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ABSTRACT2

Graph structures have attracted much research attention for carrying complex relational3
information. Based on graphs, many algorithms and tools are proposed and developed for dealing4
with real-world tasks such as recommendation, fraud detection, molecule design, etc. In this5
paper, we first discuss three topics of graph research, i.e., graph mining, graph representations,6
and graph neural networks (GNNs). Then, we introduce the definitions of natural dynamics and7
artificial dynamics in graphs, and the related works of natural and artificial dynamics about how8
they boost the aforementioned graph research topics, where we also discuss the current limitation9
and future opportunities.10
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1 INTRODUCTION

In the era of big data, the relationship between entities becomes much more complex than ever before.12
As a kind of relational data structure, graph (or network) attract much research attention for dealing with13
this unprecedented phenomenon. To be specific, many graph-based algorithms and tools are proposed,14
such as DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), node2vec (Grover and Leskovec,15
2016), GCN (Kipf and Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018),16
etc. Correspondingly, many challenges of real-world applications get addressed to some extent, such as17
recommendation (Fan et al., 2019), fraud detection (Wang et al., 2019), and molecule design (Liu et al.,18
2018), to name a few.19

To investigate graph-based research and relevant problems and applications systematically, at least 1 three20
aspects will be discussed, i.e., graph mining, graph representations, and graph neural networks (GNNs).21
Their dependency is convoluted, the reason why we aim to disentangle it is that we can discuss the current22
efforts from natural and artificial dynamics studies (which are improving the graph algorithms and tools23
performance) in a fine-grained view, such that we can envision detailed future research opportunities. As for24
natural dynamics in graphs, we use this term to illustrate that the input graphs themselves are evolving, i.e.,25
the topology structures, the node-level, edge-level, and (sub)graph-level features and labels are dependent26
on time (Aggarwal and Subbian, 2014; Kazemi et al., 2020). As for artificial dynamics in graphs,27
we use this term to describe that end-users change (e.g., filter, mask, drop, or augment) the existing or28
construct (i.e., from scratch) the non-existing graph-related elements (e.g., graph topology, graph stream,29

1 Research topics like graph theory and graph database management are also very important, but we skip discussing them in this paper.
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node/graph attributes/labels, GNN gradients, GNN layer connections, etc.) to realize the certain30
performance upgrade (e.g., computation efficiency (Fu et al., 2020b), model explanation (Fu and He,31
2021b), decision accuracy (Zheng et al., 2022), etc.). To the best of our knowledge, the first relevant act32
of conceiving artificial dynamics in graphs appeared in (Kamvar et al., 2003), where "artificial jump" is33
proposed to adjust the graph topology for PageRank realizing the personal ranking function on structured34
data, i.e., a random surfer would follow an originally non-existing but newly-added highway to jump to a35
personally-selected node with a predefined teleportation probability.36

With the above introduction of graph research terminology and dynamics category, in this paper, we are37
ready to introduce some related works on investigating natural and artificial dynamics in graph mining,38
graph representations, and graph neural networks, and then discuss future research opportunities. To be39
specific, this survey is organized as follows. The definition and relation introduction for graph mining tasks,40
graph representations, and graph neural networks are discussed in Section 2. Then, in Section 3, we discuss41
the formal definition followed by concrete research works for natural dynamics, artificial dynamics, and42
natural + artificial dynamics in graphs. Finally, in Section 4, we conclude the paper with sharing some43
research future directions.44

2 RELATIONS AMONG GRAPH MINING, GRAPH REPRESENTATIONS, AND
GRAPH NEURAL NETWORKS

To pave the way for investigating the natural and artificial dynamics in graphs, we first introduce graph45
research topics (i.e., graph mining, graph representations, and graph neural networks) and their relationships46
in this section. Then, in the next section, we can target each topic and see how natural dynamics and47
artificial dynamics contribute to them.48

Figure 1. Relationships among Graph Mining, Graph Representations, and Graph Neural Networks.

In general, the relationships between graph mining, graph representations, and graph neural networks49
can be illustrated as shown in Figure 1. (1) Graph mining aims to extract interesting (e.g., non-trivial,50
implicit, previously unknown, and potentially useful) knowledge from graph data. Graph mining consists51
of numerous specific tasks, such like node classification (Kipf and Welling, 2017) is aiming to classify the52
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node category based on its features, and node clustering (Shi and Malik, 2000; Andersen et al., 2006) is53
aiming to partition the entire graph into disjoint or overlapped clusters (i.e., subgraphs) based on end-users’54
objectives (e.g., conductance, betweeness, etc.):. For example, clustering can discover knowledge to help55
GNN implementations, and Cluster-GCN (Chiang et al., 2019) is proposed to sample nodes in a topology-56
preserved clustering, which could entitle vanilla GCN (Kipf and Welling, 2017) the fast computation to deal57
with large-scale graph datasets. (2) Graph representations are the bases of graph mining, which projects58
graphs into a proper space such that graph mining can do various task-specific computations. To the best of59
our knowledge, graph representations consists of three components. First, graph embedding represents60
graphs with affinity matrices like Laplacian matrix and hidden feature representation matrix, on which many61
mining tasks rely, such as node classification (Kipf and Welling, 2017); Second, graph law represents graphs62
with several parameters which describe the statistical property of graphs such as node degree distribution63
and edge connection probability, which could help mining tasks like graph generation (Leskovec and64
Faloutsos, 2007) and link prediction (Wang et al., 2021b); Third, graph visualization provides the visual65
representations and can serve for the domain-specific knowledge interpretation (Bach et al., 2015; Yang66
et al., 2020a). Within graph representations, graph embedding, graph law, and graph visualization can67
contribute to each other, and detailed overlapping works are discussed in the following sections. (3) Graph68
Neural Network (GNN) is an effective tool for extracting meaningful graph embedding vectors (or matrices)69
by combining deep learning theory and graph theory (Wu et al., 2021). GNNs are composed of a family of70
many specific models with different research concerns like neural architecture (Chen et al., 2020b) and71
message passing aggregation design (Klicpera et al., 2019), the detailed related works are also discussed in72
the following sections.73

2.1 Graph Mining74

Graph mining interacts with real-world problems by discovering knowledge for many applications. Based75
on structured data, graph mining consists of numerous specific tasks. For example,76

• Node (and Graph) Classification (Kipf and Welling, 2017; Zhang et al., 2018; Jing et al., 2021): Nodes77
sharing similar features should be classified into the same category.78

• Node Clustering (or Graph Partitioning) (Spielman and Teng, 2013; Andersen et al., 2006; Shi and79
Malik, 2000; Ng et al., 2001): Individual nodes are clustered for optimizing certain metrics such as80
inter-cluster distance, intra-cluster density, etc.81

• Link Prediction (Dunlavy et al., 2011; Zhang and Chen, 2018; Kumar et al., 2019): The probability82
is estimated that whether two nodes should be connected based on evidence like node structural and83
attribute similarity.84

• Graph Generation (Leskovec and Faloutsos, 2007; You et al., 2018; Bojchevski et al., 2018; Zhou et al.,85
2019, 2020): Model the distribution of a batch of observed graphs and then generate new graphs.86

• Subgraph Matching (Tong et al., 2007; Zhang et al., 2009; Du et al., 2017; Liu et al., 2021): Check87
whether a query graph (usually the smaller one) can be matched in a data graph (usually the larger one)88
approximately or exactly.89

• Graph Anomaly Detection (Akoglu et al., 2015; Yu et al., 2018b; Zheng et al., 2019): Identify whether90
the graph has abnormal entities like nodes, edges, subgraphs, etc.91

• Graph Alignment (Zhang and Tong, 2016; Zhou et al., 2021; Yan et al., 2021b,a): Retrieve similar92
structures (e.g., nodes, edges, and subgraphs) across graphs.93

• many more . . .94
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Those tasks can be directly adapted to solve many high-impact problems in real-world settings. For example,95
through learning the graph distribution and adding specific domain knowledge constraints, graph generators96
could contribute to molecule generation and drug discovery (Luo and Ji, 2022; Liu et al., 2022a); With97
modeling picture pixels as nodes, graph partitioning algorithms could achieve effective image segmentation98
at scale (Bianchi et al., 2020); By modeling the information dissemination graph over news articles, readers,99
and publishers (Nguyen et al., 2020) or modeling the suspicious articles into word graphs (Fu et al., 2022a),100
node and graph classification tasks can help detect fake news in the real world.101

2.2 Graph Representations102

For accomplishing various graph mining tasks, graph representations are indispensable for providing103
the bases for task-specific computations. To the best of our knowledge, graph representations can be104
roughly categorized into three aspects, (1) graph embedding (i.e., vector representation), (2) graph law (i.e.,105
parametric representation), and (3) graph visualization (i.e., visual representation).106

2.2.1 Graph Embedding (Vector Representation)107

First, graph representations can be in the form of embedding matrices, i.e., the graph topological108
information and attributes are encoded into a matrix (or matrices). The most common form can be the109
Laplacian matrix, which is the combination of the graph adjacency matrix and degree matrix. Recently,110
the graph embedding (or graph representation learning) area attracts many research interests, along with111
numerous graph embedding methods proposed for extracting the node (or graph) hidden representation112
vectors from the input affinity matrices, like DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), and113
node2vec (Grover and Leskovec, 2016). They 2 share the general principle to extract node representation114
vectors, which means a node could reflect (e.g., predict, be proximate to, etc.) its sampled neighbors in the115
embedding space, e.g., Skip-gram in (Perozzi et al., 2014; Grover and Leskovec, 2016) and order-based116
proximity in (Tang et al., 2015). With the different angles of viewing graph topology and node features,117
some derivatives are proposed, such as metapath2vec (Dong et al., 2017) for heterogeneous networks,118
graph2vec (Narayanan et al., 2017) for the graph-level embeddings, and tdGraphEmbd (Beladev et al.,119
2020) for temporal graph-level embeddings.120

All graph embedding works mentioned above are unsupervised, which means the guidance (or constraints,121
regularizers) during the learning process are totally from the input graph structure and features, such that the122
encoded vectors within specific dimensions are actually reflecting the graph itself information. Hence, by123
involving extra domain knowledge (i.e., labels and task-specific loss functions), graph embedding vectors124
can serve real-world applications. For example, with user-item interaction history records and user anomaly125
labels, graph embedding techniques can be leveraged for predicting the user-interested merchandise and126
user’s behavior in the future (Kumar et al., 2019); By involving additional labels, graph embedding vectors127
can be used to generate small molecule graphs through an encoder-decoder framework (Simonovsky and128
Komodakis, 2018; Jin et al., 2018); Also, with delicately designed query questions and temporal knowledge129
graphs, graph embedding techniques can be used to help answer open-world questions (Saxena et al., 2021;130
Shang et al., 2022).131

2 As another kind of powerful tool for graph embedding, graph neural networks (GNNs) become popular and attract research attention from both the deep
learning domain and graph theory domain. Here, "they" are not referring to graph neural networks. And we set up another section for introducing GNNs,
otherwise Section 2.2 will be enormous and overstaffing. GNNs will be discussed separately in Section 2.3. We would like to note that GNN is a tool for
realizing graph embedding as we illustrated in Figure 1, the context separation in the paper is not standing for the tied hierarchy of graph representations and
graph neural networks.
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2.2.2 Graph Law (Parametric Representation)132

Second, graphs can also be represented by several parameters. A simple but common example is133
Erdős-Rényi random graph, i.e., G(n, p) or G(n,m) (Drobyshevskiy and Turdakov, 2020). To be specific,134
in G(n, p), the possibility of establishing a single edge among n nodes is independent of each other and135
valued by a constant parameter p; while in G(n,m), an n-node and m-edge graph is chosen evenly from136
all possible n-node and m-edge graph collections. In addition to the number of nodes, the number of edges,137
and the edge probability, many common parameters are well-studied for representing or modeling graphs,138
such as degree distribution, effective diameter, clustering coefficient, and many more (Chakrabarti and139
Faloutsos, 2006; Drobyshevskiy and Turdakov, 2020).140

Representing graphs by graph laws can be summarized into the following steps: (1) determine the141
parameter (or formula of several parameters) to represent the graphs, (2) fit the value of parameters142
based on the graph structures and features through statistical procedures. For example, Leskovec et al.143
(2005) discover the densification law over evolving graphs in the macroscopic view, which is expressed as144
e(t) ∝ n(t)α, and e(t) denotes the number of edges at time t, n(t) denotes the number of nodes at time145
t, and α ∈ [1, 2] is an exponent parameter representing the density degree. And they use the empirical146
observation of real-world graphs to fit the value of α. Targeting the microscopic view, Leskovec et al.147
(2008) discover other graph laws. Different from the macroscopic view, they view temporal graphs in a148
three-fold process, i.e., node arrival (determining how many nodes will be added), edge initiation (how149
many edges will be added), and edge destination (where are the added edges), where they ignore the150
deletion of nodes and edges. Then, they assign variables and corresponding equations (i.e., models) to151
parameterize these three processes and use MLE (i.e., maximum likelihood estimation) to settle the model152
and scalar parameters based on real-world graph observation. As an instance, the edge destination (i.e., the153
probability for node u connecting node v) is modeled as lastτ other than degτ for the LinkedIn network154
through MLE, where degτ means the connection probability is proportional to node v’s current degree155
dt(v)

τ . And lastτ means the probability is proportional to node v’s age since its last interaction δt(v)
τ ,156

where τ is the parameter to be fit.157

Discovering graph laws and fitting law corresponding parameters can also serve many graph mining tasks158
and real-world applications. For example, after a graph law is discovered, the follow-up action is to propose159
the corresponding graph generative model to test whether there exists a realizable graph generator could160
generate graphs while preserving the discovered law in terms of graph properties (Leskovec et al., 2005;161
Zang et al., 2018; Do et al., 2020; Kook et al., 2020; Leskovec et al., 2008; Park and Kim, 2018; Zeno et al.,162
2020). Recently, the triadic closure law on temporal graphs (i.e., two nodes that share a common neighbor163
directly tend to connect) has been discovered to contribute to the dynamic link prediction task (Wang et al.,164
2021b). For the questions in social network analysis, e.g., "What is Twitter?", Kwak et al. (2010) give the165
statistical answer in the form of parametric representation. For pre-training the language model, the values166
of the weighted word co-occurrence matrix (i.e., adjacency matrix) are necessary and highly depend on167
the parameters following the power law, e.g., in GloVe (Pennington et al., 2014), Xij denotes the number168
of times that word j occurs in the context of word i, and it follows Xij = k

(rij)α
, where rij denotes the169

frequency rank of the word pair i and j in the whole corpus, and k and α are constant parameters.170

2.2.3 Graph Visualization (Visual Representation)171

Third, graph visualization provides visual representation by plotting the graph directly, which is172
more straightforward than graph embedding and graph law to some extent. Hence, one of the research173
goals in graph visualization is finding the appropriate layout for the complex networked data. To name174
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a few: most graphs (e.g., a five-node complete graph) could not be plotted on the plane without edge175
crossings, then Chen et al. (2020a) give the solution about how to use a 3D torus to represent the graph176
and then flatten the torus onto the 2D plane with aesthetics and representation accuracy preserved; Also,177
in (Nobre et al., 2020), authors evaluate which layouts (e.g., node-link diagram or matrix) are suitable178
for representing attributed graphs for different graph mining tasks; Through crowd-sourced experiments,179
Yang et al. (2020a) study the tactile representation of graphs for low-vision people and discuss which one180
(e.g., text, matrix, or node-link diagram) could help them to understand the graph topology; When the181
graph is large (e.g., hundreds of thousands of nodes), it is hard to represent the internal structure, and182
Nassar et al. (2020) design the high-order view of graphs (i.e., construct k-clique weighted adjacency183
matrix) and then use t-SNE to get the two-dimensional coordinates from the weighted Laplacian matrix.184
Bringing time information to graph visualization started in the 1990s to deal with the scenario where the185
represented graph gets updated (Beck et al., 2014). The trend for visualizing dynamic (or temporal) graphs186
becomes popular, and different research goals emerge (Kerracher et al., 2014; Beck et al., 2017), like187
strengthening the domain-specific evolution for domain experts (Bach et al., 2015), showing the pandemic188
dissemination (Lacasa et al., 2008; Tsiotas and Magafas, 2020), explaining time-series data (e.g., response189
time to different questions) with graph visualization and graph law (Mira-Iglesias et al., 2019).190

Plotting graphs into an appropriate layout is more challenging when it comes to complex evolving191
graphs. Hence, many dynamic graph visualization research works contribute their solutions from different192
angles. For example, for balancing the trade-off between temporal coherence and spatial coherence (i.e.,193
preservation of structure at a certain timestamp), Leydesdorff and Schank (2008) use the multidimensional194
scaling (MDS) method. Inspired by that, Xu et al. (2013) design the dynamic multidimensional scaling195
(DMDS), and Rauber et al. (2016) design the dynamic t-SNE; In order to assign end-users the flexibility196
to view the different aspects of evolving graphs (e.g., time-level graph evolution or node-level temporal197
evolution), Bach et al. (2014) represent evolving graphs into user-rotating cubes; To highlight the temporal198
relation among graph snapshots, authors in (Bach et al., 2016) propose Time Curves to visualize the199
temporal similarly between two consecutively observed adjacency matrices; In (Lentz et al., 2012; Pfitzner200
et al., 2012), researchers find that paths in temporal networks may invalidate the transitive assumption,201
which means the paths from node a to node b and from node b to node c may not imply a transitive path202
from node a via node b to node c. Inspired by this observation and to further analyze the actual length203
of paths in temporal graphs, Scholtes (2017) transfer this problem into investigating the order (i.e., k) of204
graphs. To be specific, the order k can be understood as the length of a path (i.e., vi−k → . . . → vi−1 → vi)205
and can be modeled by the high-order Markov Chain (i.e., P(vi|vi−k → . . . → vi−1)). And the order of206
temporal paths can be determined by thresholding the probability gain in the MLE model. A corresponding207
follow-up visualization work is proposed targeting the high-order temporal graphs (Perri and Scholtes,208
2019), which first determines the order of a temporal network as discussed above, and then constructs209
intermediate supernodes for deriving the high-order temporal relationship between two nodes, finally plots210
this high-order temporal relationship into edges and adds them on a static graph layout.211

2.3 Graph Neural Networks212

To extract the hidden representation, graph neural network (GNN), as a powerful tool, provides a new idea213
different from the embedding methods like DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), and214
node2vec (Grover and Leskovec, 2016). One major difference between GNNs and those mentioned above is215
that GNNs could aggregate multi-hop node features to represent a node by stacking GNN layers. According216
to (Xu et al., 2019b), this mechanism is called information aggregation (or message-passing in some217
literature), which iteratively updates the representation vector of a node by aggregating the representation218
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vectors from its neighbors. The general formula of GNNs can be expressed as follows.219

a
(k)
v = AGGREGATE(k)({h(k−1)

u : u ∈ N (v)}), h(k)
v = COMBINE(k)(h

(k−1)
v , a

(k)
v ) (1)

where h
(k)
v is the hidden representation vector of node v at the k-th iteration (i.e., k-th layer), and a

(k)
v is220

the aggregation among hidden representation vectors of neighbors N (v) of node v from the last iteration221
(i.e., layer). For example, the graph convolutional neural network (GCN) (Kipf and Welling, 2017) can be222
written in the above formulation by integrating the AGGREGATE and COMBINE as follows.223

h
(k)
v = ReLU(W(k−1) · MEAN{h(k−1)

u , ∀u ∈ N (v) ∪ {v}}) (2)

where W(k−1) is a learnable weight matrix at the (k − 1)-th layer, and the original equation of GCN is as224
follows.225

H(k) = ReLU(ÂH(k−1)W(k−1)) (3)

where Â is the normalized adjacency matrix with self-loops, i.e., Â = D̃− 1
2 ÃD̃− 1

2 , and Ã = A+ I.226

Graph neural network is a complicated computational framework that integrates the neural networks from227
deep learning and non-Euclidean constraints from graph theory. Therefore, GNN research consists of many228
specific facets from both ends. For example,229

• Neural Layer Architecture Design: Recurrent (Li et al., 2018; Hajiramezanali et al., 2019), Residual230
Connections (Chen et al., 2020b; Zheng et al., 2022), etc.231

• Message Passing Schema: Spectral Convolution (Kipf and Welling, 2017), Spatial Convolution (Velickovic232
et al., 2018), Simplification (Wu et al., 2019; Klicpera et al., 2019), etc.233

• Training Manner: Semi-Supervised Learning (Kipf and Welling, 2017), Self-Supervised234
Learning (Velickovic et al., 2019; You et al., 2020), etc.235

• Sampling Strategy: Noises-Aware (Yang et al., 2020b), Efficiency and Generalization (Hu et al., 2020a),236
Fairness-Preserving (Kang et al., 2022), etc.237

• Model Trustworthy: Attack and Defend (Zhu et al., 2019; Zhang and Zitnik, 2020), Black-Box238
Explanation (Ying et al., 2019; Luo et al., 2020; Vu and Thai, 2020), etc.239

• many more . . .240

Until now, we have introduced three aspects of graph research shown in Figure 1. Targeting each aspect,241
research in natural and artificial dynamics could contribute to performance improvements. The detailed242
related works are discussed in the next section, where we start by defining the natural and artificial dynamics243
in graphs, and then investigate how natural and artificial dynamics help graph research enhancements in244
each specific aspect.245

3 NATURAL AND ARTIFICIAL DYNAMICS IN GRAPHS

Natural dynamics in graphs means that the input graph (to graph mining, graph representations, and246
graph neural networks) has the naturally evolving part(s), such as the evolving World Wide Web. Formally247
speaking, the naturally evolving part means that the topological structures or node (edge, subgraph, or248
graph) features and labels depend on time. To be specific, the evolving graph structures can be represented249
either in250
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• (1) continuous time (Kazemi et al., 2020) or streaming (Aggarwal and Subbian, 2014): an evolving251
graph can be modeled by an initial state G with a set of timestamped events O, and each event can be252
node/edge addition/deletion; or253

• (2) discrete time (Kazemi et al., 2020) or snapshots (Aggarwal and Subbian, 2014): an evolving graph254
can be modeled as a sequence of time-respecting snapshots G(1), G(2), . . . , G(T ), and each G(t) has its255
own node set V (t) and edge set E(t).256

For these two modelings, the corresponding time-dependent features and labels can be represented in a257
time-series or a sequence of matrices such as X(1),X(2), . . . ,X(T ).258

These two modeling methods have non-trivial complements. For example, continuous-time models259
rapid node/edge-level evolution, i.e., microscopic evolution (Leskovec et al., 2008), such as protein260
molecule interactions in a cell (Fu and He, 2021a); However, it could not represent the episodic and slowly-261
changing evolution patterns, which can be captured by discrete-time, i.e., macroscopic evolution (Leskovec262
et al., 2005), such like the periodical metabolic cycles in a cell (Fu and He, 2021a). Recently, different263
evolution patterns in a single graph are currently not jointly modeled for improving graph representation264
comprehensiveness, but some real-world evolving graphs naturally have both evolution patterns. For265
example, in (Fu and He, 2021a), each dynamic protein-protein interaction network has 36 continuous266
observations (i.e., 36 edge timestamps), every 12 observations compose a metabolic cycle (i.e., 3 snapshots),267
and each cycle reflects 25 mins in the real world. Inspired by this observation, a nascent work (Fu et al.,268
2022b) is recently proposed to jointly model different evolution patterns into the graph representation.269

Artificial dynamics in graphs means that the graph research related elements (e.g., graph topology,270
graph stream, node/graph attributes/labels, GNNs gradients and neural architectures, etc.) are deliberately271
re-designed by end-users for boosting the task performance in certain metrics. For the re-designing,272
end-users can change (e.g., filter, mask, drop, or augment) the existing elements or construct (i.e., from273
scratch) non-existing elements to improve the performance (e.g., decision accuracy, model robustness and274
interpretation, etc.) than the original. To name a few, one example of artificial dynamics can be graph275
augmentation: DropEdge (Rong et al., 2020) is proposed to deal with the over-fitting of GNNs by randomly276
removing a certain amount of edges from the input graphs for each training epoch; DummyNode (Liu et al.,277
2022b) is proposed to add a dummy node to the directed input graph, which connects all existing n nodes278
with 2n directed edges. The dummy node serves as a highway to extend the information aggregation in279
GNNs and contribute to capturing the global graph information, such that the graph classification accuracy280
by GNNs can be enhanced. In addition to the graph augmentation, other specific examples of artificial281
dynamics can be filtering unimportant coming sub-structures to save computations (Fu et al., 2020b),282
adding residual connections among GNNs layers to address vanishing gradients (Zheng et al., 2022), and283
perturbing the GNNs gradients for privacy protection (Yang et al., 2021).284

As mentioned above, on the one hand, considering the natural dynamics could leverage temporal285
dependency to contribute to graph research in terms of but not limited to, fast computation (e.g., tracking286
from the past instead of computing from scratch), causality reasoning (e.g., previous states cause the287
current state), comprehensive decision (e.g., prediction based on historical behaviors); On the other hand,288
studying artificial dynamics could help a wide range of targets, such as machine learning effectiveness289
(e.g., robustness, de-overfitting, de-oversmoothing).290

Investigating natural dynamics and investigating artificial dynamics not only have shared merits but also291
have exclusive advantages. For example, how to manipulate evolving graphs is still an opening question for292
many downstream task improvements. Thus, a spontaneous research question is to ask whether natural293
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dynamics can be integrated with artificial dynamics, which aims to keep the shared merits and bring294
exclusive advantages to synergy complementation. Definitely, some pioneering works have been proposed295
to touch this area. To introduce them, throughout the paper, we use natural + artificial dynamics to denote296
the integrated investigation of natural dynamics and artificial dynamics in graph-related research and then297
present related works in this category.298

Starting from the following subsections, we are ready to introduce recent related works about natural,299
artificial, and natural + artificial dynamics research in graph mining, graph representations, and graph300
neural networks, respectively.301

3.1 Dynamics in Graph Mining302

Graph mining is a general term that consists of various specific mining tasks on graphs. Classic graph303
mining tasks consist of node clustering (or graph partitioning), node/graph classification, and link prediction.304
Also, motivated by real world application scenarios, novel graph mining tasks are being proposed for305
research, such as graph generation, graph alignment, and many more. Facing various graph mining tasks,306
we discuss several graph mining tasks here and then introduce the corresponding related works of natural307
dynamics, artificial dynamics, and natural + artificial dynamics in each discussed task.308

3.1.1 Natural Dynamics in Graph Mining309

Link Prediction. The core of the link prediction task is to decide whether there should be a link between310
two entities in the graph. This graph mining task can directly serve the recommender system by modeling311
the user and items as nodes in their interaction graphs. The evidence to decide whether two nodes should312
be linked can be the current heuristics like node embedding similarity (Zhang and Chen, 2018; Zhu et al.,313
2021), and also the historical behaviors of entities can be added for a more comprehensive decision. For314
example, JODIE (Kumar et al., 2019) is a link prediction model proposed based on user-item temporal315
interaction bipartite graph, where a user-item interaction is modeled as (u, i, t, f) that means an interaction316
happens between user u and item i at time t, and f is the input feature vector of that interaction. Given317
a user (or an item) has a sequence of historical interactions (i.e., a user interacts with different items at318
different timestamps), JODIE (Kumar et al., 2019) applies two mutually-recursive RNN structures (i.e.,319
RNNU and RNNI ) to update the embedding for users and items as follows.320

u(t) = σ(Wu
1 u(t−) +Wu

2 i(t−) +Wu
3 f +Wu

4 ∆u), embedding unit of RNNU

i(t) = σ(Wi
1 i(t

−) +Wi
2 u(t

−) +Wi
3 f +Wi

4 ∆i), embedding unit of RNNI

(4)

where Wu
1 , Wu

2 , Wu
3 , and Wu

4 are four parameters of RNNU . And RNNU and RNN I share the same321
intuitive logic. Suppose user u interacts with item i at time t with the interaction feature f , then the above322
equation RNNU updates the user embedding u(t) at time t by involving the latest historical user and323
item behavior, where ∆u denotes the time elapsed since user u’s previous interaction with any item, u(t−)324
denotes the latest user embedding vector right before time t, and i(t−) denotes the latest item embedding325
vector right before time t. Therefore, in JODIE, each user (or item) can have a sequence of embedding326
vectors, which is called its trajectory. And the user and item embeddings can be updated iteratively to327
the future. The training loss is designed for whether the future user (or item) embedding vectors can be328
predicted 3. If the future embedding can be predicted (e.g., u connects i at t, and i(t) is predicted through329

3 The future embedding vector estimation for users and items is skipped here.
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u(t−) and i(t−)), then the user (or item) historical evolution pattern is supposed to be encoded. Thus, the330
trained model can be used to predict whether a user u interacts with an item i in the future.331

Graph Alignment. Compared with classic graph mining tasks, graph alignment is a relatively novel332
graph mining task, aiming to find paired (i.e., similar) nodes across two graphs. The input graphs can be333
attributed (e.g., heterogeneous information networks or knowledge graphs), and the proximity to decide334
whether two nodes from two different graphs are paired or not can range from their attributes, their335
neighborhood information (e.g., neighbor nodes attributes, connected edges’ attributes, induced subgraph336
topology), etc. (Zhang and Tong, 2016; Yan et al., 2021b; Zhou et al., 2021). When aligning two graphs337
in the real world, the inevitable problem is that the input graphs are evolving in terms of features and338
topological structures. To this end, Yan et al. (2021a) combine two graphs into one graph, and then propose339
the GNN-based fast computation graph alignment method instead of re-training the GNN from scratch340
for each update of the combined graph. Specifically, authors want to encode the topology-invariant node341
embedding by training a GNN model, then fine-tune this trained GNN model with updated local changes342
(e.g., added nodes and edges, updated node input features). Thus, to weaken the coupling between the343
graph topology (e.g., adjacency matrix A) and the GNN parameter matrix (e.g., W(k) at the k-th layer),344
authors select GCN (Kipf and Welling, 2017) as the backbone and change its information aggregation345
schema by introducing a topology-invariant mask gate M(k) and a highway gate T (k) as follows.346

H(k) = σ(ÂM(k−1)(H(k−1))W(k−1))

H(k) = T (k−1)(H(k−1))⊙H(k) + (1− T (k−1)(H(k−1)))⊙H(k−1)
(5)

where ⊙ denotes Hadamard product, topology-invariant mask gate M(k−1)(H(k−1)) equals to H(k−1) ⊙347

σ(W
(k−1)
m ), highway gate T (k−1)(H(k−1)) is expressed as σ(M(k−1)(H(k−1))W

(k−1)
h ), and W

(k−1)
m and348

W
(k−1)
h are learnable parameters of M(k−1) and T (k−1). The training loss function depends on whether349

the embedding vectors of two paired nodes (i.e., positive samples) are close, and whether the embedding350
vectors of two not paired nodes (i.e., negative samples) are far away. With this trained GNN model, future351
updates can be regarded as additional training samples to fine-tune the model.352

3.1.2 Artificial Dynamics in Graph Mining353

Graph Secure Generation or Graph Anonymization. Graph generation is the task that models the354
given graphs’ distribution and then generates many more meaningful graphs, which could contribute to355
various applications (Bonifati et al., 2020). However, approximating the observed graph distributions as356
much as possible will induce a privacy-leak risk in the generated graphs. For example, a node’s identity is357
highly likely to be exposed in the generated social network if its connections are mostly preserved, which358
means a degree-based node attacker will easily detect a vulnerability in the generated graph with some359
background knowledge (Wu et al., 2010). Therefore, graph secure generation or graph anonymization is360
significant to social security (Fu et al., 2022c).361

To protect privacy during the graph generation, artificial dynamics can help by introducing the362
perturbations during the modeling (or learning) of graph distributions. However, adding this kind of363
artificial dynamics to protect graph privacy still serves for the static graph generation. How to add dynamics364
to evolving graphs to protect privacy is still an opening question.365

Frontiers 10



Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

For privacy-preserving static graph generation, current solutions can be roughly classified into two types.366
First, the artificial dynamics is directly performed on the observed topology to generate new graph data, to367
name a few,368

• Randomize the adjacency by iteratively switching existing edges {(t, w) and (u, v)} with {(t, v) and369
(u,w)} (if (t, v) and (u,w) do not exist in the original graph G), under the eigendecomposition370
preservation (Ying and Wu, 2008).371

• Inject the connection uncertainty by iteratively copying each existing edge from original graph G to a372
initial null graph G′ with a certain probability, guaranteeing the degree distribution of G′ is unchanged373
compared with G (Nguyen et al., 2015).374

• Permute the connection distribution by proportionally flipping the edges (existing to non-existing375
and vice versa), maintaining the edge-level differential privacy (edge-DP) for the graph structural376
preservation (Qin et al., 2017).377

Second, following the synergy of deep learning and differential privacy (Abadi et al., 2016), another way378
to add artificial dynamics is targeting the gradient of deep graph learning models. To be specific, a deep379
graph generative model is recently proposed under privacy constraints, i.e., in (Yang et al., 2021), privacy380
protection mechanism is executed during the gradient descent phase of the generation learning process, by381
adding Gaussian noise to the gradient.382

In terms of how to design appropriate artificial dynamics for the evolving graph secure generation, it is still383
a challenging problem because of maintaining privacy guarantee and utility preservation simultaneously.384
Here we would like to share our thoughts that the next-generation techniques should address the following385
challenges, at least.386

• Unlike static graphs, what kind of natural dynamic information is sensitive in evolving graphs and387
should be hidden in the generated graph to protect entities’ privacy is not clear.388

• After the sensitive information is determined, the protection mechanism in the evolving environment is389
not yet available, e.g., dealing with changing topology and features.390

• When the corresponding protection mechanism is designed, it can still be challenging to maintain the391
generation utility at the same time with privacy constraints.392

3.1.3 Natural + Artificial Dynamics in Graph Mining393

As mentioned in the above subsection, not only for the graph secure generation, adding artificial dynamics394
to evolving graphs is still nascent in many graph mining tasks, and exists many research opportunities.395
Here, we introduce a recent work that adds artificial dynamics to the time-evolving graph partitioning to396
improve computation efficiency.397

Figure 2. Local cluster C(t) and a "far-
away" edge to be filtered at time t.

Node Clustering or Graph Partitioning. In the node398
clustering family, local clustering methods target a specific399
seed node (or nodes) and obtain the clustering by searching400
the neighborhood instead of the entire graph. In this401
paper (Fu et al., 2020b), authors propose the motif-402
preserving local clustering method on temporal graphs called403
L-MEGA, which approximately tracks the local cluster404
position at each timestamp instead of solving it from scratch.405
To make L-MEGA more efficient, one speedup technique is406
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proposed in (Fu et al., 2020b) to filter the new arrival edges407
instead of letting them go into the tracking process and save408
them for future timestamps, if the new arrival edges are "far-away" from the current local cluster and do409
not affect the local structure as shown in Figure 2. By doing which, the tracking time complexity can be410
saved. In order to investigate whether a new arrival edge can be filtered, the authors identify the "far-away"411
edges by analyzing its incident nodes in terms of the probability mass in the personal PageRank vector and412
the shortest path to the local cluster.413

3.2 Dynamics in Graph Representations414

In this section, we mainly discuss graph embedding (i.e., graph representation learning) as one instance415
of graph representations, and introduce related works about how natural dynamics and artificial dynamics416
are involved in boosting the performance of graph representation learning4.417

3.2.1 Natural Dynamics in Graph Representations418

In the early stage, inspired by DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), and419
node2vec (Grover and Leskovec, 2016), the graph embedding methods for temporal graphs are proposed,420
like CDTNE (Nguyen et al., 2018), DyGEM (Goyal et al., 2018), DynamicTriad (Goyal et al., 2018),421
HTNE (Zuo et al., 2018), FiGTNE (Liu et al., 2020), and tdGraphEmbd (Beladev et al., 2020). They vary in422
different ways to deal with time information. For example, FiGTNE (Liu et al., 2020) utilizes the temporal423
random walk to sample time-adjacent nodes. In this sampled sequence, the embedding is regularized such424
that previous nodes should reflect the current node.425

Recently, inspired by GNNs stacking layers to aggregate multi-hop neighbor information to get node426
embedding vectors, temporal graph neural networks (TGNNs) are proposed to consider time information427
when doing the information aggregation, like EvolveGCN (Pareja et al., 2020), TGAT (Xu et al., 2020),428
and many others. In some works, they are also called spatial-temporal graph neural networks (STGNNs)429
because the spatial information comes from the input graph topological structure (Wu et al., 2021).430

Figure 3. Part (a) shows a streaming graph with only edge
timestamps te. Part (b) shows a snapshot-modeled graph with
only snapshot timestamps ts, where each ts elapses every 4 te.
Part (c) shows our multi-time evolution modeling with edge
timestamps ts and snapshot timestamps te.

In this paper, we use the term temporal431
graph neural networks, i.e., TGNNs,432
and the detailed related works for433
TGNNs are introduced in Section 3.3.1,434
i.e., Natural Dynamics in Graph Neural435
Networks.436

Multiple Evolution Patterns in437
Representation Learning. As discussed438
earlier, in the real world, an evolving439
graph may have multiple evolution440
patterns (Fu and He, 2021a). Therefore,441
how to integrate multiple evolution442
patterns jointly during the representation443
learning process is still a nascent444
problem. Generally speaking, if we445

4 Here, we select graph embedding (i.e., graph representation learning) as an instance of graph representations to introduce the corresponding natural and
artificial dynamic techniques. Since GNN is a also kind of tool for graph representation learning, then in this Section 3.2, we introduce the dynamic techniques
that can be applied to general graph representation learning models. In Section 3.3, for GNNs, we will introduce the dynamic techniques that are deliberately
designed for GNNs, which may or may not be applied to the general graph embedding models like DeepWalk, LINE, node2vec, etc.
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model each evolution pattern as a446
different view of the input graph, then447
VANE (Fu et al., 2020a) could get the node embedding that is suitable for each observed view. Specifically,448
Temp-GFSM (Fu et al., 2022b) is proposed, which deliberately targets the streaming pattern for rapid449
node/edge-level evolution and the snapshot pattern for episodic and slowly-changing evolution, as shown450
in Figure 3. In Temp-GFSM, a multi-time attention mechanism is introduced with the support of the time451
kernel function to get the node-level, snapshot-level, and graph-level embeddings across different evolution452
patterns.453

3.2.2 Artificial Dynamics in Graph Representations454

Pre-training for Representation Learning with Masked Graph Signals. Generally speaking, training455
graph representation learning models (e.g., GNNs) is usually executed in the (semi-)supervised setting that456
requires a considerable amount of labeled data, especially when the input graphs are large. However, in457
some domains (e.g., healthcare (Choi et al., 2017)), collecting high-quality labeled graph data is usually458
time-consuming and costly. Therefore, recent advances have focused on the GNN pre-training (Hu et al.,459
2020b,c; Qiu et al., 2020; Li et al., 2021; Xu et al., 2021; Zhou et al., 2022), which pre-trains GNN models460
on the source domain(s) via proxy graph signals and then transfers pre-trained GNNs to the target domain.461
One common way of realizing proxy graph signal learning is to mask the input graphs in the unit of graph462
signals and train the GNNs such that they can predict the masked signals from the unmasked part. The463
masked signals range from masked node/edge/subgraph attributes and masked topology (e.g., nodes and464
edges) (Hu et al., 2020b,c). The quality of pre-trained GNNs can largely rely on (1) the relevance between465
the source domain(s) and the target domain and (2) the selection of masked graph signals, which may466
cause the negative transfer (Rosenstein et al., 2005) if (1) the source domain distribution diverges from467
the target domain distribution (i.e., cross-graph heterogeneity) or masked graph signals contradict each468
other (i.e., graph-signal heterogeneity) (Zhou et al., 2022). Inspired by that, Zhou et al. (2022) propose the469
MentorGNN to realize the domain-adaptive graph pre-training. To address the cross-graph heterogeneity,470
MentorGNN utilizes the multi-scale encoder-decoder architecture, such that knowledge transfer can be471
done in a coarser resolution (i.e., transfer the encoded source domain knowledge and decode it in the472
target domain) instead of being directly translated. The intuition behind this is that it is more common473
for different domain graphs to share high-level knowledge than very detailed knowledge. To address the474
graph-signal heterogeneity, MentorGNN dynamically re-weighting the importance of different kinds of475
masked graph signals via the curriculum learning framework in terms of the target domain performance.476

3.2.3 Natural + Artificial Dynamics in Graph Representations477

Inserting Masks to Preserve Evolution Patterns during Temporal Graph Representation Learning.478
Compared with baseline methods designed for static graph representation learning, considering the temporal479
information is more challenging and requires more consideration, like how to capture the evolution patterns480
of input graphs. In DySAT (Sankar et al., 2020), besides using structural attention like GAT (Velickovic et al.,481
2018) in each observed snapshot, authors design the temporal self-attention to get the node representation482

sequence from the first timestamp to the last timestamp, i.e., zv = {z(1)v , z
(2)
v , . . . , z

(T )
v }, for node v at each483

observed timestamp. To preserve the evolution patterns when encoding zv, authors design the mask matrix484
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M as follows.485

Zv =Bv(XvWv), Bv(i, j) =
exp(eijv )∑T
k=1 exp(e

ik
v )

eijv =(
(XvWq)(XvWk)

⊤
ij√

F
+M(i, j)), i, j ∈ {1, . . . , T}

(6)

where matrices Wq ∈ RD×F , Wk ∈ RD×F , and Wv ∈ RD×F are query, key, value matrices in the486
standard self-attention mechanism (Vaswani et al., 2017). Xv ∈ RT×D is the node feature of node v across487
all T timestamps, and Zv ∈ RT×F is the output time-aware representation matrix of node v. And eijv is488
the attention weight of timestamp i to timestamp j for node v, which is obtained through the mask matrix489
M ∈ RT×T .490

M(i, j) =

{
0, i ≤ j

−∞, otherwise
(7)

The introduction of M preserves the evolution pattern in an auto-regressive manner. To be specific, when491
M(i, j) = −∞, the softmax attention weight Bv(i, j) = 0, which turns off the attention weight from492
timestamp i to timestamp j.493

3.3 Dynamics in Graph Neural Networks494

In this section, we focus on a specific kind of graph representation learning tool, graph neural network495
(GNN), and see how natural dynamics and artificial dynamics work in GNNs 5.496

3.3.1 Natural Dynamics in Graph Neural Networks497

Temporal Graph Neural Networks (TGNNs). For temporal graph neural networks (TGNNs), the498
general principle is that the input graphs are evolving, e.g., the graph structure or node attributes are499
dependent on time. Since TGNNs take the graphs as input and the topological information is also called500
spatial information in some applications like traffic modeling (Yu et al., 2018a; Li et al., 2018), TGNNs501
are also called spatial-temporal graph neural networks (STGNNs or ST-GNNs) in some works (Wu et al.,502
2021). Here, we use the term temporal graph neural networks (TGNNs). How to deal with time information503
appropriately during the vanilla GNNs’ information aggregation process is the key idea for TGNNs.504
Different works propose different manners, not limited to the following list.505

• CNN-based TGNNs: In (Yan et al., 2018; Yu et al., 2018a), authors apply the convolutional operations506
from convolutional neural networks (CNNs) on graphs’ evolving features to capture time-aware node507
hidden representations.508

• RNN-based TGNNs: In (Li et al., 2018; Hajiramezanali et al., 2019; Pareja et al., 2020), authors inserts509
the recurrent units (from various RNNs such like LSTM and GRU) into GNNs to preserve the temporal510
dependency during the GNNs’ representation learning process.511

• Time Attention-based TGNNs: In (Sankar et al., 2020), authors propose using the self-attention512
mechanism on time features to learn the temporal correlations along with node representations..513

• Time Point Process-based TGNNs: In (Trivedi et al., 2019), authors utilize Time Point Process to514
capture the interleaved dynamics and get time features.515

5 As mentioned earlier, in this Section 3.3 we introduce the natural and artificial dynamic techniques that are deliberately designed for GNNs, which may or
may not be applied to the general graph embedding models.
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• Time Kernel-based TGNNS: In (Xu et al., 2020), authors use Time Kernel to project time to a516
differential domain for the time representation vectors.517

Let’s take TGAT (Xu et al., 2020) as an instance of TGNNs, to illustrate the mechanism of encoding the518
temporal information into the node representations. TGAT uses the Time Kernel function K to project519
every observed time interval of node connections into a continuous differentiable functional domain, i.e.,520
K : [t−∆t, t] → Rd, in order to represent the time feature during the information aggregation mechanism521
of GNNs. Since TGAT is inspired by the self-attention mechanism (Vaswani et al., 2017), another benefit522
of introducing the Time Kernel is that the projected hidden representation vector can serve as the positional523
encoding in the self-attention mechanism. Time Kernel K can be realized by different specific functions (Xu524
et al., 2019a). For example, in TGAT (Xu et al., 2020),525

K(te −∆t, te) = Ψ(te − (te −∆t)) = Ψ(∆t) (8)

and526

Ψ(∆t) =

√
1

d
[cosω1(∆t), cosω2(∆t), . . . , cosωd(∆t)] (9)

where ∆t = te − (te −∆t) denotes the input time interval, and {ω1, . . . , ωd} are learnable parameters.527

With the above time encoding, TGAT can learn node representation h
(t)
v for node v at time t through a528

self-attention-like mechanism. Especially, TGAT sets node v as the query node to query and aggregate529

attention weights from its one-hop time-aware neighbors, N (t)
v , to get h(t)

v . In N (t)
v , for each neighbor530

node v′, its node feature is the combination of the original input feature with the time kernel feature, i.e,531
[xv′∥K(t′, t)] ∈ R(m+d), where xv′ ∈ Rm is the original input feature of node v′, K(t′, t) ∈ Rd is the532
encoded temporal feature, and t′ is the time when node v′ and v connects.533

3.3.2 Artificial Dynamics in Graph Neural Networks534

Graph Augmentation for GNNs. One straightforward example to show artificial dynamics in graph535
neural networks is the graph augmentation designed for GNNs. In general, drop operations can also be536
considered a kind of augmentation operation (Rong et al., 2020). Because dropping parts of the input graph537
can make a new input graph, such that the volume and diversity of input graphs increase. In this viewpoint,538
at least, graph augmentation for GNNs can be categorized into three items.539

• Only drop operation: In (Rong et al., 2020), authors propose DropEdge to drop a certain amount of540
edges in the input graphs before each epoch of GNN training, to alleviate the over-fitting problem of541
GNNs. Similar operations also include DropNode (Feng et al., 2020).542

• Only add operation: In (Gilmer et al., 2017), authors propose to add a master node to connect all543
existing nodes in the input graph, which operation could serve as a global scratch for the message544
passing schema and transfer long distance information, to boost the molecule graph prediction.545

• Refine operation: In (Jin et al., 2020), authors consider the problem setting given the input graph is not546
perfect (e.g., the adjacency matrix is poisoning attacked by adversarial edges). To be specific, they aim547
to investigate the low-rank property and feature smoothness to refine (i.e., not restricted to only adding548
or dropping) the original input graph and obtain the satisfied node classification accuracy.549

More detailed operations like those mentioned above can be found in (Ding et al., 2022), where these550
augmentation operations can also be further categorized into learnable actions and random actions.551
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Figure 4. Adding Weight-Decaying Residual
Connections on an Arbitrary GNN Architecture

Adding Residual Connections among552
GNN layers. When the input graph is553
imperfect (Xu et al., 2022) (e.g., topology554
and features are not consistent, features are555
partially missing), stacking more layers in556
GNNs can aggregate information from more557
neighbors to make the hidden representation558
more informative and serve various graph559
mining tasks (Zheng et al., 2022). However,560
the vanishing gradient problem hinders the561
neural networks from being deeper by making562
it hard-to-train, i.e., both the training error563
and test error of deeper neural networks are564
higher than shallow ones (He et al., 2016). The vanishing gradient problem can be illustrated as the565
gradients of the first few layers vanish, such that the training loss cannot be successfully propagated through566
deeper models. Currently, nascent deeper GNN methods (Zhao and Akoglu, 2020; Rong et al., 2020; Li567
et al., 2019) solve this problem by adding residual connections (i.e., ResNet (He et al., 2016)) on vanilla568
graph neural networks. In a recent study (Zheng et al., 2022), authors find that ResNet ignores the non-IID569
property of graphs, and directly adding ResNet on deeper GNNs will cause the shading neighbors effect.570
This effect distorts the topology information by making faraway neighbor information more important571
in deeper GNNs, such that it adds noise to the hidden representation and degrades the downstream task572
performance.573

To address the shading neighbors effect, Zheng et al. (2022) design the weight-decaying graph residual574
connection (i.e., WDG-ResNet) deliberately for GNNs, as shown in Figure 4, which is expressed as follows.575

H̃(k) = σ(ÂH(k−1)W(k−1)), /*l-th layer of an arbitrary GNN, e.g., GCN*/

H(k) = sim(H(1), H̃(k)) · e−k/λ · H̃(k) +H(k−2), /*residual connection*/

= ecos(H
(1),H̃(k)) − k/λ · H̃(k) +H(k−2)

(10)

where cos(H(1), H̃(k)) = 1
n

∑
i

H
(1)
i (H̃

(l)
i )⊤

∥H(1)
i ∥∥H̃(l)

i ∥
measures the similarity between the k-th layer and the 1-st576

layer, and H
(1)
i is the hidden representation of node i at the 1-st layer. The term e−l/λ is the decaying577

factor to further adjust the similarity weight of H̃(l), where λ is a constant hyperparameter. Compared578
to the vanilla ResNet (He et al., 2016), the WDG-ResNet introduces the decaying factor to preserve the579
hierarchical information of input graphs when the GNNs go deeper to alleviate the shading neighbors effect.580
Moreover, the authors empirically show that the optimal decaying factor is close to the diameter of input581
graphs, and such heuristics reduce the search space for hyperparameter optimization.582

3.3.3 Natural + Artificial Dynamics in Graph Neural Networks583

Augmenting Temporal Graphs for TGNNs. Augmenting evolving graphs has considerable research584
potential but has not attracted much attention yet (Ding et al., 2022). MeTA (Wang et al., 2021a) proposes an585
adaptive data augmentation approach for improving temporal graph representation learning using TGNNs.586
The core idea is modeling the realistic noise and adding the simulated noise to the low-information area587
of graphs (e.g., long time and far neighbors), in order to decrease the noise uniqueness for de-overfitting588
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and increase the generalization ability of temporal graph representation learning process, to finally help589
downstream tasks such as link prediction. In (Wang et al., 2021a), authors propose three augmentation590
strategies: (1) perturbing time by adding Gaussian noise; (2) removing edges with a constant probability;591
(3) adding edges (i.e., sampled from the original graph) with perturbed time.592

Research about augmenting temporal graphs is still in the nascent stage. And we would like to share, at593
least, the following research directions.594

• Data-driven and learnable augmentation strategies for temporal graphs.595

• Bounded augmentation solutions on temporal graphs, i.e., evolution patterns of original graphs can be596
preserved to some extent.597

• Transferable and generalizable augmentation techniques across different temporal graphs.598

4 DISCUSSION AND SUMMARY

In this paper, we first disentangle the graph-based research into three aspects (i.e., graph mining, graph599
representations, and graph neural networks) and then introduce the definition of natural and artificial600
dynamics in graphs. After that, we introduce related works in each combination between {graph mining,601
graph representations, and graph neural networks} and {natural dynamics, artificial dynamics, and natural602
+ artificial dynamics}. In general, the topic of natural + artificial dynamics (i.e., adding artificial dynamics603
to evolving graphs) is still open in many graph research areas like graph mining, graph representations,604
and graph neural networks, and we list several opportunities in each corresponding subsection above. All605
opinions are authors’ own and to the best of their knowledge. Also, due to the time limitation, many606
outstanding works are not discussed in this paper. We hope this paper can provide insights to relevant607
researchers and contribute to the graph research community.608
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