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We study a three-dimensional (3D) classical Ising model that is exactly solvable when some coupling
constants take certain imaginary values. The solution combines and generalizes the Onsager-Kaufman solution
[L. Onsager, Phys. Rev. 65, 117 (1944); B. Kaufman, Phys. Rev. 76, 1232 (1949)] of the 2D Ising model and the
solution of Kitaev’s honeycomb model [A. Kitaev, Ann. Phys, 321, 2 (2006)], leading to a three-parameter phase
diagram with a third-order phase transition between two distinct phases. Interestingly, the phases of this model
are distinguished by topological features: the expectation value of a certain family of loop observables depend
only on the topology of the loop (whether the loop is contractible), and are quantized at rational values that differ
in the two phases. We show that a related exactly solvable 3D classical statistical model with real coupling
constants also shows the topological features of one of these phases. Furthermore, even in the model with
complex parameters, the partition function has some physical relevance, as it can be interpreted as the transition
amplitude of a quantum dynamical process and may shed light on dynamical quantum phase transitions.

DOI: 10.1103/PhysRevResearch.5.013086

I. INTRODUCTION

Understanding the universal behavior of classical many-
body systems near their critical points is a central goal of clas-
sical statistical mechanics. Although this is a difficult problem
in general, in one- and two-spatial dimensions, significant
insights have been provided by exactly solved models[1–3].
One important open problem is to generalize these solutions
to three-dimensional (3D) systems with realistic short-range
interactions. Despite a long effort with some preliminary re-
sults [4–9], no physical 3D model has been exactly solved that
displays a genuinely 3D phase transition [10].

In this paper, we make progress in this direction by exactly
solving a classical Ising model on a special 3D lattice, as
depicted in Fig. 1, although with the caveat that the model
has imaginary coupling constants. The transfer matrix of this
system has a structure similar to a non-Hermitian version
of the 2D Kitaev honeycomb model [11], and the partition
function can be obtained using the representation theory of
the so(2N) Lie algebra and the corresponding Lie group. The
solution displays a third-order phase transition between two
distinct phases, and near the critical point we can exactly
obtain a critical exponent of the model.

The phases are interesting in their own right, as they are
distinguished by topological properties. Specifically, there is

*zhiyuan.wang@rice.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

a family of loop observables whose expectation values distin-
guish the two phases and are equal to some rational numbers
(0, 1, or 1/3) depending on the topology of the loop.

Despite its complex coupling constants (also a complica-
tion of some previous approaches [5,6]), our findings have
physical relevance. First, we show in Sec. IV A that the topo-
logical features discovered in one of the phases of the model
with complex couplings also exist in a similar exactly solvable
model with real-valued couplings. More speculatively, it is
possible, more generally, that the long-distance property of
our model belongs to the same universality class of certain
physical 3D classical systems. It remains an open question
whether the other phase of our model can also be reproduced
in a physical system, but if there indeed exists a physical
classical system that has the two phases mentioned above and
a phase transition between them, then the concept of univer-
sality suggests that the long-distance behaviors and the critical
exponent we obtain here will apply to such physical systems.

As another point of physical relevance for the model with
complex couplings, in Sec. IV B we show two constructions
that realize the partition function Z of our model in certain
dynamical processes of a 3D quantum system: one is to map Z
to the transition amplitude between a family of product states,
the other is to realize Z as the coherence of a probe spin cou-
pled to the whole 3D system. Both constructions in principle
allow the free energy to be experimentally measured, albeit
with an exponentially small signal. Under these mappings,
the phase transition of our model corresponds to a dynamical
quantum phase transition (DQPT) [12,13], a phenomenon
that has gained much attention recently. Statistical mechanics
with complex configuration energies also appears in the study
of Lee-Yang zeros [14–17], non-Hermitian quantum systems
[18–20], and complex conformal field theories [21].
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FIG. 1. Definition of the model and loop observables. The classi-
cal system sits on a 3D stacking of the brick-wall lattice, of arbitrarily
large extent in each direction. Classical spins lie on vertices, and
they only interact via the thicker links. The horizontal links (red,
blue, and black) have real coupling constants Jx, Jy, Jz, for x planes,
y planes, and z planes, respectively. The coupling constant J⊥ for
the vertical links (pink) and the external field h are imaginary when
the solvability condition Eq. (4) is met. The yellow shaded cuboid
shows an example of the loop observable σ [L(xy)] for a contractible
loop L (here being an elementary plaquette), which is equal to the
product of Ising spins on the larger yellow vertices [see Eq. (5)].
Similarly, the green shaded rectangle shows an example of σ [L(yz)]
for a noncontractible loop, extended infinitely to the right and to the
left.

Our paper is organized as follows. In Sec. II we define
our model and a family of loop observables of interest.
In Sec. III we present the exact solution of the model: In
Sec. III A we derive the transfer matrix of the classical
model, in Sec. III B we use a spin-fermion mapping to re-
duce the problem to a free fermion problem, in Sec. III C
we solve the eigenvalues of the free fermion transfer matrix
and calculate the thermodynamic free energy, in Sec. III D
we obtain the phase diagram, in Sec. III E we calculate a
critical exponent, and in Secs. III F and III G we calculate
the expectation values of loop observables and demonstrate
their topological properties. In Sec. IV we give two physical
implications of our model: The existence of a physical classi-
cal phase with similar topological behaviors (Sec. IV A), and
realizations of the partition function in quantum dynamical
processes (Sec. IV B). In Sec. V we summarize our results.
The Appendices contain technical results used throughout our
arguments.

II. THE MODEL

In this section we define our model and the class of phys-
ical observables we are interested in. The model is defined
on a 3D stacking of the 2D brick-wall lattice, with classical
Ising spins, σ j ∈ {−1,+1}, lying on vertices j, as shown in
Fig. 1, and we use periodic boundary conditions (PBC) for
all the three directions for simplicity. Nearest-neighbor Ising-
type interactions exist only on a subset of links in this lattice,
which are shown in Fig. 1 as thick red, blue, black, and pink
links. The energy of the system for a specific classical spin

configuration is

H[{σ }] = −Jx
∑

〈i j〉∈X
σiσ j − Jy

∑
〈i j〉∈Y

σiσ j (1)

−Jz
∑

〈i j〉∈Z
σiσ j − J⊥

∑
〈i j〉∈⊥

σiσ j + h
∑
i

σi,

where X denotes the set of all thick links on x planes, and
similarly for Y,Z, while ⊥ is the set of all the vertical links in
Fig. 1, and the external field h acts on all spins. The goal is to
find the partition function

Z (Kx,Ky,Kz,K⊥, βh) =
∑
{σ }

e−βH [{σ }], (2)

where Ki = βJi, i = x, y, z,⊥. The free energy is related to
the partition function by

F = −kBT ln Z. (3)

The model is exactly solvable when the following conditions
hold:

4J⊥β ≡ π i(mod2π i), 2hβ ≡ π i

2
(mod2π i). (4)

After imposing these solvability conditions, there remains
a three-dimensionless-parameter space (Kx,Ky,Kz ) of solu-
tions.

Beyond the free energy (and its derivatives), we also con-
sider the thermal expectation values of a family of loop
observables that are products of σ js on closed loops, defined
by the following procedure:

(1) Choose a loop L on the 2D brick-wall lattice (L must
consist of edges of the brick-wall lattice);

(2) Choose two nearest-neighbor planes of type α and β of
the 3D lattice, denoted (αβ ), which can be (xy), (yz), or (zx);

(3) Denote by L(αβ ) the graph consisting of all sites in the
loop L of both α and β planes and the edges of the lattice
joining pairs of these sites;

(4) For a lattice site i ∈ L(αβ ), denote by ī the same site of
the other plane (if i ∈ α, then ī ∈ β and vice versa);

(5) For i ∈ L(αβ ), define n(i) to be the number of thick
horizontal edges in L(αβ ) linked to i [notice that n(i) ∈ {0, 1}];

(6) The loop product is defined as

σ [L(αβ )] =
∏

i∈L(αβ )

σ
n(ī)
i . (5)

In Fig. 1 we illustrate the definition of σ [L(αβ )] for a con-
tractible and a noncontractible loop L. In Sec. III F we will
compute their thermal expectation values

〈σ [L(αβ )]〉 = 1

Z

∑
{σ }

σ [L(αβ )]e
−βH [{σ }]. (6)

We will see that the expectation values of these observables
are sensitive to the topology of the loop L(αβ ). Namely, for
a contractible loop L(αβ ) we have 〈σ [L(αβ )]〉 = ±1 (and the
same loop L(αβ ) takes the same value for different phases),
while for a noncontractible loop L(αβ ), 〈σ [L(αβ )]〉 is equal to
0 in one phase (the A phase) and −1/3 in another phase (the
B phase). Therefore, noncontractible loop observables can be
used as order parameters of this model.
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III. THE SOLUTION

A. The transfer matrix

The first step to solve this model is to find the transfer
matrix T̂ for each period of x, y, z planes, as shown in Fig. 1,
defined so that Z = Tr[T̂ M], where M is the total number of
periods. We will show that when the conditions Eq. (4) are
satisfied, the transfer matrix is

T̂ = exp

⎛
⎝Kx

∑
〈i j〉∈X2D

σ̂ x
i σ̂ x

j

⎞
⎠ exp

⎛
⎝Ky

∑
〈i j〉∈Y2D

σ̂
y
i σ̂

y
j

⎞
⎠

× exp

⎛
⎝Kz

∑
〈i j〉∈Z2D

σ̂ z
i σ̂

z
j

⎞
⎠, (7)

where σ̂
x,y,z
i are Pauli operators acting on the spin located at

site j of the 2D brick-wall lattice shown in Fig. 2, X2D denotes
the set of all the x links shown in Fig. 2, and similarly for
Y2D,Z2D. Henceforth, we use

∑
x,
∑

y, and
∑

z as abbrevi-
ations for

∑
(i, j)∈X2D

,
∑

(i, j)∈Y2D
, and

∑
(i, j)∈Z2D

, respectively.
We prove Eq. (7) by inserting resolutions of identity on each
plane in Z = Tr[T̂ M] in Eq. (7) and showing that it reproduces
Eq. (2). The trick here is that when inserting resolution of
identity, we use the σ̂ x basis |X 〉 ≡ ⊗ j |σ j〉x on x planes, σ̂ y ba-
sis |Y 〉 ≡ ⊗ j |σ j〉y on y planes, and σ̂ z basis |Z〉 ≡ ⊗ j |σ j〉z on z
planes, where σ̂ x

j |σ j〉x = σ j |σ j〉x and similarly for |σ j〉y, |σ j〉z.
Therefore, we have

FIG. 2. The 2D brick-wall lattice on which the transfer matrix
Eq. (7) is defined. A unit cell is shown in the shaded square. The
conserved loop operator Ŵp acts on the six spins of the elementary
plaquette p, and the conserved noncontractible loop �̂x (�̂y) acts on
a row (column) of spins. The ±κ shown next to each link is the real
part of the small perturbation to the link coupling constant needed to
gap the fermionic spectrum of the B phase.

Tr[T̂ M] =
∑

X1,Y1,Z1,...,
XM ,YM ,ZM

〈X1|eKx
∑

x σ̂ x
i σ̂ x

j |Y1〉〈Y1|eKy
∑

y σ̂
y
i σ̂

y
j |Z1〉〈Z1|eKz

∑
z σ̂ z

i σ̂
z
j |X2〉〈X2| · · ·

× |XM〉〈XM |eKx
∑

x σ̂ x
i σ̂ x

j |YM〉〈YM |eKy
∑

y σ̂
y
i σ̂

y
j |ZM〉〈ZM |eKz

∑
z σ̂ z

i σ̂
z
j |X1〉

=
∑
{σ }

exp

⎛
⎝Kx

∑
〈i j〉∈X

σiσ j + Ky

∑
〈i j〉∈Y

σiσ j + Kz

∑
〈i j〉∈Z

σiσ j

⎞
⎠〈X1|Y1〉〈Y1|Z1〉〈Z1|X2〉 · · · 〈XM |YM〉〈YM |ZM〉〈ZM |X1〉. (8)

The first factor corresponds to the classical Boltzmann weight
contributed by all the horizontal links. For the overlap matri-
ces in the last line of Eq. (8), using a suitable phase convention
for basis states

| ± 1〉z = {|↑〉, eπ i/4|↓〉},

| ± 1〉x =
{ |↑〉 + |↓〉√

2
e3π i/4,

|↑〉 − |↓〉√
2

eπ i/2

}

| ± 1〉y =
{ |↑〉 + i|↓〉√

2
e−3π i/4,

|↑〉 − i|↓〉√
2

e−π i/2

}
,

we have

x〈σ |σ ′〉y = y〈σ |σ ′〉z = z〈σ |σ ′〉x = 1√
2
e

π i
4 (σσ ′− σ+σ ′

2 +3).

The overlaps give the Boltzmann weights contributed
by the vertical links and external field terms with βJ⊥ =
π i/4, βh = π i/4, up to an irrelevant constant shift of the

energy. Also, one can show that adding 2π i to 4J⊥β or 2hβ
will only multiply the partition function by an irrelevant over-
all constant phase factor, since whenever we flip a spin σ j , the
imaginary part of βH[{σ }] changes by ±2(2sJ⊥ − h)β, where
s = (σ ′

j + σ ′′
j )/2 ∈ {−1, 0,+1}, and σ ′

j (σ ′′
j ) is the neighbor

of σ j lying above (below) it. Therefore the model Eq. (1) has
transfer matrix Eq. (7) when Eq. (4) is satisfied.

Now that we have obtained the transfer matrix T̂ of our
model, the next step is to calculate the largest (in magnitude)
eigenvalue �max of T̂ , which governs the free energy in the
thermodynamic limit

F = −MkBT ln �max + O
(
�M

1 /�M
max

)
, (9)

where �1 is the next-to-largest (in magnitude) eigenvalue of
T̂ . We will calculate the eigenvalues of T̂ in two steps: In
Sec. III B we map the transfer matrix T̂ to a free fermion
transfer matrix T̂ ′ in Eq. (11), and then in Sec. III C we solve
the eigenvalues of this free fermion transfer matrix.
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B. Mapping to a free fermion problem

Our goal in this section is to map the transfer matrix T̂ to a
free fermion transfer matrix T̂ ′, written in terms of Majorana
fermion bilinear operators. While this can be accomplished
by Kitaev’s original technique [11], or by using a Jordan-
Wigner transformation [22], here we use the algebraic method
developed in Refs. [23–26], which is far simpler. The key idea
of this technique is that, instead of considering the mapping
of each individual spin operators, we view the interaction
term on each link 〈i j〉 as a whole, and consider the algebra
generated by all these terms. We write the transfer matrix as

T̂ = eKx
∑

x γ̂i j eKy
∑

y γ̂i j eKz
∑

z γ̂i j , (10)

where the bond operators are defined as γ̂i j = σ̂ α
i σ̂ α

j if 〈i j〉
is an α link in the 2D brick-wall lattice. We now construct
another transfer matrix

T̂ ′ = eKx
∑

x γ̂ ′
i j eKy

∑
y γ̂ ′

i j eKz
∑

z γ̂ ′
i j

≡ eKx
∑

x ui j iĉi ĉ j eKy
∑

y ui j iĉi ĉ j eKz
∑

z ui j iĉi ĉ j , (11)

which has exactly the same exponential structure and the same
set of parameters as T̂ , but has the bond operators replaced
by Majorana fermion bilinears γ̂ ′

i j ≡ ui j iĉiĉ j on each link,

where ĉ†
i = ĉi, and {ĉi, ĉ j} = 2δi j . Here ui j is a real number

defined independently on each link, whose value is to be de-
termined later. Notice that the ordering of Majorana operators
ĉiĉ j matters in the sum since they anticommute; throughout
this paper, we use the convention that whenever we sum (or
product) over links, each link 〈i j〉 appears only once in the
sum, with i representing an even site (black dots in Fig. 2) and
j representing an odd site (white open circles in Fig. 2), and
we always order ĉi to the left unless otherwise stated.

The goal now is to choose these real coefficients {ui j}
such that the algebra generated by {γ̂i j} is isomorphic to the
algebra generated by {γ̂ ′

i j}. Once this is done, Refs. [23–26]
claim that there exists a unitary mapping Û between the two
systems such that γ̂ ′

i j = Û γ̂i jÛ † for all links 〈i j〉 (we will also
need to check that the Hilbert space dimensions of the two
systems are the same), leading to T̂ ′ = Û T̂ Û †, i.e., T̂ and T̂ ′
have the same eigenvalues. Requiring the two algebras to be
isomorphic means that any algebraic relation satisfied by the
generators {γ̂i j}, say f ({γ̂i j}) = 0, must be satisfied by {γ̂ ′

i j}
as well, f ({γ̂ ′

i j}) = 0, and vice versa. In our case, this leads to
the following four families of relations:

Relation 1. We have γ̂ 2
i j = 1 for each link 〈i j〉, and there-

fore we must require γ̂ ′2
i j = u2

i j = 1, which constrains ui j to be
±1.

Relation 2. Two bond operators anticommute if and only if
they share exactly one vertex, otherwise, they commute. It is
straightforward to check that this is satisfied by both {γ̂i j} and
{γ̂ ′

i j}, so this condition puts no constraints on {ui j}.
Relation 3. The product of γ̂ ′

i j on any closed loop L is equal
to a constant, so the product of γ̂i j on L must be equal to the
same constant. It is enough to require this constraint only on
all the elementary plaquettes Lp along with two large loops
Lx and Ly winding around the torus (as shown in Fig. 2),
since the product on other loops decompose into products on
these elementary loops. The product of γ̂ ′

i j on these loops are

equal to

Wp ≡
∏

〈i j〉∈Lp

γ̂ ′
i j =

∏
〈i j〉∈Lp

ui j,

�x ≡
∏

〈i j〉∈Lx

γ̂ ′
i j =

∏
〈i j〉∈Lx

ui j,

�y ≡
∏

〈i j〉∈Ly

γ̂ ′
i j =

∏
〈i j〉∈Ly

ui j, (12)

for every plaquette p, and we order the product of operators
according to their linear order in the loop (the orientation of
the loop and the initial point do not affect the result of the
product).

The product of γ̂i j on these loops are equal to

Ŵp ≡
∏

〈i j〉∈Lp

γ̂i j = −σ̂ z
0 σ̂

y
1 σ̂

y
2 σ̂ z

3 σ̂ x
4 σ̂ x

5 ,

�̂x ≡
∏

〈i j〉∈Lx

γ̂i j = −
∏
i∈Lx

σ̂
y
i ,

�̂y ≡
∏

〈i j〉∈Ly

γ̂i j = −
∏
i∈Ly

σ̂ z
i , (13)

where 0,1,2,3,4,5 label the sites of the plaquette p, as shown
in Fig. 2 (and similarly for all other plaquettes). Although
the right-hand side (RHS) of Eq. (13) are not constants, one
can check that these operators mutually commute, and they
commute with all the bond operators γ̂i j , and therefore they
commute with the transfer matrix T̂ . They play the role of
conserved observables, and their common eigenspaces are
invariant under the action of T̂ . Further, since Ŵ 2

p = �̂2
x =

�̂2
y = 1, their eigenvalues can only be ±1. To guarantee the al-

gebraic isomorphism between the algebras {γ̂i j} and {γ̂ ′
i j}, we

need to map the spin model transfer matrix T̂ in each common
eigenspace of {Ŵp, �̂x, �̂y} to a different fermionic transfer
matrix T̂ ′, with the ui j chosen in such a way that their loop
products {Wp,�x,�y} equal the eigenvalues of {Ŵp, �̂x, �̂y}.

Relation 4. On a closed manifold, the product of all {γ̂i j}
on the lattice equals a constant,∏

all 〈i j〉
γ̂i j = i4LxLy = 1, (14)

where Lx (Ly) is the system size in the x (y) direction. Simi-
larly, the product of all {γ̂ ′

i j} is∏
all 〈i j〉

γ̂ ′
i j = P̂f

∏
all 〈i j〉

ui j, (15)

where P̂f ≡∏z(−iĉiĉ j ) is the conserved fermion parity op-
erator. Therefore the algebraic isomorphism restricts the
fermion model to the eigen-subspace of P̂f with eigenvalue

Pf =
∏

all 〈i j〉
ui j . (16)

Summary and consistency check. In summary, the mutually
commuting conserved operators {Ŵp, �̂x, �̂y} split the full
Hilbert space into a direct sum of their common eigen-
subspaces, and the transfer matrix T̂ leaves each subspace
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invariant. In the subspace labeled by the conserved eigen-
values {Wp,�x,�y}, the transfer matrix T̂ is mapped to a
fermionic transfer matrix T̂ ′ defined in Eq. (11) where the
parameters ui j = ±1 are chosen to satisfy Eq. (12) [27], and
T̂ ′ is restricted to a fixed fermion parity sector satisfying
Eq. (16).

As a consistency check, let us verify that the subspace
dimension of the spin and fermionic systems, mapped to each
other by the above algebraic isomorphism, are the same. For
the spin system, we have 4LxLy qubit degrees of freedom
(DOF) in total; in each subspace, the constraint Eq. (13)
removes 2LxLy − 1 + 2 qubit DOF (−1 because the product
of all Ŵp is a constant, so only 2LxLy − 1 of them are indepen-
dent), leaving us with 2LxLy − 1 qubit DOF. For the fermionic
system, we have 4LxLy Majorana fermions in total, which
amounts to 2LxLy Dirac fermion DOF; the fermion parity
restriction Eq. (16) further removes one of them, leaving us
2LxLy − 1 Dirac fermion DOF. Therefore the Hilbert space
dimension of the two systems are the same, both equal to
22LxLy−1.

C. Solving the free fermion transfer matrix

In the last section we mapped the transfer matrix T̂ in
each sector labeled by {Wp,�x,�y} to a free fermion trans-
fer matrix T̂ ′ in Eq. (11), where ui j = ±1 are chosen to
satisfy Eq. (12), and the fermion parity satisfies Eq. (16).
Now we solve these free fermion problems in each sector
to get the full spectrum of T̂ . The difficulty here is that
there are exponentially many such sectors (22LxLy+1 in total),
most of which are not translationally invariant and can only
be solved numerically. Fortunately we are most interested in
the sector that contains the principal eigenvalue �max of T̂ ,
i.e., the sector {Wp,�x,�y} where the principal eigenvalue
of T̂ ′ is largest, since �max (and the corresponding principal
eigenstate |�max〉) determines the thermodynamic properties
of the original classical system. In Appendix A we prove
a generalization of Lieb’s optimal flux theorem [28] for the
transfer matrix T̂ ′, which shows that for real Kx,Ky,Kz, the
principal eigenvalue of T̂ ′ is maximized by a configuration
{Wp,�x,�y} where all Wp are equal to +1. From now on we
will call such a configuration vortex free, and for a configu-
ration with some Wp = −1 we say it has a vortex excitation
at p. This leaves four sectors to consider, corresponding to
(�x,�y) = (++), (+−), (−+), (−−) [we use (++) as a
shorthand for (+1,+1), and similarly for the other three].
These four sectors can be treated in an identical way, which
we do in the following.

We first need to find a solution {ui j} to Eq. (12). For the
(++) sector, we can simply take ui j = +1 for all links 〈i j〉. To
obtain solutions for the other three vortex-free sectors, notice
that we can flip the sign of �x or �y by flipping the signs
of ui j on a large (i.e., noncontractible) loop of links, without
changing the value of any Wp. For example, if we flip all the
z links between x = Lx − 1/2 and x = 0 (denote this set of
links by ZLx−1/2,0), then we can flip the sign of �x without
flipping any of the Wp. Similarly we can flip the sign of �y

by flipping the signs of all the y links between y = Ly − 1/2
and y = 0 (denote this set of links by YLy−1/2,0). In this way,

the solution for the sector (�x,�y) can be taken as ui j = 1 for
〈i j〉 /∈ ZLx−1/2,0 ∪ YLy−1/2,0, ui j = �x for 〈i j〉 ∈ ZLx−1/2,0, and
ui j = �y for 〈i j〉 ∈ YLy−1/2,0.

The transfer matrix defined in Eq. (11) for all these four
sectors can be written in a translationally invariant way
provided that we use suitable boundary conditions for the
Majorana operators. To this end, we use i = (
r, λ) to label
lattice sites, where 
r labels the unit cells, and λ = 0, 1, 2, 3
label the sites in a unit cell, as shown in Fig. 2. We define
ĉ(Lx,y),λ = �xĉ(0,y),λ and ĉ(x,Ly ),λ = �yĉ(x,0),λ, corresponding
to periodic or antiperiodic boundary conditions. Then the
transfer matrices for all the four vortex-free sectors have the
same expression

T̂ ′ = eKx
∑

x iĉi ĉ j eKy
∑

y iĉi ĉ j eKz
∑

z iĉi ĉ j . (17)

where the above boundary condition on ĉi, ĉ j is used, and
it is understood that the lattice coordinates of i, j for each
link 〈i j〉 should be consecutive numbers, e.g., the term on
a flipped z link is understood as ĉ(Lx−1,y),λĉ(Lx,y),λ′ instead of
ĉ(Lx−1,y),λĉ(0,y),λ′ .

The rest of the task is to find the eigenvalues of
the translationally invariant vortex-free transfer matrix T̂ ′
in Eq. (17) under the four possible boundary conditions
(++), (+−), (−+), (−−). To this end, we introduce the
Fourier transform of the Majorana operators

â
q,λ = 1√
2N

∑

r

e−i 
q·
r ĉ
r,λ, ĉ
r,λ =
√

2

N

∑

q
ei 
q·
r â
q,λ, (18)

where N = LxLy is the total number of unit cells. The quasi-
momentum in the α direction qα is quantized as 2nπ/Lα

where n ∈ Z if �α = +1 and n ∈ Z + 1/2 if �α = −1. The
operators â
q,λ satisfy â†


q,λ = â−
q,λ and {â 
p,λ, â
†

q,μ} = δ 
p,
qδλ,μ.

We can now rewrite T̂ ′ as

T̂ ′ = exp

⎡
⎣2Kx

∑

q

(iâ
q,0â−
q,1 + iâ
q,2â−
q,3)

⎤
⎦

× exp

⎡
⎣2Ky

∑

q

(iâ
q,0â−
q,1e
iqy + iâ
q,2â−
q,3e

−iqy )

⎤
⎦

× exp

⎡
⎣2Kz

∑

q

(iâ
q,2â−
q,1 + iâ
q,0â−
q,3e
iqx )

⎤
⎦,

≡ T̃0

∏

q+

T̃
q, (19)

where T̃0 contains all the terms with 
q ≡ −
q(mod2π ), and∏

q+ is the product over 
q with 
q �≡ −
q(mod2π ) such that

each pair ±
q appears exactly once, and in the last line we have
rearranged terms of different 
q modes using [T̃
q, T̃0] = 0, and
[T̃
q, T̃
p] = 0 for 
q �= ±
p. Because of this commutativity, all
the T̃
q and T̃0 can be simultaneously diagonalized. We treat T̃
q
first, which can be written as

T̃
q = e2Kx
∑

λ,μ P(
q)
λμ â†


qλâ
qμe2Ky
∑

λ,μ Q(
q)
λμ â

†

qλâ
qμ

×e2Kz
∑

λ,μ R(
q)
λμ â

†

qλâ
qμ, (20)
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where the 4 × 4 matrices P(
q),Q(
q),R(
q) are (we drop the
superscript 
q when there is no confusion)

P =

⎛
⎜⎜⎝

0 i 0 0
−i 0 0 0
0 0 0 i
0 0 −i 0

⎞
⎟⎟⎠,R =

⎛
⎜⎜⎝

0 0 0 ie−iqx

0 0 −i 0
0 i 0 0

−ieiqx 0 0 0

⎞
⎟⎟⎠,

Q =

⎛
⎜⎜⎝

0 ie−iqy 0 0
−ieiqy 0 0 0

0 0 0 ieiqy

0 0 −ie−iqy 0

⎞
⎟⎟⎠. (21)

Notice that the fermion bilinears â†

qλâ
qμ in Eq. (20) form

the basis of an sl(4) Lie algebra, so T̃
q is an element of the
corresponding SL(4) Lie group. Using the relation between
the fundamental representation and the free fermion represen-
tation of this Lie algebra and group, (similar to the method in
Appendix E), one can show that

T̃
q = eε
q,1(n̂
q,1−n̂
q,1̄ )+ε
q,2(n̂
q,2−n̂
q,2̄ ), (22)

where e±ε
q,1 , e±ε
q,2 are the eigenvalues of the matrix T
q =
e2KxPe2KyQe2KzR, which is the representation of T̃
q in the fun-
damental representation of the SL(4) Lie group, and n̂
q, j, n̂
q, j̄
(with j ∈ {1, 2}) are mutually commuting fermion number
operators. The single mode energies ε
q, j can be analytically
calculated by solving the quartic equation PT
q (x) = 0, where
PT
q (x) is the degree four characteristic polynomial of the
4 × 4 matrix T
q. This quartic equation can be simplified to
a quadratic one z2 + Az + B = 0, where z = (x + 1/x)/2 =
cosh ε
q, j (for j = 1, 2), and

A = −2c3(c1c2 + s1s2 cos qy),

B = 1

8
S1S2(3 +C3 − 2s2

3 cos qx ) cos qy + 1

2
s2

1s
2
2 cos(2qy)

+ 1

4
s2

3(1 −C1C2) cos(qx ) + C1 +C2 + 3C3

8

+ C1C2

4
+ C1C2C3

8
, (23)

where c j = cosh 2Kj, s j = sinh 2Kj,Cj = cosh 4Kj , and
S j = sinh 4Kj . Since the eigenvalues of T
q come in pairs
±ε
q,1,±ε
q,2, we can assume without loss of generality that
0 � Re[ε
q,1] � Re[ε
q,2]. Then the maximal eigenvalue of T̃
q
is eε
q,1+ε
q,2 .

The term T̃0 in the last line of Eq. (19) is defined by T̃0 =∏

q≡
0(modπ ) T̃0,
q with

T̃0,
q = e2(Kx+Kyeiqy )iâ
q0 â
q1(1−P̂
q )e2Kziâ
q1â
q2(1+P̂
qeiqx ), (24)

where P̂
q = 4â
q,0â
q,1â
q,2â
q,3. Using â†

q,λ = â
q,λ, â2


q,λ = 1/2,

the eigenvalues of T̃0,
q can be straightforwardly obtained by
diagonalizing Eq. (24), and one can show that the largest one
happens to be equal to e(ε
q,1+ε
q,2 )/2.

We have not yet taken into account the fermion parity re-
striction in Eq. (16). However, as we will see in Sec. III F, this
constraint changes ln �max by at most O(ε
q, j ), and therefore
does not affect the free energy density in the thermodynamic

limit. The largest eigenvalue �
(�x,�y )
max of T̂ ′ is

ln �
(�x,�y )
max = 1

2

∑

q

(ε
q,1 + ε
q,2), (25)

where (�x,�y) ∈ {(++), (+−), (−+), (−−)}, and the RHS
implicitly depends on (�x,�y) through the quantization of 
q.
The largest eigenvalue �max of T̂ is the largest of these four.
Regardless of which one is the largest, the free energy density
(per site) in the thermodynamic limit is

f ≡ F

12MN
= − kBT

24N

∑

q

(ε
q,1 + ε
q,2)

= − kBT

96π2

∫∫
[−π,π]2

(ε
q,1 + ε
q,2)d2q, (26)

where the free energy F is defined in Eq. (9).

D. Excitations and phase boundaries

In this section we study other eigenvalues of the transfer
matrix T̂ beyond the principal eigenvalue, and, using this, de-
termine the phase diagram of our model. It is useful to define
an effective non-Hermitian Hamiltonian Ĥ = − ln T̂ . In this
way the principal eigenstates of T̂ are mapped to the ground
states of Ĥ and the eigenvalues � j of T̂ are related to exci-
tation energies Ej − E0 of Ĥ by Ej − E0 = ln �max − ln � j .
For the rest of this paper, we use the term “excitation spectrum
of T̂ ” to mean the excitation spectrum of Ĥ , and call the
transfer matrix “gapped” (“gapless”) if Re[Ej − E0] is gapped
(gapless) in the thermodynamic limit. The spectral gap 
 =
min j �=0 Re[Ej − E0] plays an important role in the physical
properties of the original classical Ising model. First, as we
will see in a moment, the phase boundary of our model is
determined by regions where 
 vanishes. Secondly, although
we do not calculate in this paper, we claim that two point
connected correlations 〈σiσ j〉c (or more generally, 〈OiOj〉c
where Oi is a product of classical spins in a local region)
decay exponentially in distance when 
 > 0, while there are
algebraically decaying correlations when 
 = 0.

There are two types of excitations: Fermionic excita-
tions, corresponding to the positive energy eigenmodes of
the fermionic transfer matrix T̂ ′, and vortex excitations,
corresponding to eigenstates of T̂ ′ in a different sector
{Wp,�x,�y} where some of Wps are equal to −1. Vortices
can only be created in pairs. A pair of vortices can be cre-
ated by first drawing a segment connecting the two vortices
(the segment should avoid passing through lattice sites) and
then flipping ui j on all the lattice edges intersecting with this
segment (similar to Kitaev’s honeycomb [11] and toric code
[29] models). Our analysis in Appendix A and the numer-
ical results in Appendix E 2 suggest that the vortices have
gapped and positive excitation energies. On the other hand, the
fermionic excitations can become gapless for certain values
of (Kx,Ky,Kz ), and this determines the phase boundary of our
model.

We emphasize that it is the gap closing of the real part of
ε
q,1 that determines the phase boundary [30]. This claim is
based on the analysis in Appendix C, where we rigorously
prove that the free energy f defined in Eq. (26) is complex
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FIG. 3. A 2D section of the 3D phase diagram of our model, with
the intersecting plane Kx + Ky + Kz = β(Jx + Jy + Jz ) = const. The
parameters (Kx,Ky,Kz ) of an arbitrary point in the diagram is given
by the distance from that point to the three sides of the triangle.
The B phase (shaded) has a gapless transfer matrix, which acquires
a gap after a small perturbation is introduced (Sec. III D). The A
region has a gapped transfer matrix and consists of three disjoint
phases Ax,Ay,Az. In Sec. III E we study the critical behavior of the
free energy as we approach the phase boundary from the Az phase
η ≡ Kz − Kx − Ky → 0+.

analytic in all its parameters when Re[ε
q,1] > 0,∀
q ∈
[−π, π ]2. The proof also suggests that when the gap closes
Re[ε
q,1] = 0, there are branch points in ε
q,1 + ε
q,2 that leads
to nonanalytic behavior of f , which we calculate directly in
Sec. III E.

We find two distinct phases corresponding to whether
Re[ε
q,1] is gapped or gapless. The phase boundary is deter-
mined as follows. One can show that for fixed qy the minimum
of Re[ε
q,1] occurs at qx = 0 [since ∂qxε
q = f (ε
q, qy) sin qx for
some positive function f (ε
q, qy)]. Furthermore, in the gapped
phase the minimum of Re[ε(0,qy ),1] occurs either at qy = 0 or
qy = π . Therefore, the phase transition occurs when Re[ε
q,1]
vanishes at either 
q = (0, 0) or 
q = (0, π ), which happens
when one of Kx,Ky,Kz equals the sum of the other two [this
can be seen by diagonalizing T̃
q in Eq. (20) at 
q = (0, 0) or
(0, π )]. When Kx,Ky,Kz form three sides of a triangle (we
call this the B region, shown as the shaded triangle in Fig. 3),
the spectrum is gapless, and when one of Kx,Ky,Kz is bigger
than the sum of the other two, the spectrum is gapped (we call
this the A region, consisting of three disjoint white triangles
in Fig. 3). The phase diagram in terms of Kx,Ky,Kz is shown
in Fig. 3, which is identical to the phase diagram of Kitaev’s
honeycomb model [11].

The fermionic spectrum of the B phase can be gapped by
adding suitable perturbations. For example, we can add small
imaginary parts to Jx, Jy, so that Kx → Kx + iκ,Ky → Ky −
iκ , and then add a small real part to the coupling constants
of the x, y links that break the lattice reflection symmetry, in
the pattern shown in Fig. 2. Here κ is a small real number
|κ| � |Ki|, i = x, y, z. (Notice that this corresponds to mod-
ifying the link coupling constants of the original classical
statistical model on all the x and y planes, which breaks the
reflection symmetry of the 3D lattice.) Appendix B proves
that a subregion of the B phase is gapped by this perturba-
tion. More specifically, when |Kz|/2 < |Kx| = |Ky|, we have

 = min 
q Re[ε
q,1] ∝ κ2. This fact will be useful for Sec. III F

where we calculate the topological degeneracy of �max and
Sec. III G where we find loop observables whose expectation
values distinguish the two phases. Notice that while our proof
of Lieb’s theorem in Appendix A assumes real Kx,Ky,Kz, as
long as the vortices are gapped, the principal eigenstate is still
in the vortex-free sector if κ is sufficiently small, which we
assume throughout this paper.

E. Critical exponents

In this section we study the critical behavior of our model
near the phase boundary between the A and B phases, and
show that this is a third-order phase transition. Specifically, we
parametrize the distance to the phase boundary by η = Kz −
Kx − Ky and show that as the phase boundary is approached
from the A-phase side, η → 0+, the leading singular part of
the free energy is f ∼ η5/2 [31].

We start from the expression in Eq. (26). Near the phase
boundary, the leading singular part of f is contributed by
the integration near 
q = (0, π ) where ε
q,1 approaches zero.
Letting 
q = (px, π + py) where px, py � 1, we expand ε2


q,1 in
powers of the small parameters px, py, and η. Using Eq. (23)
and cosh ε ≈ 1 + ε2/2 for ε � 1, we have

ε2

q,1 = s2

3

4
p2
x + 2

s1s2

s3
ηp2

y + 4η2 + s2
1s

2
2

4s2
3

p4
y

+ O
(
p4
x

)+ O
(
p2
xη
)+ O

(
p2
x p

2
y

)+ O
(
p4
yη
)
, (27)

where the neglected terms will not affect the leading-order
singularity. The leading singular part of f is

f ∼ − 1

48π2βs1s2

∫∫ √
p2
x + 2ηp2

y + 4η2 + p4
y

4
d pxd py

∼ 1

48π2βs1s2

∫
2
(
p2
y + 4η

)2
ln
(
p2
y + 4η

)
d py

∼ 64

45βπs1s2
η

5
2 , (28)

where in the first line we rescale the integration variables
px, py, the integration range is a fixed-length interval passing
through the origin, say [−ε, ε]2 with 0 < ε � 1, and we use
∼ to indicate that an unimportant analytic part has been ig-
nored. Therefore, the third derivative ∂3

η f diverges as η → 0+,
i.e., the phase transition is third order.

F. Topological degeneracy

In this section we show that the largest eigenvalues of the
transfer matrix T̂ of our original spin model are topologically
degenerate, and the degeneracy depends on the phase. This
topological degeneracy gives rise to the topological behaviors
of the loop observables presented in the next section.

To this end, we need to compare the values �
(�x,�y )
max of the

four sectors (�x,�y) ∈ {(++), (+−), (−+), (−−)}, given
in Eq. (25). Let us focus on regions where Re[ε
q] is gapped,
i.e., the A region and the B region with the perturbation dis-
cussed in Sec. III D. In Appendix D we show that the largest
eigenvalues ln �

(�x,�y )
max of each of the four sectors are equal

up to an exponentially small correction O(e−L/ξ ), where ξ is a
fixed correlation length. This suggests a fourfold topological
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degeneracy since all the fermion and vortex excitations are
gapped. However, we have not taken into account the fermion
parity constraint yet. As we discussed in Sec. III B, only
those eigenstates of T̂ ′ that satisfy the fermion parity con-
straint Eq. (16) correspond to eigenstates of T̂ . So the actual
degeneracy of T̂ is the number of “parity-compatible” sec-
tors, i.e., sectors whose principal eigenstate |�(�x,�y )

max 〉 satisfies
the fermion parity constraint. The fermion parity constraint
Eq. (16), written in terms of â
qλ,�x,�y, becomes

(−1)(Lx−1)Ly
∏

q+

P
q,0P
q,1P
q,2P
q,3
∏

q≡−
q

P
q = �
Ly
x , (29)

where P
q,λ = (1 − 2n
q,λ), P
q = 4â
q,0â
q,1â
q,2â
q,3 and ≡ is
equality mod2π . As we mentioned above Eq. (26), the prin-
cipal eigenstate of T̃
q in Eq. (20) always has n
q,1 = n
q,2 = 1
and n
q,1̄ = n
q,2̄ = 0, so we have P
q,0P
q,1P
q,2P
q,3 = +1 for 
q �≡
−
q. Therefore, whether a sector (�x,�y) is parity-compatible
or not is determined by the values of P
q where 
q ≡ −
q.

There are only four possible 
q that can satisfy 
q ≡ −
q
: (0, 0), (0, π ), (π, 0), (π, π ). For the rest of this section,
we assume that Lx,Ly are both even numbers (we treat the
other cases in Appendix F; the conclusions are the same),
in which case these four modes appear in the (++) sec-
tor only. This means that Eq. (29) is trivially satisfied for
the sectors (+−), (−+), (−−), i.e., T̂ has at least a three-
fold degeneracy. For the (++) sector, Eq. (29) becomes
P00P0πPπ0Pππ = +1. The value of P
q for these four Majorana
modes in the principal eigenstate |�(++)

max 〉 is determined by
maximizing the T̃0,
q term in Eq. (24). It is straightforward to
see that Pπ0 = Pππ = −1, P00 = [Kz > Kx + Ky], and P0π =
[Kz > |Kx − Ky|], where [S] = +1 if the statement S is true
and [S] = −1 otherwise. In the A phases, P00,P0π are both
−1 (for Ax,Ay) or both +1 (for Az), so P00P0πPπ0Pππ = +1
and T̂ has a fourfold degeneracy. In the B phase we have
P00 = −1,P0π = +1, so P00P0πPπ0Pππ = −1, i.e., the sector
(++) is parity-incompatible, and T̂ has a threefold degener-
acy.

G. Loop observables

In this section we compute the thermal expectation value of
the family of loop observables σ [L(αβ )] defined in Eq. (5), and
verify our earlier claim that it is equal to ±1 for contractible
loops, 0 for large loops in the A phase, and 1/3 for large loops
in the gapped B phase.

We begin with a contractible loop Lp being an elementary
plaquette of the brick-wall lattice. Using the transfer matrix
method, we find

〈σ [Lp,(αβ )]〉 = Tr[ŴpT̂
M]/Tr[T̂ M]

=
M→∞

1

D

D∑
j=1

〈
�

(L)
max, j

∣∣Ŵp

∣∣�(R)
max, j

〉
= +1, (30)

where (αβ ) ∈ {(xy), (yz), (zx)}, the sum is over all the D-fold
degenerate principal eigenstates, 〈�(L)

max, j | and |�(R)
max, j〉 are the

left and right principal eigenstates of T̂ , respectively. The last
line of Eq. (30) follows from the fact that the principal eigen-
states of T̂ are eigenstates of the conserved operator Ŵp with

eigenvalue +1. The value of 〈σ [L(αβ )]〉 on larger contractible
loops can be calculated in a similar way, and the result is (up
to a possible minus sign) the expectation value of the product
of Ŵp for all the plaquette p enclosed by L. Since the Ŵp

mutually commute and have eigenvalue +1 on the principal
eigenstates, 〈σ [L(αβ )]〉 is ±1 for contractible loops.

The behavior of 〈σ [L(αβ )]〉 is more interesting on noncon-
tractible loops. For a large loop Ly parallel to the y direction,
as shown in Fig. 1, we have

〈σ [Ly,(αβ )]〉 = −Tr[�̂yT̂
M]/Tr[T̂ M]

=
M→∞

− 1

D

D∑
j=1

〈
�

(L)
max, j

∣∣�̂y

∣∣�(R)
max, j

〉
. (31)

For A phases, this is

〈σ [Ly,(αβ )]〉 = −〈�̂y〉++ + 〈�̂y〉+− + 〈�̂y〉−+ + 〈�̂y〉−−
4

= 0, (32)

while for the gapped B phase,

〈σ [Ly,(αβ )]〉 = −〈�̂y〉+− + 〈�̂y〉−+ + 〈�̂y〉−−
3

= 1

3
. (33)

The value of 〈σ [Lx,(αβ )]〉 for a large loop Lx parallel to the x
direction is mapped to −〈�̂x〉 [Eq. (13)] and can be calculated
in an identical way, leading to the same result. We see that the
value of 〈σ [L(αβ )]〉 indeed distinguish between contractible
and noncontractible loops, are always quantized at rational
values, and can be used as a (nonlocal) order parameter that
distinguishes the phases.

In order for the topological features to be a universal
characteristic of the phase, rather than an accidental property
(arising, for example, due to the model’s solvability), they
must be in some way robust against small, local perturbations.
We argue that this is likely the case. Notice that a local per-
turbation, e.g., a small real magnetic field term B

∑
j σ j , in

the original classical Ising model can be mapped to a local
perturbation in the transfer matrix in Eq. (7). The classical
loop observables defined in Eq. (5) stills maps to the loop
operators Ŵp, �̂x, �̂y, but they no longer commute with the
perturbed T̂ , and when they act on |�(R)

max, j〉 they create excita-
tions along the loop. Consequently we expect the expectation
value 〈σ [L(αβ )]〉 to decay exponentially in the length of L.

However, based on the robustness of the topological phases
of the 2D quantum systems (defined by the transfer matrix
T̂ ), we expect that there exists a family of perturbed loop
observables (whose definition depends on the perturbation)
that have exactly the same properties shown above. The argu-
ment is based on the idea of quasi-adiabatic continuation [32].
For simplicity, let us assume Kx,Ky,Kz � 1 so that T̂ can be
approximated as a Hermitian operator. Then Ref. [32] shows
that there exists a quasilocal unitary transformation Ûλ that
evolves the unperturbed principal eigenstates to the perturbed
ones |�(R)

max, j〉λ = Ûλ|�(R)
max, j〉λ=0, where λ is the strength of

the perturbation. [Roughly speaking, Ûλ is a finite-time evo-
lution by a locally-interacting Hamiltonian

∑
i ĥi such that

t‖ĥi‖ = O(λ), where t is the total time duration.] Then the
perturbed loop operators Ûλ{Ŵp, �̂x, �̂y}Û †

λ have exactly the
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same expectation values in the perturbed principal eigenstates
as in the unperturbed solvable model shown above. And due
to the quasilocality of Ûλ, Lieb-Robinson bounds [33,34]
show that these perturbed operators are finite-width (of order
vLRt , where v is the Lieb-Robinson speed) extensions of the
unperturbed ones. So we do expect robustness in this sense,
essentially the same robustness of loop observables in quan-
tum topological phases.

IV. PHYSICAL RELEVANCE OF COMPLEX COUPLING
CONSTANTS

Although the complex coupling constants of Eq. (4) appear
unphysical, this section argues that the model nevertheless
gives insights into genuine physical systems.

Foremost, we expect the general strategy of this paper—
finding 3D classical models whose transfer matrices can be
solved using techniques previously applied to solvable 2D
quantum models—to be a fruitful idea that may lead to a
wealth of new solvable models, some of which may have
real-valued energy. For example, Refs. [25,26,35] have clas-
sified families of quantum spin models that can be solved by
mapping to free fermions, and these provide a fertile source
for new 3D solvable models.

As an example of this strategy, Sec. IV A shows that the
A phase of our model can be realized in a model with real
coupling constants. This provides a physical model showing
the topological properties. As a speculative aside, we also note
that this demonstrates that even models with complex-valued
couplings may have the same universal physics as real-valued
physical models, and thus the former may serve as windows
into the latter.

Additionally, Sec. IV B shows two different realizations of
the partition function of our complex parameter Ising model
in certain dynamical processes of a 3D quantum spin sys-
tem. Both in principle allow the free energy of our model to
be measured experimentally. They suggest that the statistical
mechanics of Eqs. (1) and (2) gives a solvable model of 3D
DQPT [13] that display topological features.

A. Realization of A phase in a model with real energy

The A phase can be realized in a physical model with
real energies, as we now show. Specifically, the model has
a phase that reproduces the A phase’s topological properties,
that contractible loops have expectation value ±1 while non-
contractible loops have expectation value 0. Consider a 3D
square lattice where there is one classical Ising spin on each
link in the x and y directions, but no spins live on the links
in the z direction, as shown in Fig. 4. The energy of a spin
configuration {σ } is given by

E [{σ }] = −
∑

v

σv,1σv,2σv,3σv,4 −
∑
c

ε[σ{u(c)}, σ{l (c)}],

(34)
where the first sum is over all vertices v, σv,1, σv,2, σv,3, σv,4

denote the four spins linked to the vertex v, the second sum
is over all even cubes c [i.e., cubes whose 3D coordinates
(x, y, z) satisfy x + y + z ≡ 0(mod2)], and {u(c)}, {l (c)} de-
note the upper and lower plaquettes of c, respectively. We
use σ{p} = (σp,1, σp,2, σp,3, σp,4) to denote the configurations

FIG. 4. The model Eq. (34) lies on a 3D cubic lattice where
the classical spins sit on links in the x and y directions. There are
four spin interactions σv,1σv,2σv,3σv,4 between spins around every
lattice vertex v (shown as blue diamond) and eight spin interactions
ε[σu(c), σl (c)] around every even cube c (shown as orange cube).
Example of a contractible loop L1 is shown as black square, and a
noncontractible loop L2 is shown as purple solid line.

of the four spins of the plaquette p. The energy of
the cube c is defined as ε[σ{u(c)}, σ{l (c)}] = ε1 if σ{u(c)} =
σ{l (c)}, ε[σ{u(c)}, σ{l (c)}] = ε2 < ε1 if σ{u(c)} = −σ{l (c)} while
ε[σ{u(c)}, σ{l (c)}] = −∞ otherwise.

The partition function is

Z =
∑
{σ }

e−βE [{σ }] = Tr[T̂ M], (35)

where the transfer matrix T̂ is an operator acting on quantum
spins lying on a 2D slice of the lattice, defined by

T̂ = exp

⎛
⎝β
∑

v

σ̂ z
v,1σ̂

z
v,2σ̂

z
v,3σ̂

z
v,4 + λ

∑
p

σ̂ x
p,1σ̂

x
p,2σ̂

x
p,3σ̂

x
p,4

⎞
⎠,

(36)
where tanh λ = eβ(ε2−ε1 ), the first sum is over all vertices v,
and the second sum is over all plaquettes p. Therefore T̂
is simply e−Ĥ where Ĥ is the Hamiltonian of Kitaev’s toric
code model. The principal eigenstates of T̂ are the fourfold
degenerate ground states of Ĥ .

Figure 4 shows the family of loop observables we are
interested in. Using the same method as in Sec. III G, these
classical loop observables can be mapped to the conserved
loop operators of the quantum toric code, and the thermal
expectation values of the former are mapped to quantum
expectation values of the latter. Averaging over the four topo-
logically degenerate principal eigenstates, we find that the
expectation value of contractible loops is +1 while non-
contractible loops have expectation value 0. This reproduces
the topological behavior of the A phase of the Ising model
presented in Sec. III G. Notice that this quantum-classical
mapping of Kitaev’s toric code model was also studied in
Ref. [36], although the focus there is on the 2D quantum
system.

B. Realizing the partition function in quantum dynamics

Another way in which classical statistical models with
complex energy can be physically relevant is that the partition
function Z can be mapped to measurable quantities of certain
(unitary) quantum dynamical processes in 3D (not 2D) quan-
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tum systems. In this section we show two such constructions:
Sec. IV B 1 shows how to realize Z as a transition amplitude,
while Sec. IV B 2 shows that Z gives the quantum coherence
of a probe spin-1/2 coupled to the whole system. The phase
transition we studied in our model is then mapped to a DQPT
in these quantities.

1. Interpreting the partition function as a transition amplitude

Consider a 3D quantum spin system on the same lattice
as Fig. 1, and with a Hamiltonian given by Eq. (1) with
all σi replaced by σ̂ z

i , and we will take all the parameters
Jx, Jy, Jz, J⊥, h to be real to guarantee Hermiticity. The quan-
tum transition amplitude between two arbitrary states is

〈A|e−it Ĥ |B〉 =
∑
{σ }

e−itH [{σ }]〈A|{σ }〉〈{σ }|B〉, (37)

where on the RHS we inserted a complete set of σ̂ z basis
states. If the states |A〉, |B〉 are of the following form

|A〉 =
⊗

〈i j〉∈X
|ψ (Ax )〉i j

⊗
〈i j〉∈Y

|ψ (Ay)〉i j
⊗
〈i j〉∈Z

|ψ (Az )〉i j, (38)

where
⊗

〈i j〉∈X is over all the red thick x links in
Fig. 1, and similarly for

⊗
〈i j〉∈Y and

⊗
〈i j〉∈Z, and the

local state on each link 〈i j〉 is defined as |ψ (A)〉i j =
1

2
√

cosh 2Re(A)

∑
σi,σ j

eAσiσ j |σi, σ j〉. Note that Eq. (38) defines
product states since the thick links X,Y,Z are nonoverlap-
ping. Then we have

〈A|e−it Ĥ |B〉 = const. × Z (Kx,Ky,Kz, itJ⊥, ith), (39)

where Kj = A∗
j + Bj + itJj, j = x, y, z. Therefore, when

tJ⊥ ≡ π/4(modπ/2), th ≡ π/4(modπ ), the transition am-
plitude is given by the results we derived previously.

Quantum transition amplitudes, or closely related objects
called dynamical partition functions f (t ) ∝ − ln〈A|e−it Ĥ |B〉,
are the central objects in the study of DQPTs [12,13,37–41].
In this literature, a dynamical phase transition typically refers
to a singularity of the dynamical evolution of a physical quan-
tity [e.g., f (t )] at a critical time. In our model, the time is fixed
at special values, e.g., t0 = π/(4J⊥) = π/(4h) to guarantee
solvability, and the singularity occurs in f (t0) as we tune the
parameters Kx,Ky,Kz across the phase boundary shown in
Fig. 3. Although the situation is slightly different, the analogy
is clear, and we also expect that if we fix Kx,Ky,Kz to be
exactly at the phase boundary, say Kz = Kx + Ky, and let the
system evolve in time, then there will likely be a singularity
in f (t ) at t0, i.e., a DQPT in the usual sense.

Although quantum transition amplitudes are much harder
to measure experimentally compared to local observables,
there are promising experimental setups [42,43] that measure
this quantity in relatively small systems, and are capable of
observing signatures of dynamical phase transition.

2. Mapping the partition function to a probe spin coherence

We can also realize the partition function as a probe spin
coherence, based on the idea of measuring Yang-Lee zeros
in the classical Ising model [16,17]. To this end we couple a
probe spin-1/2 to the whole 3D (quantum) spin system (bath)

shown in Fig. 1, with probe-bath interaction

HI = τ̂ z ⊗
⎛
⎝−J⊥

∑
〈i j〉∈⊥

σ̂ z
i σ̂

z
j + h

∑
i

σ̂ z
i

⎞
⎠ = 1

2
τ̂ zB̂ (40)

where τ̂ z acts on the probe spin, and J⊥ and h are real.
The probe spin is initialized in a superposition state (|↑〉 +
|↓〉)/

√
2, and the system (bath) is initially in equilibrium at

temperature T with only interactions in the horizontal x, y, z
links, described by the canonical ensemble in Eq. (2) with
J⊥ = h = 0. When we turn on the probe-bath interaction in
Eq. (40), the thermal fluctuation of the field B̂ induces deco-
herence of the probe spin (due to a random phase Bt). The
probe spin coherence, defined as the ensemble average of eiB̂t ,
is mapped to [16]

L(t ) ≡ 〈eiB̂t 〉 = Z (βJx, βJy, βJz, iJ⊥t, iht )
Z (βJx, βJy, βJz, 0, 0)

. (41)

Therefore, when tJ⊥ ≡ π/4(modπ/2) and th ≡ π/4(modπ ),
L(t ) is given by our exact solution in Sec. III [notice that the
denominator of Eq. (41) can be calculated easily and has no
singularity], and has a topological phase transition when the
parameters Jx, Jy, Jz are tuned across the phase boundary in
Fig. 3. This kind of probe spin coherence has been measured
experimentally in an Ising model of 10 spins [17].

V. SUMMARY AND OUTLOOK

We exactly solved a 3D classical Ising model on a special
3D lattice, which has some of its coupling constants fixed to
imaginary values. The solution exploits the special structure
of the transfer matrix, which can be mapped to free fermions
using a method similar to the solution of Kitaev’s honeycomb
model. The analytic solution reveals two distinct phases, with
a third-order phase transition between them. The two phases
can be distinguished by measuring the product of spins on
certain loops, the expectation value of which is quantized to
certain rational values (0, 1, or 1/3), depending only on the
phase and the topology of the loop. We therefore see that
the model not only gives insight into interacting many-body
systems in 3D, but that the behavior it shows is particularly
interesting: there are phases with topological properties, and a
continuous phase transition between them.

We expect the topological character of the phases to be uni-
versal, as discussed in Sec. III G. We also expect universality
in some other correlations we have not calculated in this paper.
For example, the gapless B phase has power-law decaying
two-point correlations. For the gapped B phase (i.e., with the κ

perturbation introduced in Sec. III D), if we put the system on
a large cylinder (with axis parallel to the z direction), due to
the existence of gapless chiral edge modes on the boundary
of the 2D quantum system (defined by the transfer matrix
T̂ ), we expect that the Ising model has power-law decaying
correlations on the cylinder boundary even though all two-
point correlations in the bulk decay exponentially. We expect
the universality in these power-law exponents (i.e., remain the
same when local perturbations are present).

Despite the unphysical complex coupling constants,
we described two connections to physical systems. First, the
universal long-distance properties of the two phases and the
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phase transition may be reproduced in a physical 3D system.
We demonstrated this by explicitly constructing another 3D
classical statistical model with positive Boltzmann weights
that has topological properties identical to the A phase of our
3D Ising model. (Similar topological behavior of loop observ-
ables is also found in some 3D classical gauge theories at zero
temperature, for example in the 3D Z2 gauge theory [44,45].
The main difference is that at non-zero temperature, the ex-
pectation values of loop obserables persists in our model, but
in 3D Z2 gauge theory they decay as e−cS where c > 0 is a
constant and S is either the area or the perimeter of the loop
depending on the phase of the matter.) More speculatively, this
suggests that physical systems may have the same universal
behavior as models with complex couplings independent of
whether the corresponding real-coupling models can be ex-
plicitly found or solved. We are unsure if the B phase can
be realized in a physical classical system, but we expect this
to be challenging if at all possible, since Ref. [46] suggests
the prevalence of sign-problems in a family of closely related
phases. Second, the partition function of our model can be
realized in certain dynamical processes of a 3D quantum
spin system, either as a transition amplitude or as a probe
spin coherence, allowing the free energy to be experimentally
measured in principle, and the phase transitions studied in our
model are related to DQPTs in these 3D quantum systems.

Our model may have other connections to real physical sys-
tems beyond the above two. First, when Kx,Ky,Kz are purely
imaginary, our transfer matrix T̂ in Eq. (7) becomes the uni-
tary evolution operator of a periodically driven Kitaev model
studied in Ref. [47], so our technique of diagonalizing T̂ may
be useful in studying certain properties of that system. Second,
when Kx,Ky,Kz → ±∞, T̂ becomes a projection operator
representing the sequential measurement of σ̂ z

i σ̂
z
j , σ̂

y
i σ̂

y
j , and

σ̂ x
i σ̂ x

j on all the z, y, and x links, respectively, which is reminis-
cent of the measurement process of the honeycomb quantum
memory code proposed in Ref. [48].

Our results may also provide hints for constructing a gen-
uinely 3D—i.e., one which does not factorize into decoupled
2D models—classical statistical model with positive Boltz-
mann weights and a continuous phase transition, a problem
that has been studied for more than 60 years but never solved.
As one possible direction, we note that our model can be
straightforwardly generalized to a large family of solvable 3D
classical statistical models, whose transfer matrix is similar to
one of the generalized Kitaev models [49–59] that can also
be solved by mapping to free fermions. As free-fermion solv-
able spin models have been systematically classified recently
[25,26,35], it is natural to ask if one of them can be promoted
to a transfer matrix that corresponds to a physical 3D classical
statistical model.
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APPENDICES

The Appendices contain technical results used throughout
our arguments. In Appendix A we prove a generalization of
Lieb’s optimal flux theorem, which is used in Sec. III B to
show that the principal eigenstates of the transfer matrix have
no vortices. In Appendix B we show that the gapless B phase
of our model can be gapped by certain perturbations. In Ap-
pendix C we prove some analytic properties of the fermionic
spectrum, which are used in determining the phase boundary
in Sec. III D. In Appendix D we show that the splitting of
the principal eigenvalue degeneracy of the transfer matrix
decays exponentially with system size, which is important for
Sec. III F and Sec. III G. In Appendix E we give a numeri-
cal method to calculate the energy of the vortex excitations
of the transfer matrix, which helps us confirm that vortices
are gapped. In Appendix F we show that the derivation of
Sec. III F and Sec. III G can be generalized to arbitrary system
size (Lx,Ly), leading to the same conclusions.

APPENDIX A: GENERALIZATION OF LIEB’S OPTIMAL
FLUX THEOREM TO THE TRANSFER MATRIX Eq. (11)

In this section we generalize Lieb’s optimal flux theorem
[28] to the free fermion transfer matrix Eq. (11) with real
parameters Kx,Ky,Kz. The goal is to prove that if we fix the
magnitude of the coupling constants on each link and allow
their signs ui j to vary independently, then the vortex (flux)
configurations that maximize the principal eigenvalue �max

of T̂ ′ have no vortex (i.e., have Wp = +1 everywhere). For
this, it is sufficient to prove that the vortex-free configurations
maximize the fermionic partition function Z ′ = Tr[T̂ ′M] for
any M, and then let M → ∞. The proof mostly follows the
strategy of Ref. [28]. The lattice structure is drawn in Fig. 5,
where both directions are periodic, and we draw a vertical line
that cuts the system into two subsystems, which are reflections
of each other (up to the difference in the signs of tunneling
constants, ui j). We will first use reflection positivity [28] to
prove that the optimal flux configuration must have zero flux
on the unit cells that intersect with the vertical line, and
then apply this conclusion to all such vertical lines (due to
translation invariance in the horizontal direction) to show that
the optimal configuration has zero flux everywhere. We use
R̂ to denote the unitary reflection that maps between the two
subsystems, and we denote the links that intersect the cutting
line by 11̄, 22̄, . . ., as shown in Fig. 5, so that R̂ĉ j R̂ = ĉ j̄, j =
1, 2, 3 . . .. Without loss of generality, we can use the gauge
convention in which uj j̄ = 1, since we can always do a gauge
transformation on site j (which flips all the ujk linked to j) to
flip u j j̄ . We write the free fermion partition function as

Z = Tr[(V̂1V̂2V̂3)M], (A1)

where V̂1 = exp(Kx
∑

x ui j iĉiĉ j ), and similarly for V̂2, V̂3. No-
tice that in both V̂1 and V̂2, the left and right subsystems are
decoupled, so that V̂1 factorizes as V̂1 = V̂1LV̂1R, and similarly
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FIG. 5. The proof of the generalized Lieb’s optimal flux theorem
exploits the reflection symmetry of the brick-wall lattice. The mirror
line of this reflection is shown as the dashed line cutting through all
the z links in a column. The arrows show an example of a reflection
symmetric configuration of {ui j}, where an arrow from i to j means
that ui j = +1 = −uji. Notice that with the gauge convention uj j̄ =
+1, reflection symmetry of ui j guarantees that all the plaquettes
intersecting with the cutting line has zero flux Wp = +1, since ui j on
the x and y links cancel with their mirror images. The key part of the
proof is Eq. (A5), which shows that at least one of the optimal flux
configurations can be taken to be reflection symmetric with respect
to this cutting line. The proof then moves on to apply Eq. (A5) to all
such cutting lines of the lattice.

for V̂2, where we use subscripts L (R) to denote operators
acting solely on the subsystem to the left (right) of the cut-
ting line. V̂3 involves tunneling between subsystems, and it
factorizes as V̂3 = V̂3LV̂3RV̂3I , where in our gauge convention
mentioned above,

V̂3I = exp

⎛
⎝Kz

∑
j

iĉ j ĉ j̄

⎞
⎠ = cosh(Kz )

m
m∏
j=1

(1 + t3iĉ j ĉ j̄ ),(A2)

where t3 = tanh(Kz ) and m is the number of cut links (equal to
two times system size in the vertical direction). The partition
function becomes

Z = Tr[(V̂1LV̂1RV̂2LV̂2RV̂3LV̂3RV̂3I )
M] (A3)

= Tr[(V̂LV̂RV̂3I )
M]

= C
∑

ai j=0,1

Tr[V̂LV̂R(t3iĉ1ĉ1̄ )a11 . . . (t3iĉmĉm̄)a1m

× V̂LV̂R(t3iĉ1ĉ1̄ )a21 (t3iĉ2ĉ2̄ )a22 . . . (t3iĉmĉm̄)a2m

· · ·
× V̂LV̂R(t3iĉ1ĉ1̄ )aM1 (t3iĉ2ĉ2̄ )aM2 . . . (t3iĉmĉm̄)aMm ],

where C = (coshKz )mM , V̂L = V̂1LV̂2LV̂3L, and similarly for
V̂R. Our strategy now is to move all the left operators to the
left, and all the right operators to the right, without changing
the relative order within each class. Notice that V̂L commute
with any operator acting on the right, and V̂R commute with

any operator on the left, while the exchange between ĉi and ĉ j̄
always introduces a minus sign. We therefore have

Z[V̂L, V̂R] = C
∑

a∈{0,1}Mm

Tr
[
X̂ a
L X̂

a
R

]
(it3)|a|(−1)c(a), (A4)

where X̂L is a product of M number of V̂L and |a| =∑i, j ai j
number of ĉ j (suitably ordered) and similarly for X̂R, and
c(a) = |a|(|a| − 1)/2 denotes the total number of fermion
minus signs introduced by exchanging ĉi and ĉ j̄ . We write
Z = Z[V̂L, V̂R] to emphasize the explicit dependence of Z
on the flux configuration, which determines the signs of the
tunneling constants in V̂L, V̂R.

The next step is to factorize the trace of whole system as a
product of traces of subsystems. One way to do this is to com-
bine the two Majorana operators on each x link into a Dirac
fermion (the trace is independent of the choice of the Dirac
fermion basis, since different basis are related by a unitary
transformation), so that Tr[ÂLB̂R] = TrL[ÂL]TrR[B̂R], where
TrL (TrR) denotes the trace on the left (right) subsystem, and
TrL[ÂL] = 0 if ÂL is an odd product of fermionic operators,
and similarly for B̂R. Therefore in Eq. (A4) we can restrict the
summation to those a for which |a| is even, in which case we
have i|a|(−1)c(a) = 1. Furthermore, we can show that TrL[X̂L]
is real (and similarly for TrR[X̂R]), i.e., TrL[X̂L] = TrL[X̂L]∗,
since complex conjugation sends i to −i and reverse the signs
of all the Majorana fermions on even sites (leaving Majorana
operators on odd sites unchanged), thereby leaving X̂L invari-
ant. We now have

Z[V̂L, V̂R]2 =
(
C
∑
a

t |a|3 TrL
[
X̂ a
L

]
TrR
[
X̂ a
R

])2

�
(
C
∑
a

t |a|3 TrL
[
X̂ a
L

]2)(
C
∑
a

t |a|3 TrR
[
X̂ a
R

]2)

=
(
C
∑
a

t |a|3 TrL
[
X̂ a
L

]
TrR
[
R̂X̂ a

L R̂
])

×
(
C
∑
a

t |a|3 TrL
[
R̂X̂ a

R R̂
]
TrR
[
X̂ a
R

])

= Z[V̂L, R̂V̂LR̂]Z[R̂V̂RR̂, V̂R], (A5)

where in the second line we use the Cauchy-Schwartz in-
equality. Equation (A5) means that for any flux configuration
determined by [V̂L, V̂R], at least one of the reflection symmet-
ric configurations corresponding to [V̂L, R̂V̂LR̂] or [R̂V̂RR̂, V̂R]
have smaller or equal free energy (larger or equal Z). Notice
that each of these reflection symmetric configurations has zero
flux on cells intersecting with the cutting line. Therefore the
optimal flux configuration (in case of degeneracy, consider
the optimal flux configuration with least π fluxes) must have
zero flux everywhere, since otherwise we can use Eq. (A5)
to construct another flux configuration that has either strictly
smaller free energy or strictly less π fluxes.

The generalized Lieb’s theorem shows that at least one of
the principal eigenstates have all Wp equal to one. This is also
confirmed by the numerical results presented in Appendix E,
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which additionally suggests that the excitation energies of
vortices remain gapped in the thermodynamic limit.

APPENDIX B: THE FERMION GAP OF THE B PHASE

In Sec. III D we claimed that a subregion of the B phase
can be gapped by adding small imaginary parts to Jx, Jy, so
that Kx → Kx + iκ,Ky → Ky − iκ , and then adding a small
real part to the coupling constants of the x, y links that break
the lattice reflection symmetry, in the pattern shown in Fig. 2.
In the following we verify this claim at the line Kx = Ky, and
show that the fermion gap 
 ∝ κ2 in the limit of small κ .

Since the operators in the exponential of the fermionic
transfer matrix remain quadratic in the Majorana fermion
operators with this perturbation, the method used in Sec. III C
still works. We can simply repeat the derivations in Eqs. (17)–
(23), the only modification now is that e±ε
q,1 , e±ε
q,2 are the
eigenvalues of the modified matrix

T
q = e2K ′
xP+2κP0e2K ′

yQ+2κQ0e2KzR, (B1)

where K ′
x = Kx + iκ , K ′

y = Ky − iκ , the matrices P,Q,R are
the same as defined in Eq. (21), and

P0 =

⎛
⎜⎜⎝

0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎟⎠,

Q0 =

⎛
⎜⎜⎝

0 ie−iqy 0 0
−ieiqy 0 0 0

0 0 0 −ieiqy

0 0 ie−iqy 0

⎞
⎟⎟⎠. (B2)

The eigenvalue problem of T
q can still be simplified
to a quadratic equation z2 + Az + B = 0, where z = (x +
1/x)/2 = cosh ε
q, j (for j = 1, 2). The expressions of A,B are
way more complicated than in Eq. (23), so we do not show
them here.

To determine the spectral gap of ε
q,1 (the one of ε
q,1, ε
q,2
with smaller real part), we first let κ = 0 and find the 
q∗ at
which ε
q,1 vanishes. This takes the form 
q∗ = (0, q∗

y ) since
ε
q,1 is smallest at qx = 0 for a fixed qy. Requiring that T
q has
an eigenvalue 1 at 
q∗, which is equivalent to 1 + A + B = 0,
we find that

cos q∗
y = cosh 2Kz − cosh 2Kx cosh 2Ky

sinh 2Kx sinh 2Ky
. (B3)

We can now study the spectrum near the point 
q∗, by ex-
panding the equation Q(κ, qx, qy, z) = z2 + Az + B = 0 with
z = 1 + ε2


q,1/2, 
q = 
q∗ + (qx, δqy ). We find that

4s2
3ε

2

q,1 = 1

2Qκκκ
2 + 1

2Qxxq
2
x + 1

2Qyyδq
2
y + Qxκqxκ

+ O(κ4) + O(κ2δqy) + O(qxδqyκ ), (B4)

where

Qκκ = 32(1 − cos q∗
y )[C3 − cos q∗

y −C1−2(1 − cos q∗
y )],

Qxx = s2
3(4c1c2c3 − 2 −C1 −C2),

Qxκ = 4s2
3(S1 + S2) sin q∗

y ,

Qyy = 8s2
1s

2
2 sin2 q∗

y , (B5)

where C1−2 = cosh(4Kx − 4Ky), and c j = cosh 2Kj, s j =
sinh 2Kj,Cj = cosh 4Kj, S j = sinh 4Kj , for j = x, y, z [same
as defined in the main text below Eq. (23)].

We now determine the (qx, δqy) that minimizes the RHS
of Eq. (B4). At the line Kx = Ky, one can check that Q2

xκ =
QκκQxx, and Qxx > 0,Qκκ > 0, so the minimum is at qx =
κQxκ/Qxx + O(κ2), δqy = O(κ2). Near this point, in the RHS
of Eq. (B4), terms of order κ2 exactly cancel, leaving μκ4 for
some constant μ > 0 (the analytic expression for μ is quite
complicated, so we do not show it here). Therefore we have

 = min 
q ε
q,1 ∝ κ2. This result is also verified numerically.

[Notice that when κ = 0, ε
q,1, ε
q,2 are real; furthermore,
since the coefficients in Eq. (B5) are all real, ε
q,1 must be
real at order κ2, so the distinction between ε
q,1 and Re[ε
q,1]
is unimportant here–the gap for Re[ε
q,1] is also proportional
to κ2.]

APPENDIX C: THE ANALYTICITY OF ε�q,1 + ε�q,2

In this section we study the complex analyticity
of ε
q,1 + ε
q,2 as a function of all its parameters
Kx,Ky,Kz, κ, qx, qy. Here ε
q,1, ε
q,2 are the two eigenvalues
of T
q = T (Kx,Ky,Kz, κ, qx, qy) defined in Eq. (B1),
with 0 � Re[ε
q,1] � Re[ε
q,2] (if the real parts are equal,
order by their imaginary parts). Notice that even though
Kx,Ky, κ are assumed real in the definition K ′

x = Kx + iκ ,
K ′
y = Ky − iκ , we still consider the analytic continuation

of T (Kx,Ky,Kz, κ, qx, qy) to the complex regions. This
analyticity is used in Sec. III D in determining the phase
boundary, and will also be used in Appendix D in proving the
finite-size splitting of degenerate ln �max in gapped phases.

We prove the following theorem:
Theorem 1. For a given set of (Kx0,Ky0,Kz0, κ0) ∈ R4, if

Re[ε
q,1] > 0 and Re[eε
q,1+ε
q,2 ] � 0 for all 
q ∈ [−π, π ]2, then
there exists ρ > 0 such that ε
q,1 + ε
q,2 is a single-valued com-
plex analytic function (in all its parameters) in the region

Rρ = {(Kx,Ky,Kz, κ, qx, qy) ∈ C6|Re[qi] ∈ [−π, π ],

|Im[qi]| � ρ, i = x, y, |κ − κ0| � ρ,

|Kj − Kj0| � ρ, j = x, y, z}. (C1)

Proof. We use the notation and the results of Sec. III C
and Appendix B. We begin by noticing that the characteristic
polynomial PT
q (x) of T
q has coefficients complex analytic
in Kx,Ky,Kz, κ, qx, qy everywhere (except at infinity), since
taking exponentials or determinants of matrices cannot intro-
duce singularities. It follows that the coefficients of z2 + Az +
B = 0 are complex analytic everywhere. Denote the roots by
z j = (x j + 1/x j )/2 = cosh ε
q, j for j = 1, 2. Vieta’s relations
guarantee that all symmetric polynomials of (z1, z2), such as
z1 + z2, z1z2, z2

1 + z2
2, are polynomials of A,B and therefore

analytic everywhere in C6.
We now prove that there exists ρ > 0 such that

Re[ε
q,1] > 0 in Rρ . First, Re[ε
q,1] = ln |x1| is continuous in
Kx,Ky,Kz, κ, qx, qy everywhere, which follows from the con-
tinuity of the roots {x j}1� j�4 of the polynomial PT
q (x) as a
function of its coefficients, and the fact that the roots are
ordered by their norm. We now invoke the theorem that if a
function is continuous on a closed and bounded region, then it
is bounded (and attains its bounds) and uniformly continuous
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in this region. Since R0 is closed and bounded, let 
 > 0 be
the minimum of Re[ε
q,1] in R0. Since Re[ε
q,1] is uniformly
continuous in the closed and bounded region R1.0, there exists
ρ ∈ (0, 1.0] such that

|Re[ε
q,1]|Kx,Ky,Kz,κ,
q − Re[ε
q,1]|Kx0,Ky0,Kz0,κ0,Re[
q]|
� 
/2, ∀(Kx,Ky,Kz, κ, qx, qy) ∈ Rρ, (C2)

which implies that Re[ε
q,1]|Kx,Ky,Kz,κ,
q � 
/2 > 0 in Rρ .
We now study the analyticity of x1x2 = eε
q,1+ε
q,2 . We have

x1x2 = (z1 +
√
z2

1 − 1
)(
z2 +

√
z2

2 − 1
)

= z1z2 +
√
z2

2 − 1
√
z2

1 − 1

+ (z1

√
z2

2 − 1 + z2

√
z2

1 − 1
)
. (C3)

Notice that by Vieta’s relations, each term in the RHS can be
expressed as an algebraic function of A and B, and therefore
x1x2 can at most contain branch cuts or branch points in its
parameters (Kx,Ky,Kz, κ, qx, qy). However, in Rρ , we have
proved that the four roots x2, x1, 1/x1, 1/x2 of PT
q (x) satisfy
|x2| � |x1| > |1/x1| � |1/x2|. Again by the continuity of roots
of a polynomial as a function of its parameters, x1x2 must
be a continuous, single-valued function of A,B in the region
Rρ [60]. This rules out any branch cuts or branch points, and
therefore x1x2 = eε
q,1+ε
q,2 must be analytic in Rρ .

We now discuss the analyticity of ε
q,1 + ε
q,2 = ln x1x2 in
Rρ . We already know that |x1x2| > 1 in Rρ , and the branch
point of ln x1x2 is at the origin, so we only need to guarantee
that, when the parameters Kx,Ky,Kz, κ, qx, qy vary in Rρ , the
values of x1x2 on the complex plane do not wind around the
origin. We already know that Re[x1x2] � 0 in R0 (by assump-
tion of the theorem), and x1x2 is continuous in the closed and
bounded region Rρ . Therefore x1x2 is bounded and uniformly
continuous in Rρ . Using a similar method as above, there ex-
ists ρ ′ ∈ (0, ρ] such that Re[x1x2] > −1/2 in Rρ ′ . Combined
with |x1x2| > 1 in Rρ ′ ⊂ Rρ , we know that the value set of x1x2

cannot wind around the origin for (Kx,Ky,Kz, κ, qx, qy) ∈ R′
ρ .

Therefore ε
q,1 + ε
q,2 = ln x1x2 is a single-valued complex an-
alytic function in Rρ ′ . This concludes the proof.

We finally remark on the role of Theorem 1 in deter-
mining the phase boundary of our model. Since the free
energy f is related to ε
q,1 + ε
q,2 in Eq. (26) by an inte-
gration in 
q over [−π, π ]2, Theorem 1 is strong enough to
guarantee that f is complex analytic in an open neighbor-
hood of (Kx0,Ky0,Kz0, κ0), if at this point Re[ε
q,1] > 0 and
Re[eε
q,1+ε
q,2 ] � 0 for all 
q ∈ [−π, π ]2. But we have numeri-
cally checked that Re[eε
q,1+ε
q,2 ] � 0 is almost always satisfied,
at least for a wide range of parameters (Kx0,Ky0,Kz0, κ0) ∈
R4. So a phase transition can only happen when Re[ε
q,1]
becomes gapless.

APPENDIX D: FINITE-SIZE SPLITTING OF
DEGENERATE ln�max IN GAPPED PHASES IS
EXPONENTIALLY SMALL IN SYSTEM SIZE

In this section we prove that in the regions where Re[ε
q,i]
are gapped, the finite-size differences among the four different

boundary conditions of

ε(L) ≡ 1

L2

∑

q

(ε
q,1 + ε
q,2) (D1)

decays exponentially in system size L. In the following we
will prove that |ε(L) − ε∞| � Ce−ρL for some positive con-
stants C, ρ. For simplicity we focus on the double periodic
boundary condition (++), and other cases can be treated in a
similar way.

Denote ε
q ≡ (ε
q,1 + ε
q,2), and define

fL(
x) = 1

L2

∑

q

ε
qe
i 
q·
x,

f (
x) ≡ f∞(
x) = 1

4π2

∫ π

−π

ε
qe
i 
q·
xd2q. (D2)

Notice that fL(0) = ε(L). We have

∑
m,n∈Z

f [
x + (m, n)L] =
∫

d2q

4π2

∑
m,n∈Z

eiqxmL+iqynL+i 
q·
xε
q

=
∑
r,s∈Z

∫
d2qδ[
qL − 2π (r, s)]ei 
q·
xε
q

= 1

L2

∑

q
ei 
q·
xε
q

= fL(
x). (D3)

Therefore

εL − ε∞ = fL(
0) − f (
0) =
∑

(m,n)∈Z2\{(0,0)}
f [(m, n)L]. (D4)

Appendix C proved that when Re[ε
q,i] are gapped and
positive, ε
q is complex analytic in the region |Im(qx )| �
ρ, |Im(qy)| � ρ for some ρ > 0. This leads to the exponential
decay of f (
x) in x, since

| f (
x)| = 1

4π2

∣∣∣∣
∫ π

−π

ε
qe
i 
q·
xd2q

∣∣∣∣,
= 1

4π2

∣∣∣∣
∫ π

−π

ε
q+iρ(sgn(x),sgn(y))e
i 
q·
xe−ρ(|x|+|y|)d2q

∣∣∣∣,
� e−ρ(|x|+|y|) max


q
|ε
q+iρ(sgn(x),sgn(y))|. (D5)

Then, Eq. (D4) implies that |ε(L) − ε∞| � Ce−ρL for some
constant C.

APPENDIX E: NUMERICAL SOLUTION FOR VORTEX
SECTORS WITHOUT TRANSLATION INVARIANCE

In Sec. III D we claimed that vortices are “gapped” in
the thermodynamic limit for all nonzero K1,K2,K3. More
precisely, this means that the principal eigenvalue ln �max of
the fermionic transfer matrix T̂ ′ for any sector with vortices is
smaller than that of the vortex-free sector by a finite amount

 > 0. This finite excitation gap is essential for the analysis of
topological degeneracy and loop observables in Sec. III F. Al-
though the generalized Lieb’s theorem in Appendix A proves
that vortices have non-negative excitation energy, we still need
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to verify that this excitation energy does not approach zero
in the thermodynamic limit. To verify the finite excitation
gap claim, we need to numerically solve the eigenvalues of
T̂ ′, since vortices break translation symmetry and the Fourier
transform in the main text cannot be used anymore. In the
following we first describe the method in Appendix E 1 and
then present the result in Appendix E 2.

1. Method

In the following we present a numerical method to calcu-
late the largest eigenvalue of the free fermion transfer matrix
of the form

T̂ = exp

⎛
⎝∑

i, j

Pi j iĉiĉ j

⎞
⎠ exp

⎛
⎝∑

i, j

Qi j iĉiĉ j

⎞
⎠

× exp

⎛
⎝∑

i, j

Ri j iĉiĉ j

⎞
⎠, (E1)

where P,Q,R are general 2N × 2N antisymmetric matrices
(not necessarily translationally invariant), and in this sec-
tion repeated indices indicate summation. Denote by so(2N )
the Lie algebra of all 2N × 2N antisymmetric matrices. For
any X ∈ so(2N ), define

ρ(X ) ≡ 1

4

∑
i, j

Xi j ĉiĉ j . (E2)

It is straightforward to verify that ρ is a representation of
so(2N ), i.e.,

[ρ(X ), ρ(Y )] = ρ([X,Y ]). (E3)

We can therefore extend ρ to the corresponding elements of
the SO(2N ) Lie group by ρ(eX ) ≡ eρ(X ). Notice that T̂ is an
element of this Lie group in the Majorana fermion representa-
tion

T̂ = e4iρ(P)e4iρ(Q)e4iρ(R)

= ρ(e4iP )ρ(e4iQ)ρ(e4iQ)

= ρ(e4iPe4iQe4iR). (E4)

Let e4iM ≡ e4iPe4iQe4iR, which can be numerically com-
puted efficiently. Then we have T̂ = exp(Mi jiĉiĉ j ) with M ∈
so(2N ). Using a (complex) orthogonal transformation, we can
bring M to a block diagonal form

OTMO

= diag
{(

0 −ε1

ε1 0

)
,

(
0 −ε2

ε2 0

)
, . . . ,

(
0 −εN
εN 0

)}
(E5)

where {ε j}Nj=1 are complex numbers with non-negative real
part, and T̂ factorizes into a product of mutually commuting
operators. The principal eigenvalue of T̂ is

�max = e2(ε1+ε2+...+εN ). (E6)

The vortex excitation gap 
 is defined as


 = max
(�x,�y )

ln �
(�x,�y )
max − max

V
ln �(V )

max. (E7)

FIG. 6. Lattice geometry for numerical calculation of vortex ex-
citation gaps. Both directions are periodic with length L. The two
shaded plaquettes are the locations of the two vortices with 
r1 − 
r2 =
(1, −1) whose excitation gap is shown in Fig. 7.

where �
(�x,�y )
max is principal eigenvalue of the vortex free sec-

tors defined in Eq. (25), and the second max is over all vortex
configurations V .

2. Numerical results

We present numerical results that show the excitation gaps
of vortices, as defined by Eq. (E7), remain finite for L → ∞.

For numerical convenience we use the lattice orientation
shown in Fig. 6. This slightly changes the finite-size results
from an L × L system in Fig. 2, but the thermodynamic limit
remains the same. (Also notice that the generalized Lieb’s
theorem in Appendix A still holds here since we still have
reflection positivity with reflection mirrors being vertical bi-
sectors of the z links.)

We limit our numerical study to the region Kx,Ky,Kz �
1.0. There are 2L2−1 vortex configurations in total, and it
is impractical to study all of them, so we compared a
few representative ones, including configurations with a few
neighboring vortices, configurations with two far separated
vortices, and configurations with a periodic vortex lattice.
Our result shows that the excitation gap 
 increases with the
number of vortices, and for a fixed number of vortices, 


typically increases with their distance. Vortex lattices always
have a finite energy density, i.e., 
 ∝ L2.

In short, in all the configurations we have studied, the
ones with smallest excitation gap are configurations with two
neighboring vortices, with 
r1 − 
r2 = (1,−1) or (1,1), where

r1 and 
r2 are positions of the two vortices. In Fig. 7 we
show the finite-size scaling of the excitation gap 
2v of two
neighboring vortices with 
r1 − 
r2 = (1,−1), for the A phase,
the gapless B phase (κ = 0) and the gapped B phase (κ > 0).
(We also studied the finite-size scaling of a few other configu-
rations with two or four vortices, and saw similar behaviors).
We see that in all cases presented here, 
2v converges to a
finite positive value when L → ∞, verifying our claim that
vortices are always gapped.

APPENDIX F: TOPOLOGICAL DEGENERACY OF THE
TRANSFER MATRIX T̂ FOR ARBITRARY (Lx,Ly)

In Sec. III F we computed the topological degeneracy of
T̂ when (Lx,Ly) are both even numbers. We treat the slightly

013086-15



ZHIYUAN WANG AND KADEN R. A. HAZZARD PHYSICAL REVIEW RESEARCH 5, 013086 (2023)

FIG. 7. Finite-size scaling of vortex pair excitation gap 
2v as a
function of system size L, for a pair of neighboring vortices shown
in Fig. 6. (Upper) Az phase at Kx = Ky = 0.4,Kz = 1.0, and κ = 0.
(Lower) B phases at Kx = Ky = Kz = 0.5, with blue dots for κ = 0
(where fermion spectrum is gapless) and red triangles for κ = 0.05
(where fermion spectrum is gapped), respectively.

more complicated case of arbitrary (Lx,Ly) here. The results
for the loop observables remain the same.

For general (Lx,Ly), the mode (qx, qy) appears
in the sector (�x,�y) = (eiqxLx , eiqyLy ), for 
q =

(0, 0), (0, π ), (π, 0), (π, π ). The value of P
q in the fermionic
principal state is still determined by maximizing the T̃0,
q
term in Eq. (24) and we still have Pπ0 = Pππ = −1,
P00 = [Kz > Kx + Ky], and P0π = [Kz > |Kx − Ky|], where
[S] = +1 if the statement S is true and [S] = −1 otherwise.
We can rewrite the fermion parity constraint Eq. (29) as fol-
lows:

∏

q≡−
q

P
δ
�x ,eiqxLx δ

�y ,eiqyLy


q = �
Ly
x (−1)(Lx−1)Ly , (F1)

where the product is over all 
q ∈
{(0, 0), (0, π ), (π, 0), (π, π )}, but the exponent in P
q ensures
that only those 
q belonging to the sector (�x,�y) contribute.
We can simplify the above equation further by the identity

δ�α,eiqαLα ≡ δqα,πLα + δ�α,1 (mod2). (F2)

Inserting Eq. (F2) and the expressions of P00,P0π ,Pπ0,Pππ

given above into Eq. (F1), the fermion parity constraint be-
comes

[Kz > Kx + Ky]
δ�x1δ�y1 = [Kz > |Kx − Ky|]δ�x1(Ly+δ�y1 ). (F3)

We can now determine the degeneracy of different phases
using Eq. (F3):

Az: [Kz > Kx + Ky] = [Kz > |Kx − Ky|] = +1, always has
fourfold degeneracy.

Ax,Ay: [Kz > Kx + Ky] = [Kz > |Kx − Ky|] = −1. Has
fourfold degeneracy if Ly is even, and twofold degeneracy if
Ly is odd with (++), (+−) being parity-incompatible.

B: [Kz > Kx + Ky] = −1, [Kz > |Kx − Ky|] = +1,
always has threefold degeneracy with (++) being
parity-incompatible.

The calculation for large loop observables remain the same
as done in the main text, leading to the same results indepen-
dent of (Lx,Ly).
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