

Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

Dongqi Fu and Jingrui He

University of Illinois at Urbana-Champaign, Champaign Urbana, Illinois, USA

Correspondence*:

Jingrui He

jingrui@illinois.edu

2 ABSTRACT

3 Graph structures have attracted much research attention for carrying complex relational
4 information. Based on graphs, many algorithms and tools are proposed and developed for dealing
5 with real-world tasks such as recommendation, fraud detection, molecule design, etc. In this
6 paper, we first discuss three topics of graph research, i.e., graph mining, graph representations,
7 and graph neural networks (GNNs). Then, we introduce the definitions of *natural dynamics* and
8 *artificial dynamics* in graphs, and the related works of natural and artificial dynamics about how
9 they boost the aforementioned graph research topics, where we also discuss the current limitation
10 and future opportunities.

11 **Keywords:** Graph Mining, Graph Representations, Graph Neural Networks, Natural Dynamics, Artificial Dynamics

1 INTRODUCTION

12 In the era of big data, the relationship between entities becomes much more complex than ever before.
13 As a kind of relational data structure, graph (or network) attract much research attention for dealing with
14 this unprecedented phenomenon. To be specific, many graph-based algorithms and tools are proposed,
15 such as DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), node2vec (Grover and Leskovec,
16 2016), GCN (Kipf and Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018),
17 etc. Correspondingly, many challenges of real-world applications get addressed to some extent, such as
18 recommendation (Fan et al., 2019), fraud detection (Wang et al., 2019), and molecule design (Liu et al.,
19 2018), to name a few.

20 To investigate graph-based research and relevant problems and applications systematically, at least ¹ three
21 aspects will be discussed, i.e., graph mining, graph representations, and graph neural networks (GNNs).
22 Their dependency is convoluted, the reason why we aim to disentangle it is that we can discuss the current
23 efforts from natural and artificial dynamics studies (which are improving the graph algorithms and tools
24 performance) in a fine-grained view, such that we can envision detailed future research opportunities. As for
25 **natural dynamics in graphs**, we use this term to illustrate that the input graphs themselves are evolving, i.e.,
26 the topology structures, the node-level, edge-level, and (sub)graph-level features and labels are dependent
27 on time (Aggarwal and Subbian, 2014; Kazemi et al., 2020). As for **artificial dynamics in graphs**,
28 we use this term to describe that end-users change (e.g., *filter, mask, drop, or augment*) the existing or
29 construct (i.e., *from scratch*) the non-existing graph-related elements (e.g., graph topology, graph stream,

¹ Research topics like graph theory and graph database management are also very important, but we skip discussing them in this paper.

30 node/graph attributes/labels, GNN gradients, GNN layer connections, etc.) to realize the certain
 31 performance upgrade (e.g., computation efficiency (Fu et al., 2020b), model explanation (Fu and He,
 32 2021b), decision accuracy (Zheng et al., 2022), etc.). To the best of our knowledge, the first relevant act
 33 of conceiving artificial dynamics in graphs appeared in (Kamvar et al., 2003), where "artificial jump" is
 34 proposed to adjust the graph topology for PageRank realizing the personal ranking function on structured
 35 data, i.e., a random surfer would follow an originally non-existing but newly-added highway to jump to a
 36 personally-selected node with a predefined teleportation probability.

37 With the above introduction of graph research terminology and dynamics category, in this paper, we are
 38 ready to introduce some related works on investigating natural and artificial dynamics in graph mining,
 39 graph representations, and graph neural networks, and then discuss future research opportunities. To be
 40 specific, this survey is organized as follows. The definition and relation introduction for graph mining tasks,
 41 graph representations, and graph neural networks are discussed in Section 2. Then, in Section 3, we discuss
 42 the formal definition followed by concrete research works for *natural dynamics*, *artificial dynamics*, and
 43 *natural + artificial dynamics* in graphs. Finally, in Section 4, we conclude the paper with sharing some
 44 research future directions.

2 RELATIONS AMONG GRAPH MINING, GRAPH REPRESENTATIONS, AND GRAPH NEURAL NETWORKS

45 To pave the way for investigating the natural and artificial dynamics in graphs, we first introduce graph
 46 research topics (i.e., graph mining, graph representations, and graph neural networks) and their relationships
 47 in this section. Then, in the next section, we can target each topic and see how natural dynamics and
 48 artificial dynamics contribute to them.

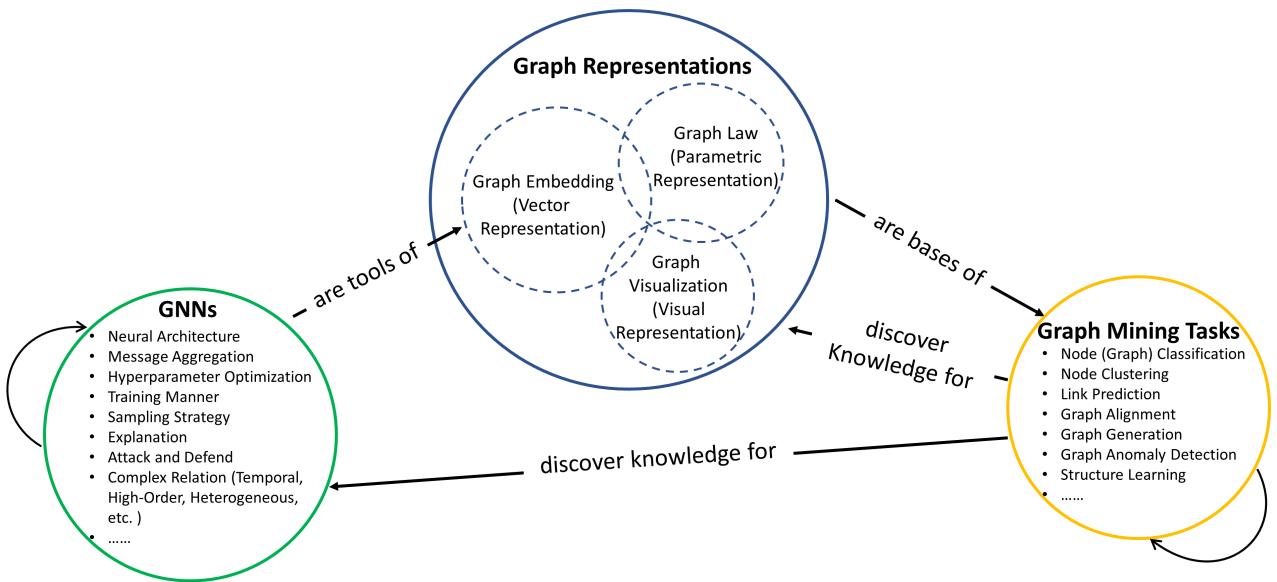


Figure 1. Relationships among Graph Mining, Graph Representations, and Graph Neural Networks.

49 In general, the relationships between graph mining, graph representations, and graph neural networks
 50 can be illustrated as shown in Figure 1. (1) Graph mining aims to extract interesting (e.g., non-trivial,
 51 implicit, previously unknown, and potentially useful) knowledge from graph data. Graph mining consists
 52 of numerous specific tasks, such like node classification (Kipf and Welling, 2017) is aiming to classify the

53 node category based on its features, and node clustering (Shi and Malik, 2000; Andersen et al., 2006) is
54 aiming to partition the entire graph into disjoint or overlapped clusters (i.e., subgraphs) based on end-users'
55 objectives (e.g., conductance, betweenness, etc.):. For example, clustering can discover knowledge to help
56 GNN implementations, and Cluster-GCN (Chiang et al., 2019) is proposed to sample nodes in a topology-
57 preserved clustering, which could entitle vanilla GCN (Kipf and Welling, 2017) the fast computation to deal
58 with large-scale graph datasets. (2) Graph representations are the bases of graph mining, which projects
59 graphs into a proper space such that graph mining can do various task-specific computations. To the best of
60 our knowledge, graph representations consists of three components. First, graph embedding represents
61 graphs with affinity matrices like Laplacian matrix and hidden feature representation matrix, on which many
62 mining tasks rely, such as node classification (Kipf and Welling, 2017); Second, graph law represents graphs
63 with several parameters which describe the statistical property of graphs such as node degree distribution
64 and edge connection probability, which could help mining tasks like graph generation (Leskovec and
65 Faloutsos, 2007) and link prediction (Wang et al., 2021b); Third, graph visualization provides the visual
66 representations and can serve for the domain-specific knowledge interpretation (Bach et al., 2015; Yang
67 et al., 2020a). Within graph representations, graph embedding, graph law, and graph visualization can
68 contribute to each other, and detailed overlapping works are discussed in the following sections. (3) Graph
69 Neural Network (GNN) is an effective tool for extracting meaningful graph embedding vectors (or matrices)
70 by combining deep learning theory and graph theory (Wu et al., 2021). GNNs are composed of a family of
71 many specific models with different research concerns like neural architecture (Chen et al., 2020b) and
72 message passing aggregation design (Klicpera et al., 2019), the detailed related works are also discussed in
73 the following sections.

74 2.1 Graph Mining

75 Graph mining interacts with real-world problems by discovering knowledge for many applications. Based
76 on structured data, graph mining consists of numerous specific tasks. For example,

- 77 • Node (and Graph) Classification (Kipf and Welling, 2017; Zhang et al., 2018; Jing et al., 2021): Nodes
78 sharing similar features should be classified into the same category.
- 79 • Node Clustering (or Graph Partitioning) (Spielman and Teng, 2013; Andersen et al., 2006; Shi and
80 Malik, 2000; Ng et al., 2001): Individual nodes are clustered for optimizing certain metrics such as
81 inter-cluster distance, intra-cluster density, etc.
- 82 • Link Prediction (Dunlavy et al., 2011; Zhang and Chen, 2018; Kumar et al., 2019): The probability
83 is estimated that whether two nodes should be connected based on evidence like node structural and
84 attribute similarity.
- 85 • Graph Generation (Leskovec and Faloutsos, 2007; You et al., 2018; Bojchevski et al., 2018; Zhou et al.,
86 2019, 2020): Model the distribution of a batch of observed graphs and then generate new graphs.
- 87 • Subgraph Matching (Tong et al., 2007; Zhang et al., 2009; Du et al., 2017; Liu et al., 2021): Check
88 whether a query graph (usually the smaller one) can be matched in a data graph (usually the larger one)
89 approximately or exactly.
- 90 • Graph Anomaly Detection (Akoglu et al., 2015; Yu et al., 2018b; Zheng et al., 2019): Identify whether
91 the graph has abnormal entities like nodes, edges, subgraphs, etc.
- 92 • Graph Alignment (Zhang and Tong, 2016; Zhou et al., 2021; Yan et al., 2021b,a): Retrieve similar
93 structures (e.g., nodes, edges, and subgraphs) across graphs.
- 94 • many more ...

95 Those tasks can be directly adapted to solve many high-impact problems in real-world settings. For example,
96 through learning the graph distribution and adding specific domain knowledge constraints, graph generators
97 could contribute to molecule generation and drug discovery (Luo and Ji, 2022; Liu et al., 2022a); With
98 modeling picture pixels as nodes, graph partitioning algorithms could achieve effective image segmentation
99 at scale (Bianchi et al., 2020); By modeling the information dissemination graph over news articles, readers,
100 and publishers (Nguyen et al., 2020) or modeling the suspicious articles into word graphs (Fu et al., 2022a),
101 node and graph classification tasks can help detect fake news in the real world.

102 2.2 Graph Representations

103 For accomplishing various graph mining tasks, graph representations are indispensable for providing
104 the bases for task-specific computations. To the best of our knowledge, graph representations can be
105 roughly categorized into three aspects, (1) graph embedding (i.e., vector representation), (2) graph law (i.e.,
106 parametric representation), and (3) graph visualization (i.e., visual representation).

107 2.2.1 Graph Embedding (Vector Representation)

108 **First, graph representations can be in the form of embedding matrices**, i.e., the graph topological
109 information and attributes are encoded into a matrix (or matrices). The most common form can be the
110 Laplacian matrix, which is the combination of the graph adjacency matrix and degree matrix. Recently,
111 the graph embedding (or graph representation learning) area attracts many research interests, along with
112 numerous graph embedding methods proposed for extracting the node (or graph) hidden representation
113 vectors from the input affinity matrices, like DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), and
114 node2vec (Grover and Leskovec, 2016). They² share the general principle to extract node representation
115 vectors, which means a node could reflect (e.g., predict, be proximate to, etc.) its sampled neighbors in the
116 embedding space, e.g., Skip-gram in (Perozzi et al., 2014; Grover and Leskovec, 2016) and order-based
117 proximity in (Tang et al., 2015). With the different angles of viewing graph topology and node features,
118 some derivatives are proposed, such as metapath2vec (Dong et al., 2017) for heterogeneous networks,
119 graph2vec (Narayanan et al., 2017) for the graph-level embeddings, and tdGraphEmbd (Beladev et al.,
120 2020) for temporal graph-level embeddings.

121 All graph embedding works mentioned above are unsupervised, which means the guidance (or constraints,
122 regularizers) during the learning process are totally from the input graph structure and features, such that the
123 encoded vectors within specific dimensions are actually reflecting the graph itself information. Hence, by
124 involving extra domain knowledge (i.e., labels and task-specific loss functions), graph embedding vectors
125 can serve real-world applications. For example, with user-item interaction history records and user anomaly
126 labels, graph embedding techniques can be leveraged for predicting the user-interested merchandise and
127 user's behavior in the future (Kumar et al., 2019); By involving additional labels, graph embedding vectors
128 can be used to generate small molecule graphs through an encoder-decoder framework (Simonovsky and
129 Komodakis, 2018; Jin et al., 2018); Also, with delicately designed query questions and temporal knowledge
130 graphs, graph embedding techniques can be used to help answer open-world questions (Saxena et al., 2021;
131 Shang et al., 2022).

² As another kind of powerful tool for graph embedding, graph neural networks (GNNs) become popular and attract research attention from both the deep learning domain and graph theory domain. Here, "they" are not referring to graph neural networks. And we set up another section for introducing GNNs, otherwise Section 2.2 will be enormous and overstuffed. GNNs will be discussed separately in Section 2.3. We would like to note that GNN is a tool for realizing graph embedding as we illustrated in Figure 1, the context separation in the paper is not standing for the tied hierarchy of graph representations and graph neural networks.

132 2.2.2 Graph Law (Parametric Representation)

133 **Second, graphs can also be represented by several parameters.** A simple but common example is
134 Erdős-Rényi random graph, i.e., $G(n, p)$ or $G(n, m)$ (Drobyshevskiy and Turdakov, 2020). To be specific,
135 in $G(n, p)$, the possibility of establishing a single edge among n nodes is independent of each other and
136 valued by a constant parameter p ; while in $G(n, m)$, an n -node and m -edge graph is chosen evenly from
137 all possible n -node and m -edge graph collections. In addition to the number of nodes, the number of edges,
138 and the edge probability, many common parameters are well-studied for representing or modeling graphs,
139 such as degree distribution, effective diameter, clustering coefficient, and many more (Chakrabarti and
140 Faloutsos, 2006; Drobyshevskiy and Turdakov, 2020).

141 Representing graphs by graph laws can be summarized into the following steps: (1) determine the
142 parameter (or formula of several parameters) to represent the graphs, (2) fit the value of parameters
143 based on the graph structures and features through statistical procedures. For example, Leskovec et al.
144 (2005) discover the densification law over evolving graphs in the macroscopic view, which is expressed as
145 $e(t) \propto n(t)^\alpha$, and $e(t)$ denotes the number of edges at time t , $n(t)$ denotes the number of nodes at time
146 t , and $\alpha \in [1, 2]$ is an exponent parameter representing the density degree. And they use the empirical
147 observation of real-world graphs to fit the value of α . Targeting the microscopic view, Leskovec et al.
148 (2008) discover other graph laws. Different from the macroscopic view, they view temporal graphs in a
149 three-fold process, i.e., node arrival (determining how many nodes will be added), edge initiation (how
150 many edges will be added), and edge destination (where are the added edges), where they ignore the
151 deletion of nodes and edges. Then, they assign variables and corresponding equations (i.e., models) to
152 parameterize these three processes and use MLE (i.e., maximum likelihood estimation) to settle the model
153 and scalar parameters based on real-world graph observation. As an instance, the edge destination (i.e., the
154 probability for node u connecting node v) is modeled as $last^\tau$ other than deg^τ for the LinkedIn network
155 through MLE, where deg^τ means the connection probability is proportional to node v 's current degree
156 $d_t(v)^\tau$. And $last^\tau$ means the probability is proportional to node v 's age since its last interaction $\delta_t(v)^\tau$,
157 where τ is the parameter to be fit.

158 Discovering graph laws and fitting law corresponding parameters can also serve many graph mining tasks
159 and real-world applications. For example, after a graph law is discovered, the follow-up action is to propose
160 the corresponding graph generative model to test whether there exists a realizable graph generator could
161 generate graphs while preserving the discovered law in terms of graph properties (Leskovec et al., 2005;
162 Zang et al., 2018; Do et al., 2020; Kook et al., 2020; Leskovec et al., 2008; Park and Kim, 2018; Zeno et al.,
163 2020). Recently, the triadic closure law on temporal graphs (i.e., two nodes that share a common neighbor
164 directly tend to connect) has been discovered to contribute to the dynamic link prediction task (Wang et al.,
165 2021b). For the questions in social network analysis, e.g., "What is Twitter?", Kwak et al. (2010) give the
166 statistical answer in the form of parametric representation. For pre-training the language model, the values
167 of the weighted word co-occurrence matrix (i.e., adjacency matrix) are necessary and highly depend on
168 the parameters following the power law, e.g., in GloVe (Pennington et al., 2014), X_{ij} denotes the number
169 of times that word j occurs in the context of word i , and it follows $X_{ij} = \frac{k}{(r_{ij})^\alpha}$, where r_{ij} denotes the
170 frequency rank of the word pair i and j in the whole corpus, and k and α are constant parameters.

171 2.2.3 Graph Visualization (Visual Representation)

172 **Third, graph visualization provides visual representation by plotting the graph directly**, which is
173 more straightforward than graph embedding and graph law to some extent. Hence, one of the research
174 goals in graph visualization is finding the appropriate layout for the complex networked data. To name

175 a few: most graphs (e.g., a five-node complete graph) could not be plotted on the plane without edge
176 crossings, then Chen et al. (2020a) give the solution about how to use a 3D torus to represent the graph
177 and then flatten the torus onto the 2D plane with aesthetics and representation accuracy preserved; Also,
178 in (Nobre et al., 2020), authors evaluate which layouts (e.g., node-link diagram or matrix) are suitable
179 for representing attributed graphs for different graph mining tasks; Through crowd-sourced experiments,
180 Yang et al. (2020a) study the tactile representation of graphs for low-vision people and discuss which one
181 (e.g., text, matrix, or node-link diagram) could help them to understand the graph topology; When the
182 graph is large (e.g., hundreds of thousands of nodes), it is hard to represent the internal structure, and
183 Nassar et al. (2020) design the high-order view of graphs (i.e., construct k -clique weighted adjacency
184 matrix) and then use t-SNE to get the two-dimensional coordinates from the weighted Laplacian matrix.
185 Bringing time information to graph visualization started in the 1990s to deal with the scenario where the
186 represented graph gets updated (Beck et al., 2014). The trend for visualizing dynamic (or temporal) graphs
187 becomes popular, and different research goals emerge (Kerracher et al., 2014; Beck et al., 2017), like
188 strengthening the domain-specific evolution for domain experts (Bach et al., 2015), showing the pandemic
189 dissemination (Lacasa et al., 2008; Tsiotas and Magafas, 2020), explaining time-series data (e.g., response
190 time to different questions) with graph visualization and graph law (Mira-Iglesias et al., 2019).

191 Plotting graphs into an appropriate layout is more challenging when it comes to complex evolving
192 graphs. Hence, many dynamic graph visualization research works contribute their solutions from different
193 angles. For example, for balancing the trade-off between temporal coherence and spatial coherence (i.e.,
194 preservation of structure at a certain timestamp), Leydesdorff and Schank (2008) use the multidimensional
195 scaling (MDS) method. Inspired by that, Xu et al. (2013) design the dynamic multidimensional scaling
196 (DMDS), and Rauber et al. (2016) design the dynamic t-SNE; In order to assign end-users the flexibility
197 to view the different aspects of evolving graphs (e.g., time-level graph evolution or node-level temporal
198 evolution), Bach et al. (2014) represent evolving graphs into user-rotating cubes; To highlight the temporal
199 relation among graph snapshots, authors in (Bach et al., 2016) propose Time Curves to visualize the
200 temporal similarly between two consecutively observed adjacency matrices; In (Lentz et al., 2012; Pfitzner
201 et al., 2012), researchers find that paths in temporal networks may invalidate the transitive assumption,
202 which means the paths from node a to node b and from node b to node c may not imply a transitive path
203 from node a via node b to node c . Inspired by this observation and to further analyze the actual length
204 of paths in temporal graphs, Scholtes (2017) transfer this problem into investigating the order (i.e., k) of
205 graphs. To be specific, the order k can be understood as the length of a path (i.e., $v_{i-k} \rightarrow \dots \rightarrow v_{i-1} \rightarrow v_i$)
206 and can be modeled by the high-order Markov Chain (i.e., $\mathbb{P}(v_i | v_{i-k} \rightarrow \dots \rightarrow v_{i-1})$). And the order of
207 temporal paths can be determined by thresholding the probability gain in the MLE model. A corresponding
208 follow-up visualization work is proposed targeting the high-order temporal graphs (Perri and Scholtes,
209 2019), which first determines the order of a temporal network as discussed above, and then constructs
210 intermediate supernodes for deriving the high-order temporal relationship between two nodes, finally plots
211 this high-order temporal relationship into edges and adds them on a static graph layout.

212 2.3 Graph Neural Networks

213 To extract the hidden representation, graph neural network (GNN), as a powerful tool, provides a new idea
214 different from the embedding methods like DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), and
215 node2vec (Grover and Leskovec, 2016). One major difference between GNNs and those mentioned above is
216 that GNNs could aggregate multi-hop node features to represent a node by stacking GNN layers. According
217 to (Xu et al., 2019b), this mechanism is called information aggregation (or message-passing in some
218 literature), which iteratively updates the representation vector of a node by aggregating the representation

219 vectors from its neighbors. The general formula of GNNs can be expressed as follows.

$$\mathbf{a}_v^{(k)} = \text{AGGREGATE}^{(k)}(\{\mathbf{h}_u^{(k-1)} : u \in \mathcal{N}(v)\}), \mathbf{h}_v^{(k)} = \text{COMBINE}^{(k)}(\mathbf{h}_v^{(k-1)}, \mathbf{a}_v^{(k)}) \quad (1)$$

220 where $\mathbf{h}_v^{(k)}$ is the hidden representation vector of node v at the k -th iteration (i.e., k -th layer), and $\mathbf{a}_v^{(k)}$ is
221 the aggregation among hidden representation vectors of neighbors $\mathcal{N}(v)$ of node v from the last iteration
222 (i.e., layer). For example, the graph convolutional neural network (GCN) (Kipf and Welling, 2017) can be
223 written in the above formulation by integrating the *AGGREGATE* and *COMBINE* as follows.

$$\mathbf{h}_v^{(k)} = \text{ReLU}(\mathbf{W}^{(k-1)} \cdot \text{MEAN}\{\mathbf{h}_u^{(k-1)} : u \in \mathcal{N}(v) \cup \{v\}\}) \quad (2)$$

224 where $\mathbf{W}^{(k-1)}$ is a learnable weight matrix at the $(k-1)$ -th layer, and the original equation of GCN is as
225 follows.

$$\mathbf{H}^{(k)} = \text{ReLU}(\hat{\mathbf{A}}\mathbf{H}^{(k-1)}\mathbf{W}^{(k-1)}) \quad (3)$$

226 where $\hat{\mathbf{A}}$ is the normalized adjacency matrix with self-loops, i.e., $\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-\frac{1}{2}}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-\frac{1}{2}}$, and $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$.

227 Graph neural network is a complicated computational framework that integrates the neural networks from
228 deep learning and non-Euclidean constraints from graph theory. Therefore, GNN research consists of many
229 specific facets from both ends. For example,

- 230 • Neural Layer Architecture Design: Recurrent (Li et al., 2018; Hajiramezanali et al., 2019), Residual
231 Connections (Chen et al., 2020b; Zheng et al., 2022), etc.
- 232 • Message Passing Schema: Spectral Convolution (Kipf and Welling, 2017), Spatial Convolution (Velickovic
233 et al., 2018), Simplification (Wu et al., 2019; Klicpera et al., 2019), etc.
- 234 • Training Manner: Semi-Supervised Learning (Kipf and Welling, 2017), Self-Supervised
235 Learning (Velickovic et al., 2019; You et al., 2020), etc.
- 236 • Sampling Strategy: Noises-Aware (Yang et al., 2020b), Efficiency and Generalization (Hu et al., 2020a),
237 Fairness-Preserving (Kang et al., 2022), etc.
- 238 • Model Trustworthy: Attack and Defend (Zhu et al., 2019; Zhang and Zitnik, 2020), Black-Box
239 Explanation (Ying et al., 2019; Luo et al., 2020; Vu and Thai, 2020), etc.
- 240 • many more ...

241 Until now, we have introduced three aspects of graph research shown in Figure 1. Targeting each aspect,
242 research in natural and artificial dynamics could contribute to performance improvements. The detailed
243 related works are discussed in the next section, where we start by defining the natural and artificial dynamics
244 in graphs, and then investigate how natural and artificial dynamics help graph research enhancements in
245 each specific aspect.

3 NATURAL AND ARTIFICIAL DYNAMICS IN GRAPHS

246 **Natural dynamics in graphs** means that the input graph (to graph mining, graph representations, and
247 graph neural networks) has the naturally evolving part(s), such as the evolving World Wide Web. Formally
248 speaking, the naturally evolving part means that the topological structures or node (edge, subgraph, or
249 graph) features and labels depend on time. To be specific, the evolving graph structures can be represented
250 either in

251 • (1) continuous time (Kazemi et al., 2020) or streaming (Aggarwal and Subbian, 2014): an evolving
252 graph can be modeled by an initial state G with a set of timestamped events O , and each event can be
253 node/edge addition/deletion; or
254 • (2) discrete time (Kazemi et al., 2020) or snapshots (Aggarwal and Subbian, 2014): an evolving graph
255 can be modeled as a sequence of time-respecting snapshots $G^{(1)}, G^{(2)}, \dots, G^{(T)}$, and each $G^{(t)}$ has its
256 own node set $V^{(t)}$ and edge set $E^{(t)}$.

257 For these two modelings, the corresponding time-dependent features and labels can be represented in a
258 time-series or a sequence of matrices such as $\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(T)}$.

259 These two modeling methods have non-trivial complements. For example, continuous-time models
260 rapid node/edge-level evolution, i.e., microscopic evolution (Leskovec et al., 2008), such as protein
261 molecule interactions in a cell (Fu and He, 2021a); However, it could not represent the episodic and slowly-
262 changing evolution patterns, which can be captured by discrete-time, i.e., macroscopic evolution (Leskovec
263 et al., 2005), such like the periodical metabolic cycles in a cell (Fu and He, 2021a). Recently, different
264 evolution patterns in a single graph are currently not jointly modeled for improving graph representation
265 comprehensiveness, but some real-world evolving graphs naturally have both evolution patterns. For
266 example, in (Fu and He, 2021a), each dynamic protein-protein interaction network has 36 continuous
267 observations (i.e., 36 edge timestamps), every 12 observations compose a metabolic cycle (i.e., 3 snapshots),
268 and each cycle reflects 25 mins in the real world. Inspired by this observation, a nascent work (Fu et al.,
269 2022b) is recently proposed to jointly model different evolution patterns into the graph representation.

270 **Artificial dynamics in graphs** means that the graph research related elements (e.g., graph topology,
271 graph stream, node/graph attributes/labels, GNNs gradients and neural architectures, etc.) are deliberately
272 re-designed by end-users for boosting the task performance in certain metrics. For the re-designing,
273 end-users can *change* (e.g., *filter, mask, drop, or augment*) the existing elements or *construct* (i.e., *from
274 scratch*) non-existing elements to improve the performance (e.g., decision accuracy, model robustness and
275 interpretation, etc.) than the original. To name a few, one example of artificial dynamics can be graph
276 augmentation: DropEdge (Rong et al., 2020) is proposed to deal with the over-fitting of GNNs by randomly
277 removing a certain amount of edges from the input graphs for each training epoch; DummyNode (Liu et al.,
278 2022b) is proposed to add a dummy node to the directed input graph, which connects all existing n nodes
279 with $2n$ directed edges. The dummy node serves as a highway to extend the information aggregation in
280 GNNs and contribute to capturing the global graph information, such that the graph classification accuracy
281 by GNNs can be enhanced. In addition to the graph augmentation, other specific examples of artificial
282 dynamics can be filtering unimportant coming sub-structures to save computations (Fu et al., 2020b),
283 adding residual connections among GNNs layers to address vanishing gradients (Zheng et al., 2022), and
284 perturbing the GNNs gradients for privacy protection (Yang et al., 2021).

285 As mentioned above, on the one hand, considering the natural dynamics could leverage temporal
286 dependency to contribute to graph research in terms of but not limited to, fast computation (e.g., tracking
287 from the past instead of computing from scratch), causality reasoning (e.g., previous states cause the
288 current state), comprehensive decision (e.g., prediction based on historical behaviors); On the other hand,
289 studying artificial dynamics could help a wide range of targets, such as machine learning effectiveness
290 (e.g., robustness, de-overfitting, de-oversmoothing).

291 Investigating natural dynamics and investigating artificial dynamics not only have shared merits but also
292 have exclusive advantages. For example, how to manipulate evolving graphs is still an opening question for
293 many downstream task improvements. Thus, a spontaneous research question is to ask whether natural

294 dynamics can be integrated with artificial dynamics, which aims to keep the shared merits and bring
 295 exclusive advantages to synergy complementation. Definitely, some pioneering works have been proposed
 296 to touch this area. To introduce them, throughout the paper, we use **natural + artificial dynamics** to denote
 297 the integrated investigation of natural dynamics and artificial dynamics in graph-related research and then
 298 present related works in this category.

299 Starting from the following subsections, we are ready to introduce recent related works about natural,
 300 artificial, and natural + artificial dynamics research in graph mining, graph representations, and graph
 301 neural networks, respectively.

302 3.1 Dynamics in Graph Mining

303 Graph mining is a general term that consists of various specific mining tasks on graphs. Classic graph
 304 mining tasks consist of node clustering (or graph partitioning), node/graph classification, and link prediction.
 305 Also, motivated by real world application scenarios, novel graph mining tasks are being proposed for
 306 research, such as graph generation, graph alignment, and many more. Facing various graph mining tasks,
 307 we discuss several graph mining tasks here and then introduce the corresponding related works of natural
 308 dynamics, artificial dynamics, and natural + artificial dynamics in each discussed task.

309 3.1.1 Natural Dynamics in Graph Mining

310 **Link Prediction.** The core of the link prediction task is to decide whether there should be a link between
 311 two entities in the graph. This graph mining task can directly serve the recommender system by modeling
 312 the user and items as nodes in their interaction graphs. The evidence to decide whether two nodes should
 313 be linked can be the current heuristics like node embedding similarity (Zhang and Chen, 2018; Zhu et al.,
 314 2021), and also the historical behaviors of entities can be added for a more comprehensive decision. For
 315 example, JODIE (Kumar et al., 2019) is a link prediction model proposed based on user-item temporal
 316 interaction bipartite graph, where a user-item interaction is modeled as (u, i, t, f) that means an interaction
 317 happens between user u and item i at time t , and f is the input feature vector of that interaction. Given
 318 a user (or an item) has a sequence of historical interactions (i.e., a user interacts with different items at
 319 different timestamps), JODIE (Kumar et al., 2019) applies two mutually-recursive RNN structures (i.e.,
 320 RNN_U and RNN_I) to update the embedding for users and items as follows.

$$\begin{aligned} \mathbf{u}(t) &= \sigma(\mathbf{W}_1^u \mathbf{u}(t^-) + \mathbf{W}_2^u \mathbf{i}(t^-) + \mathbf{W}_3^u \mathbf{f} + \mathbf{W}_4^u \Delta_u), \text{ embedding unit of } RNN_U \\ \mathbf{i}(t) &= \sigma(\mathbf{W}_1^i \mathbf{i}(t^-) + \mathbf{W}_2^i \mathbf{u}(t^-) + \mathbf{W}_3^i \mathbf{f} + \mathbf{W}_4^i \Delta_i), \text{ embedding unit of } RNN_I \end{aligned} \quad (4)$$

321 where \mathbf{W}_1^u , \mathbf{W}_2^u , \mathbf{W}_3^u , and \mathbf{W}_4^u are four parameters of RNN_U . And RNN_U and RNN_I share the same
 322 intuitive logic. Suppose user u interacts with item i at time t with the interaction feature f , then the above
 323 equation RNN_U updates the user embedding $\mathbf{u}(t)$ at time t by involving the latest historical user and
 324 item behavior, where Δ_u denotes the time elapsed since user u 's previous interaction with any item, $\mathbf{u}(t^-)$
 325 denotes the latest user embedding vector right before time t , and $\mathbf{i}(t^-)$ denotes the latest item embedding
 326 vector right before time t . Therefore, in JODIE, each user (or item) can have a sequence of embedding
 327 vectors, which is called its trajectory. And the user and item embeddings can be updated iteratively to
 328 the future. The training loss is designed for whether the future user (or item) embedding vectors can be
 329 predicted³. If the future embedding can be predicted (e.g., u connects i at t , and $\mathbf{i}(t)$ is predicted through

³ The future embedding vector estimation for users and items is skipped here.

330 $\mathbf{u}(t^-)$ and $\mathbf{i}(t^-)$), then the user (or item) historical evolution pattern is supposed to be encoded. Thus, the
 331 trained model can be used to predict whether a user u interacts with an item i in the future.

332 **Graph Alignment.** Compared with classic graph mining tasks, graph alignment is a relatively novel
 333 graph mining task, aiming to find paired (i.e., similar) nodes across two graphs. The input graphs can be
 334 attributed (e.g., heterogeneous information networks or knowledge graphs), and the proximity to decide
 335 whether two nodes from two different graphs are paired or not can range from their attributes, their
 336 neighborhood information (e.g., neighbor nodes attributes, connected edges' attributes, induced subgraph
 337 topology), etc. (Zhang and Tong, 2016; Yan et al., 2021b; Zhou et al., 2021). When aligning two graphs
 338 in the real world, the inevitable problem is that the input graphs are evolving in terms of features and
 339 topological structures. To this end, Yan et al. (2021a) combine two graphs into one graph, and then propose
 340 the GNN-based fast computation graph alignment method instead of re-training the GNN from scratch
 341 for each update of the combined graph. Specifically, authors want to encode the topology-invariant node
 342 embedding by training a GNN model, then fine-tune this trained GNN model with updated local changes
 343 (e.g., added nodes and edges, updated node input features). Thus, to weaken the coupling between the
 344 graph topology (e.g., adjacency matrix \mathbf{A}) and the GNN parameter matrix (e.g., $\mathbf{W}^{(k)}$ at the k -th layer),
 345 authors select GCN (Kipf and Welling, 2017) as the backbone and change its information aggregation
 346 schema by introducing a topology-invariant mask gate $\mathcal{M}^{(k)}$ and a highway gate $\mathcal{T}^{(k)}$ as follows.

$$\begin{aligned}\mathbf{H}^{(k)} &= \sigma(\hat{\mathbf{A}}\mathcal{M}^{(k-1)}(\mathbf{H}^{(k-1)})\mathbf{W}^{(k-1)}) \\ \mathbf{H}^{(k)} &= \mathcal{T}^{(k-1)}(\mathbf{H}^{(k-1)}) \odot \mathbf{H}^{(k)} + (1 - \mathcal{T}^{(k-1)}(\mathbf{H}^{(k-1)})) \odot \mathbf{H}^{(k-1)}\end{aligned}\quad (5)$$

347 where \odot denotes Hadamard product, topology-invariant mask gate $\mathcal{M}^{(k-1)}(\mathbf{H}^{(k-1)})$ equals to $\mathbf{H}^{(k-1)} \odot$
 348 $\sigma(\mathbf{W}_m^{(k-1)})$, highway gate $\mathcal{T}^{(k-1)}(\mathbf{H}^{(k-1)})$ is expressed as $\sigma(\mathcal{M}^{(k-1)}(\mathbf{H}^{(k-1)})\mathbf{W}_h^{(k-1)})$, and $\mathbf{W}_m^{(k-1)}$ and
 349 $\mathbf{W}_h^{(k-1)}$ are learnable parameters of $\mathcal{M}^{(k-1)}$ and $\mathcal{T}^{(k-1)}$. The training loss function depends on whether
 350 the embedding vectors of two paired nodes (i.e., positive samples) are close, and whether the embedding
 351 vectors of two not paired nodes (i.e., negative samples) are far away. With this trained GNN model, future
 352 updates can be regarded as additional training samples to fine-tune the model.

353 3.1.2 Artificial Dynamics in Graph Mining

354 **Graph Secure Generation or Graph Anonymization.** Graph generation is the task that models the
 355 given graphs' distribution and then generates many more meaningful graphs, which could contribute to
 356 various applications (Bonifati et al., 2020). However, approximating the observed graph distributions as
 357 much as possible will induce a privacy-leak risk in the generated graphs. For example, a node's identity is
 358 highly likely to be exposed in the generated social network if its connections are mostly preserved, which
 359 means a degree-based node attacker will easily detect a vulnerability in the generated graph with some
 360 background knowledge (Wu et al., 2010). Therefore, graph secure generation or graph anonymization is
 361 significant to social security (Fu et al., 2022c).

362 To protect privacy during the graph generation, artificial dynamics can help by introducing the
 363 perturbations during the modeling (or learning) of graph distributions. However, adding this kind of
 364 artificial dynamics to protect graph privacy still serves for the static graph generation. How to add dynamics
 365 to evolving graphs to protect privacy is still an opening question.

366 For privacy-preserving static graph generation, current solutions can be roughly classified into two types.
 367 First, the artificial dynamics is directly performed on the observed topology to generate new graph data, to
 368 name a few,

369 • Randomize the adjacency by iteratively switching existing edges $\{(t, w) \text{ and } (u, v)\}$ with $\{(t, v) \text{ and }$
 370 $(u, w)\}$ (if (t, v) and (u, w) do not exist in the original graph G), under the eigendecomposition
 371 preservation (Ying and Wu, 2008).

372 • Inject the connection uncertainty by iteratively copying each existing edge from original graph G to a
 373 initial null graph G' with a certain probability, guaranteeing the degree distribution of G' is unchanged
 374 compared with G (Nguyen et al., 2015).

375 • Permute the connection distribution by proportionally flipping the edges (existing to non-existing
 376 and vice versa), maintaining the edge-level differential privacy (edge-DP) for the graph structural
 377 preservation (Qin et al., 2017).

378 Second, following the synergy of deep learning and differential privacy (Abadi et al., 2016), another way
 379 to add artificial dynamics is targeting the gradient of deep graph learning models. To be specific, a deep
 380 graph generative model is recently proposed under privacy constraints, i.e., in (Yang et al., 2021), privacy
 381 protection mechanism is executed during the gradient descent phase of the generation learning process, by
 382 adding Gaussian noise to the gradient.

383 In terms of how to design appropriate artificial dynamics for the evolving graph secure generation, it is still
 384 a challenging problem because of maintaining privacy guarantee and utility preservation simultaneously.
 385 Here we would like to share our thoughts that the next-generation techniques should address the following
 386 challenges, at least.

387 • Unlike static graphs, what kind of natural dynamic information is sensitive in evolving graphs and
 388 should be hidden in the generated graph to protect entities' privacy is not clear.

389 • After the sensitive information is determined, the protection mechanism in the evolving environment is
 390 not yet available, e.g., dealing with changing topology and features.

391 • When the corresponding protection mechanism is designed, it can still be challenging to maintain the
 392 generation utility at the same time with privacy constraints.

393 3.1.3 Natural + Artificial Dynamics in Graph Mining

394 As mentioned in the above subsection, not only for the graph secure generation, adding artificial dynamics
 395 to evolving graphs is still nascent in many graph mining tasks, and exists many research opportunities.
 396 Here, we introduce a recent work that adds artificial dynamics to the time-evolving graph partitioning to
 397 improve computation efficiency.

398 **Node Clustering or Graph Partitioning.** In the node
 399 clustering family, local clustering methods target a specific
 400 seed node (or nodes) and obtain the clustering by searching
 401 the neighborhood instead of the entire graph. In this
 402 paper (Fu et al., 2020b), authors propose the motif-
 403 preserving local clustering method on temporal graphs called
 404 L-MEGA, which approximately tracks the local cluster
 405 position at each timestamp instead of solving it from scratch.
 406 To make L-MEGA more efficient, one speedup technique is

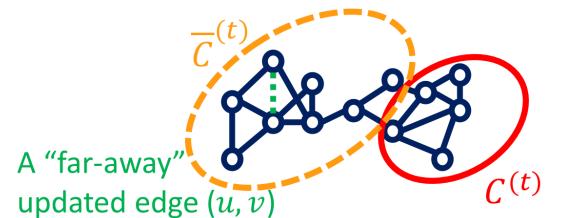


Figure 2. Local cluster $C^{(t)}$ and a "far-away" edge to be filtered at time t .

407 proposed in (Fu et al., 2020b) to filter the new arrival edges
 408 instead of letting them go into the tracking process and save
 409 them for future timestamps, if the new arrival edges are "far-away" from the current local cluster and do
 410 not affect the local structure as shown in Figure 2. By doing which, the tracking time complexity can be
 411 saved. In order to investigate whether a new arrival edge can be filtered, the authors identify the "far-away"
 412 edges by analyzing its incident nodes in terms of the probability mass in the personal PageRank vector and
 413 the shortest path to the local cluster.

414 3.2 Dynamics in Graph Representations

415 In this section, we mainly discuss graph embedding (i.e., graph representation learning) as one instance
 416 of graph representations, and introduce related works about how natural dynamics and artificial dynamics
 417 are involved in boosting the performance of graph representation learning⁴.

418 3.2.1 Natural Dynamics in Graph Representations

419 In the early stage, inspired by DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), and
 420 node2vec (Grover and Leskovec, 2016), the graph embedding methods for temporal graphs are proposed,
 421 like CDTNE (Nguyen et al., 2018), DyGEM (Goyal et al., 2018), DynamicTriad (Goyal et al., 2018),
 422 HTNE (Zuo et al., 2018), FiGTNE (Liu et al., 2020), and tdGraphEmb (Beladev et al., 2020). They vary in
 423 different ways to deal with time information. For example, FiGTNE (Liu et al., 2020) utilizes the temporal
 424 random walk to sample time-adjacent nodes. In this sampled sequence, the embedding is regularized such
 425 that previous nodes should reflect the current node.

426 Recently, inspired by GNNs stacking layers to aggregate multi-hop neighbor information to get node
 427 embedding vectors, temporal graph neural networks (TGNNs) are proposed to consider time information
 428 when doing the information aggregation, like EvolveGCN (Pareja et al., 2020), TGAT (Xu et al., 2020),
 429 and many others. In some works, they are also called spatial-temporal graph neural networks (STGNNs)
 430 because the spatial information comes from the input graph topological structure (Wu et al., 2021).
 431 In this paper, we use the term temporal
 432 graph neural networks, i.e., TGNNs,
 433 and the detailed related works for
 434 TGNNs are introduced in Section 3.3.1,
 435 i.e., *Natural Dynamics in Graph Neural*
 436 *Networks*.

437 **Multiple Evolution Patterns in**
 438 **Representation Learning.** As discussed
 439 earlier, in the real world, an evolving
 440 graph may have multiple evolution
 441 patterns (Fu and He, 2021a). Therefore,
 442 how to integrate multiple evolution
 443 patterns jointly during the representation
 444 learning process is still a nascent
 445 problem. Generally speaking, if we

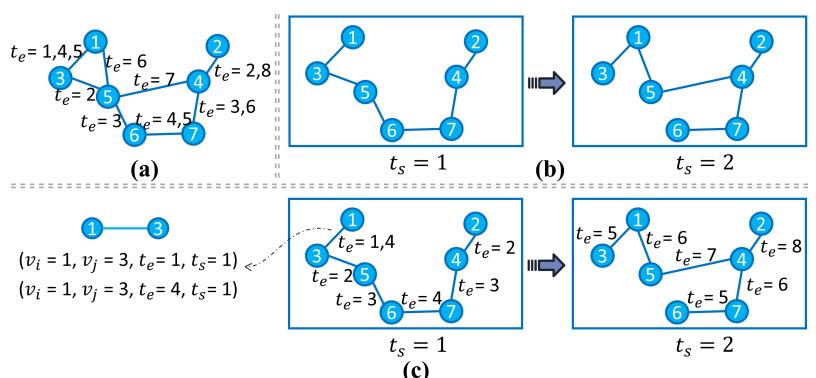


Figure 3. Part (a) shows a streaming graph with only edge timestamps t_e . Part (b) shows a snapshot-modeled graph with only snapshot timestamps t_s , where each t_s elapses every 4 t_e . Part (c) shows our multi-time evolution modeling with edge timestamps t_s and snapshot timestamps t_e .

⁴ Here, we select graph embedding (i.e., graph representation learning) as an instance of graph representations to introduce the corresponding natural and artificial dynamic techniques. Since GNN is also a kind of tool for graph representation learning, then in this Section 3.2, we introduce the dynamic techniques that can be applied to general graph representation learning models. In Section 3.3, for GNNs, we will introduce the dynamic techniques that are deliberately designed for GNNs, which may or may not be applied to the general graph embedding models like DeepWalk, LINE, node2vec, etc.

446 model each evolution pattern as a
447 different view of the input graph, then
448 VANE (Fu et al., 2020a) could get the node embedding that is suitable for each observed view. Specifically,
449 Temp-GFSM (Fu et al., 2022b) is proposed, which deliberately targets the streaming pattern for rapid
450 node/edge-level evolution and the snapshot pattern for episodic and slowly-changing evolution, as shown
451 in Figure 3. In Temp-GFSM, a multi-time attention mechanism is introduced with the support of the time
452 kernel function to get the node-level, snapshot-level, and graph-level embeddings across different evolution
453 patterns.

454 3.2.2 Artificial Dynamics in Graph Representations

455 **Pre-training for Representation Learning with Masked Graph Signals.** Generally speaking, training
456 graph representation learning models (e.g., GNNs) is usually executed in the (semi-)supervised setting that
457 requires a considerable amount of labeled data, especially when the input graphs are large. However, in
458 some domains (e.g., healthcare (Choi et al., 2017)), collecting high-quality labeled graph data is usually
459 time-consuming and costly. Therefore, recent advances have focused on the GNN pre-training (Hu et al.,
460 2020b,c; Qiu et al., 2020; Li et al., 2021; Xu et al., 2021; Zhou et al., 2022), which pre-trains GNN models
461 on the source domain(s) via proxy graph signals and then transfers pre-trained GNNs to the target domain.
462 One common way of realizing proxy graph signal learning is to mask the input graphs in the unit of graph
463 signals and train the GNNs such that they can predict the masked signals from the unmasked part. The
464 masked signals range from masked node/edge/subgraph attributes and masked topology (e.g., nodes and
465 edges) (Hu et al., 2020b,c). The quality of pre-trained GNNs can largely rely on (1) the relevance between
466 the source domain(s) and the target domain and (2) the selection of masked graph signals, which may
467 cause the negative transfer (Rosenstein et al., 2005) if (1) the source domain distribution diverges from
468 the target domain distribution (i.e., cross-graph heterogeneity) or masked graph signals contradict each
469 other (i.e., graph-signal heterogeneity) (Zhou et al., 2022). Inspired by that, Zhou et al. (2022) propose the
470 MentorGNN to realize the domain-adaptive graph pre-training. To address the cross-graph heterogeneity,
471 MentorGNN utilizes the multi-scale encoder-decoder architecture, such that knowledge transfer can be
472 done in a coarser resolution (i.e., transfer the encoded source domain knowledge and decode it in the
473 target domain) instead of being directly translated. The intuition behind this is that it is more common
474 for different domain graphs to share high-level knowledge than very detailed knowledge. To address the
475 graph-signal heterogeneity, MentorGNN dynamically re-weighting the importance of different kinds of
476 masked graph signals via the curriculum learning framework in terms of the target domain performance.

477 3.2.3 Natural + Artificial Dynamics in Graph Representations

478 **Inserting Masks to Preserve Evolution Patterns during Temporal Graph Representation Learning.**
479 Compared with baseline methods designed for static graph representation learning, considering the temporal
480 information is more challenging and requires more consideration, like how to capture the evolution patterns
481 of input graphs. In DySAT (Sankar et al., 2020), besides using structural attention like GAT (Velickovic et al.,
482 2018) in each observed snapshot, authors design the temporal self-attention to get the node representation
483 sequence from the first timestamp to the last timestamp, i.e., $\mathbf{z}_v = \{\mathbf{z}_v^{(1)}, \mathbf{z}_v^{(2)}, \dots, \mathbf{z}_v^{(T)}\}$, for node v at each
484 observed timestamp. To preserve the evolution patterns when encoding \mathbf{z}_v , authors design the mask matrix

485 M as follows.

$$\mathbf{Z}_v = \mathbf{B}_v(\mathbf{X}_v \mathbf{W}_v), \quad \mathbf{B}_v(i, j) = \frac{\exp(e_v^{ij})}{\sum_{k=1}^T \exp(e_v^{ik})} \quad (6)$$

$$e_v^{ij} = \left(\frac{(\mathbf{X}_v \mathbf{W}_q)(\mathbf{X}_v \mathbf{W}_k)_{ij}^\top}{\sqrt{F}} + \mathbf{M}(i, j) \right), \quad i, j \in \{1, \dots, T\}$$

486 where matrices $\mathbf{W}_q \in \mathbb{R}^{D \times F}$, $\mathbf{W}_k \in \mathbb{R}^{D \times F}$, and $\mathbf{W}_v \in \mathbb{R}^{D \times F}$ are query, key, value matrices in the
 487 standard self-attention mechanism (Vaswani et al., 2017). $\mathbf{X}_v \in \mathbb{R}^{T \times D}$ is the node feature of node v across
 488 all T timestamps, and $\mathbf{Z}_v \in \mathbb{R}^{T \times F}$ is the output time-aware representation matrix of node v . And e_v^{ij} is
 489 the attention weight of timestamp i to timestamp j for node v , which is obtained through the mask matrix
 490 $\mathbf{M} \in \mathbb{R}^{T \times T}$.

$$\mathbf{M}(i, j) = \begin{cases} 0, & i \leq j \\ -\infty, & \text{otherwise} \end{cases} \quad (7)$$

491 The introduction of \mathbf{M} preserves the evolution pattern in an auto-regressive manner. To be specific, when
 492 $\mathbf{M}(i, j) = -\infty$, the softmax attention weight $\mathbf{B}_v(i, j) = 0$, which turns off the attention weight from
 493 timestamp i to timestamp j .

494 3.3 Dynamics in Graph Neural Networks

495 In this section, we focus on a specific kind of graph representation learning tool, graph neural network
 496 (GNN), and see how natural dynamics and artificial dynamics work in GNNs⁵.

497 3.3.1 Natural Dynamics in Graph Neural Networks

498 **Temporal Graph Neural Networks (TGNNS).** For temporal graph neural networks (TGNNS), the
 499 general principle is that the input graphs are evolving, e.g., the graph structure or node attributes are
 500 dependent on time. Since TGNNS take the graphs as input and the topological information is also called
 501 spatial information in some applications like traffic modeling (Yu et al., 2018a; Li et al., 2018), TGNNS
 502 are also called spatial-temporal graph neural networks (STGNNs or ST-GNNs) in some works (Wu et al.,
 503 2021). Here, we use the term temporal graph neural networks (TGNNS). How to deal with time information
 504 appropriately during the vanilla GNNs' information aggregation process is the key idea for TGNNS.
 505 Different works propose different manners, not limited to the following list.

- 506 • CNN-based TGNNS: In (Yan et al., 2018; Yu et al., 2018a), authors apply the convolutional operations
 507 from convolutional neural networks (CNNs) on graphs' evolving features to capture time-aware node
 508 hidden representations.
- 509 • RNN-based TGNNS: In (Li et al., 2018; Hajiramezanali et al., 2019; Pareja et al., 2020), authors inserts
 510 the recurrent units (from various RNNs such like LSTM and GRU) into GNNs to preserve the temporal
 511 dependency during the GNNs' representation learning process.
- 512 • Time Attention-based TGNNS: In (Sankar et al., 2020), authors propose using the self-attention
 513 mechanism on time features to learn the temporal correlations along with node representations..
- 514 • Time Point Process-based TGNNS: In (Trivedi et al., 2019), authors utilize Time Point Process to
 515 capture the interleaved dynamics and get time features.

⁵ As mentioned earlier, in this Section 3.3 we introduce the natural and artificial dynamic techniques that are deliberately designed for GNNs, which may or may not be applied to the general graph embedding models.

516 • Time Kernel-based TGNNS: In (Xu et al., 2020), authors use Time Kernel to project time to a
 517 differential domain for the time representation vectors.

518 Let's take TGAT (Xu et al., 2020) as an instance of TGNNS, to illustrate the mechanism of encoding the
 519 temporal information into the node representations. TGAT uses the Time Kernel function \mathbb{K} to project
 520 every observed time interval of node connections into a continuous differentiable functional domain, i.e.,
 521 $\mathbb{K} : [t - \Delta t, t] \rightarrow \mathbb{R}^d$, in order to represent the time feature during the information aggregation mechanism
 522 of GNNs. Since TGAT is inspired by the self-attention mechanism (Vaswani et al., 2017), another benefit
 523 of introducing the Time Kernel is that the projected hidden representation vector can serve as the positional
 524 encoding in the self-attention mechanism. Time Kernel \mathbb{K} can be realized by different specific functions (Xu
 525 et al., 2019a). For example, in TGAT (Xu et al., 2020),

$$\mathbb{K}(t_e - \Delta t, t_e) = \Psi(t_e - (t_e - \Delta t)) = \Psi(\Delta t) \quad (8)$$

526 and

$$\Psi(\Delta t) = \sqrt{\frac{1}{d}}[\cos \omega_1(\Delta t), \cos \omega_2(\Delta t), \dots, \cos \omega_d(\Delta t)] \quad (9)$$

527 where $\Delta t = t_e - (t_e - \Delta t)$ denotes the input time interval, and $\{\omega_1, \dots, \omega_d\}$ are learnable parameters.

528 With the above time encoding, TGAT can learn node representation $\mathbf{h}_v^{(t)}$ for node v at time t through a
 529 self-attention-like mechanism. Especially, TGAT sets node v as the query node to query and aggregate
 530 attention weights from its one-hop time-aware neighbors, $\mathcal{N}_v^{(t)}$, to get $\mathbf{h}_v^{(t)}$. In $\mathcal{N}_v^{(t)}$, for each neighbor
 531 node v' , its node feature is the combination of the original input feature with the time kernel feature, i.e.,
 532 $[\mathbf{x}_{v'} \| \mathbb{K}(t', t)] \in \mathbb{R}^{(m+d)}$, where $\mathbf{x}_{v'} \in \mathbb{R}^m$ is the original input feature of node v' , $\mathbb{K}(t', t) \in \mathbb{R}^d$ is the
 533 encoded temporal feature, and t' is the time when node v' and v connects.

534 3.3.2 Artificial Dynamics in Graph Neural Networks

535 **Graph Augmentation for GNNs.** One straightforward example to show artificial dynamics in graph
 536 neural networks is the graph augmentation designed for GNNs. In general, drop operations can also be
 537 considered a kind of augmentation operation (Rong et al., 2020). Because dropping parts of the input graph
 538 can make a new input graph, such that the volume and diversity of input graphs increase. In this viewpoint,
 539 at least, graph augmentation for GNNs can be categorized into three items.

540 • Only drop operation: In (Rong et al., 2020), authors propose DropEdge to drop a certain amount of
 541 edges in the input graphs before each epoch of GNN training, to alleviate the over-fitting problem of
 542 GNNs. Similar operations also include DropNode (Feng et al., 2020).

543 • Only add operation: In (Gilmer et al., 2017), authors propose to add a master node to connect all
 544 existing nodes in the input graph, which operation could serve as a global scratch for the message
 545 passing schema and transfer long distance information, to boost the molecule graph prediction.

546 • Refine operation: In (Jin et al., 2020), authors consider the problem setting given the input graph is not
 547 perfect (e.g., the adjacency matrix is poisoning attacked by adversarial edges). To be specific, they aim
 548 to investigate the low-rank property and feature smoothness to refine (i.e., not restricted to only adding
 549 or dropping) the original input graph and obtain the satisfied node classification accuracy.

550 More detailed operations like those mentioned above can be found in (Ding et al., 2022), where these
 551 augmentation operations can also be further categorized into learnable actions and random actions.

552 **Adding Residual Connections among**
 553 **GNN layers.** When the input graph is
 554 imperfect (Xu et al., 2022) (e.g., topology
 555 and features are not consistent, features are
 556 partially missing), stacking more layers in
 557 GNNs can aggregate information from more
 558 neighbors to make the hidden representation
 559 more informative and serve various graph
 560 mining tasks (Zheng et al., 2022). However,
 561 the vanishing gradient problem hinders the
 562 neural networks from being deeper by making
 563 it hard-to-train, i.e., both the training error
 564 and test error of deeper neural networks are

565 higher than shallow ones (He et al., 2016). The vanishing gradient problem can be illustrated as the
 566 gradients of the first few layers vanish, such that the training loss cannot be successfully propagated through
 567 deeper models. Currently, nascent deeper GNN methods (Zhao and Akoglu, 2020; Rong et al., 2020; Li
 568 et al., 2019) solve this problem by adding residual connections (i.e., ResNet (He et al., 2016)) on vanilla
 569 graph neural networks. In a recent study (Zheng et al., 2022), authors find that ResNet ignores the non-IID
 570 property of graphs, and directly adding ResNet on deeper GNNs will cause the shading neighbors effect.
 571 This effect distorts the topology information by making faraway neighbor information more important
 572 in deeper GNNs, such that it adds noise to the hidden representation and degrades the downstream task
 573 performance.

574 To address the shading neighbors effect, Zheng et al. (2022) design the weight-decaying graph residual
 575 connection (i.e., WDG-ResNet) deliberately for GNNs, as shown in Figure 4, which is expressed as follows.

$$\begin{aligned}\tilde{\mathbf{H}}^{(k)} &= \sigma(\hat{\mathbf{A}}\mathbf{H}^{(k-1)}\mathbf{W}^{(k-1)}), \quad /*l\text{-th layer of an arbitrary GNN, e.g., GCN*}/ \\ \mathbf{H}^{(k)} &= \text{sim}(\mathbf{H}^{(1)}, \tilde{\mathbf{H}}^{(k)}) \cdot e^{-k/\lambda} \cdot \tilde{\mathbf{H}}^{(k)} + \mathbf{H}^{(k-2)}, \quad /*\text{residual connection*}/ \\ &= e^{\cos(\mathbf{H}^{(1)}, \tilde{\mathbf{H}}^{(k)}) - k/\lambda} \cdot \tilde{\mathbf{H}}^{(k)} + \mathbf{H}^{(k-2)}\end{aligned}\quad (10)$$

576 where $\cos(\mathbf{H}^{(1)}, \tilde{\mathbf{H}}^{(k)}) = \frac{1}{n} \sum_i \frac{\mathbf{H}_i^{(1)}(\tilde{\mathbf{H}}_i^{(k)})^\top}{\|\mathbf{H}_i^{(1)}\| \|\tilde{\mathbf{H}}_i^{(k)}\|}$ measures the similarity between the k -th layer and the 1-st
 577 layer, and $\mathbf{H}_i^{(1)}$ is the hidden representation of node i at the 1-st layer. The term $e^{-l/\lambda}$ is the decaying
 578 factor to further adjust the similarity weight of $\tilde{\mathbf{H}}^{(l)}$, where λ is a constant hyperparameter. Compared
 579 to the vanilla ResNet (He et al., 2016), the WDG-ResNet introduces the decaying factor to preserve the
 580 hierarchical information of input graphs when the GNNs go deeper to alleviate the shading neighbors effect.
 581 Moreover, the authors empirically show that the optimal decaying factor is close to the diameter of input
 582 graphs, and such heuristics reduce the search space for hyperparameter optimization.

583 3.3.3 Natural + Artificial Dynamics in Graph Neural Networks

584 **Augmenting Temporal Graphs for TGNNs.** Augmenting evolving graphs has considerable research
 585 potential but has not attracted much attention yet (Ding et al., 2022). MeTA (Wang et al., 2021a) proposes an
 586 adaptive data augmentation approach for improving temporal graph representation learning using TGNNs.
 587 The core idea is modeling the realistic noise and adding the simulated noise to the low-information area
 588 of graphs (e.g., long time and far neighbors), in order to decrease the noise uniqueness for de-overfitting

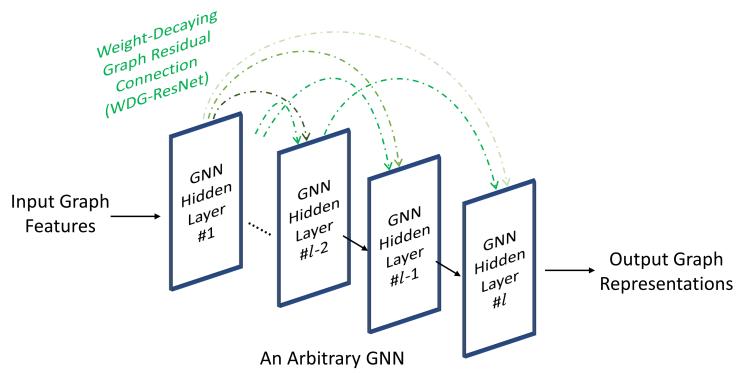


Figure 4. Adding Weight-Decaying Residual Connections on an Arbitrary GNN Architecture

589 and increase the generalization ability of temporal graph representation learning process, to finally help
590 downstream tasks such as link prediction. In (Wang et al., 2021a), authors propose three augmentation
591 strategies: (1) perturbing time by adding Gaussian noise; (2) removing edges with a constant probability;
592 (3) adding edges (i.e., sampled from the original graph) with perturbed time.

593 Research about augmenting temporal graphs is still in the nascent stage. And we would like to share, at
594 least, the following research directions.

595 • Data-driven and learnable augmentation strategies for temporal graphs.
596 • Bounded augmentation solutions on temporal graphs, i.e., evolution patterns of original graphs can be
597 preserved to some extent.
598 • Transferable and generalizable augmentation techniques across different temporal graphs.

4 DISCUSSION AND SUMMARY

599 In this paper, we first disentangle the graph-based research into three aspects (i.e., graph mining, graph
600 representations, and graph neural networks) and then introduce the definition of natural and artificial
601 dynamics in graphs. After that, we introduce related works in each combination between {graph mining,
602 graph representations, and graph neural networks} and {natural dynamics, artificial dynamics, and natural
603 + artificial dynamics}. In general, the topic of natural + artificial dynamics (i.e., adding artificial dynamics
604 to evolving graphs) is still open in many graph research areas like graph mining, graph representations,
605 and graph neural networks, and we list several opportunities in each corresponding subsection above. All
606 opinions are authors' own and to the best of their knowledge. Also, due to the time limitation, many
607 outstanding works are not discussed in this paper. We hope this paper can provide insights to relevant
608 researchers and contribute to the graph research community.

ACKNOWLEDGMENTS

609 This work is supported by National Science Foundation under Award No. IIS-1947203, IIS-2117902,
610 and IIS-2137468. The views and conclusions are those of the authors and should not be interpreted as
611 representing the official policies of the funding agencies or the government.

REFERENCES

612 Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B., Mironov, I., Talwar, K., et al. (2016). Deep
613 learning with differential privacy. In SIGSAC 2016
614 Aggarwal, C. C. and Subbian, K. (2014). Evolutionary network analysis: A survey. ACM Comput. Surv.
615 Akoglu, L., Tong, H., and Koutra, D. (2015). Graph based anomaly detection and description: a survey.
616 Data Min. Knowl. Discov.
617 Andersen, R., Chung, F. R. K., and Lang, K. J. (2006). Local graph partitioning using pagerank vectors. In
618 FOCS 2006
619 Bach, B., Pietriga, E., and Fekete, J. (2014). Visualizing dynamic networks with matrix cubes. In CHI
620 2014
621 Bach, B., Riche, N. H., Fernandez, R., Giannisakis, E., Lee, B., and Fekete, J.-D. (2015). Networkcube:
622 bringing dynamic network visualizations to domain scientists. In InfoVis 2015
623 Bach, B., Shi, C., Heulot, N., Madhyastha, T. M., Grabowski, T. J., and Dragicevic, P. (2016). Time curves:
624 Folding time to visualize patterns of temporal evolution in data. IEEE Trans. Vis. Comput. Graph.

625 Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2014). The state of the art in visualizing dynamic graphs.
626 In EuroVis 2014

627 Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2017). A taxonomy and survey of dynamic graph
628 visualization. Comput. Graph. Forum

629 Beladev, M., Rokach, L., Katz, G., Guy, I., and Radinsky, K. (2020). tdgraphembed: Temporal dynamic
630 graph-level embedding. In CIKM 2020

631 Bianchi, F. M., Grattarola, D., and Alippi, C. (2020). Spectral clustering with graph neural networks for
632 graph pooling. In ICML 2020

633 Bojchevski, A., Shchur, O., Zügner, D., and Günnemann, S. (2018). Netgan: Generating graphs via random
634 walks. In ICML 2018

635 Bonifati, A., Holubová, I., Prat-Pérez, A., and Sakr, S. (2020). Graph generators: State of the art and open
636 challenges. ACM Comput. Surv.

637 Chakrabarti, D. and Faloutsos, C. (2006). Graph mining: Laws, generators, and algorithms. ACM Comput.
638 Surv.

639 Chen, K., Dwyer, T., Marriott, K., and Bach, B. (2020a). Doughnets: Visualising networks using torus
640 wrapping. In CHI 2020

641 Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. (2020b). Simple and deep graph convolutional networks.
642 In ICML 2020

643 Chiang, W., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C. (2019). Cluster-gcn: An efficient algorithm for
644 training deep and large graph convolutional networks. In KDD 2019

645 Choi, E., Bahadori, M. T., Song, L., Stewart, W. F., and Sun, J. (2017). GRAM: graph-based attention
646 model for healthcare representation learning. In KDD 2017

647 Ding, K., Xu, Z., Tong, H., and Liu, H. (2022). Data augmentation for deep graph learning: A survey.
648 CoRR

649 Do, M. T., Yoon, S., Hooi, B., and Shin, K. (2020). Structural patterns and generative models of real-world
650 hypergraphs. In KDD 2020

651 Dong, Y., Chawla, N. V., and Swami, A. (2017). metapath2vec: Scalable representation learning for
652 heterogeneous networks. In KDD 2017

653 Drobyshevskiy, M. and Turdakov, D. (2020). Random graph modeling: A survey of the concepts. ACM
654 Comput. Surv.

655 Du, B., Zhang, S., Cao, N., and Tong, H. (2017). FIRST: fast interactive attributed subgraph matching. In
656 KDD 2017

657 Dunlavy, D. M., Kolda, T. G., and Acar, E. (2011). Temporal link prediction using matrix and tensor
658 factorizations. ACM Trans. Knowl. Discov. Data

659 Fan, W., Ma, Y., Li, Q., He, Y., Zhao, Y. E., Tang, J., et al. (2019). Graph neural networks for social
660 recommendation. In WWW 2019

661 Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., et al. (2020). Graph random neural networks for
662 semi-supervised learning on graphs. In NeurIPS 2020

663 Fu, D., Ban, Y., Tong, H., Maciejewski, R., and He, J. (2022a). Disco: Comprehensive and explainable
664 disinformation detection. In CIKM 2022

665 Fu, D., Fang, L., Maciejewski, R., Torvik, V. I., and He, J. (2022b). Meta-learned metrics over multi-
666 evolution temporal graphs. In KDD 2022

667 Fu, D. and He, J. (2021a). DPPIN: A biological repository of dynamic protein-protein interaction network
668 data. CoRR

669 Fu, D. and He, J. (2021b). SDG: A simplified and dynamic graph neural network. In SIGIR 2021

670 Fu, D., He, J., Tong, H., and Maciejewski, R. (2022c). Privacy-preserving graph analytics: Secure
671 generation and federated learning. [CoRR](#)

672 Fu, D., Xu, Z., Li, B., Tong, H., and He, J. (2020a). A view-adversarial framework for multi-view network
673 embedding. In [CIKM 2020](#)

674 Fu, D., Zhou, D., and He, J. (2020b). Local motif clustering on time-evolving graphs. In [KDD 2020](#)

675 Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural message passing for
676 quantum chemistry. In [ICML 2017](#)

677 Goyal, P., Kamra, N., He, X., and Liu, Y. (2018). Dyngem: Deep embedding method for dynamic graphs.
678 [CoRR](#)

679 Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In [KDD 2016](#)

680 Hajiramezanali, E., Hasanzadeh, A., Narayanan, K. R., Duffield, N., Zhou, M., and Qian, X. (2019). In
681 [NeurIPS 2019](#)

682 Hamilton, W. L., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large graphs. In
683 [NeurIPS 2017](#)

684 He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In [CVPR](#)
685 [2016](#)

686 Hu, S., Xiong, Z., Qu, M., Yuan, X., Côté, M., Liu, Z., et al. (2020a). Graph policy network for transferable
687 active learning on graphs. In [NeurIPS 2020](#)

688 Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V. S., et al. (2020b). Strategies for pre-training
689 graph neural networks. In [ICLR 2020](#)

690 Hu, Z., Dong, Y., Wang, K., Chang, K., and Sun, Y. (2020c). GPT-GNN: generative pre-training of graph
691 neural networks. In [KDD 2020](#)

692 Jin, W., Barzilay, R., and Jaakkola, T. S. (2018). Junction tree variational autoencoder for molecular graph
693 generation. In [ICML 2018](#)

694 Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., and Tang, J. (2020). Graph structure learning for robust graph
695 neural networks. In [KDD 2020](#)

696 Jing, B., Park, C., and Tong, H. (2021). HDMI: high-order deep multiplex infomax. In [WWW 2021](#)

697 Kamvar, S. D., Haveliwala, T. H., Manning, C. D., and Golub, G. H. (2003). Extrapolation methods for
698 accelerating pagerank computations. In [WWW 2003](#)

699 Kang, J., Zhou, Q., and Tong, H. (2022). Jurygcn: Quantifying jackknife uncertainty on graph convolutional
700 networks. In [KDD 2022](#)

701 Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., et al. (2020). Representation learning
702 for dynamic graphs: A survey. [J. Mach. Learn. Res.](#)

703 Kerracher, N., Kennedy, J., and Chalmers, K. (2014). The design space of temporal graph visualisation. In
704 [EuroVis 2014](#)

705 Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In
706 [ICLR 2017](#)

707 Klicpera, J., Bojchevski, A., and Günnemann, S. (2019). Predict then propagate: Graph neural networks
708 meet personalized pagerank. In [ICLR 2019](#)

709 Kook, Y., Ko, J., and Shin, K. (2020). Evolution of real-world hypergraphs: Patterns and models without
710 oracles. In [ICDM 2020](#)

711 Kumar, S., Zhang, X., and Leskovec, J. (2019). Predicting dynamic embedding trajectory in temporal
712 interaction networks. In [KDD 2019](#)

713 Kwak, H., Lee, C., Park, H., and Moon, S. B. (2010). What is twitter, a social network or a news media?
714 In [WWW 2010](#)

715 Lacasa, L., Luque, B., Ballesteros, F., Luque, J., and Nuno, J. C. (2008). From time series to complex
716 networks: The visibility graph. [PNAS](#)

717 Lentz, H., Selhorst, T., and Sokolov, I. M. (2012). Unfolding accessibility provides a macroscopic approach
718 to temporal networks. [CoRR](#)

719 Leskovec, J., Backstrom, L., Kumar, R., and Tomkins, A. (2008). Microscopic evolution of social networks.
720 In [KDD 2008](#)

721 Leskovec, J. and Faloutsos, C. (2007). Scalable modeling of real graphs using kronecker multiplication. In
722 [ICML 2007](#)

723 Leskovec, J., Kleinberg, J. M., and Faloutsos, C. (2005). Graphs over time: densification laws, shrinking
724 diameters and possible explanations. In [KDD 2005](#)

725 Leydesdorff, L. and Schank, T. (2008). Dynamic animations of journal maps: Indicators of structural
726 changes and interdisciplinary developments. [J. Assoc. Inf. Sci. Technol.](#)

727 Li, G., Müller, M., Thabet, A. K., and Ghanem, B. (2019). Deepgcns: Can gcns go as deep as cnns? In
728 [ICCV 2019](#)

729 Li, H., Wang, X., Zhang, Z., Yuan, Z., Li, H., and Zhu, W. (2021). Disentangled contrastive learning on
730 graphs. In [NeurIPS 2021](#)

731 Li, Y., Yu, R., Shahabi, C., and Liu, Y. (2018). Diffusion convolutional recurrent neural network:
732 Data-driven traffic forecasting. In [ICLR 2018](#)

733 Liu, L., Du, B., Ji, H., Zhai, C., and Tong, H. (2021). Neural-answering logical queries on knowledge
734 graphs. In [KDD 2021](#)

735 Liu, M., Luo, Y., Uchino, K., Maruhashi, K., and Ji, S. (2022a). Generating 3d molecules for target protein
736 binding. In [ICML 2022](#)

737 Liu, Q., Allamanis, M., Brockschmidt, M., and Gaunt, A. L. (2018). Constrained graph variational
738 autoencoders for molecule design. In [NeurIPS 2018](#)

739 Liu, X., Cheng, J., Song, Y., and Jiang, X. (2022b). Boosting graph structure learning with dummy nodes.
740 In [ICML 2022](#)

741 Liu, Z., Zhou, D., Zhu, Y., Gu, J., and He, J. (2020). Towards fine-grained temporal network representation
742 via time-reinforced random walk. In [AAAI 2020](#)

743 Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., et al. (2020). Parameterized explainer for graph
744 neural network. In [NeurIPS 2020](#)

745 Luo, Y. and Ji, S. (2022). An autoregressive flow model for 3d molecular geometry generation from scratch.
746 In [ICLR 2022](#)

747 Mira-Iglesias, A., Navarro-Pardo, E., and Conejero, J. A. (2019). Power-law distribution of natural visibility
748 graphs from reaction times series. [Symmetry](#)

749 Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., and Jaiswal, S. (2017). graph2vec:
750 Learning distributed representations of graphs. [CoRR](#)

751 Nassar, H., Kennedy, C., Jain, S., Benson, A. R., and Gleich, D. F. (2020). Using cliques with higher-order
752 spectral embeddings improves graph visualizations. In [WWW 2020](#)

753 Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In
754 [NeurIPS 2001](#)

755 Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K., Koh, E., and Kim, S. (2018). Continuous-time
756 dynamic network embeddings. In [Companion of WWW 2018](#)

757 Nguyen, H. H., Imine, A., and Rusinowitch, M. (2015). Anonymizing social graphs via uncertainty
758 semantics. In [CCS 2015](#)

759 Nguyen, V., Sugiyama, K., Nakov, P., and Kan, M. (2020). FANG: leveraging social context for fake news
760 detection using graph representation. In [CIKM 2020](#)

761 Nobre, C., Wootton, D., Harrison, L., and Lex, A. (2020). Evaluating multivariate network visualization
762 techniques using a validated design and crowdsourcing approach. In [CHI 2020](#)

763 Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., et al. (2020). Evolvegcn:
764 Evolving graph convolutional networks for dynamic graphs. In [AAAI 2020](#)

765 Park, H. and Kim, M. (2018). Evograph: An effective and efficient graph upscaling method for preserving
766 graph properties. In [KDD 2018](#)

767 Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. In
768 [EMNLP 2014](#)

769 Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: online learning of social representations. In
770 [KDD 2014](#)

771 Perri, V. and Scholtes, I. (2019). Higher-order visualization of causal structures in dynamics graphs. [CoRR](#)

772 Pfitzner, R., Scholtes, I., Garas, A., Tessone, C. J., and Schweitzer, F. (2012). Betweenness preference:
773 Quantifying correlations in the topological dynamics of temporal networks. [CoRR](#)

774 Qin, Z., Yu, T., Yang, Y., Khalil, I., Xiao, X., and Ren, K. (2017). Generating synthetic decentralized social
775 graphs with local differential privacy. In [CCS 2017](#)

776 Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., et al. (2020). GCC: graph contrastive coding
777 for graph neural network pre-training. In [KDD 2020](#)

778 Rauber, P. E., Falcão, A. X., and Telea, A. C. (2016). Visualizing time-dependent data using dynamic t-sne.
779 In [EuroVis 2016](#)

780 Rong, Y., Huang, W., Xu, T., and Huang, J. (2020). Dropedge: Towards deep graph convolutional networks
781 on node classification. In [ICLR 2020](#)

782 Rosenstein, M. T., Marx, Z., Kaelbling, L. P., and Dietterich, T. G. (2005). To transfer or not to transfer. In
783 [NIPS 2005 workshop on transfer learning](#). vol. 898, 1–4

784 Sankar, A., Wu, Y., Gou, L., Zhang, W., and Yang, H. (2020). Dysat: Deep neural representation learning
785 on dynamic graphs via self-attention networks. In [WSDM 2020](#)

786 Saxena, A., Chakrabarti, S., and Talukdar, P. P. (2021). Question answering over temporal knowledge
787 graphs. In [ACL 2021](#)

788 Scholtes, I. (2017). When is a network a network?: Multi-order graphical model selection in pathways and
789 temporal networks. In [KDD 2017](#)

790 Shang, C., Wang, G., Qi, P., and Huang, J. (2022). Improving time sensitivity for question answering over
791 temporal knowledge graphs. In [ACL 2022](#)

792 Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. [IEEE Trans. Pattern Anal. Mach.
793 Intell.](#)

794 Simonovsky, M. and Komodakis, N. (2018). Graphvae: Towards generation of small graphs using
795 variational autoencoders. [CoRR](#)

796 Spielman, D. A. and Teng, S. (2013). A local clustering algorithm for massive graphs and its application to
797 nearly linear time graph partitioning. [SIAM J. Comput.](#)

798 Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). LINE: large-scale information
799 network embedding. In [WWW 2015](#)

800 Tong, H., Faloutsos, C., Gallagher, B., and Eliassi-Rad, T. (2007). Fast best-effort pattern matching in
801 large attributed graphs. In [KDD 2007](#)

802 Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. (2019). Dyrep: Learning representations over dynamic
803 graphs. In [ICLR 2019](#)

804 Tsiotas, D. and Magafas, L. (2020). The effect of anti-covid-19 policies on the evolution of the disease: A
805 complex network analysis of the successful case of greece. *Physics*

806 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is all
807 you need. In *NeurIPS 2017*

808 Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph attention
809 networks. In *ICLR 2018*

810 Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., and Hjelm, R. D. (2019). Deep graph
811 infomax. In *ICLR 2019*

812 Vu, M. N. and Thai, M. T. (2020). Pgm-explainer: Probabilistic graphical model explanations for graph
813 neural networks. In *NeurIPS 2020*

814 Wang, D., Qi, Y., Lin, J., Cui, P., Jia, Q., Wang, Z., et al. (2019). A semi-supervised graph attentive
815 network for financial fraud detection. In *ICDM 2019*

816 Wang, Y., Cai, Y., Liang, Y., Ding, H., Wang, C., Bhatia, S., et al. (2021a). Adaptive data augmentation on
817 temporal graphs. In *NeurIPS 2021*

818 Wang, Y., Chang, Y., Liu, Y., Leskovec, J., and Li, P. (2021b). Inductive representation learning in temporal
819 networks via causal anonymous walks. In *ICLR 2021*

820 Wu, F., Jr., A. H. S., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. Q. (2019). Simplifying graph
821 convolutional networks. In *ICML 2019*

822 Wu, X., Ying, X., Liu, K., and Chen, L. (2010). A survey of privacy-preservation of graphs and social
823 networks. In *Managing and Mining Graph Data*

824 Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021). A comprehensive survey on graph
825 neural networks. *IEEE Trans. Neural Networks Learn. Syst.*

826 Xu, D., Cheng, W., Luo, D., Chen, H., and Zhang, X. (2021). Infogcl: Information-aware graph contrastive
827 learning. In *NeurIPS 2021*

828 Xu, D., Ruan, C., Körpeoglu, E., Kumar, S., and Achan, K. (2019a). Self-attention with functional time
829 representation learning. In *NeurIPS 2019*

830 Xu, D., Ruan, C., Körpeoglu, E., Kumar, S., and Achan, K. (2020). Inductive representation learning on
831 temporal graphs. In *ICLR 2020*

832 Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019b). How powerful are graph neural networks? In *ICLR*
833 *2019*

834 Xu, K. S., Kliger, M., and III, A. O. H. (2013). A regularized graph layout framework for dynamic network
835 visualization. *Data Min. Knowl. Discov.*

836 Xu, Z., Du, B., and Tong, H. (2022). Graph sanitation with application to node classification. In *WWW*
837 *2022*

838 Yan, S., Xiong, Y., and Lin, D. (2018). Spatial temporal graph convolutional networks for skeleton-based
839 action recognition. In *AAAI 2018*

840 Yan, Y., Liu, L., Ban, Y., Jing, B., and Tong, H. (2021a). Dynamic knowledge graph alignment. In *AAAI*
841 *2021*

842 Yan, Y., Zhang, S., and Tong, H. (2021b). BRIGHT: A bridging algorithm for network alignment. In
843 *WWW 2021*

844 Yang, C., Wang, H., Zhang, K., Chen, L., and Sun, L. (2021). Secure deep graph generation with link
845 differential privacy. In *IJCAI 2021*

846 Yang, Y., Marriott, K., Butler, M., Goncu, C., and Holloway, L. (2020a). Tactile presentation of network
847 data: Text, matrix or diagram? In *CHI 2020*

848 Yang, Z., Ding, M., Zhou, C., Yang, H., Zhou, J., and Tang, J. (2020b). Understanding negative sampling
849 in graph representation learning. In KDD 2020

850 Ying, X. and Wu, X. (2008). Randomizing social networks: a spectrum preserving approach. In SDM
851 2008

852 Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. (2019). Gnnexplainer: Generating
853 explanations for graph neural networks. In NeurIPS 2019

854 You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec, J. (2018). Graphrnn: Generating realistic graphs
855 with deep auto-regressive models. In ICML 2018

856 You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. (2020). Graph contrastive learning with
857 augmentations. In NeurIPS 2020

858 Yu, B., Yin, H., and Zhu, Z. (2018a). Spatio-temporal graph convolutional networks: A deep learning
859 framework for traffic forecasting. In IJCAI 2018

860 Yu, W., Cheng, W., Aggarwal, C. C., Zhang, K., Chen, H., and Wang, W. (2018b). Netwalk: A flexible
861 deep embedding approach for anomaly detection in dynamic networks. In KDD 2018

862 Zang, C., Cui, P., Faloutsos, C., and Zhu, W. (2018). On power law growth of social networks. IEEE Trans.
863 Knowl. Data Eng.

864 Zeno, G., Fond, T. L., and Neville, J. (2020). Dynamic network modeling from motif-activity. In WWW
865 2020

866 Zhang, M. and Chen, Y. (2018). Link prediction based on graph neural networks. In NeurIPS 2018

867 Zhang, M., Cui, Z., Neumann, M., and Chen, Y. (2018). An end-to-end deep learning architecture for
868 graph classification. In AAAI 2018

869 Zhang, S., Li, S., and Yang, J. (2009). GADDI: distance index based subgraph matching in biological
870 networks. In EDBT 2009

871 Zhang, S. and Tong, H. (2016). FINAL: fast attributed network alignment. In KDD 2016

872 Zhang, X. and Zitnik, M. (2020). Gnnguard: Defending graph neural networks against adversarial attacks.
873 In NeurIPS 2020

874 Zhao, L. and Akoglu, L. (2020). Pairnorm: Tackling oversmoothing in gnns. In ICLR 2020

875 Zheng, L., Fu, D., Maciejewski, R., and He, J. (2022). Deeper-gxx: Deepening arbitrary gnns. CoRR

876 Zheng, L., Li, Z., Li, J., Li, Z., and Gao, J. (2019). Addgraph: Anomaly detection in dynamic graph using
877 attention-based temporal GCN. In IJCAI 2019

878 Zhou, D., Zheng, L., Fu, D., Han, J., and He, J. (2022). Mentorgnn: Deriving curriculum for pre-training
879 gnns. In CIKM 2022

880 Zhou, D., Zheng, L., Han, J., and He, J. (2020). A data-driven graph generative model for temporal
881 interaction networks. In KDD 2020

882 Zhou, D., Zheng, L., Xu, J., and He, J. (2019). Misc-gan: A multi-scale generative model for graphs.
883 Frontiers Big Data

884 Zhou, Q., Li, L., Wu, X., Cao, N., Ying, L., and Tong, H. (2021). Attent: Active attributed network
885 alignment. In WWW 2021

886 Zhu, D., Zhang, Z., Cui, P., and Zhu, W. (2019). Robust graph convolutional networks against adversarial
887 attacks. In KDD 2019

888 Zhu, Z., Zhang, Z., Xhonneux, L. A. C., and Tang, J. (2021). Neural bellman-ford networks: A general
889 graph neural network framework for link prediction. In NeurIPS 2021

890 Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., and Wu, J. (2018). Embedding temporal network via
891 neighborhood formation. In KDD 2018