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Abstract

In many practical applications including remote sensing, multi-task learning, and multi-spectrum imaging, data
are described as a set of matrices sharing a common column space. We consider the joint estimation of such matrices
from their noisy linear measurements. We study a convex estimator regularized by a pair of matrix norms. The
measurement model corresponds to block-wise sensing and the reconstruction is possible only when the total energy
is well distributed over blocks. The first norm, which is the maximum-block-Frobenius norm, favors such a solution.
This condition is analogous to the notion of low-spikiness in matrix completion or column-wise sensing. The second
norm, which is a tensor norm on a pair of suitable Banach spaces, induces low-rankness in the solution together with
the first norm. We demonstrate that the joint estimation provides a significant gain over the individual recovery of
each matrix when the number of matrices sharing a column space and the ambient dimension of the shared column
space are large relative to the number of columns in each matrix. The convex estimator is cast as a semidefinite
program and an efficient ADMM algorithm is derived. The empirical behavior of the convex estimator is illustrated
using Monte Carlo simulations and recovery performance is compared to existing methods in the literature.
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I. INTRODUCTION

We consider the problem of joint reconstruction of rank-r matrices X, ..., Xy € RM*N which share a common
left factor U € RM*" from the linear measurements expressed as

Lk = Bk, X)) + wik, )]

with l e [L]:={1,...,L} and k € [K] := {1,..., K} and where B; ;’s are a set of known “sensing matrices” and
wy ks represent additive noise in the measurements. Due to the assumption that X1, ..., X share a common left
factor, there exist V,..., Vi € RVX" such that X, = UV} forall k € [K]. Let X = [X; X3 -+ X ]| € RM*NE,
Then each y; ;. corresponds to a linear measurement of X given by

Yk = (Apk, X) + wy g, (2)

where A, = e; ® By, for all [ € [L] and k € [K]. In other words, the joint reconstruction of Xj,..., X is
considered as “block-wise” sensing of the concatenated rank-r matrix X.

The inverse problem for the model in (2) has been investigated as a shared low-rank matrix regression in [1].
The authors provided a solution to the problem by using non-convex optimization to regress the shared subspace
and the individual right factors separately. In particular, the authors propose to use spectral initialization followed
by covariance estimation to solve for the shared subspace. With this estimate, they further use ridge regression to
estimate the right factors.

This problem arises naturally in numerous practical applications including remote sensing using satellite data [1],
multi-task learning [2, 3], and multi-channel data acquisition [4]. Other applications include data compression in
scientific simulations and multi-spectrum imaging. For example, a similar sketching problem of linear dimensionality
reduction of streaming data has been considered [5], in which data generated during simulations of fluid dynamics
are shown to have a low-rank structure. The sensing model in (2) applies to this application in the following sense:
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blocks of data generated over time (in this case, the data corresponds to the state of fluid motion over time) can be
sketched independently, since they share a low-rank structure. Yet in another example, in the Square Kilometer
Array (SKA) [6], astronomical data are collected using antenna elements spreading across different continents.
Astronomical data collected via multi-channel acquisition show a low-rank structure via a shared factor [4]. A
similar multi-channel sensing application was also considered in [7], where the linear model for data acquisition
at different frequencies follow a nested subspace structure. Hence, the model in (2) is directly applicable to the
problem of dimensionality reduction before data aggregation.

With a rich context of relevant applications, this paper investigates a fundamental question on the inverse problem
in the two equivalent models in (1) and (2). The main question we address is whether one can obtain a significant
gain from the joint estimation by taking advantage of the redundancy across the matrices. We focus on statistical
analysis in a scenario, where the measurement matrices are independent copies of a random matrix with i.i.d.
Gaussian entries of zero mean and unit variance, and the additive noise terms are independent of the signal and i.i.d.
Gaussian.

Note that the block-wise measurement model in (2) takes linear measurements from a selected block at a time. In
an extreme case, where all blocks of X are zero matrices except a single block of unknown index, the measurements
from zero blocks do not carry any useful information about X. Since the index of the nonzero block is unknown,
O(r(M + N))' measurements per block are needed for “stable” recovery . In other words, there is no gain from
joint estimation.

One expects that a gain is achieved when the total energy of X is well distributed across all blocks X, ..., Xg.
To favor a solution with this property, we consider an estimator regularized by the “maximum” correlation of X
with all possible measurement matrices Ay ;’s. Let ;5 := (A, X) = (B, Xj). Then 7;’s are i.i.d. Gaussian.
Recall that the maximum of i.i.d. Gaussian random variables is upper-bounded with high probability by the standard
deviation within a logarithmic factor of the number of random variables. Following this observation, we consider
the maximum correlation represented by

e \VEV = mnax Xk - 3)
The right-hand side of (3) is called the maximum-block-Frobenius norm and will be denoted by
K
I[X1 Xo -+ Xgllpr = | ] e @ Xy,
k=1 o,F 4)
= max [ Xelle

where ej, € RE denotes the kth column of the K-by-K identity matrix I for k € [K].
To account for the low-rankness of X, we introduce another regularizer by a matrix norm given by

Xl = inf Ul |[V* 5
Xl = g int, UL [V 9

where the common number of columns in U and V can be arbitrary while their product UV* coincides X.
In general, matrix norms are not necessarily easy to compute. However, ||X||¢ can be computed via a standard
semidefinite program. Note that the optimization in (5) is equivalent to

IXls =, inf,  max ([U[E [VZ5r)

where the infimum is achieved if |Ulg coincides with |[V*|, y. Furthermore, it has been shown (e.g. [8]) that
there exist U and V such that X = UV*, W; = UU*, and W5 = VV* if and only if

w; X
X,

'The tilde-big-O notation is defined as follows: If a = O(b), then a is less than b times a logarithmic factor of considered parameters.



Then we have | U]} = trace(W1) and [ V*[3, ; = max;(x trace((ef ® In)Wa (e ® Iy)). Therefore, [X|g can
be computed via the following program:
X|¢ = i
Xls =, min 5
s.t. trace(W1) < 8
trace ((ef @ IN)Wa(er ®In)) < 3, ©)

Vk € [K]

wW; X
> 0.
X* Wy

The following lemma, proved in Appendix D, demonstrates how the above two norms characterize low-rankness
through interlacing inequalities.

Lemma 1. Suppose that X € RM*NK satisfies rank(X) < r. Then we have
<

1Ko p < X5 < V7 Xl - (7)
We consider an estimator given as the solution to the following optimization program that minimizes the quadratic
loss constrained to the two inequality constraints given by the above norm regularizers:
L

K
minimize Z Z (Y11 — {ef ® By, X))?, ®)
Xer(a,B) =1 k=1

where the constraint set is given by
ra, B) = {X e RN X, p < o, [ X < B} ©)
Due to the characterization of the $-norm in (6), the convex estimator in (8) is obtained as a solution to
L K
inimi — (B, X Iy)))?
winimize 1—211;1 (yik — Bup, X(ep ®In)))
subject to trace(Wy) < f3
trace ((e; @ In)Wa(e, ®In)) < 5,
(10)
ke [K],

[ X[l < @

wW; X
> 0.
X* Wsy

Our main results characterize the estimation problem with respect to the model («, 3) by an achievable error
bound and a minimax lower bound. We first present an upper bound on the estimation error by convex program in
(8) in the following theorem.

Theorem 1. Let (y, ;) be measurements of blocks of X € RM*KN g5 described in (2). Suppose that B .’s are
independent copies of a random matrix whose entries are drawn i.i.d. from N(0,1). Furthermore, suppose that the
noise entries 7y,’s are drawn from N (0, 02) and independent from everything else. Then there exists a numerical
constant C' such that if

M
L > C(B/a)’N <N + K> (InK)3, (11)
then it holds with probability 1 — ( that the estimate X of X by (8) satisfies
< _ X2 < 2 g
IX - X2 < Ka (1 v a)

. \/ (B/a)2N(M + NK)(In K)3 + In(1/¢)
LK

(12)

for all X € k(a, B).2

>We use a shorthand notation for the minimum and maximum of two numbers given by min(a,b) = a A b and max(a,b) = a v b.



To interpret the result of Theorem 1 in the context of joint estimation, we introduce the spikiness parameter p
defined by
VE X
S
The parameter p of X represents how the total energy of X spreads over the blocks. A larger p implies that there
exist few blocks consuming most of the total energy. We also define the signal-to-noise-ratio (SNR) by

SNR = izt Dot BlA X% X
PN RPN E[w},] Ko?

Then the error bound in (12) is rewritten as

X — X
2
I Xz
-1 2 3
< (1v LY | JEPN G NR iKY
SNRY/2 LK
Furthermore, in a low-SNR regime, where SNR = O(u~2?In(LK)), the error bound in (13) reduces to
X X[ p \/(5/04)2N(M+NK)(1HK)3
IXJ5 ~ SNRY2 LK

13)

This implies that for a fixed SNR, the error decays as O \/ 1B/ O‘)ZNL(M/ K+N) ) Note that the spikiness parameter

w4 in the error bound remains the same regardless of the distribution of columns norms within each block.

The upper bound on the estimation error becomes tightest when o = | X, and 8 = [X]|s. In practice, one
needs to estimate those parameters so that « and S are no less than the corresponding norms of Xg. To illustrate
the optimal performance, suppose that o = [ X[, p, 8 = | X[, and rank(X) < r. Then, by Lemma 1, we have

B=IX]g < Vr|X|or < Vra,

which implies (8/a)? < r. In the current scenario, the individual recovery of each block can succeed from
O(r(M + N)) samples per block, but the joint recovery succeeds with O(rN(3L + N)) samples per block.
Therefore, if M > N? and K > N, then the joint recovery is feasible from fewer observations than the individual
recovery. The advantage of our method is more pronounced for larger M and K (relative to ). For example, in
the context of regression on hyperspectral remote sensing data, M and K respectively counts spectral bands and
temporal samples while N measures the size of a neighborhood of the target location in pixels, from which the
prediction is made. Typical hyperspectral instruments have more than 200 spectral bands [9]. Furthermore, it is
feasible to learn the regressor from a large number of temporal samples. In this illustration, the parameters M and
K are large relative to N. Hence, as discussed above, the joint recovery shows a significant gain over the individual
recovery.
Next, we compare the upper bound in Theorem 1 to a matching minimax lower bound.

Theorem 2. Suppose that (3/a)*(M v NK) > 48. Then the minimax |-||p-risk is lower-bounded as

1 ~
inf sup LEIX - X2
X Xen(aﬁ)K

a? o (B/a)2(M v NK)
Z 16 (1 " 8\/504\/ LK ) '

Compared to the minimax bound by Theorem 2, the error bound for the estimator of (8) in Theorem 1 is sub-optimal
in general. However, the bound is near-optimal when the noise factor dominates and N = O(1). The minimax error
bound decays with a rate proportional to 1/+/L, which is slower than the optimal rate ~ 1/L. We suspect that
this is due to the relaxation of the set of low-rank matrices to the convex set x(c, ). On the other hand, with the
relaxed matrix model, it applies to matrices with modeling error, for example, to approximately low-rank matrices.




Related prior results: Recovery of low-rank matrices under a structured measurement model has been of interest
for many years with various applications in signal processing and statistics [10]. Our approach is aligned with
how the matrix completion problem was tackled with nuclear norm [11] and max norm [12] without imposing the
incoherence via singular value decomposition. A highly related model is column-wise sketching, which is a special
case of (2) with NV = 1. Recent work provided sample complexity estimates using convex estimators [13]. When
N =1, the equivalence between the 2-summing norm and the projective norm has been shown when a factor in the
tensor product is equipped with the ¢,, norm [13, Lemma 4.4]. However, the constraint set in (9) is determined
by tensor norms on the product of two Banach spaces, neither of which uses the ¢,, norm. Hence, even though
Theorem 1 produces the analogous result for N = 1 [13, Theorem 1.2], the extension in the other direction is not
trivial. Therefore, the scenario with N > 1 considered in this paper is significantly different from the case when
N = 1. Importantly, as discussed earlier, there are applications modelled only by N > 1.

To the best of our knowledge, there is only one paper which studied the exact inverse problem in (1). It has
been shown that the spectral method provides an e-accurate estimate of the column space of U, where the error is

measured by the sine of the largest principal angle, from O(# + N) noise-free samples per block with high

probability [1]. In this paper, we improve upon their work in the following aspects: First, they only considered the
recovery of only the column space of U instead of UV™, whereas the convex estimator in (8) recovers the entire
matrix. Second, our analysis continues to hold in the presence of measurement noise and model error, unlike the
analysis in [1] which expects noise-free measurements. Third, the unknown matrix in their analysis is arbitrarily
fixed. Therefore, the error probability O(ﬁ) increases proportionally to the number of instances as one repeatedly
applies the error bound to multiple instances. On the contrary, the error bound by Theorem 1 provides a strong
uniform guarantee that applies to all instances within the given model with high probability. It was proposed to
further refine the estimate from the spectral method via gradient descent [1]. They demonstrated that the estimate by
gradient descent from the spectral method outperforms that by random initialized gradient descent. In Section V, we
observed that gradient descent outperforms the convex estimator in (8). However, any error bound for the gradient
descent estimator has not been established yet.

There has been a line of research on estimating low-rank matrices from structured measurements by iterative
algorithms [14—17]. It has been shown that the “sample-split” version of alternating minimization and gradient
descent from spectral initialization provides an e-accurate estimate from O(r2(M + K)In(1/€)) noise-free phaseless
measurements when the unknown matrix of size M x K is exactly rank-r. However, in practice, the sample-split
algorithms perform significantly worse than the original counterpart. On the other hand, it has been shown that
the vanilla gradient descent without sample splitting succeeds at a near optimal rate for phase retrieval, matrix
completion, and blind deconvolution [18]. However, it remains an open question whether the elegant analysis based
on leave-one-out auxiliary sequences for gradient descent extends to the linear column-wise sensing. There also
exists a convex optimization approach to low-rank recovery from phaseless measurements [19]. The considered
linear models are different from the column-wise sensing but they have shown a near-optimal sample-complexity
result without requiring sample splitting.

The rest of this paper is organized as follows. Section II introduces notation and definitions. Section III derives
the entropy estimate with respect to the $-norm through its relation to the projective norm. The proof of Theorem 1
is provided in Section IV, followed by discussions on numerical results in Section V. We conclude with remarks
and future directions in Section VI.

II. NOTATION

In this section, we introduce notation and definitions used throughout. Symbols for column vectors (resp. matrices)
are denoted by boldface lower-case (upper-case) letters. For linear operator T between vector spaces, the adjoint
will be denoted by T*. In a special case when T is a matrix, then T* denotes the transpose. For vector space X,
its algebraic dual is denoted by X*. For Banach space X, the norm dual is denoted by X*. The Kronecker product
of two matrices A and B will be written as A @ B. The same symbol & is also used for general tensor product.
We use various norms on column vectors and matrices throughout the paper. For column vector x, the £,-norm is
denoted by [x|, for p > 1. Then the Banach space of column vectors of length V' with the £,-norm is denoted by
Ei,v . For matrix A, the Frobenius and spectral norms are denoted respectively by |All; and |A|. The corresponding
unit norm balls are denoted by By and Bg. More generally, the unit ball in a Banach space X will be denoted by



Bx. Furthermore, the operator norm of linear operator T is written as |T|,,. For matrix A € RM*¥, the column

vector of length M N obtained by stacking the columns of A is denoted by vec(A). The maximum and minimum
of two real numbers a and b will be respectively denoted by a v b and a A b.

The convex estimator in (8) induces a low-rank solution via the constraint set defined as in (9) by the max-block-
Frobenius norm in (4) and the $-norm in (5). The error analysis of the estimator is based on various properties
of the $-norm, which are characterized by tensor norms. A brief review on related mathematical background is
provided in a companion paper [13, Section 2]. Further details can be found in monographs on tensor product
[20, 21]. Here we recall the minimal set of definitions which are necessary to state and derive the main results.

For vector spaces X and Y, let X* and Y* denote the corresponding algebraic dual spaces, i.e. the collection
of all linear functionals. The algebraic tensor product, denoted by X ® Y, is the set of all blinear functions on
X* x Y*. The algebraic tensor product is embedded into the set of all linear maps from X* to Y, denoted by
L(X*,Y). In particular, if all vector spaces are finite dimensional, then X ® Y is identified to L(X*,Y).

Let X and Y be finite-dimensional Banach spaces. A norm on X ® Y is a tensor norm if it satisfies

Ix@y| < [|x|xlyly, VxeX, yeY
and its dual norm satisfies
Ix* @y |, < [x*[xx Iy lys, Vx*eX* y*eY™

Here, X* and Y* denote the norm dual of Banach spaces X and Y. In the remainder, we will use the following
tensor norms.
The first tensor norm defined by
IT]y = sup [(x* @y*, T)|
I s <L,y * [ yae <1
is called the injective norm. The resulting Banach space equipped with the injective norm is denoted by X ® Y. The
injectivity implies that if Z is a closed subspace of X, then Z®Y is a closed subspace of X ® Y. This property
will play a crucial role in deriving the entropy estimate in Section III. Furthermore, the injective norm coincides

with the operator norm from X* to Y.
The second tensor norm is the projective norm defined by

n n
T, - inf{Z Ixelxlyily s neN, T = x, @yk} .
k=1 k=1

The resulting Banach space with the projective norm is denoted by X ® Y. The projectivity implies that if Z is a
subspace of X, then (X/Z)®Y is a quotient of X ® Y, where X /Z denotes the quotient of X with respect to Z.
Therefore, there exists a surjection from X ® Y to (X/Z)®Y.

In a special case where X = (X and Y = ¢%', the injective norm on /% ® ¢ coincides with the max-block-2-norm
defined by

G- oo xwv) s ey = max x5 X1,..., XK €03,

The corresponding Banach space is denoted by £ (¢)Y). The norm dual of ¢£ (¢2), denoted by ¢X (¢%'), is equipped
with the norm given by

K
H(Xla"wXN)”ff(Zé\’) = Z ka||27 X1y-- o XK egé\f
k=1

ITII. ENTROPY ESTIMATE

The main machinery enabling the proof of Theorem 1 is Maurey’s empirical method [22], which provides tail
bounds on random processes arising in the analysis. In this section, we present and prove the key entropy estimate
on the linear operators related to the estimator in (8). We first recall the notion of the covering number to state the
entropy estimate results. For symmetric convex bodies D and F, the covering number N (D, E) is defined by

N(D, E) ::min{l:ﬂyl,...,yleD, pe | (yj+E)}.

1<j<l



Then Maurey’s empirical method [22] provides an upper bound on the integral of the square root of the log-covering
number for linear operators from /7. We use a version of this result [23], summarized as the following lemma.

Lemma 2 ([23, Lemma 3.4]). Let T € L({},07((2)). Then

JOOO \/lnN(T(Bl),nBoo,z)dﬁ
< /T4 In(m v n) (1 +In(m A n)>?|T]..

Lemma 2 considers the case where the range of T is £} (Eg)) Note that the upper bound by Lemma 2 is independent
of the dimension d. This is a special case of the original result by Carl [22], in which the range space is a Banach
space of type-2.

We utilize Lemma 2 in order to get an entropy estimate with respect to the $-norm. The result is obtain in
the following two steps. The following lemma, proved in Appendix E, shows that the 2-summing norm of X* is
equivalent to the projective norm of X up to v2N.

Lemma 3. Let T € (5 (¢5) ® €3, Then | T|g satisfies
ITg < ITl, < V2N [T

Lemma 3 implies that the unit $-norm ball is contained in the projective norm ball of radius +/2/N. Then it remains
to obtain an upper bound on the entropy integral with respect to the projective norm. The result is stated in the
following lemma. The proof is provided in Appendix F.

Lemma 4. Let X = (KR Y, Y = 02(¢2), and T € L(X,Y). Suppose that m < 2NE+M_ Thep

[ v nByan
0
<SA1+Inmv (NK + M) (1 + Inm)>?|T|op.

IV. PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1. By the optimality of )A(, we obtain a basic inequality given by

L K N 9 L K
>, <yl,k - <Al,k7X>> <D0 (e — (A X))?,
I=1k=1 I=1k=1

which implies
L K L K

Z Z Al,k, }A( - X>2 Z 2 Al,ka X — X>wl’k. (14)

1=1k=1

_Recall the constraint set x(a, 3) is given as the intersection of two norm balls. Since X e k(a, B), it satisfies
HXLHOO p < a and |X|g < 8. Furthermore, since X € (a, 8), we also have |X]oo,r < @ and |X|g < f. Since the
two norms are sub-additive, we have |X — X|ooF < 2c and IX — X|is < 28. In other words, we have

X — X € (20, 28).

Then a lower-bound (resp. an upper bound) on the left-hand side of (14) (resp. the right-hand side of (14)) is
obtained respectively by the following two lemmas, whose proofs are given in Appendix G and H.

Lemma 5. Under the hypothesis of Theorem 1, it holds with probability 1 — ( that

L|Z|3 - Z Z<A,k,z>2

I=1k=1

<o®In(2¢7!) + o’K (p + Lin(267) ln(f((_l)> ,

sup
Zek(a,B

15)



where

b \/(ﬁ/a)2N(NK + M)(In K)* 16)

LK
Lemma 6. Under the hypothesis of Theorem 1, it holds with probability 1 — ( that

sup Z Z<Al e Lywy < ao (LKp ++/LKIn(¢ ) 17

ZGH(CMB =1 k=1
where p is defined in (16).

By plugging in the results by these lemmas to (14), we obtain that (14) implies

R <p n 1““”)

LK
+aKo <p+ méi?) .

Finally, the simplified upper bound in Theorem 1 is obtained since the first summand in the right-hand side is
dominated by the other summands.

V. NUMERICAL RESULTS

We performed Monte Carlo simulations on synthesized data to study the empirical performance of the tensor-
norm-based convex estimator in (8) relative to the spectral method and its refinement via gradient descent [1]. The
sensing matrices and measurement noise are generated as in Theorem 1 so that By ;’s are independent copies of
a random matrices whose entries are drawn i.i.d. from N(0,1) and wy,’s are ii.d. (0, 0?). The ground-truth
matrix is generated as a rank-r matrix given by U € RM*" uniformly distributed on a Stiefel manifold and V}’s
are independent copies of a random matrix with i.i.d. standard Gaussian entries. The convex estimator uses the
estimates of the parameters o and /3 given by the corresponding norms computed from the rank-r approximation of

L K

Zzym (ef ®Byy) € RMXVE,
z 1k=1

/\

Convex programs for both the $-norm computation and the convex estimator are implemented as ADMM algorithms,
which are derived in Appendix J. We observe the median estimation error from 20 instances in the Monte Carlo
simulations.

We first compare the estimates of the ground-truth column space respectively by the convex estimator and the
spectral method [1]. The error is measured by the sine of the largest principal angle between two subspaces.
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Fig. 1. The log-base-10 of the estimation error of the ground-truth column space in the noisy case (SNR = 20dB, M = 100, N = 20, r = 2).

Figure 1 compares the estimation error by the convex estimator and the spectral method in the noisy case with
SNR 20dB. The errors by both estimators decay with larger L and K. However, in all observed regime of the
parameters, the convex estimator outperforms the spectral estimator. As shown in Figure 2, the comparison between
the two estimator remains similar in the noiseless case.
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Fig. 2. The log-base-10 of the estimation error of the ground-truth column space in the noiseless case (M = 100, N = 20, r = 2).

Next we compare the performance of estimating the entire ground-truth matrix X by the convex estimator and
the gradient descent from spectral initialization [1]. In this comparison, the metric is chosen as the normalized
reconstruction error given by | X — X|%/|X]/%, where X denotes an estimate of X.
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Fig. 3. The log-base-10 of the estimation error of the ground-truth matrix (SNR = 20 dB, M = 100, N = 20, r = 2).

Figure 3 demonstrates that the gradient descent provides a better empirical phase transition than the convex
estimator. However, while our main result provides a rigorous estimation error bound for the convex estimator, such
a theoretical analysis of the gradient descent method has yet to be established. For both estimators, the error decays
with larger K and L. The phase transition between success (error < 10~?) and failure by the convex estimator
occurs on a boundary in which the threshold on L decays with K until M /K is dominated by N. This corroborates
the theoretical analysis in Theorem 1. Furthermore, unlike the result in Theorem 1, the estimation error by the
convex estimator continues to decrease with higher SNR. As shown in Figure 4, the normalized estimation error is
below 1072 when L is above the displayed threshold. The convex estimator provides a significantly improved
estimation performance in the noiseless case. In particular, the phase transition by the convex estimator is comparable

to that by the gradient descent method.
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Fig. 4. The log-base-10 of the estimation error of the ground-truth matrix in the noiseless case (M = 100, N = 20, r = 2).
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VI. CONCLUSION

In this paper, we proposed a convex program that jointly estimates a set of low-rank matrices sharing a common
column space. The data model arises in many applications in practice including remote sensing, multi-class learning,
and multi-spectrum imaging. The estimation problem is equivalently rewritten as block-wise sensing of a low-rank
matrix. We have shown that the proposed convex estimator leads to a more favorable sample complexity than
the individual recovery of each block when the number of blocks K and the dimension M are high relative to
the number of columns per block N. We provide an ADMM algorithm to tackle large-sized problems. In the
future work, we will investigate the performance of the convex estimator with faster sketching models via fast
Johnson-Lindenstrauss transforms [24].
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APPENDIX
A. Concentration Inequalities

We use a set of concentration inequalities for the proofs in this paper. The first lemma provides a tail bound on
the ¢1-norm of an image of an arbitrary column vector via a Gaussian random matrix.

Lemma 7 ([25, Lemma 2.1]). Let ay, .. .,a,, be independent copies of a ~ N'(0,1,,). Let K = R"™ be a bounded

subset. Then
1 m
@l - e

4w(K) +d(K 2In(2¢—1)
S Um Vm

holds with probability at least 1 — ¢, where w(K) denote the Gaussian width of K and d(K) = supyex [x/|s-
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Remark. Lemma 7 implies that there exists a numerical constant c such that (3 is embedded into a subspace of (1"
via some ® € R™*™ with m = c¢6~2n so that | |x|, — |®x|, | < & for all x € S"~ L.

The next lemma is a consequence of Dudley’s inequality and provides a tail bound on the supremum of a Gaussian
random process.

Lemma 8 ([26, Theorem 8.1.6]). Let £ ~ N'(0,1,), A < R"™, and ¢ € (0,1). Then

0
sup |f*¢] < J VIn N(A,nBz)dn + diam(A)4/In(¢1)
feA 0

holds with probability 1 — (, where diam(A) denotes the diameter of A in .
We also use the results on the suprema of second-order chaos processes [27], summarized as the following theorem.

Theorem 3 (Theorem 3.1 in [27]). Let § € R™ be a Gaussian vector with E[¢] = 0 and E[(€*] = 1,,. Let A < R™*™.
Then

sup [1Q¢13 — B[ Qs3]
QeA
SE+VA/In(2¢1) + Uln(2¢ !

holds with probability 1 — (, where
E:=7(A) [v2(A) + dr(A)],
Vii=ds(A) [72(A) + dr(A)],
U :=d3(A).
Here v2(A) denotes the Talagrand ~yo-functional of the metric space given by the spectral norm, and ds(A) and
dp(A) denotes the radii of A with respect to the spectral norm and the Frobenius norm, respectively.
B. Embedding (Y to (%

Let v : Y — EgoN denote a linear map defined by

N
L ((xn)rjyzl) = (2 E”x") '
n=1 (€n) N {1}V

Then ¢V is isometrically embedded into £2 , i.c.
N

€EnTn| :

HL((azn)ﬁ[ Dl = max {

(€n)p— 16{+1}N}

= || @i H
Let X = (2 and E = (/YY) c X. Then the dual space of linear functionals on X is denoted by X* = ¢3" .
We denote the vector space of linear functionals on E by E*. First we note that the restriction of :* on E* is an
isometric bijection. Indeed, we have
¥« = sup {ux),y) = sup {x,0%(y))
le()ll <1 [, <1
= [, Vye B

Next, due to the Hahn-Banach theorem, for any y € E*, there exists a linear functional y € X* such that
I¥|x* = |y| . Consequently, there exists an isometric bijection map ¢ from X*/E+ to E*, where B+ = {y €

*:{y,x) = 0,Vx € E} and {-,-) denotes the canonical bilinear transform on X* x X. Therefore, the map
¥ o : X*/E+ — (Y is an isometric bijection. Furthermore, the quotient map ¢ : X* — X*/E' is a metric
surjection [28, Egs. (1.3.2) and (2.2.5)], i.e.

q(Bxx) = Bxx/g,

where By and Bys g1 denote the unit norm ball respectively in X* and X* /E*. Finally, we deduce that
Fopoq: 3" — (N is a metric surjection.
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C. Duality
Let X and Y be finite-dimensional Banach spaces. Let A : X — Y be a linear operator such that
lAx]y = x| x| < dfx[x, vxeX. (18)

Let £ = A(X) denote the image of X via A, which is a subspace of Y, ie. X <> EcC Y. Let B+ := {yeY*:
{y,x) = 0,Yx € E}. Then, by the Hahn-Banach theorem, E* is isometrically isomorphic to Y*/E+ and there
exists an isometric bijection ¢ from Y* /EL to E*. It follows from (18) that B = A*|g« satisfies

IBYlx+ = Iylp«l <6lylps, VyeE™

Therefore, we obtain that Bo o : Y*/E+ — X* is a bijection satisfying |B o g < 1 + 4. Furthermore, the quotient
map ¢ : Y* — Y*/E' is a metric surjection.

D. Proof of Lemma 1
Let Ue RM*" and V € RMEXT satisfy that X = UV* and U*U = I,.. Then we have

[Xls < [Ulp IVl e < VP IOV o
=V [UVH o p = Vi IX] g p

which implies the upper bound in (7).

To derive the lower bound in (7), we consider U and V satisfy that X = UV* and X[ = |[U|p [|V],, p. The
common number of columns of U and V is not necessarily r this time. Let X, = X(e;®Ix) and V} = V*(e,Q1Iy)
denote the kth block of X and V*, respectively. Let k. = argmaxye[x] [ Xk g Then

Xl = 1Xelle = [OVE [ < [U]e [ Vi,
= U] [VFop = IXlls -

F

This completes the proof.

E. Proof of Lemma 3

We first show that the $-norm is a valid tensor norm. Let x € £ (¢)) and y € £37. Since © ® y is rank-1, the
optimal factorization in the definition of the $-norm is through the trivial 1-dimensional space and hence it follows
that

Iz @ylls = Il e ey [Ylleys -
oc( 2) 2

Similarly, for 2* € ¢ (¢)) and y* € £}, the dual norm of $-norm on z* ® y* is written as

* * * *
sup (2" ®@y*)zr,y)= sup (2N 2)yy)
Hszgg(eé\’)Sl Htzgg(eéV)Sl
Iyl e <1 Iyl ar <1

= [&* g a3y 19" g

where (z*, z) denotes the dual bracket representing the evaluation of the linear functional z* on z. Therefore, we
have shown that the $-norm is a tensor norm. Then, since the projective norm is the largest tensor norm, it follows
that | Tls < | T

To show the remaining inequality [T, < 2N |T|g, we use the 2-summing norm of of T € X ® Y defined as
the smallest constant ¢ > 0 that satisfies

DMITxf < sup D [Gxxp))?
A [l3¢]| s <1 g

for all sequences (xj) — X*. Here, X** denotes the double dual, which coincides with X since we consider
the finite-dimensional case. The 2-summing norm will be denoted by m2(T). In the finite-dimensional case, the
2-summing norm 7y is self-dual by satisfying

tr(ST*) < ma(S)ma(TH). (19)
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To be self-contained, below we present the derivation of the inequality in (19). The arguments are taken from [29].
We first recall 41, defined on a finite sequence (1, ...,x)) in a normed space X as

k 1/p
pp(x1, ..., ) := sup (Z \f(xj)]p> : feBxx ¢,
j=1

where Bx# denotes the unit ball in the dual space X*. Then p-nuclear norm of a linear operator T from a normed
space X to another normed space Y is defined by

vp(T)

k p k
= inf (Z fl|p> :U'p'(yl’ayk) T:Zfl®yl ;

i=1 i=1
where p’ satisfies 1/p + 1/p’ = 1. Then by the definition of the trace, we have
tr(ST*) < v1(ST*). (20)
Moreover, by the definition of the nuclear norm and 2-summing norm, it has been shown [29, 4.2] that
I/1(ST*> < 7T2<S)V2(T*). (21)
Finally, since we consider the finite-dimensional case, the 2-summing norm and the 2-nuclear norm coincides [29,
Theorem 5.11]. Therefore, the inequality in (19) follows from (20) and (21).
Armed with the inequality in (19), we proceed to the remainder of the proof of Lemma 3. By the trace duality,
the projective norm of T* € (1 @ (X (¢)) = L}, 05 (£)) is written as
IT*|, = sup{tr(ST*) : S e L (4), 657, [S[ < 1} (22)
Then, by the trivial decomposition of S = S oid via £Y*, we have
mo(S L5 (65) — £37)
lid - €5(63) — 635 - ma(S - 65 — &)
V2[S:eER - 0| (23)
V2id: 58 - e5 @) - |s - o5 () — &1
V2N (S 5 (65) — 6],

where the second inequality follows from [29, Propositions 9.3 and 9.8]. By plugging in (19) and (23) into (22), we
obtain

INCINCIN N

[T*| . < V2N mo(T*).

Furthermore, since all Banach spaces here are finite-dimensional, it follows from [29, Proposition 1.13] that
|T|, = ||'T*| .. Therefore, we have shown that

IT], < V2N m(T¥). 24

The following lemma provides an alternative characterization of the 2-summing norm so that one can compare
the $-norm and the 2-summing norm on the dual of (£ (/) ® 37,

Lemma 9 ([13, Lemma 3.3]). Ler T € L(X*,Y) with X complete. Then the 2-summing norm of the adjoint T* is
expressed as

mo(T*) := inf{mo(TF)|T5|, : de N, T% e L(Y*,£9),
T; € L(EgvX)7 T = T; >1k}

Let T e (K65 @ ) = LeF(£L),031) be factorized as T = UV* via (¢ with V* e L(¢f(¢)),¢2) and
U e L(¢4, )1 for some d € N. Then it follows that

IVIL =1VF =1V
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where ||, g denotes the maximum-block-spectral norm defined by

K
Z e; ® Vi
k=1

= Vil .
o [V

IIVI Vz - Villes =

0,S

Furthermore, since U* € L(Egl7 Kéw ) = Egl ® M the 2-summing norm and Frobenius norm of U™ coincide, i.e.
m2(U*) = [U*[g = [U]g -
Therefore, the 2-summing norm of T* is written as
T*) = inf Ul [V*
ma(T) = it (Ul [V s,

Then we deduce that the $-norm defined in in (5) satisfies
m(T*) < [T,
which together with (24) implies |T|, < v2N |T|. This completes the proof.

FE. Proof of Lemma 4

Recall that the dual of ¢£(¢]) is given by (¢£(¢1))* = ¢ (¢5). Similarly, the range space /72 @ ¢4 is identified
to 7(¢%). Due to Lemma 7 in Appendix A (also see the remark after the lemma), there exists a linear map
Dy : LY — 69N such that

|[®nx]; — 1 <0, Vxe sV-L

Similarly, £ is also embedded into £5° "M via &y, : £} — (59"M 5o that
| ®ax], — 1] <9, VxeSYL

By the injectivity of the injective norm, ¥ = (I @ ® )@ Py, embeds £X (X)) &3 into £ (050" N) Q00 M ~
655_21\7 K ®€§5_2M , where =~ denotes the equivalence through an isometric isomorphism. Furthermore, it has been shown
in Appendix B that E‘f‘;_zN K (resp. éﬁ‘HM ) is isometrically embedded into EESVQNK (resp. EEOCVZM). Therefore, due
to the injectivity of the injective tensor norm, £50 " NK & ¢$9 "M is embedded into egg“*z” R egg“?M = egg““"”“

via an isometric injection «. Moreover, the subspace £ = W (/[ (£)) & ¢}1) is also isometrically embedded to
c6T2(NK+M)
Z

2(NK+M)

Let Y = egg‘“ and F' = ((FE). Similar to Appendix B, by the Hahn-Banach theorem, there exists an
isometric bijection ¢ : Y*/F1 — F* and the quotient map ¢ : Y* — Y*/F is a metric surjection. Therefore, the
map goq: Y™ — F* is a metric surjection. Note that the restriction of :* on F*, denoted by t*|px : F* — E*, is
an isometric bijection. Then the composition map Q = ¢*|p« 0 p 0 ¢ is a metric surjection. Moreover, the restriction
of U* on E*, denoted by ¥*|p« : B* — (¢ & ¢)) ® )" is a bijection. Therefore, there exists a map (¥*|ps)~"
such that ¥* o (I*|p«)~! is the identity on (/£ @ ¢)) ® £). The embedding maps are illustrated in the following
commutative diagram.

% 2c5*2(NK+M)

Q TT*Q
B T ()
(‘P*lE*)71 /
(@6 @6

Then the assertion follows from Lemma 2 due to the surjectivity of the entropy number [28, p. 12] and the fact that
1T < (146)%
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G. Proof of Lemma 5
Let £ € REMN be a random vector defined by

vec(Bl,l

VeC(BQJ
€= : . (25)

~— —

VGC(BLJ{)

Since vec(B; )’s are i.i.d. following N (0, L~ 'Tsn), it follows that &€ ~ A(0,I1n). Next, we define a matrix
Qz € REEXEMN determined by Z by

Qz =
I ®vec(Zy)* 0 0
0 IL®VeC(Z2)* 0
0 0 IL ®V€C(ZK)*

where Zjy, = Z(e, ® Iy) for k € [K] so that Z = [Z; Zy --- Zk]. Then we have

L K
> DA 2 = [Qzgl; -

I=1k=1
Furthermore, by taking the expectation on both sides, we obtain

L K
EY) Y (A Z)” = E|QzE]5 = |Qzl7 = L |25

I=1k=1

Therefore, the left-hand side of (15) is written as the supremum of a second-order chaos as follows:

L K
iz -y 2<Al,k,z>2|

sup

Zer(a,f) =1 k=1

~ sw[1Qz¢l3 - ElQzgl
Zek(a,B)

We compute a tail bound on the right-hand side by using the results on suprema of chaos processes [27], which is
summarized as Theorem 3 in Appendix A. To invoke Theorem 3 for A = {Qz : Z € k(«a, 3)}, we derive upper
bounds on the radii and the ~s-functional of A. The radii of A with respect to the spectral norm and the Frobenious
norm satisfy
ds(A) = swp |Qzl = sup max [Zp < a
Zer(o,B) Zer(a,B) kK]
and
dp(A) = sup |Qz|= sup VI|Z|p < VLKa.
Zek(a,B) Zek(a,B)
Note that |Qz — Qz /|| = |Z — Z'|, y and k(a, 8) = aBy r N fBg. Then Dudley’s inequality implies that the
~o-functional of A is upper-bounded 7by

1(A) < fo " VI N(A, nBs)dn

Q0
<6 | AN BB dn
0

Furthermore, Lemma 3 implies
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Therefore, we obtain

o0
f \/IHN(B$7UBOO,F)CZ77
0
o0
s J \/IDN (WB (L&Y )& ”Boo,F)dn
0

0
< \/NJO \/InN (B(%@@év)@@“”Bég(egm))dn
< VNVNK + M(In K)*?,

where the last step follows from Lemma 4 together with the fact that

id: (¢ & 6) @6 - OB <1,

which holds by Lemma 1. Combining these results provides

72(A) £ By/N(NK + M)(In K)3.

Then, the parameters E, V, and U in Theorem 3 are upper-bounded by

E =7(A) [72(A) + dr(A)]

< a?y/(B/a)2N(NK + M)(In K)3
(V(B/aPN(NK + M)(In K)? + VLK),

— a’LKp(p+1),

V =ds(A) [v2(A) + dr(A)]
<a? (\/(ﬂ/a)zN(NK + M) (InK)3 + \/LK>
= o*VLK(p+1),

U =d3(A) <o’

Then, by plugging in these parameters into Theorem 3, we obtain that

1Zz — Z Z<Al ko Z)°

l=1k=1

sup
Zek(a,B)

(26)

< a?In(2¢Y) + ®LK (p + 1) <p + mf?) ,

holds with probability 1 — (. Finally, by choosing C' in (11) large enough, we have p < 1, which further simplifies
(26) into (15). This completes the proof.

H. Proof of Lemma 6

Let ||| ||| denote the norm defined so that the unit norm ball is x(«, ), i.e.
r(a, ) = {(X e RMVE || X < 1},

Then the left-hand side of (17) is written as

sup Z 2<Al i Zywy g = 7 27)

Zer(a,f) |21 k=1

L K
DD AL Ty
I=1k=1

*
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where || |||, denotes the dual norm of |||-|||. Conditioned on A;}’s, the quantity on the right-hand side of (27)
becomes a Gaussian empirical process. Due to [30, Theorem 4.7], it holds with probability 1 — % that

L K
Z Z (A, Zywy
I=1k=1 *

L K
Z D ALk Zgik
l=1k=1

+om 1n(62C_1) ’ Z Z<Alk,z>

|HZ|H<11 1k=1

gl k) (28)

*

where g ;’s are i.i.d. Gaussian with zero mean and unit variance.
The last term in the right-hand side of (28) is upper-bounded by using the following result. Due to Lemma 5,
there exists a numerical constant C', for which it holds with probability 1 — 3 that

L
ZZ<Azk,Z> 1ZI%
1=1k=1

a?In(6¢71) In(6¢—1)
oK (P + m)]

for all Z € x(«, ). Furthermore, we also have

+C

sup |Z|z < sup K|Z|,p < ?K.

Zek(a,B) Zek(a,B)

Therefore, we obtain

ap 3 A2

Zer(ouB) =1 k=1

-1 _
<25 lnf( ) +a’K <p+ ln(g—i(l) + 1) .

Furthermore, due to [31, Equation (4.9)] the expectation term in the right-hand side of (28) is upper-bounded by

Z)q x

LK
ZZ Alk,z>61k

where (¢ 1) is a Rademacher sequence, i.e. € ’s are independent copies of random variable e satisfying PP (e = 1)
Ple=-1)=3

glk

<A/ In(LK Ee, ) ,
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Then, due to the symmetry of the distribution of A;’s, we obtain the following identity, which holds in the
sense of distribution with respect to A, ;’s:

L K
Ee, 1) ZZ (A, Zyer (29)
I=1k=1 "
L K
= sup |Y > {arAip, %)
NZI<1 ;=1 k=1
L K
= sup > > (A, Z)
NZI<1 ;27 =1
L K
= sup ZZ<A“€,Z>
MZIN<17=7 =1
L K
:\IISI\al 22<e§®Bz,k,Z>, (30)
zll|l<1 /5

1

"??‘

where the third step follows due to the symmetry in x(c, ) and the last step used A; ), = e; @ By .
Let £ € RLMN pe defined in (25). Furthermore, with a shorthand notation Zj, := Z(ek ®In) € RM *N we define

a column vector fz € REMY given by

171 ®vec(Zy)

1L,l ® VeC(ZQ)

fZ = . 9

1L,1 ® VeC(ZN)

where 17,1 € RL denotes the column vector with all entries set to 1. Then the last term in (30) is written as

L K

sup > (Big, Zler ®In)) = sup (fz,8).
ZI<1 =1 k=1 1Z][|<1

Note that the right-hand side is the supremum of a Gaussian process. To obtain an upper bound, we will use
Lemma 8 in Appendix A. To invoke Lemma 8 for the set A = {fz : || Z]|| < 1} and & ~ N (0,115 ), Wwe compute
the diameter and covering number of A with respect to the ¢>-norm. Since

fz — £z, = VL|Z - 2|, < VLK |Z - Z|
it follows that diam(A) < v LK« and

N(A,nBs) < N (B|||-H|7T/(LK)_1/2BOO,F) :

oo,F 7

Furthermore, since
By = k(a, B) = aBy r 0 BB,
by Lemma 3, we have
By = BBs < BV2NB peguy @y

Therefore, we obtain

00]
Jo VN (B n(LE) =2 B )

0
< 5\/ LKNJ;] \/lnN (B(Z{é@ﬁé\')@%”’anfff(%WN)>dn
< BVLKNVNK + M(In K)3/2,
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where the last step follows from Lemma 4 and Lemma 1. By plugging in this result to Lemma 8, we obtain that

sup {fz,&)
I1Z]]]<1

< BVLKENVNK + M(In K)*? + an/LK In(3¢1)
=aLKp+ ar/LKIn(3¢™1)

holds with probability 1 — §.

L. Proof of Theorem 2

We establish the minimax lower bound in Theorem 2 by following the two-step strategy outlined below. We first
show that there exists a packing set of x(a, 3) of a desirable size and a packing density. Then a minimax bound is
derived via a multi-way hypothesis testing argument and Fano’s inequality.

Let us first recall the notion of a packing set (e.g. see [26, Definition 4.2.4]). A subset P of a metric space S is
called e-packing of S if d(x,2’) > e for all distinct 2, 2’ € P, where the parameter e denotes the packing density.
The following lemma constructs a packing set of k(«, B) with respect to the metric induced by the Frobenius norm.

Lemma 10. Let v < 1 satisfy that 2a2 is an integer. Then there exists a subset H < k(«, 3) with cardinality

(22222

with the following properties:
1) Every H € H satisfies that rank(H) < afj—; and each entry is from {-I—\/%} thereby |H|, p = ya and
[H| = Ky*a
2) Any two distinct H", H’ € ‘H satisfy

K~2a?
5

L

Proof: We adapt the proof of [12, Lemma 3.1] to our setting. The idea is to show the existence of a packing
set by the empirical method. We first consider the case where NK > M. Let S = [exp((ﬁ / fg,y )| and B = v .
We generate H', . HS as 1ndependent coples of a random matrix H constricted as follows. The entries of the

\/7} The remaining rows are determined

from the first B rows by
Hyn = Hpy o,y Vm,m/ € [M] m/ =m (mod B),
Vn e [NK].

Since the magnitude of all entries of H are fixed to the constant \/%, it follows that |H|,, z = ya and

|H|lz = v K~a. Furthermore, by Lemma 1, we also have
g
IHls < VB|H]|, = o 105

thereby, H' € (a, B) for all i € [S], or equivalently, H < r(c, B).
For any H* # HY, we have

M NK

[B - = ) Y (Hiyy — Hiy )
m=1n=1
B NK
> | 5| X o, w0
m=1n=1

> do i Jijivamm

m=1n=1
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where 0y, ,,’s are i.i.d. symmetric Bernoulli random variables. By Hoeffding’s inequality, we obtain

B KN
(Z Zamn\B]ZK) Py

m=1n=1

By the union bound argument over all ( ) possible distinct pairs (H?, H’), we obtain that

- M| BKN 22K
Wi > a? | | Ay =

min HHZ

oy B| MN = 2

holds with probability at least 1 — ( ) exp(— BJ; Ky >1-— %2 exp(—BJg LY % In other words, the second property

is satisfied with nonzero probability, thereby, there exists such an instance. If M > N K, then we construct H* by
the same procedure. Then the existence of a desired packing set is shown similarly. This concludes the proof. W

Lemma 11 (Equivalence to multlple hypothesis testing). [Lemma 6.2, [13]] Let H be a §-packing set of (v, )
and let H = argmingg.,, [H — H)| . Then we have

~ 52 ~
inf sup E|H-H|} > — minP (H # H*) ,
H Her(a,8) 4 Fen
where H* is uniformly distributed over H.
We now proceed to a lower bound on mingy - P (fl # H*) To this end, we use the following version of Fano’s
inequality stated in [12].
Lemma 12 (Fano’s inequality). Let H = argming,, [H — H)| . Then we have
P(H # H*)
—1 . .
(M) S B, ) Dxw (Y | H) + In2 (31)
In |H| 7

where Dxp,(H' |H7) denotes the Kullback—Leibler divergence between the joint distributions of yi1’s in the
measurement model (2) conditioned on measurement matrices By ’s for H' and H’.

=>1-

It remains to compute the KL. divergence in (31) so that we can invoke Fano’s inequality in Lemma 12. The joint
probability density of y; x’s given B, ’s is given by

P ({yx}{Bux})
L K

2Lc?

- (_ (yik — B, Hf>)2> .

Then we obtain

y
i (yl,z‘ — By, H)? — (g — (Bug, HL)?
202

~
Il
—
o
Il
fui

(By, Hj, — HJ)?
202

[l
M=
M=

~
I

1

i i (i — (Bug, Hj))(By i, HY, H@

202

x>
Il

1

+
I=1k=1
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where H: = H'(ex, ® Iv) denotes the kth block of H of size M x N for k € [K]. Hence it follows that

DxL(H; | Hj) = Jjo p(y[H;) In <£8’,||II_{I;§> dy

2 Z Z<Bl k:ka Hk>2

I=1k=1
Furthermore, by taking the expectation with respect to B, ;’s, we obtain

Em, ) DxL(H' |HY) = - H| (32)

507 |
We consolidate the above sequence of results to establish the minimax lower bound in Theorem 2. Recall
that the packing set H by Lemma 10 satisfies HHZHF = v/ K~a for all H' € #. It immediately follows that

HHZ —~ H; < 4K~%a? for all H, H7 € H. Furtheremore, we have

(B/a)*(NK v M)
1672 '

Plugging in these result together with (32) into (31), we obtain

P(H + H*)

162 2LK~%a?
>1-— In2| >
(B/a)2(NK v M) ( 2 "
provided that ~* % and (B/)2(NK v M) = 48.
If it is satisfied that (B/a) (NK v M)o* > 1, then we choose v = 1. In this case, by Lemma 11, we obtain

T 128LKaZz

N 2 1 _ Ka?
inf sup E[H-HE>" o> =
H Hek(o,B) 4 2 16

In|H| <

N =

where the second inequality follows since the packing density of H was § = ya / % This implies

2

inf sup E—HH H|% > a
H Hek(o,R) 6
, (8/a)* (N K v M)o? \ /4
Otherwise, we choose v = (W) so that
inf sup E|H—H|}
H Hek(o,R)
52 1 Kao \/(,B/a)?(NK v M)
127 16 128LK ’
which follows from Lemma 11. Therefore, we have
inf sup E—HH H|2
H Hek(a,B)
oo J¢WMWNKvM)
T 16-8v2 « LK '

Finally, combining the two results, we obtain

1 ~
inf sup — E|H-H|%
H Hen(a,R)K

a? o (B/a)2(NK v M)

This completes the proof.



23

J. ADMM algorithms

The optimization formulations in (6) and (8) can be rewritten into a standard semidefinite program and be solved
by off-the-shelf solvers like SeDuMi [32] or SDPT3 [33]. However, these software packages do not scale well
to large instances. To alleviate the limitation, we develop Alternating Direction Method of Multipliers (ADMM)
algorithms, wherein each subproblem admits a closed-form solution or casts as a simple program easily solved by
standard linear algebra packages.

1) ADMM algorithm to compute the $-norm in (6): We first rewrite the optimization formulation in (6) into an
equivalent problem with a set of auxiliary variables:

minimize S
B,W1,W3,E
subject to trace(W1) < 3

trace ((ej @ In)Wa(er ® In)) < 6,
Vk € [K] 33)
o
E =
X* Wy

E > 0.
Then an augmented Lagrangian function of (33) is obtained by penalizing the equality constraints as

ﬁp (67W17W27E7¢)

_ Ww; X 1Y wW; X

2

F
where & € RIM+KEN)x(M+KN) denotes a dual variable. ADMM finds a global minimizer to the convex program in
(33) by minimizing £, with respect to each of the primal variables 3, W1, Wy, E sequentially followed by the
gradient ascent update of the dual variable ® [34, Section 3.1].

For brevity, we introduce the following shorthand notations. We decompose E, ® € RIM+NE)x(M+NK) jnto four

blocks as - E o ®
E .- 11 12 and P — 11 12 7 34
[E’fg Eo 7, Py 4

where the size of each block is given by Ejy, ®;; € RM*M Ey &5 € RMXNK and Egy, 9y € RVEXNK,
Further, the kth block of size M x N of X € RM*NK given by X (e, ® Iy) is denoted by X. Similarly, the kth
diagonal block of size N x N of Wy € RVEXNK oiven by (ef ®In)Wa (e, ® 1) is denoted by Wy .

Given the above shorthand notations, we describe the update rules of the ADMM algorithm. First, we consider
the updates of the first block of primal variables. We update 5, W1, and {Wg}k}szl by solving the following
optimization problem:

K
. P 2 14 2
minimize SIW, — AL+ = Wy —Bi|n + 5
Wi (W 8 2 H It ,;1 W Ir
subject to trace(W1) < 8
trace(Wa ) <

(35)

B, Vke|K],
where
A:=E; +p '®;, and B:=Eg +p 1®g.

For fixed , minimization decouples over the other variables and the optimal solution is given by

W, = argmin  |[Wp — AH%
trace(W1)<p
and

Wy = argmin [Way — BkH%
trace(W»)<f
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Furthermore, W1 and Wy, are expressed in a closed-form respectively given by

W, A (max(trace(A) -8, O)> I, 36)

M

and
37

Wos — By — (max(trace(Bk) - B, 0)) 1

M

By plugging in the expression of the optimal solutions in (36) and (37) for fixed § into (35), the optimization
formulation in (35) reduces to the minimization of a univariate function given by

pmax(trace(A) — 3,0)?

f(B) =6+ i -
K 2
N Z pmax(trace(Bg) — 3,0) .
= 2N

Due to the monotonicity of the summands in the right-hand side of (38), the global minimizer B can be found by the
bisection search on the interval from 0 to max(trace(A ), maxye[x] trace(By)). Once 3 is updated as 3, then W

(resp. Wy ;) will be updated as \/7\\71 by (36) (resp. \/7\\/'27;c by (37)). The off-diagonal blocks of Wy are updated by

(e ®In)Wa(er ®1y)
= (ej@IN)(Ep+p_1‘I>22)(ek®IN)a J # ke [K]

Next, the second block of primal variables consists of E, which is updated as the solution to

2

E*armm(I)E—i-
min@ -+ lo- |30 ||

_ W, ol
(2 ).

where SJX[ KN denotes the cone of positive semidefinite matrices of size (M + NK). Finally, the dual variable &
is updated by gradient ascent with step size p.

2) ADMM algorithm for the convex estimator in (8): The optimization in (10) is equivalently reformulated with
an auxiliary variable as

L K
minimize Z Z (v — Bk, X(er ® IN)>)2

X2WWe Tk
subject to trace(Wy) < f3
trace ((e); ® In)Wa(er ® IN)) B,

e [K], (39)
HXHOO,F S
Cwr x
X Wy
Z>0.

An augmented Lagrangian function is written as

L, (X WI;WQ;Z7‘I’>

Z Z (yix — Bug, X(er @ In)))?

2

o[ 3Dt [ 3]

X* W2 2 X* W2

+
2
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where W € RIM+EN)x(M+KN) denotes a dual variable. Then the ADMM algorithm iterates the minimization of
L, with respect to primal-variable blocks (X, W1, W3) and Z followed by the gradient ascent update of the dual

variable ¥ as shown below. For brevity, we consider the decomposition of Z, ¥ € RIM+ANK)x(M+NK) jnto four
blocks given by
le 212 ‘1’11 l:[’12
Z = and W= ;
{ZB Z3 Ui, o
where the size of each block is given by Zi1, W13 € RM*M 7.1, W1y e RMXNK and Zyy, Woy € RVEXNEK,

First, we consider the update of X, Wy, and Wy in the first block. Note that the minimization of £, only
with respect to X reduces to a norm-constrained least squares problem. Due to the blockwise structure in the
measurement model, it decouples over blocks of X as

minimize 3 (yr.k — <Bl,kan>)2
IXilr<a 7= (40)
— (Wi, Xp) + g |Z 12,1 — X7
for k € [K]. Then, (40) is written as
minimize  ||b — Qvec(Xy)|3 (41)

Ivee(Xy) 2 <a

for Q and b satisfying Q*Q := 2]§Z§k + pI and Q*b := Zﬁzyk + vec(Wig,) + pvec(Zia,) where

vec(Byx)* YLk

N vec(Bg ;)* Y2,k
k= . and yg:= .

vec(Bp k)* YL,k

Then (41) becomes a norm-constrained least square problem. Since (41) satisfies the Slater’s condition, the minimizer
is obtained by the Karush—Kuhn-Tucker (KKT) conditions through the Lagrangian function

£(vec(Xx), ) i= b — Quec(Xy) |3 + A (Ivee(X)I3 - o?) “2)
given by
[vee(X) 2 < o
A =0,
A(Jvec(Xp) 2 — a) = 0,
(Q*Q — Q*b) + Avec(Xy) = 0.

The optimal Lagrangian multiplier A* can be found by a binary search as outlined below. The unique minimizer to
(42), denoted by X2, is given by

(43)

S ~ ~ -1
vee(X}) = <2Bsz +(p+ )\)I)

" (44)
. <2BZyk + vec(Wia ) + pvec(Z12,k>> :

Then the KKT conditions (43) will be satisfied by the optimal Lagrange multiplier A* and Vec(ﬁi‘*). Note that the
solution in (44) satisfies the last condition in (43) for all A > 0. Furthermore, since Hvec()ACQ)HQ is a decreasing
function of A, the optimal A* can be found by a bisection method. Moreover, since B, depends only on B ;’s, which
do not vary over iterations, the solution in (44) is easily obtained from a pre-compute the eigenvalue decomposition

of (]~3,’;]~3k)_1 The update of W1 is given by

W; = argmin —(¥, W)+ g |Z — Wl“%a
trace(W)<p
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which yields a closed-form expression
Wi =Zy+p 10y
<max(trace(Z11 +p ) — 5»0)>
_ Iy

M
Similarly, the diagonal blocks of Wy are updated as

Wok =Zoog+p " Way

(max(trace(Zgg,k + p_1‘1’22,k) - B, 0))
_ N Iy.

The off-diagonal blocks of Wy are copied from the corresponding blocks of Zog + p*1W22. Next, the primal
variable Z in the second block is updated by
2

A~ . 1% W, X
Z = .7+ = |Z—
i oA H {X Wz]

W X _
= 'PSYJJ(N <|:X*1 W2:| —p 1‘1’> s

where Sﬂ‘f KN denotes the cone of positive semidefinite matrices of size (M + NK). Finally, the dual variable ¥
is updated by gradient ascent with step size p.

For fast convergence, we adopt a varying step size for the dual ascent [34, Section 3.4.1], in which p is updated
in each iteration by keeping the primal and dual residual norms within a constant factor of each other. Furthermore,
we employed a stopping criterion based on the feasibility and relative change of primal variables [34, Section 3.3.1],
which has been widely used in practice.

F
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