane, predict-
ing the core-width from an optimal balance between the con-
tinuum strain-energies and atomistic-misfit energies.

b A methodology to determine the anisotropic interaction coef-
ficients K;; directly from the Eshelby-Stroh strain-fields around
dislocations is proposed leading to accurate calculation of the
strain-energy of interaction for arbitrary material anisotropy.

¢ A novel Wigner-Seitz-Cell-Misfit (WS-M) energy model is pro-
posed to predict the core-misfit energy through incorporation
of the correct atomic positions on the slip-plane crystal struc-
ture and the correct planar-domain (AA- Wigner-Seitz cell
area) around each site over which the local fault-energy of dis-
registry is prevalent.

d A robust procedure to determine the core-parameters for the
extended dislocation is proposed, determining both the core-
widths of the Shockley partials and the stacking fault width
simultaneously. This approach allows modeling dislocations
whose cores can either be well-dissociated with large fault
width (e.g. FeNiCoCrMn) or on the other extreme, narrow cores
with such small width that the partial cores exhibit overlap
(e.g. Ni).

e The nature of motion of the extended dislocation is revealed by
determining the Minimum-Energy-Path (MEP) of motion across
the total-energy landscape. The MEP reveals a zig-zag nature of
motion involving intermittent motion of the individual Shockley
partials challenging the common notion that the partials move
together. The zig-zag motion allows for a fluctuating stacking
fault-width during motion of the extended dislocation.

f A novel Optimum-Energy-Trajectory (OET) approach to pre-
dict the CRSS of extended dislocations is proposed, grounded
in first-principles energetics and incorporating the determined
MEP of the dislocation. Dependencies on the total-energy gra-
dient along the MEP, along with the gradients of motion of the
individual partials and their Schmid factors are clearly estab-
lished, developing a new analytical expression for the CRSS ad-
vancing over the state-of-the-art understanding in the field.

g The proposed framework is validated by comparison with avail-
able experimental data and the advancement offered by the
framework is established by comparison against a popular
benchmark exponential relation.

Thus, this study proposes a fully predictive model for dis-
location slip in FCC materials, significantly advancing over the
state-of-the-art models and addressing a major void in structure-
property prediction for structural materials, now capable of being
employed for design/exploration of material compositions with un-
precedented yield strength.
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Appendix A: Comparison of predictions from proposed models
against existing models

Table A1l: Comparison of proposed analytical framework in this
study against alternate prior model for core-width prediction and
CRSS

Exponential model for CRSS based on Proposed

core-width calculated through K-factor and Approach in

shear strength tmax[46] this study
Material Kb

Tiax K 51; ="0F Tmax 7 :xpo.—K SLoP -

(GPa) (GPa)  (A) (MPa) A)  (Mpa)
Cu 1.8 [46] 69.2 7.8 3x107%  3.70 2.1
Ag 0.89 [46] 459  12.07 2x1077 478 1.4
FeNiCoCrMn 4.4 [45] 149 6.86 5x103 201 147.4

#17PK = (GAV) exp(—27&br), employing £ = Kbg/ 47 Tmax),
vy =1—v for edge-character dislocation and A, =1 for screw-
character dislocation, G is the isotropic shear modulus and v is the
Poisson’s ratio, listed in table A2
Table A2: Isotropic shear modulus G and Poisson’s ratio v for
materials considered in this study (employed in calculations of
Tables 3 and A1)

Material G (GPa) v

Ni 76 [76] 0.31 [76]
Cu 45 [76] 0.35 [76]
Au 27.6 [76]  0.42 [76]
Ag 289 [76] 037 [76]
FeNiCoCrMn 80 [77] 0.26 [77]
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