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Abstract

Combinatorial optimization problems on graphs have broad applications in science and
engineering. The quantum approximate optimization algorithm (QAQOA) is a method to solve
these problems on a quantum computer by applying multiple rounds of variational circuits.
However, there exist several challenges limiting the application of QAOA to real-world problems.
In this paper, we demonstrate on a trapped-ion quantum computer that QAOA results improve
with the number of rounds for multiple problems on several arbitrary graphs. We also
demonstrate an advanced mixing Hamiltonian that allows sampling of all optimal solutions with
predetermined weights. Our results are a step toward applying quantum algorithms to real-world
problems.

1. Introduction

Combinatorial optimization problems on graphs are ubiquitous in fields of science and engineering, such as
bioinformatics [1, 2], Earth science [3], logistics [4], resource management [5], telecommunications [6],
e-commerce [7, 8] and others. Efficient classical algorithms for solving many of these problems are not
known, and quantum computers can potentially provide an advantage. The quantum approximate
optimization algorithm (QAOA) has been used in several demonstrations to solve combinatorial as well as
other types of optimization problems [9-17]. QAOA is a quantum—classical hybrid algorithm that produces
high-quality approximate solutions [18]. Even though it does not always guarantee an advantage over
classical algorithms, QAOA can achieve a provable quadratic speedup in oracle calls when it is equivalent to
Grover’s algorithm [19], and numerical evidence shows that it can provide a polynomial speedup in some
problems [20]. It has also been argued that even the output distribution from a one-round QAOA circuit is
hard to sample classically [21]. QAOA is also able to generate approximate answers with low-depth circuits,
which makes it valuable for implementations on near-term quantum devices.

In QAOA, two non-commuting Hamiltonians, the problem-dependent Hamiltonian H, and the mixing
Hamiltonian Hg, are applied repeatedly to a chosen initial state |);,;;.;) in a bang-bang protocol. The final
output state is an approximate ground state of H, as well as a solution to the optimization problem.

P

|wﬁnal> = H eiiHBﬁi eiiHAOi |’¢initial> (1)

i=1
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«; and 3, are real variational parameters, and p is the number of QAOA rounds. The variational parameters
are optimized classically to minimize the expectation value (¢, Ha|¥gna1)- |¥initial) 18 the ground state of
Hg. In standard QAOA, Hjp is the n-qubit transverse-field Hamiltonian

n
transverse X
Hy = E oy, (2)
i=1

where o7 is the Pauli X matrix acting on qubit i.

In theory, QAOA performance improves as p is increased. However, increasing p can degrade the results
in practice when the experimental errors introduced by deeper circuits outcompete the theoretical QAOA
gain. Additionally, if the connectivity of the graphs does not match the qubit connectivity of the quantum
hardware, the overheads required to map these nonnative graphs to the qubits also greatly increase the
circuit depth. Moreover, the standard QAOA often provides only a subset of the ground states, while many
applications require knowledge about all of them.

The first result of our work is to show that the probability of finding a ground state with standard
QAOA increases with p, up to p = 3, on a trapped-ion quantum computer for optimization problems
defined on arbitrary graphs. Previous experimental works have demonstrated QAOA results improving with
p on hardware-native graphs [9, 10, 14, 15], while real-world graph problems are often hardware-nonnative.

The second result of our work is to demonstrate that employing advanced mixing Hamiltonians in
QAOA can allow one to access a broader range of classically hard optimization problems. The recently
proposed Grover mixer QAOA (G-QAOA) [22, 23] is capable of generating a superposition of all ground
states with probabilities determined by their weights, which are defined in the optimization problem and
provided as inputs. This feature is referred to as fair sampling. G-QAOA can be applied to both unweighted
and weighted graph problems. The n-qubit Grover mixer takes the form

rover - 1+(1-2 )O-f+2 (1- U;C
Hyr =11 VA (3)

i=1

where g is related to the numerical weight assigned to all qubits, with g = 0.5 corresponding to unweighted
problems. Other important tasks relying on fair sampling include satisfiability-based membership filters
[24-26], proportional model sampling [27], machine learning [28, 29], and sampling the ground states of
arbitrary classical spin Hamiltonians [30, 31]. Although in theory G-QAOQA fairly samples ground states at
any p, the total probability of finding ground states increases with p. While previous works have
experimentally demonstrated one round of G-QAOA in Hamiltonian optimization problems on unweighted
graphs [32, 33], we apply G-QAOA to both weighted and unweighted graph problems up to p = 2 on
arbitrary graphs, and quantitatively evaluate the experimental fair sampling results.

The experiments are implemented on a programmable trapped-ion quantum computer, where up to five
7IYb ™ ions in a linear chain are used as qubits. The qubit states |0) and |1) are encoded in the two
hyperfine ground states |F = 0, my = 0) and |F = 1,mp = 0) in the *S; , manifold. The qubits are
initialized in |0) by optical pumping and read out with state-dependent fluorescence. Quantum controls are
implemented by coherently manipulating the qubit states with two counter-propagating Raman beams, one
of which is split into individual beams to address each qubit separately (see section 4.2 for more details).

2. Results

2.1. Higher-round QAOA on graph problems

In this section, we focus on finding a maximum cut on the bridge graph and an edge cover on the triangle,
paw and square graphs with standard QAOA. All graphs discussed in this section are unweighted. A graph G
is defined by a set of vertices v € V, |V| = N,,, and a set of edges e € E, |[E| = N,. A maximum cut is a
partition of all vertices into two complementary sets where the number of edges between them is
maximized. An edge cover is a subgraph G' C G in which every v € V is connected to at least one edge F'
included in G'. A graph can have multiple maximum cuts or edge covers. Although brute force solutions of
the maximum cut problem on planar graphs and the edge cover problem can be carried out in polynomial
time, the algorithms we employ do not exploit this structure.

Based on the graph problem to be solved, we construct the problem-dependent Hamiltonian H, such
that minimizing H, gives the solutions of interest. When mapping the graphs onto a quantum computer, a
qubit can represent either an edge or a vertex. In Max-Cut problems, the qubits encode the vertices. Each
computational basis state represents a partition of V with all vertices corresponding to qubits in state |0) in
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Figure 1. Simulated and experimental results from standard QAOA for the edge cover and Max-Cut problems. The plots give the
probability to find a solution on the trapped-ion machine compared to the ideal result for different numbers of QAOA rounds p.
The graphs are indicated in the top left corner, i.e. the triangle (a), square (b), bridge (c) and paw graph (d). For edge cover
problems (a), (b), (d) the black links show example solutions, for the Max-Cut problem (c) the red line indicates the unique cut.
Circuits show one round of the problem unitary Uy = e~ 4 and the mixer unitary U = e 8%, with purple gates
parameterized by av or 3. The values of parameters o; and f3; are listed in section 4.3. All qubits are initialized in the x-basis and
measured in the z-basis (not shown). Statistical error bars on the data are calculated from 4000 experimental shots per data
point. The error bars are all smaller than 1% in value and smaller than the symbols in the figure. The dashed lines are a guide to
the eye.

one set and the rest in the other set. The probability of finding each ground state is the population of the
corresponding quantum state in [tbg,.). The problem Hamiltonian H, for Max-Cut problems is

Hznaxcut _ Z O_izajz) (4)
(i)<E
where o is the Pauli Z operator. If (i, j) is an edge between sets, o707 = —1.

In an edge cover problem, each qubit encodes a unique edge e € E. Therefore, each computational basis
state encodes a unique G’ where the qubit state |0) (|1)) means that the corresponding edge is included (not
included) in G'. H, encoding the edge cover problem is

= 11 5% ®)

v€EV ecE(v)

where E(v) is the set of edges incident on vertex v in G. For a subgraph G, the product term for each v in
HS¢ is 0 if there is at least one edge incident on v, otherwise it is 1. Therefore the energy of H§® is minimized
to 0 if and only if G’ is an edge cover.

In the experiment, the system is first prepared in the ground state of Hp in equation (2),

[Vinitial) = | ++ -+ - +) with |[+) = %(|O> + 1)), by applying a Hadamard gate to each qubit. Then the
system unitarily evolves under Hy and Hp alternately before being measured in the computational basis.

The results are shown in figure 1 and in table 1 (left column). In the Max-Cut problem on the bridge
graph, the probability of finding a maximum cut clearly improves with p (figure 1(c)), despite the p-fold
increase in the number of gate operations. Similarly, the probabilities of finding one edge cover on the
triangle and square graph also increase with p (figures 1(a) and (b)).

However, on the paw graph, the probability of finding an edge cover only improves marginally for p = 2
and drops for p = 3 (figure 1(d)). In this problem, the implementation of H§" requires seven two-qubit
entangling gates, the most among all four problems, and the additional gate error outweighs the theoretical
gain with increasing p. The question then arises whether there are alternatives to increasing p that will
improve the solution probability. One such idea is to use more sophisticated mixers, an example of which is
the Grover-mixer given in equation (3). While, as we will see, this does not increase the solution probability
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Table 1. Simulated and experimental probabilities of finding a ground state for different p by standard
QAOA (left half) and G-QAOA (right half) for the edge cover (triangle, paw, and square graph) and
Max-Cut problems (bridge graph). The errors are the statistical 68.3% confidence interval.

Standard QAOA G-QAOA

Graph p=1 p=2 p=3 Graph p=1 p=2

Triangle  Sim  0.968 1 Triangle Sim  0.781 0.999
Exp 0.943(2)  0.986(1) Exp 073922) 0.751(2)

Square Sim  0.966 1 Square Sim  0.770 0.801
Exp 0.931(1) 0.949(1) Exp 0.668(1)  0.692(1)

Paw Sim  0.871 0.958 0.985 Paw Sim  0.645 0.867
Exp 0.812(2) 0.819(1) 0.743(2) Exp 0.548(2) 0.551(2)

Bridge Sim  0.330 0.557 0.996 Paw (weighted) Sim  0.105 0.835
Exp 0.300(3) 0.424(4)  0.660(4) Exp 0.235(1) 0.421(1)

Square (weighted)  Sim  0.310 0.758
Exp 0.255(1)  0.497(1)

for a fixed gate depth, it does enable the solution of a new class of graph optimization problem—sampling
problems.

2.2. Sampling with G-QAOA on unweighted graphs

All four unweighted graph problems studied in section 2.1 have more than one solution, but we observe
that the standard QAOA favors only one. G-QAOA samples all ground states with equal probability at any p
on unweighted graphs. In this section, the goal is to find all solutions for the three edge cover problems
studied in section 2.1 by using G-QAOA. HY is given in equation (5). But now Hp is the Grover mixer for
unweighted graphs given in equation (3) with ¢ = 0.5. Circuits for implementing the Grover mixer can be
found in figures 4 and 5 in section 4.3.

Figure 2 shows the individual probabilities of finding each ground state for each problem, and table 1
gives the total probability of finding all ground states. The blue bars in figure 2 demonstrate our claim that
standard QAOA favors one solution more than others, while the purple bars show that G-QAOA does not.
In the G-QAOA result for the edge cover problem on the triangle graph at p = 1, the experiment closely
approximates the simulation. Furthermore, we see a small improvement in the total ground state
probabilities at p = 2 compared with p = 1 for all three graphs despite the deeper circuits at higher p.

Fairness describes how well the experimentally sampled distribution represents the ideal distribution.
The fair sampling of ground states with equal probabilities provides a convenient method to enumerate all
ground states of a problem. One measure of the efficiency of the enumeration is the average number of
experimental shots required to observe each ground state at least once. To estimate this, we sample the
states from the experimentally measured distributions on a classical computer. For each experimental
distribution, we record the number of random draws required to observe any N, different ground states at
least once, varying N, from 2 to the total number of ground states. For each N, we repeat the procedure for
100 000 times to determine the average number of draws and the uncertainty.

Table 2 shows that, at p = 1, G-QAOA and QAOA perform similarly at enumerating ground states, with
QAOA being marginally more efficient in most cases. The only exception is the paw graph problem for
Ng = 5, where the ground state with the smallest probability found by QAOA (the fourth ground state from
the left, see figure 2) has considerably lower probability in both simulation and experiment than the ground
state with the smallest probability found by G-QAOQA. Since the efficiency of enumerating by sampling is
limited by the ground states with the lowest probability, G-QAOA shows an advantage in this case. QAOA at
p = 2 suppresses some ground states more strongly than at p = 1, and therefore has the worst results.
G-QAOA at p = 2 shows results similar to G-QAOA at p = 1, with slight improvement seen in a few cases.
This differs from the ideal prediction that the number of draws required should decrease from p = 1 to
p = 2 for G-QAOA since the total probability of ground states grows. However, in experiment the total
probabilities do not increase significantly due to decoherence (see table 1). For the same reason, we see that
most often QAOA at p = 1 requires the least number of draws to find N, ground states, while theory
predicts that G-QAOA at p = 2 should have an advantage in most cases, especially when N is close to the
total number of ground states. Nevertheless, G-QAOA at p = 1 and p = 2 still require fewer samples than
random guessing to obtain all ground states.
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Figure 2. Simulated and experimental probabilities of finding each ground state by standard QAOA and G-QAOA for the edge
cover problems on the triangle, paw, and square graph. Each plot compares the individual probabilities of finding each ground
state at the same p for the same problem between standard QAOA and G-QAOA. Different edge covers are illustrated at the
bottom of each plot on the horizontal axis, with edges included in each specific edge cover colored in black and edges not
included colored in red. Simulated probabilities are delineated in contour with solid black lines, overlapping with corresponding
experimental data plotted with colored bar without any outline. Error bars are calculated from 4000 experimental shots and are
shown as short black dashes.

Table 2. Number of draws required to see N, ground states on unweighted graphs. Average and
error bars are calculated from 100 000 independent trials. All error bars less than 0.01 are not
included in the table. In comparison, if this similar counting test is done on random guessing
(p = 0), it will take 16.64(3), 36.58(6) and 41.40(4) of draws in these three graphs to get all
ground states.

Ny 2 3 4 5 6 7
Triangle p=1 QAOA 2.58 5.00 10.16
G-QAOA 315 5.87 11.28
p=2 QAOA 1043 26.48 60.50(1)
G-QAOA 3.1 5.82 11.30(2)
Paw p=1 QAOA 3.13 6.15 11.65 33.34
G-QAOA 412 7.19 11.91 21.54
p=2 QAOA 6.44 1493  29.20(6) 66.0(1)
G-QAOA  4.09  7.20(1) 11.93 21.61(3)
Square p=1 QAOA 2.53 4.28 6.55 9.78 15.05 25.09
G-QAOA  3.16 5.22 7.84 11.4(1) 16.82 28.12
p=2 QAOA 6.64 1533 2841 53.7(1)  171.1(5)  493(1)
G-QAOA  3.25 5.36 7.99 11.56 16.87 27.69

2.3. Fair-sampling with G-QAOA on weighted graphs

In this section, we solve the edge cover problem when a numerical weight (1 — q) > 0 with g # 0.5 is
assigned to all edges on the paw and square graph. The weight of each subgraph G’ is defined as

Pg = (1— q)”’q”*"', where 1’ is the number of edges included in G'. G-QAOA samples all ground states,
with squared amplitudes proportional to these weights.
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Figure 3. Simulated and experimental results from G-QAOA for the edge cover problem on the weighted paw (top) and square
(bottom) graph. Error bars shown as short black dashes are calculated from 4000 experimental shots.

HS is given in equation (5) as in the previous two sections. H is the Grover mixer given in
equation (3). The initial state is prepared by applying

U= e—iay sin’l\/Z] (6)

to each qubit in |0). Figure 3 shows the G-QAOA results on a paw graph with g = 0.7 and a square graph
with g = 0.75, and compares them to the ideal population distributions.

To allow direct fairness comparisons between results for problems with different numbers of ground
states and different sample sizes N on weighted graphs, we need a metric that is insensitive to these problem
specifics. Fairness of the sampling result can be quantified as the discrepancy between the ideal ground state
distribution Q, and the experimentally measured ground state distribution Q,, which is obtained by
post-selecting out all ground states from 4000 experimental shots. The first method we adopt is the ‘shots to
reject’ method, proposed in reference [32], which is constructed based on the chi-squared (x?) test. By
re-sampling from Q,, the goal is to compute the number of samples, N*, needed to reject the null
hypothesis H at a selected significance level. Here, H, is that Q, is sampled from Q,. The more the
experimental data Q, deviates from the ideal distribution Q,, the smaller N* will be. To find N*, we follow
the protocol described in section 4.1.

Table 3 shows the results for N* from the experimental data with synthetic data for comparison, where
synthetic data are random samples drawn from Q, on a classical computer. Some ground states on the
weighted graphs have very small expected populations, causing Hy to be more easily rejected in the x? test,
which contributes to the sampling results being overall less fair on the weighted than on the unweighted
graphs for both experimental and synthetic data. We see a clear improvement in the fairness going from
p = 1to p = 2 in both weighted problems. This is due to G-QAOA boosting the probabilities of most of the
ground states, including the least likely one, in each problem (see figure 3 and table 1). When generating the
synthetic data with a fixed number of draws from the entire population, the ground state counts are larger
for p = 2 than p = 1, leading to different ‘shots to reject’ results.

An alternative way to characterize the differences between probability distributions is the
Kullback—Leibler (KL) divergence. The results for the KL divergence analysis are presented in table 4 in
section 4.1. All trends are consistent with that seen in the ‘shots to reject’ analysis.

3. Outlook

In this work, we experimentally demonstrated that the standard QAOA results improve with increasing p up
to p = 3 in optimization problems on arbitrary graphs, and show fair sampling results of G-QAOA up to

p = 2 on both unweighted and weighted graphs on a trapped-ion quantum computer. To push beyond
these small demonstration problems, advances in fidelity and system size of the quantum hardware are
crucial. Additionally, future studies on large-scale arbitrary graphs will challenge the connectivity of all
hardware platforms, which highlights the importance of efficiently matching graphs and architectures.
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Table 3. Number of shots to reject the fair sampling
hypothesis by re-sampling from the experimental data and the
synthetic data. The synthetic data is randomly drawn from the
ideal distributions. Averages and error bars are calculated by

repeating the ‘shots to reject’ test 10 times.

(a) Experimental data

p=1 p=2
Unweighted Triangle 5754(32) 406(8)
Paw 328(4) 208(4)
Square 602(13) 192(4)
Weighted Paw 38(1) 90(1)
Square 35(1) 45(1)
(b) Synthetic data
p=1 p=2

Unweighted Triangle 6526(3259) 4337(943)
Paw 1882(217) 4044(702)
Square 2544(414) 2318(247)
Weighted Paw 297(74) 1958(675)
Square 674(82) 1370(270)

Table 4. KL divergence between the simulation and

experimental data, and synthetic data. The error bar on each
experimental result is calculated by resampling from the
experimental distribution 300 times, while for each synthetic
result it comes from 300 sets of synthetic data generated for

each problem.

(a) Experimental data

p=1 p=2
Unweighted Triangle 0.0007(4) 0.007(2)
Paw 0.015(2) 0.016(2)
Square 0.007(1) 0.020(2)
Weighted Paw 0.079(8) 0.037(4)
Square 0.089(9) 0.074(6)
(b) Synthetic data
p=1 p=2
Unweighted Triangle 0.0004(2) 0.0003(1)
Paw 0.0006(3) 0.0005(2)
Square 0.0008(3) 0.0007(3)
Weighted Paw 0.004(2) 0.0005(2)
Square 0.0021(8) 0.0009(3)

Although G-QAOA does not show an advantage at enumerating the ground states over standard QAOA
or when going to higher p on unweighted graphs due to experimental noise, we do observe that the total
probabilities of ground states grow with increasing p in all cases. We also observe the fairness of sampling
improves with increasing p in the two weighted problems. Future experiments could look at the relative
advantage provided by more advanced mixers, such as the QED-inspired mixer designed for constrained
flow problems [34], follow general guidelines to engineer mixers that ensure solutions satisfy desired
constraints [35] or symmetries [36], and study circuits which preserve specific physical symmetries in

optimization problems in fermionic systems [37].
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4. The methods

4.1. Statistical tests
The ‘shots to reject’ test used in section 2.3 is based on the one-tailed y? test. To find N*, we implement the
following steps: (1) randomly draw 1000 sets of samples of size M (starting from M = 2) from Q,, perform
a x* test between each sampled distribution and Q,, and record the 1000 p-values from the tests, (2)
compare the median of the p-values with the preset significance level, which is chosen to be 0.05 here, (3) if
the median of the p-values exceeds the threshold, set M:=2M and repeat steps 1 to 2; otherwise, if the
median p-value is smaller than the threshold, Hj is rejected, then a bisection method is used to locate the
exact N* between M and M/2.

The KL divergence used in section 2.3 is defined as

Qi (x
Qa(x

Dxi(Qi1]|Qy) = Z Q1(x)

xeX

)
)y )

where X is the sample space. It can be intuitively understood as the information loss when we model Q, by
Q,, providing the distance between the two distributions. The results for this analysis in section 2.3 are
presented in table 4.

4.2. Experimental setup

The experiment is implemented on a programmable universal trapped-ion quantum computer with up to
nine qubits and individual ion addressability. The native gate set includes single-qubit rotations around an
arbitrary axis 7i in the x—y plane of the Bloch sphere by angle 0, R(71,0) = e 1770/2 rotations around the z
axis R,(0) = e “%/2, and the two-qubit interaction XX = ef7:7% between any pair of qubits for arbitrary 6.
The R(#1, 0) are realized via resonant Raman transitions with duration proportional to 6. The

R,(9) = e~io:0/2 gates are classical phase advances in the laser beam controllers. The two-qubit entangling
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Table 5. Standard QAOA and G-QAOA parameters.

(a) Standard QAOA parameters corresponding to results in figure 1 and table 1 (left)

p=1 p=2 p=3

Triangle a = —0.95, = 1.00 o, = —0.83, 5, =3.14
o = 0.85, B, = —1.66

Square o= —0.87, § = —2.60 a; = 0.80, 3, = —1.58
0y = —0.82, B, = —2.28

Paw a=1.04,3=—061 o) =0.62, 3, =0.75 =05, 8, =16
o, =088, 3, = —1.04 a, =—05,5, =05
a;=—05,8,=03

Bridge =029, =031 o = —0.55, 3, = 0.42 ) = —2.09, B, = 0.43
o = —2.95, 3, = 0.87 o =-217,58,=1.28
;= —1.02, 8, =23

(b) G-QAOA parameters for unweighted problems corresponding to results in figure 2 and table 1 (right)

p=1 p=2

Triangle o =248, =137 o =0.69, B, =1.32
o =1.22, B, = 0.92

Square a=10.65 3=1.46 o =048, 3, =152
a, =091, 3, =0.92

Paw a=0.79, 8=1.60 a; =0.56, 3, = 1.47
a, =098, 3, = 1.17

(c) G-QAOA parameters for weighted problems corresponding to results in figure 3

p=1 p=2

Square a =267, 5=-2.30 o = 0.68, 3, =2.20
a, = 1.05, 5, = 1.95

Paw a=-2.85 8=281 ;= 2.05, 3, = 2.80
=198, 3, = 2.98

gates are implemented using the Mglmer—Serensen scheme [38, 39], where the qubit spin states and the
collective motional modes of the ion chain are coupled and decoupled via amplitude-modulated laser pulses
[41]. The typical single- and two-qubit gate times are 10 and 200 ms. The longest circuit implemented in
this work, consisting of 44 two-qubit gates and about 150 single-qubit gates, has a total run time of a few
milliseconds. In contrast, the qubit coherence time is on the order of 1 s. The typical single- and two-qubit
gate fidelities are 99.5(2)% and 98%—99% respectively. In this setup, two-qubit gate infidelity is the main
source of experimental error. More details about the experimental setup are described in reference [42].

4.3. Circuits and parameters

The circuit in figure 4 shows the three-qubit Grover mixer for unweighted problems used in the edge cover
problem on the unweighted triangle graph. Figure 5 shows the four-qubit Grover mixer. Variational
parameters « and [ for each problem are listed in table 5. These optimal parameter sets are derived from a
noise-free theory using exact numerics. For the edge-cover problems, we perform a global grid search for
the parameters starting with a resolution of 0.1 and keep refining the best results via a local grid search with
successively finer resolutions until we reach the desired resolution, which is set to 0.01 for most problems
and 0.1 for p = 3 paw graph with the simple mixer. For the Max-Cut problem, we use the FindMinimum
function in Mathematica [40] and pick the best result out of at least 10 independent searches.
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