1

O O 0N O O bW N

—_
—_

12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

l\' frontiers

Natural and Artificial Dynamics in Graphs:

Concept, Progress, and Future

Donggqi Fu and Jingrui He

University of lllinois at Urbana-Champaign, Champaign Urbana, lllinois, USA
Correspondence™:

Jingrui He

jingrui@illinois.edu

ABSTRACT

Graph structures have attracted much research attention for carrying complex relational
information. Based on graphs, many algorithms and tools are proposed and developed for dealing
with real-world tasks such as recommendation, fraud detection, molecule design, etc. In this
paper, we first discuss three topics of graph research, i.e., graph mining, graph representations,
and graph neural networks (GNNSs). Then, we introduce the definitions of natural dynamics and
artificial dynamics in graphs, and the related works of natural and artificial dynamics about how
they boost the aforementioned graph research topics, where we also discuss the current limitation
and future opportunities.

Keywords: Graph Mining, Graph Representations, Graph Neural Networks, Natural Dynamics, Artificial Dynamics

1 INTRODUCTION

In the era of big data, the relationship between entities becomes much more complex than ever before.
As a kind of relational data structure, graph (or network) attract much research attention for dealing with
this unprecedented phenomenon. To be specific, many graph-based algorithms and tools are proposed,
such as DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), node2vec (Grover and Leskovec,
2016), GCN (Kipf and Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018),
etc. Correspondingly, many challenges of real-world applications get addressed to some extent, such as
recommendation (Fan et al., 2019), fraud detection (Wang et al., 2019), and molecule design (Liu et al.,
2018), to name a few.

To investigate graph-based research and relevant problems and applications systematically, at least ! three
aspects will be discussed, i.e., graph mining, graph representations, and graph neural networks (GNNs).
Their dependency is convoluted, the reason why we aim to disentangle it is that we can discuss the current
efforts from natural and artificial dynamics studies (which are improving the graph algorithms and tools
performance) in a fine-grained view, such that we can envision detailed future research opportunities. As for
natural dynamics in graphs, we use this term to illustrate that the input graphs themselves are evolving, i.e.,
the topology structures, the node-level, edge-level, and (sub)graph-level features and labels are dependent
on time (Aggarwal and Subbian, 2014; Kazemi et al., 2020). As for artificial dynamics in graphs,
we use this term to describe that end-users change (e.g., filter, mask, drop, or augment) the existing or
construct (i.e., from scratch) the non-existing graph-related elements (e.g., graph topology, graph stream,

1" Research topics like graph theory and graph database management are also very important, but we skip discussing them in this paper.

30
31
32
33
34
35
36

37
38
39
40
41
42
43
44

45
46
47
48

49
50
51
52

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

node/graph attributes/labels, GNN gradients, GNN layer connections, etc.) to realize the certain
performance upgrade (e.g., computation efficiency (Fu et al., 2020b), model explanation (Fu and He,
2021b), decision accuracy (Zheng et al., 2022), etc.). To the best of our knowledge, the first relevant act
of conceiving artificial dynamics in graphs appeared in (Kamvar et al., 2003), where "artificial jump" is
proposed to adjust the graph topology for PageRank realizing the personal ranking function on structured
data, i.e., a random surfer would follow an originally non-existing but newly-added highway to jump to a
personally-selected node with a predefined teleportation probability.

With the above introduction of graph research terminology and dynamics category, in this paper, we are
ready to introduce some related works on investigating natural and artificial dynamics in graph mining,
graph representations, and graph neural networks, and then discuss future research opportunities. To be
specific, this survey is organized as follows. The definition and relation introduction for graph mining tasks,
graph representations, and graph neural networks are discussed in Section 2. Then, in Section 3, we discuss
the formal definition followed by concrete research works for natural dynamics, artificial dynamics, and
natural + artificial dynamics in graphs. Finally, in Section 4, we conclude the paper with sharing some
research future directions.

2 RELATIONS AMONG GRAPH MINING, GRAPH REPRESENTATIONS, AND
GRAPH NEURAL NETWORKS

To pave the way for investigating the natural and artificial dynamics in graphs, we first introduce graph
research topics (i.e., graph mining, graph representations, and graph neural networks) and their relationships
in this section. Then, in the next section, we can target each topic and see how natural dynamics and
artificial dynamics contribute to them.

Graph Representations

. N
T T TS v A

’ I\/ Graph Law Y
! .' *\ (Parametric ‘,
,' Graph Embedding ‘\ ‘\Representation)l'

! (Vector N - ,/ ~
' Representation) 41"~ .7 ‘5'/’@6
0& N ‘) T qs,
N o
X0 Visualization 7
*® (Visual I \

¢ Neural Architecture “\Representation),’ /¥~ diSCOVe Graph Mining Tasks
* Message Aggregation \\\ // nOWI r * Node (Graph) Classification
* Hyperparameter Optimization edge fOr -~ * Node Clustering

« Training Manner * Link Prediction

* Sampling Strategy * Graph Alignment
« Explanation

— * Graph Generation
: Attack and Defend discover knowledge for « Graph Anomaly Detection

« Complex Relation (Temporal, / « Structure Learning
High-Order, Heterogeneous, & e

Figure 1. Relationships among Graph Mining, Graph Representations, and Graph Neural Networks.

In general, the relationships between graph mining, graph representations, and graph neural networks
can be illustrated as shown in Figure 1. (1) Graph mining aims to extract interesting (e.g., non-trivial,
implicit, previously unknown, and potentially useful) knowledge from graph data. Graph mining consists
of numerous specific tasks, such like node classification (Kipf and Welling, 2017) is aiming to classify the

Frontiers 2

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74

75
76

77
78

79
80
81

82
83
84

85
86

87
88
89

90
91

92
93

94

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

node category based on its features, and node clustering (Shi and Malik, 2000; Andersen et al., 2006) is
aiming to partition the entire graph into disjoint or overlapped clusters (i.e., subgraphs) based on end-users’
objectives (e.g., conductance, betweeness, etc.):. For example, clustering can discover knowledge to help
GNN implementations, and Cluster-GCN (Chiang et al., 2019) is proposed to sample nodes in a topology-
preserved clustering, which could entitle vanilla GCN (Kipf and Welling, 2017) the fast computation to deal
with large-scale graph datasets. (2) Graph representations are the bases of graph mining, which projects
graphs into a proper space such that graph mining can do various task-specific computations. To the best of
our knowledge, graph representations consists of three components. First, graph embedding represents
graphs with affinity matrices like Laplacian matrix and hidden feature representation matrix, on which many
mining tasks rely, such as node classification (Kipf and Welling, 2017); Second, graph law represents graphs
with several parameters which describe the statistical property of graphs such as node degree distribution
and edge connection probability, which could help mining tasks like graph generation (Leskovec and
Faloutsos, 2007) and link prediction (Wang et al., 2021b); Third, graph visualization provides the visual
representations and can serve for the domain-specific knowledge interpretation (Bach et al., 2015; Yang
et al., 2020a). Within graph representations, graph embedding, graph law, and graph visualization can
contribute to each other, and detailed overlapping works are discussed in the following sections. (3) Graph
Neural Network (GNN) is an effective tool for extracting meaningful graph embedding vectors (or matrices)
by combining deep learning theory and graph theory (Wu et al., 2021). GNNs are composed of a family of
many specific models with different research concerns like neural architecture (Chen et al., 2020b) and
message passing aggregation design (Klicpera et al., 2019), the detailed related works are also discussed in
the following sections.

2.1 Graph Mining

Graph mining interacts with real-world problems by discovering knowledge for many applications. Based
on structured data, graph mining consists of numerous specific tasks. For example,

e Node (and Graph) Classification (Kipf and Welling, 2017; Zhang et al., 2018; Jing et al., 2021): Nodes
sharing similar features should be classified into the same category.

e Node Clustering (or Graph Partitioning) (Spielman and Teng, 2013; Andersen et al., 2006; Shi and
Malik, 2000; Ng et al., 2001): Individual nodes are clustered for optimizing certain metrics such as
inter-cluster distance, intra-cluster density, etc.

e Link Prediction (Dunlavy et al., 2011; Zhang and Chen, 2018; Kumar et al., 2019): The probability
is estimated that whether two nodes should be connected based on evidence like node structural and
attribute similarity.

e Graph Generation (Leskovec and Faloutsos, 2007; You et al., 2018; Bojchevski et al., 2018; Zhou et al.,
2019, 2020): Model the distribution of a batch of observed graphs and then generate new graphs.

e Subgraph Matching (Tong et al., 2007; Zhang et al., 2009; Du et al., 2017; Liu et al., 2021): Check
whether a query graph (usually the smaller one) can be matched in a data graph (usually the larger one)
approximately or exactly.

e Graph Anomaly Detection (Akoglu et al., 2015; Yu et al., 2018b; Zheng et al., 2019): Identify whether
the graph has abnormal entities like nodes, edges, subgraphs, etc.

e Graph Alignment (Zhang and Tong, 2016; Zhou et al., 2021; Yan et al., 2021b,a): Retrieve similar
structures (e.g., nodes, edges, and subgraphs) across graphs.

e many more ...

Frontiers 3

95
96
97
98
99
100
101

102

103
104
105
106

107

108
109
110
111
112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
129
130
131

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

Those tasks can be directly adapted to solve many high-impact problems in real-world settings. For example,
through learning the graph distribution and adding specific domain knowledge constraints, graph generators
could contribute to molecule generation and drug discovery (Luo and Ji, 2022; Liu et al., 2022a); With
modeling picture pixels as nodes, graph partitioning algorithms could achieve effective image segmentation
at scale (Bianchi et al., 2020); By modeling the information dissemination graph over news articles, readers,
and publishers (Nguyen et al., 2020) or modeling the suspicious articles into word graphs (Fu et al., 2022a),
node and graph classification tasks can help detect fake news in the real world.

2.2 Graph Representations

For accomplishing various graph mining tasks, graph representations are indispensable for providing
the bases for task-specific computations. To the best of our knowledge, graph representations can be
roughly categorized into three aspects, (1) graph embedding (i.e., vector representation), (2) graph law (i.e.,
parametric representation), and (3) graph visualization (i.e., visual representation).

2.2.1 Graph Embedding (Vector Representation)

First, graph representations can be in the form of embedding matrices, i.e., the graph topological
information and attributes are encoded into a matrix (or matrices). The most common form can be the
Laplacian matrix, which is the combination of the graph adjacency matrix and degree matrix. Recently,
the graph embedding (or graph representation learning) area attracts many research interests, along with
numerous graph embedding methods proposed for extracting the node (or graph) hidden representation
vectors from the input affinity matrices, like DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), and
node2vec (Grover and Leskovec, 2016). They 2 share the general principle to extract node representation
vectors, which means a node could reflect (e.g., predict, be proximate to, etc.) its sampled neighbors in the
embedding space, e.g., Skip-gram in (Perozzi et al., 2014; Grover and Leskovec, 2016) and order-based
proximity in (Tang et al., 2015). With the different angles of viewing graph topology and node features,
some derivatives are proposed, such as metapath2vec (Dong et al., 2017) for heterogeneous networks,
graph2vec (Narayanan et al., 2017) for the graph-level embeddings, and tdGraphEmbd (Beladev et al.,
2020) for temporal graph-level embeddings.

All graph embedding works mentioned above are unsupervised, which means the guidance (or constraints,
regularizers) during the learning process are totally from the input graph structure and features, such that the
encoded vectors within specific dimensions are actually reflecting the graph itself information. Hence, by
involving extra domain knowledge (i.e., labels and task-specific loss functions), graph embedding vectors
can serve real-world applications. For example, with user-item interaction history records and user anomaly
labels, graph embedding techniques can be leveraged for predicting the user-interested merchandise and
user’s behavior in the future (Kumar et al., 2019); By involving additional labels, graph embedding vectors
can be used to generate small molecule graphs through an encoder-decoder framework (Simonovsky and
Komodakis, 2018; Jin et al., 2018); Also, with delicately designed query questions and temporal knowledge
graphs, graph embedding techniques can be used to help answer open-world questions (Saxena et al., 2021;
Shang et al., 2022).

2 As another kind of powerful tool for graph embedding, graph neural networks (GNNs) become popular and attract research attention from both the deep
learning domain and graph theory domain. Here, "they" are not referring to graph neural networks. And we set up another section for introducing GNNss,
otherwise Section 2.2 will be enormous and overstaffing. GNNs will be discussed separately in Section 2.3. We would like to note that GNN is a tool for
realizing graph embedding as we illustrated in Figure 1, the context separation in the paper is not standing for the tied hierarchy of graph representations and
graph neural networks.

Frontiers 4

132

133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169

170

171

172
173
174

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

2.2.2 Graph Law (Parametric Representation)

Second, graphs can also be represented by several parameters. A simple but common example is
Erd6s-Rényi random graph, i.e., G(n, p) or G(n, m) (Drobyshevskiy and Turdakov, 2020). To be specific,
in G(n, p), the possibility of establishing a single edge among n nodes is independent of each other and
valued by a constant parameter p; while in G(n, m), an n-node and m-edge graph is chosen evenly from
all possible n-node and m-edge graph collections. In addition to the number of nodes, the number of edges,
and the edge probability, many common parameters are well-studied for representing or modeling graphs,
such as degree distribution, effective diameter, clustering coefficient, and many more (Chakrabarti and
Faloutsos, 2006; Drobyshevskiy and Turdakov, 2020).

Representing graphs by graph laws can be summarized into the following steps: (1) determine the
parameter (or formula of several parameters) to represent the graphs, (2) fit the value of parameters
based on the graph structures and features through statistical procedures. For example, Leskovec et al.
(2005) discover the densification law over evolving graphs in the macroscopic view, which is expressed as
e(t) o< n(t)®, and e(t) denotes the number of edges at time ¢, n(t) denotes the number of nodes at time
t, and « € [1,2] is an exponent parameter representing the density degree. And they use the empirical
observation of real-world graphs to fit the value of a. Targeting the microscopic view, Leskovec et al.
(2008) discover other graph laws. Different from the macroscopic view, they view temporal graphs in a
three-fold process, i.e., node arrival (determining how many nodes will be added), edge initiation (how
many edges will be added), and edge destination (where are the added edges), where they ignore the
deletion of nodes and edges. Then, they assign variables and corresponding equations (i.e., models) to
parameterize these three processes and use MLE (i.e., maximum likelihood estimation) to settle the model
and scalar parameters based on real-world graph observation. As an instance, the edge destination (i.e., the
probability for node u connecting node v) is modeled as last” other than deg” for the LinkedIn network
through MLE, where deg” means the connection probability is proportional to node v’s current degree
di(v)". And last™ means the probability is proportional to node v’s age since its last interaction §;(v)7,
where 7 is the parameter to be fit.

Discovering graph laws and fitting law corresponding parameters can also serve many graph mining tasks
and real-world applications. For example, after a graph law is discovered, the follow-up action is to propose
the corresponding graph generative model to test whether there exists a realizable graph generator could
generate graphs while preserving the discovered law in terms of graph properties (Leskovec et al., 2005;
Zang et al., 2018; Do et al., 2020; Kook et al., 2020; Leskovec et al., 2008; Park and Kim, 2018; Zeno et al.,
2020). Recently, the triadic closure law on temporal graphs (i.e., two nodes that share a common neighbor
directly tend to connect) has been discovered to contribute to the dynamic link prediction task (Wang et al.,
2021b). For the questions in social network analysis, e.g., "What is Twitter?", Kwak et al. (2010) give the
statistical answer in the form of parametric representation. For pre-training the language model, the values
of the weighted word co-occurrence matrix (i.e., adjacency matrix) are necessary and highly depend on
the parameters following the power law, e.g., in GloVe (Pennington et al., 2014), X;; denotes the number
of times that word j occurs in the context of word ¢, and it follows X;; = ﬁ, where r;; denotes the
frequency rank of the word pair ¢ and j in the whole corpus, and k and « are constant parameters.

2.2.3 Graph Visualization (Visual Representation)

Third, graph visualization provides visual representation by plotting the graph directly, which is
more straightforward than graph embedding and graph law to some extent. Hence, one of the research
goals in graph visualization is finding the appropriate layout for the complex networked data. To name

Frontiers 5

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212

213
214
215
216
217
218

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

a few: most graphs (e.g., a five-node complete graph) could not be plotted on the plane without edge
crossings, then Chen et al. (2020a) give the solution about how to use a 3D torus to represent the graph
and then flatten the torus onto the 2D plane with aesthetics and representation accuracy preserved; Also,
in (Nobre et al., 2020), authors evaluate which layouts (e.g., node-link diagram or matrix) are suitable
for representing attributed graphs for different graph mining tasks; Through crowd-sourced experiments,
Yang et al. (2020a) study the tactile representation of graphs for low-vision people and discuss which one
(e.g., text, matrix, or node-link diagram) could help them to understand the graph topology; When the
graph is large (e.g., hundreds of thousands of nodes), it is hard to represent the internal structure, and
Nassar et al. (2020) design the high-order view of graphs (i.e., construct k-clique weighted adjacency
matrix) and then use t-SNE to get the two-dimensional coordinates from the weighted Laplacian matrix.
Bringing time information to graph visualization started in the 1990s to deal with the scenario where the
represented graph gets updated (Beck et al., 2014). The trend for visualizing dynamic (or temporal) graphs
becomes popular, and different research goals emerge (Kerracher et al., 2014; Beck et al., 2017), like
strengthening the domain-specific evolution for domain experts (Bach et al., 2015), showing the pandemic
dissemination (Lacasa et al., 2008; Tsiotas and Magafas, 2020), explaining time-series data (e.g., response
time to different questions) with graph visualization and graph law (Mira-Iglesias et al., 2019).

Plotting graphs into an appropriate layout is more challenging when it comes to complex evolving
graphs. Hence, many dynamic graph visualization research works contribute their solutions from different
angles. For example, for balancing the trade-off between temporal coherence and spatial coherence (i.e.,
preservation of structure at a certain timestamp), Leydesdorff and Schank (2008) use the multidimensional
scaling (MDS) method. Inspired by that, Xu et al. (2013) design the dynamic multidimensional scaling
(DMDS), and Rauber et al. (2016) design the dynamic t-SNE; In order to assign end-users the flexibility
to view the different aspects of evolving graphs (e.g., time-level graph evolution or node-level temporal
evolution), Bach et al. (2014) represent evolving graphs into user-rotating cubes; To highlight the temporal
relation among graph snapshots, authors in (Bach et al., 2016) propose Time Curves to visualize the
temporal similarly between two consecutively observed adjacency matrices; In (Lentz et al., 2012; Pfitzner
et al., 2012), researchers find that paths in temporal networks may invalidate the transitive assumption,
which means the paths from node a to node b and from node b to node ¢ may not imply a transitive path
from node a via node b to node c. Inspired by this observation and to further analyze the actual length
of paths in temporal graphs, Scholtes (2017) transfer this problem into investigating the order (i.e., k) of
graphs. To be specific, the order £ can be understood as the length of a path (i.e., v;_r — ... = vi—1 —> v;)
and can be modeled by the high-order Markov Chain (i.e., P(v;|v;_r — ... — v;—1)). And the order of
temporal paths can be determined by thresholding the probability gain in the MLE model. A corresponding
follow-up visualization work is proposed targeting the high-order temporal graphs (Perri and Scholtes,
2019), which first determines the order of a temporal network as discussed above, and then constructs
intermediate supernodes for deriving the high-order temporal relationship between two nodes, finally plots
this high-order temporal relationship into edges and adds them on a static graph layout.

2.3 Graph Neural Networks

To extract the hidden representation, graph neural network (GNN), as a powerful tool, provides a new idea
different from the embedding methods like DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), and
node2vec (Grover and Leskovec, 2016). One major difference between GNNs and those mentioned above is
that GNNs could aggregate multi-hop node features to represent a node by stacking GNN layers. According
to (Xu et al., 2019b), this mechanism is called information aggregation (or message-passing in some
literature), which iteratively updates the representation vector of a node by aggregating the representation

Frontiers 6

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

219 vectors from its neighbors. The general formula of GNNs can be expressed as follows.
al®) = AGGREGATE® ({0l . w e N(v)}), b = comMBINE®) 0~V alF)) (1)

220 where hl(,k) is the hidden representation vector of node v at the k-th iteration (i.e., k-th layer), and al(,k) is
221 the aggregation among hidden representation vectors of neighbors N (v) of node v from the last iteration
222 (i.e., layer). For example, the graph convolutional neural network (GCN) (Kipf and Welling, 2017) can be
223 written in the above formulation by integrating the AGGREGATE and COMBINE as follows.

h{" = ReLUW®*D . MEAN{L ™) Vu € N (v) U {v}}) @

224 where W ~1) is a learnable weight matrix at the (k — 1)-th layer, and the original equation of GCN is as
225 follows.
H® = ReLU(AH*~DW (1)) 3)

226 where A is the normalized adjacency matrix with self-loops, i.e., A= D_%Af)_%, and A = A + 1

227 Graph neural network is a complicated computational framework that integrates the neural networks from
228 deep learning and non-Euclidean constraints from graph theory. Therefore, GNN research consists of many
229 specific facets from both ends. For example,

230 e Neural Layer Architecture Design: Recurrent (Li et al., 2018; Hajiramezanali et al., 2019), Residual
231 Connections (Chen et al., 2020b; Zheng et al., 2022), etc.

232 e Message Passing Schema: Spectral Convolution (Kipf and Welling, 2017), Spatial Convolution (Velickovic
233 et al., 2018), Simplification (Wu et al., 2019; Klicpera et al., 2019), etc.

234 e Training Manner: Semi-Supervised Learning (Kipf and Welling, 2017), Self-Supervised
235 Learning (Velickovic et al., 2019; You et al., 2020), etc.

236 e Sampling Strategy: Noises-Aware (Yang et al., 2020b), Efficiency and Generalization (Hu et al., 2020a),
237 Fairness-Preserving (Kang et al., 2022), etc.

238 e Model Trustworthy: Attack and Defend (Zhu et al., 2019; Zhang and Zitnik, 2020), Black-Box
239 Explanation (Ying et al., 2019; Luo et al., 2020; Vu and Thai, 2020), etc.

240 e many more...

241 Until now, we have introduced three aspects of graph research shown in Figure 1. Targeting each aspect,
242 research in natural and artificial dynamics could contribute to performance improvements. The detailed
243 related works are discussed in the next section, where we start by defining the natural and artificial dynamics
244 in graphs, and then investigate how natural and artificial dynamics help graph research enhancements in
245 each specific aspect.

3 NATURAL AND ARTIFICIAL DYNAMICS IN GRAPHS

246 Natural dynamics in graphs means that the input graph (to graph mining, graph representations, and
247 graph neural networks) has the naturally evolving part(s), such as the evolving World Wide Web. Formally
248 speaking, the naturally evolving part means that the topological structures or node (edge, subgraph, or
249 graph) features and labels depend on time. To be specific, the evolving graph structures can be represented
250 either in

Frontiers 7

251
252
253

254
255
256

257
258

259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285
286
287
288
289
290

291
292
293

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

e (1) continuous time (Kazemi et al., 2020) or streaming (Aggarwal and Subbian, 2014): an evolving
graph can be modeled by an initial state G with a set of timestamped events O, and each event can be
node/edge addition/deletion; or

e (2) discrete time (Kazemi et al., 2020) or snapshots (Aggarwal and Subbian, 2014): an evolving graph
can be modeled as a sequence of time-respecting snapshots GV, G2, ..., G(T), and each G*) has its
own node set V*) and edge set E(®).

For these two modelings, the corresponding time-dependent features and labels can be represented in a
time-series or a sequence of matrices such as X(l), X(2), el X,

These two modeling methods have non-trivial complements. For example, continuous-time models
rapid node/edge-level evolution, i.e., microscopic evolution (Leskovec et al., 2008), such as protein
molecule interactions in a cell (Fu and He, 2021a); However, it could not represent the episodic and slowly-
changing evolution patterns, which can be captured by discrete-time, i.e., macroscopic evolution (Leskovec
et al., 2005), such like the periodical metabolic cycles in a cell (Fu and He, 2021a). Recently, different
evolution patterns in a single graph are currently not jointly modeled for improving graph representation
comprehensiveness, but some real-world evolving graphs naturally have both evolution patterns. For
example, in (Fu and He, 2021a), each dynamic protein-protein interaction network has 36 continuous
observations (i.e., 36 edge timestamps), every 12 observations compose a metabolic cycle (i.e., 3 snapshots),
and each cycle reflects 25 mins in the real world. Inspired by this observation, a nascent work (Fu et al.,
2022b) is recently proposed to jointly model different evolution patterns into the graph representation.

Artificial dynamics in graphs means that the graph research related elements (e.g., graph topology,
graph stream, node/graph attributes/labels, GNNs gradients and neural architectures, etc.) are deliberately
re-designed by end-users for boosting the task performance in certain metrics. For the re-designing,
end-users can change (e.g., filter, mask, drop, or augment) the existing elements or construct (i.e., from
scratch) non-existing elements to improve the performance (e.g., decision accuracy, model robustness and
interpretation, etc.) than the original. To name a few, one example of artificial dynamics can be graph
augmentation: DropEdge (Rong et al., 2020) is proposed to deal with the over-fitting of GNNs by randomly
removing a certain amount of edges from the input graphs for each training epoch; DummyNode (Liu et al.,
2022b) is proposed to add a dummy node to the directed input graph, which connects all existing n nodes
with 2n directed edges. The dummy node serves as a highway to extend the information aggregation in
GNNs and contribute to capturing the global graph information, such that the graph classification accuracy
by GNNs can be enhanced. In addition to the graph augmentation, other specific examples of artificial
dynamics can be filtering unimportant coming sub-structures to save computations (Fu et al., 2020b),
adding residual connections among GNNs layers to address vanishing gradients (Zheng et al., 2022), and
perturbing the GNNs gradients for privacy protection (Yang et al., 2021).

As mentioned above, on the one hand, considering the natural dynamics could leverage temporal
dependency to contribute to graph research in terms of but not limited to, fast computation (e.g., tracking
from the past instead of computing from scratch), causality reasoning (e.g., previous states cause the
current state), comprehensive decision (e.g., prediction based on historical behaviors); On the other hand,
studying artificial dynamics could help a wide range of targets, such as machine learning effectiveness
(e.g., robustness, de-overfitting, de-oversmoothing).

Investigating natural dynamics and investigating artificial dynamics not only have shared merits but also
have exclusive advantages. For example, how to manipulate evolving graphs is still an opening question for
many downstream task improvements. Thus, a spontaneous research question is to ask whether natural

Frontiers 8

294
295
296
297
298

299
300
301

302

303
304
305
306
307
308

309

310
311
312
313
314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

dynamics can be integrated with artificial dynamics, which aims to keep the shared merits and bring
exclusive advantages to synergy complementation. Definitely, some pioneering works have been proposed
to touch this area. To introduce them, throughout the paper, we use natural + artificial dynamics to denote
the integrated investigation of natural dynamics and artificial dynamics in graph-related research and then
present related works in this category.

Starting from the following subsections, we are ready to introduce recent related works about natural,
artificial, and natural + artificial dynamics research in graph mining, graph representations, and graph
neural networks, respectively.

3.1 Dynamics in Graph Mining

Graph mining is a general term that consists of various specific mining tasks on graphs. Classic graph
mining tasks consist of node clustering (or graph partitioning), node/graph classification, and link prediction.
Also, motivated by real world application scenarios, novel graph mining tasks are being proposed for
research, such as graph generation, graph alignment, and many more. Facing various graph mining tasks,
we discuss several graph mining tasks here and then introduce the corresponding related works of natural
dynamics, artificial dynamics, and natural + artificial dynamics in each discussed task.

3.1.1 Natural Dynamics in Graph Mining

Link Prediction. The core of the link prediction task is to decide whether there should be a link between
two entities in the graph. This graph mining task can directly serve the recommender system by modeling
the user and items as nodes in their interaction graphs. The evidence to decide whether two nodes should
be linked can be the current heuristics like node embedding similarity (Zhang and Chen, 2018; Zhu et al.,
2021), and also the historical behaviors of entities can be added for a more comprehensive decision. For
example, JODIE (Kumar et al., 2019) is a link prediction model proposed based on user-item temporal
interaction bipartite graph, where a user-item interaction is modeled as (u, i, ¢, f) that means an interaction
happens between user v and item ¢ at time ¢, and f is the input feature vector of that interaction. Given
a user (or an item) has a sequence of historical interactions (i.e., a user interacts with different items at
different timestamps), JODIE (Kumar et al., 2019) applies two mutually-recursive RNN structures (i.e.,
RN Ny and RN Ny) to update the embedding for users and items as follows.

u(t) = c(Wiu(t™) + W¥i(t™) + WY f + WY A,), embedding unit of RN Ny;

i(t) = o(WLi(t™) + Whu(t™) + W f + WY A;), embedding unit of RN Ny @
where WY, W5, W¥, and W} are four parameters of RN Ny. And RN Ny and RN N share the same
intuitive logic. Suppose user u interacts with item ¢ at time ¢ with the interaction feature f, then the above
equation RN Ny updates the user embedding u(t) at time ¢ by involving the latest historical user and
item behavior, where A,, denotes the time elapsed since user u’s previous interaction with any item, u(¢™)
denotes the latest user embedding vector right before time ¢, and i(¢~) denotes the latest item embedding
vector right before time ¢. Therefore, in JODIE, each user (or item) can have a sequence of embedding
vectors, which is called its trajectory. And the user and item embeddings can be updated iteratively to
the future. The training loss is designed for whether the future user (or item) embedding vectors can be
predicted 3. If the future embedding can be predicted (e.g., u connects 7 at ¢, and i(#) is predicted through

3 The future embedding vector estimation for users and items is skipped here.

Frontiers 9

330
331

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

347
348

349
350
351
352

353

354
355
356
357
358
359
360
361

362
363
364
365

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

u(t~) and i(t7)), then the user (or item) historical evolution pattern is supposed to be encoded. Thus, the
trained model can be used to predict whether a user u interacts with an item ¢ in the future.

Graph Alignment. Compared with classic graph mining tasks, graph alignment is a relatively novel
graph mining task, aiming to find paired (i.e., similar) nodes across two graphs. The input graphs can be
attributed (e.g., heterogeneous information networks or knowledge graphs), and the proximity to decide
whether two nodes from two different graphs are paired or not can range from their attributes, their
neighborhood information (e.g., neighbor nodes attributes, connected edges’ attributes, induced subgraph
topology), etc. (Zhang and Tong, 2016; Yan et al., 2021b; Zhou et al., 2021). When aligning two graphs
in the real world, the inevitable problem is that the input graphs are evolving in terms of features and
topological structures. To this end, Yan et al. (2021a) combine two graphs into one graph, and then propose
the GNN-based fast computation graph alignment method instead of re-training the GNN from scratch
for each update of the combined graph. Specifically, authors want to encode the topology-invariant node
embedding by training a GNN model, then fine-tune this trained GNN model with updated local changes
(e.g., added nodes and edges, updated node input features). Thus, to weaken the coupling between the
graph topology (e.g., adjacency matrix A) and the GNN parameter matrix (e.g., W) at the k-th layer),
authors select GCN (Kipf and Welling, 2017) as the backbone and change its information aggregation
schema by introducing a topology-invariant mask gate M) and a highway gate T) as follows.

H* — U(AM(k—l)(H(k—l))W(k—l))

5
H® — T(k—l)(H(k—l)) oH®) 4 (1— T(k—l)(H(k—l))) o HFE-1) ©®)

where © denotes Hadamard product, topology-invariant mask gate M=) (H(k’l)) equals to H¢D o

U(W,(ﬁ_l)), highway gate 7+~ (H(*~1)) is expressed as U(M(k’_l)(H(k_l))Wék_l)), and WY and

W,(lk_l) are learnable parameters of ME=1) and 7¢-=1) The training loss function depends on whether
the embedding vectors of two paired nodes (i.e., positive samples) are close, and whether the embedding
vectors of two not paired nodes (i.e., negative samples) are far away. With this trained GNN model, future
updates can be regarded as additional training samples to fine-tune the model.

3.1.2 Artificial Dynamics in Graph Mining

Graph Secure Generation or Graph Anonymization. Graph generation is the task that models the
given graphs’ distribution and then generates many more meaningful graphs, which could contribute to
various applications (Bonifati et al., 2020). However, approximating the observed graph distributions as
much as possible will induce a privacy-leak risk in the generated graphs. For example, a node’s identity is
highly likely to be exposed in the generated social network if its connections are mostly preserved, which
means a degree-based node attacker will easily detect a vulnerability in the generated graph with some
background knowledge (Wu et al., 2010). Therefore, graph secure generation or graph anonymization is
significant to social security (Fu et al., 2022c).

To protect privacy during the graph generation, artificial dynamics can help by introducing the
perturbations during the modeling (or learning) of graph distributions. However, adding this kind of
artificial dynamics to protect graph privacy still serves for the static graph generation. How to add dynamics
to evolving graphs to protect privacy is still an opening question.

Frontiers 10

366
367
368

369
370
371

372
373
374

375
376
377

378
379
380
381
382

383
384
385
386

387
388

389
390

391
392

393

394
395
396
397

398
399
400
401
402
403
404
405
406

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

For privacy-preserving static graph generation, current solutions can be roughly classified into two types.
First, the artificial dynamics is directly performed on the observed topology to generate new graph data, to
name a few,

e Randomize the adjacency by iteratively switching existing edges {(¢,w) and (u, v)} with {(¢,v) and
(u,w)} (if (¢,v) and (u,w) do not exist in the original graph (), under the eigendecomposition
preservation (Ying and Wu, 2008).

e Inject the connection uncertainty by iteratively copying each existing edge from original graph G to a
initial null graph G’ with a certain probability, guaranteeing the degree distribution of G’ is unchanged
compared with G (Nguyen et al., 2015).

e Permute the connection distribution by proportionally flipping the edges (existing to non-existing
and vice versa), maintaining the edge-level differential privacy (edge-DP) for the graph structural
preservation (Qin et al., 2017).

Second, following the synergy of deep learning and differential privacy (Abadi et al., 2016), another way
to add artificial dynamics is targeting the gradient of deep graph learning models. To be specific, a deep
graph generative model is recently proposed under privacy constraints, i.e., in (Yang et al., 2021), privacy
protection mechanism is executed during the gradient descent phase of the generation learning process, by
adding Gaussian noise to the gradient.

In terms of how to design appropriate artificial dynamics for the evolving graph secure generation, it is still
a challenging problem because of maintaining privacy guarantee and utility preservation simultaneously.
Here we would like to share our thoughts that the next-generation techniques should address the following
challenges, at least.

e Unlike static graphs, what kind of natural dynamic information is sensitive in evolving graphs and
should be hidden in the generated graph to protect entities’ privacy is not clear.

o After the sensitive information is determined, the protection mechanism in the evolving environment is
not yet available, e.g., dealing with changing topology and features.

e When the corresponding protection mechanism is designed, it can still be challenging to maintain the
generation utility at the same time with privacy constraints.

3.1.3 Natural + Artificial Dynamics in Graph Mining

As mentioned in the above subsection, not only for the graph secure generation, adding artificial dynamics
to evolving graphs is still nascent in many graph mining tasks, and exists many research opportunities.
Here, we introduce a recent work that adds artificial dynamics to the time-evolving graph partitioning to
improve computation efficiency.

Node Clustering or Graph Partitioning. In the node
clustering family, local clustering methods target a specific
seed node (or nodes) and obtain the clustering by searching
the neighborhood instead of the entire graph. In this
paper (Fu et al., 2020b), authors propose the motif-
preserving local clustering method on temporal graphs called A “far-away”
L-MEGA, which approximately tracks the local cluster = updated edge (u, v)
position at each timestamp instead of solving it from scratch.

To make L-MEGA more efficient, one speedup technique is ~ Figure 2. Local cluster C(f) and a "far-
away" edge to be filtered at time .

c®

Frontiers 11

407
408
409
410
411
412
413

414

415
416
417

418

419
420
421
422
423
424
425

426
427
428
429
430
431
432
433
434
435
436

437
438
439
440
441
442
443
444
445

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

proposed in (Fu et al., 2020b) to filter the new arrival edges

instead of letting them go into the tracking process and save

them for future timestamps, if the new arrival edges are "far-away" from the current local cluster and do
not affect the local structure as shown in Figure 2. By doing which, the tracking time complexity can be
saved. In order to investigate whether a new arrival edge can be filtered, the authors identify the "far-away"
edges by analyzing its incident nodes in terms of the probability mass in the personal PageRank vector and
the shortest path to the local cluster.

3.2 Dynamics in Graph Representations

In this section, we mainly discuss graph embedding (i.e., graph representation learning) as one instance
of graph representations, and introduce related works about how natural dynamics and artificial dynamics
are involved in boosting the performance of graph representation learning®.

3.2.1 Natural Dynamics in Graph Representations

In the early stage, inspired by DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), and
node2vec (Grover and Leskovec, 2016), the graph embedding methods for temporal graphs are proposed,
like CDTNE (Nguyen et al., 2018), DyGEM (Goyal et al., 2018), DynamicTriad (Goyal et al., 2018),
HTNE (Zuo et al., 2018), FiGTNE (Liu et al., 2020), and tdGraphEmbd (Beladev et al., 2020). They vary in
different ways to deal with time information. For example, FIGTNE (Liu et al., 2020) utilizes the temporal
random walk to sample time-adjacent nodes. In this sampled sequence, the embedding is regularized such
that previous nodes should reflect the current node.

Recently, inspired by GNNs stacking layers to aggregate multi-hop neighbor information to get node
embedding vectors, temporal graph neural networks (TGNNSs) are proposed to consider time information
when doing the information aggregation, like EvolveGCN (Pareja et al., 2020), TGAT (Xu et al., 2020),
and many others. In some works, they are also called spatial-temporal graph neural networks (STGNN5)
because the spatial information comes from the input graph topological structure (Wu et al., 2021).
In this paper, we use the term temporal
graph neural networks, i.e., TGNNSs,
and the detailed related works for

TGNNSs are introduced in Section 3.3.1, ne=p
1.e., Natural Dynamics in Graph Neural
Networks. (b)

Multiple Evolution Patterns in
Representation Learning. As discussed
earlier, in the real world, an evolving
graph may have multiple evolution
patterns (Fu and He, 2021a). Therefore,

how to integrate multiple evolution Figure 3. Part (a) shows a streaming graph with only edge
patterns jointly during the representation ~ timestamps ¢. Part (b) shows a snapshot-modeled graph with
only snapshot timestamps t¢, where each ¢, elapses every 4 t..
Part (c) shows our multi-time evolution modeling with edge
timestamps ts and snapshot timestamps ..

Wi=1,v=3,t,=1,t:=1) .-~
(vi=1, vj = 3,te=4,t:=1)

(=3

learning process is still a nascent
problem. Generally speaking, if we

4 Here, we select graph embedding (i.e., graph representation learning) as an instance of graph representations to introduce the corresponding natural and
artificial dynamic techniques. Since GNN is a also kind of tool for graph representation learning, then in this Section 3.2, we introduce the dynamic techniques
that can be applied to general graph representation learning models. In Section 3.3, for GNNs, we will introduce the dynamic techniques that are deliberately
designed for GNNs, which may or may not be applied to the general graph embedding models like DeepWalk, LINE, node2vec, etc.

Frontiers 12

446
447
448
449
450
451
452
453

454

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

477

478
479
480
481
482
483
484

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

model each evolution pattern as a

different view of the input graph, then

VANE (Fu et al., 2020a) could get the node embedding that is suitable for each observed view. Specifically,
Temp-GFSM (Fu et al., 2022b) is proposed, which deliberately targets the streaming pattern for rapid
node/edge-level evolution and the snapshot pattern for episodic and slowly-changing evolution, as shown
in Figure 3. In Temp-GFSM, a multi-time attention mechanism is introduced with the support of the time
kernel function to get the node-level, snapshot-level, and graph-level embeddings across different evolution
patterns.

3.2.2 Artificial Dynamics in Graph Representations

Pre-training for Representation Learning with Masked Graph Signals. Generally speaking, training
graph representation learning models (e.g., GNNs) is usually executed in the (semi-)supervised setting that
requires a considerable amount of labeled data, especially when the input graphs are large. However, in
some domains (e.g., healthcare (Choi et al., 2017)), collecting high-quality labeled graph data is usually
time-consuming and costly. Therefore, recent advances have focused on the GNN pre-training (Hu et al.,
2020b,c; Qiu et al., 2020; Li et al., 2021; Xu et al., 2021; Zhou et al., 2022), which pre-trains GNN models
on the source domain(s) via proxy graph signals and then transfers pre-trained GNNs to the target domain.
One common way of realizing proxy graph signal learning is to mask the input graphs in the unit of graph
signals and train the GNNs such that they can predict the masked signals from the unmasked part. The
masked signals range from masked node/edge/subgraph attributes and masked topology (e.g., nodes and
edges) (Hu et al., 2020b,c). The quality of pre-trained GNNs can largely rely on (1) the relevance between
the source domain(s) and the target domain and (2) the selection of masked graph signals, which may
cause the negative transfer (Rosenstein et al., 2005) if (1) the source domain distribution diverges from
the target domain distribution (i.e., cross-graph heterogeneity) or masked graph signals contradict each
other (i.e., graph-signal heterogeneity) (Zhou et al., 2022). Inspired by that, Zhou et al. (2022) propose the
MentorGNN to realize the domain-adaptive graph pre-training. To address the cross-graph heterogeneity,
MentorGNN utilizes the multi-scale encoder-decoder architecture, such that knowledge transfer can be
done in a coarser resolution (i.e., transfer the encoded source domain knowledge and decode it in the
target domain) instead of being directly translated. The intuition behind this is that it is more common
for different domain graphs to share high-level knowledge than very detailed knowledge. To address the
graph-signal heterogeneity, MentorGNN dynamically re-weighting the importance of different kinds of
masked graph signals via the curriculum learning framework in terms of the target domain performance.

3.2.3 Natural + Artificial Dynamics in Graph Representations

Inserting Masks to Preserve Evolution Patterns during Temporal Graph Representation Learning.
Compared with baseline methods designed for static graph representation learning, considering the temporal
information is more challenging and requires more consideration, like how to capture the evolution patterns
of input graphs. In DySAT (Sankar et al., 2020), besides using structural attention like GAT (Velickovic et al.,
2018) in each observed snapshot, authors design the temporal self-attention to get the node representation
sequence from the first timestamp to the last timestamp, i.e., z, = {zq(jl), ZQ(,Z), el zl()T)}, for node v at each
observed timestamp. To preserve the evolution patterns when encoding z,,, authors design the mask matrix

Frontiers 13

485

486
487
488
489
490

491
492
493

494

495
496

497

498
499
500
501
502
503
504
505

506
507
508

509
510
511

512
513

514
515

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

M as follows.
.o ex 6%7'
Z, =B,(X,W,), B(i,j) = — P ~
XWX W)
el = Yo M(i, 7)), 4,5 €{1,...,T
(JF (4,9)), i,5 €4 }
where matrices W, € RP*F W, € RP*F and W, € RP*F are query, key, value matrices in the

standard self-attention mechanism (Vaswani et al., 2017). X,, € RT*D is the node feature of node v across
all T timestamps, and Z,, € RT*" is the output time-aware representation matrix of node v. And e}/ is
the attention weight of timestamp ¢ to timestamp 5 for node v, which is obtained through the mask matrix
M e RT*T,
o 0 1<
M(i, j) = { ’ ' (7
—oo, otherwise

The introduction of M preserves the evolution pattern in an auto-regressive manner. To be specific, when
M(i, j) = —oo, the softmax attention weight B, (i, j) = 0, which turns off the attention weight from
timestamp ¢ to timestamp j.

3.3 Dynamics in Graph Neural Networks

In this section, we focus on a specific kind of graph representation learning tool, graph neural network
(GNN), and see how natural dynamics and artificial dynamics work in GNNs °.

3.3.1 Natural Dynamics in Graph Neural Networks

Temporal Graph Neural Networks (TGNNs). For temporal graph neural networks (TGNNs), the
general principle is that the input graphs are evolving, e.g., the graph structure or node attributes are
dependent on time. Since TGNNSs take the graphs as input and the topological information is also called
spatial information in some applications like traffic modeling (Yu et al., 2018a; Li et al., 2018), TGNNs
are also called spatial-temporal graph neural networks (STGNNs or ST-GNNs) in some works (Wu et al.,
2021). Here, we use the term temporal graph neural networks (TGNNs). How to deal with time information
appropriately during the vanilla GNNs’ information aggregation process is the key idea for TGNNS.
Different works propose different manners, not limited to the following list.

e CNN-based TGNNs: In (Yan et al., 2018; Yu et al., 2018a), authors apply the convolutional operations
from convolutional neural networks (CNNs) on graphs’ evolving features to capture time-aware node
hidden representations.

e RNN-based TGNNs: In (Li et al., 2018; Hajiramezanali et al., 2019; Pareja et al., 2020), authors inserts
the recurrent units (from various RNNs such like LSTM and GRU) into GNNs to preserve the temporal
dependency during the GNNs’ representation learning process.

e Time Attention-based TGNNs: In (Sankar et al., 2020), authors propose using the self-attention
mechanism on time features to learn the temporal correlations along with node representations..

e Time Point Process-based TGNNs: In (Trivedi et al., 2019), authors utilize Time Point Process to
capture the interleaved dynamics and get time features.

5 As mentioned earlier, in this Section 3.3 we introduce the natural and artificial dynamic techniques that are deliberately designed for GNNs, which may or
may not be applied to the general graph embedding models.

Frontiers 14

516
517

518
519
520
521
522
523
524
525

526

527

528
529
530
531
532
533

534

535
536
537
538
539

540
541
542

543
544
545

546
547
548
549

550
551

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

e Time Kernel-based TGNNS: In (Xu et al., 2020), authors use Time Kernel to project time to a
differential domain for the time representation vectors.

Let’s take TGAT (Xu et al., 2020) as an instance of TGNNS, to illustrate the mechanism of encoding the
temporal information into the node representations. TGAT uses the Time Kernel function K to project
every observed time interval of node connections into a continuous differentiable functional domain, i.e.,
K:[t— At t] — R, in order to represent the time feature during the information aggregation mechanism
of GNNss. Since TGAT is inspired by the self-attention mechanism (Vaswani et al., 2017), another benefit
of introducing the Time Kernel is that the projected hidden representation vector can serve as the positional
encoding in the self-attention mechanism. Time Kernel K can be realized by different specific functions (Xu
et al., 2019a). For example, in TGAT (Xu et al., 2020),

K(te — At, te) = \I/(te - (te - At)) = \P(At> 3)
and
1
U(At) = \/;[cos w1 (At), coswa(At), . .., coswg(At)])
where At = t. — (te — At) denotes the input time interval, and {w;, .. .,wy} are learnable parameters.

With the above time encoding, TGAT can learn node representation hg,t) for node v at time ¢ through a

self-attention-like mechanism. Especially, TGAT sets node v as the query node to query and aggregate

attention weights from its one-hop time-aware neighbors, ngt), to get hq(f). In /\/'v(t), for each neighbor
node v/, its node feature is the combination of the original input feature with the time kernel feature, i.e,
[x||[K(#,t)] € R0"t) where x,, € R™ is the original input feature of node v/, K(¢',t) € R% is the
encoded temporal feature, and ¢’ is the time when node v" and v connects.

3.3.2 Atrtificial Dynamics in Graph Neural Networks

Graph Augmentation for GNNs. One straightforward example to show artificial dynamics in graph
neural networks is the graph augmentation designed for GNNs. In general, drop operations can also be
considered a kind of augmentation operation (Rong et al., 2020). Because dropping parts of the input graph
can make a new input graph, such that the volume and diversity of input graphs increase. In this viewpoint,
at least, graph augmentation for GNNs can be categorized into three items.

e Only drop operation: In (Rong et al., 2020), authors propose DropEdge to drop a certain amount of
edges in the input graphs before each epoch of GNN training, to alleviate the over-fitting problem of
GNN:s. Similar operations also include DropNode (Feng et al., 2020).

e Only add operation: In (Gilmer et al., 2017), authors propose to add a master node to connect all
existing nodes in the input graph, which operation could serve as a global scratch for the message
passing schema and transfer long distance information, to boost the molecule graph prediction.

e Refine operation: In (Jin et al., 2020), authors consider the problem setting given the input graph is not
perfect (e.g., the adjacency matrix is poisoning attacked by adversarial edges). To be specific, they aim
to investigate the low-rank property and feature smoothness to refine (i.e., not restricted to only adding
or dropping) the original input graph and obtain the satisfied node classification accuracy.

More detailed operations like those mentioned above can be found in (Ding et al., 2022), where these
augmentation operations can also be further categorized into learnable actions and random actions.

Frontiers 15

5562
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

574
575

576

577
578
579
580
581
582

583

584
585
586
587
588

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

Adding Residual Connections among e/
GNN layers. When the input graph is Véﬁfphﬂiii:g: | i
imperfect (Xu et al., 2022) (e.g., topology (ﬁgﬂa*”‘"w
and features are not consistent, features are

partially missing), stacking more layers in nput Graph
GNNSs can aggregate information from more Features —
neighbors to make the hidden representation

more informative and serve various graph

mining tasks (Zheng et al., 2022). However,

the vanishing gradient problem hinders the

neural networks from being deeper by making Figure 4. Adding Weight-Decaying Residual
it hard-to-train, i.e., both the training error Connections on an Arbitrary GNN Architecture

Output Graph
Representations

An Arbitrary GNN

and test error of deeper neural networks are

higher than shallow ones (He et al., 2016). The vanishing gradient problem can be illustrated as the
gradients of the first few layers vanish, such that the training loss cannot be successfully propagated through
deeper models. Currently, nascent deeper GNN methods (Zhao and Akoglu, 2020; Rong et al., 2020; Li
et al., 2019) solve this problem by adding residual connections (i.e., ResNet (He et al., 2016)) on vanilla
graph neural networks. In a recent study (Zheng et al., 2022), authors find that ResNet ignores the non-IID
property of graphs, and directly adding ResNet on deeper GNNs will cause the shading neighbors effect.
This effect distorts the topology information by making faraway neighbor information more important
in deeper GNNS, such that it adds noise to the hidden representation and degrades the downstream task
performance.

To address the shading neighbors effect, Zheng et al. (2022) design the weight-decaying graph residual
connection (i.e., WDG-ResNet) deliberately for GNNs, as shown in Figure 4, which is expressed as follows.

H® = J(AH(k_l)W(k_l)), /*1-th layer of an arbitrary GNN, e.g., GCN*/
H® = sim(E®M H®) . =¥/ . q®) 4 HF-2) tresidual connection*/ (10)
_ ecos(H(l),I:I(k)) R & (DI ()

Hgl)(ﬁgl))'r

where cos(H() H®) = L5 ED AT

T n
layer, and Hgl) is the hidden representation of node ¢ at the 1-st layer. The term e /X is the decaying

factor to further adjust the similarity weight of HO, where) is a constant hyperparameter. Compared
to the vanilla ResNet (He et al., 2016), the WDG-ResNet introduces the decaying factor to preserve the
hierarchical information of input graphs when the GNNs go deeper to alleviate the shading neighbors effect.
Moreover, the authors empirically show that the optimal decaying factor is close to the diameter of input
graphs, and such heuristics reduce the search space for hyperparameter optimization.

measures the similarity between the k-th layer and the 1-st

3.3.3 Natural + Artificial Dynamics in Graph Neural Networks

Augmenting Temporal Graphs for TGNNs. Augmenting evolving graphs has considerable research
potential but has not attracted much attention yet (Ding et al., 2022). MeTA (Wang et al., 2021a) proposes an
adaptive data augmentation approach for improving temporal graph representation learning using TGNNSs.
The core idea is modeling the realistic noise and adding the simulated noise to the low-information area
of graphs (e.g., long time and far neighbors), in order to decrease the noise uniqueness for de-overfitting

Frontiers 16

589
590
591
592

593
594

595

596
597

598

599
600
601
602
603
604
605
606
607
608

609
610
611

612
613
614
615
616
617
618
619
620
621
622
623
624

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

and increase the generalization ability of temporal graph representation learning process, to finally help
downstream tasks such as link prediction. In (Wang et al., 2021a), authors propose three augmentation
strategies: (1) perturbing time by adding Gaussian noise; (2) removing edges with a constant probability;
(3) adding edges (i.e., sampled from the original graph) with perturbed time.

Research about augmenting temporal graphs is still in the nascent stage. And we would like to share, at
least, the following research directions.

e Data-driven and learnable augmentation strategies for temporal graphs.

e Bounded augmentation solutions on temporal graphs, i.e., evolution patterns of original graphs can be
preserved to some extent.

e Transferable and generalizable augmentation techniques across different temporal graphs.

4 DISCUSSION AND SUMMARY

In this paper, we first disentangle the graph-based research into three aspects (i.e., graph mining, graph
representations, and graph neural networks) and then introduce the definition of natural and artificial
dynamics in graphs. After that, we introduce related works in each combination between {graph mining,
graph representations, and graph neural networks} and {natural dynamics, artificial dynamics, and natural
+ artificial dynamics}. In general, the topic of natural + artificial dynamics (i.e., adding artificial dynamics
to evolving graphs) is still open in many graph research areas like graph mining, graph representations,
and graph neural networks, and we list several opportunities in each corresponding subsection above. All
opinions are authors’ own and to the best of their knowledge. Also, due to the time limitation, many
outstanding works are not discussed in this paper. We hope this paper can provide insights to relevant
researchers and contribute to the graph research community.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation under Award No. IIS-1947203, 1IS-2117902,
and IIS-2137468. The views and conclusions are those of the authors and should not be interpreted as
representing the official policies of the funding agencies or the government.

REFERENCES

Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B., Mironov, 1., Talwar, K., et al. (2016). Deep
learning with differential privacy. In SIGSAC 2016

Aggarwal, C. C. and Subbian, K. (2014). Evolutionary network analysis: A survey. ACM Comput. Surv.

Akoglu, L., Tong, H., and Koutra, D. (2015). Graph based anomaly detection and description: a survey.
Data Min. Knowl. Discov.

Andersen, R., Chung, F. R. K., and Lang, K. J. (2006). Local graph partitioning using pagerank vectors. In
FOCS 2006

Bach, B., Pietriga, E., and Fekete, J. (2014). Visualizing dynamic networks with matrix cubes. In CHI
2014

Bach, B., Riche, N. H., Fernandez, R., Giannisakis, E., Lee, B., and Fekete, J.-D. (2015). Networkcube:
bringing dynamic network visualizations to domain scientists. In InfoVis 2015

Bach, B., Shi, C., Heulot, N., Madhyastha, T. M., Grabowski, T. J., and Dragicevic, P. (2016). Time curves:
Folding time to visualize patterns of temporal evolution in data. IEEE Trans. Vis. Comput. Graph.

Frontiers 17

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2014). The state of the art in visualizing dynamic graphs.
In EuroVis 2014

Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2017). A taxonomy and survey of dynamic graph
visualization. Comput. Graph. Forum

Beladev, M., Rokach, L., Katz, G., Guy, I., and Radinsky, K. (2020). tdgraphembed: Temporal dynamic
graph-level embedding. In CIKM 2020

Bianchi, F. M., Grattarola, D., and Alippi, C. (2020). Spectral clustering with graph neural networks for
graph pooling. In ICML 2020

Bojchevski, A., Shchur, O., Ziigner, D., and Giinnemann, S. (2018). Netgan: Generating graphs via random
walks. In ICML 2018

Bonifati, A., Holubov4, 1., Prat-Pérez, A., and Sakr, S. (2020). Graph generators: State of the art and open
challenges. ACM Comput. Surv.

Chakrabarti, D. and Faloutsos, C. (2006). Graph mining: Laws, generators, and algorithms. ACM Comput.
Surv.

Chen, K., Dwyer, T., Marriott, K., and Bach, B. (2020a). Doughnets: Visualising networks using torus
wrapping. In CHI 2020

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. (2020b). Simple and deep graph convolutional networks.
In ICML 2020

Chiang, W., Liu, X, Si, S., L1, Y., Bengio, S., and Hsieh, C. (2019). Cluster-gcn: An efficient algorithm for
training deep and large graph convolutional networks. In KDD 2019

Choi, E., Bahadori, M. T., Song, L., Stewart, W. F., and Sun, J. (2017). GRAM: graph-based attention
model for healthcare representation learning. In KDD 2017

Ding, K., Xu, Z., Tong, H., and Liu, H. (2022). Data augmentation for deep graph learning: A survey.
CoRR

Do, M. T., Yoon, S., Hooi, B., and Shin, K. (2020). Structural patterns and generative models of real-world
hypergraphs. In KDD 2020

Dong, Y., Chawla, N. V., and Swami, A. (2017). metapath2vec: Scalable representation learning for
heterogeneous networks. In KDD 2017

Drobyshevskiy, M. and Turdakov, D. (2020). Random graph modeling: A survey of the concepts. ACM
Comput. Surv.

Du, B., Zhang, S., Cao, N., and Tong, H. (2017). FIRST: fast interactive attributed subgraph matching. In
KDD 2017

Dunlavy, D. M., Kolda, T. G., and Acar, E. (2011). Temporal link prediction using matrix and tensor
factorizations. ACM Trans. Knowl. Discov. Data

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, Y. E., Tang, J., et al. (2019). Graph neural networks for social
recommendation. In WWW 2019

Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., et al. (2020). Graph random neural networks for
semi-supervised learning on graphs. In NeurIPS 2020

Fu, D., Ban, Y., Tong, H., Maciejewski, R., and He, J. (2022a). Disco: Comprehensive and explainable
disinformation detection. In CIKM 2022

Fu, D., Fang, L., Maciejewski, R., Torvik, V. L., and He, J. (2022b). Meta-learned metrics over multi-
evolution temporal graphs. In KDD 2022

Fu, D. and He, J. (2021a). DPPIN: A biological repository of dynamic protein-protein interaction network
data. CoRR

Fu, D. and He, J. (2021b). SDG: A simplified and dynamic graph neural network. In SIGIR 2021

Frontiers 18

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

Fu, D., He, J., Tong, H., and Maciejewski, R. (2022¢). Privacy-preserving graph analytics: Secure
generation and federated learning. CoRR

Fu, D., Xu, Z., Li, B., Tong, H., and He, J. (2020a). A view-adversarial framework for multi-view network
embedding. In CIKM 2020

Fu, D., Zhou, D., and He, J. (2020b). Local motif clustering on time-evolving graphs. In KDD 2020

Gilmer, J., Schoenholz, S. S., Riley, P. F.,, Vinyals, O., and Dahl, G. E. (2017). Neural message passing for
quantum chemistry. In ICML 2017

Goyal, P., Kamra, N., He, X., and Liu, Y. (2018). Dyngem: Deep embedding method for dynamic graphs.
CoRR

Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In KDD 2016

Hajiramezanali, E., Hasanzadeh, A., Narayanan, K. R., Duffield, N., Zhou, M., and Qian, X. (2019). In
NeurIPS 2019

Hamilton, W. L., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large graphs. In
NeurIPS 2017

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In CVPR
2016

Hu, S., Xiong, Z., Qu, M., Yuan, X., Coté, M., Liu, Z., et al. (2020a). Graph policy network for transferable
active learning on graphs. In NeurIPS 2020

Hu, W, Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V. S., et al. (2020b). Strategies for pre-training
graph neural networks. In ICLR 2020

Hu, Z., Dong, Y., Wang, K., Chang, K., and Sun, Y. (2020c). GPT-GNN: generative pre-training of graph
neural networks. In KDD 2020

Jin, W., Barzilay, R., and Jaakkola, T. S. (2018). Junction tree variational autoencoder for molecular graph
generation. In ICML 2018

Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., and Tang, J. (2020). Graph structure learning for robust graph
neural networks. In KDD 2020

Jing, B., Park, C., and Tong, H. (2021). HDMI: high-order deep multiplex infomax. In WWW 2021

Kamvar, S. D., Haveliwala, T. H., Manning, C. D., and Golub, G. H. (2003). Extrapolation methods for
accelerating pagerank computations. In WWW 2003

Kang, J., Zhou, Q., and Tong, H. (2022). Jurygcen: Quantifying jackknife uncertainty on graph convolutional
networks. In KDD 2022

Kazemi, S. M., Goel, R., Jain, K., Kobyzev, ., Sethi, A., Forsyth, P., et al. (2020). Representation learning
for dynamic graphs: A survey. J. Mach. Learn. Res.

Kerracher, N., Kennedy, J., and Chalmers, K. (2014). The design space of temporal graph visualisation. In
EuroVis 2014

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In
ICLR 2017

Klicpera, J., Bojchevski, A., and Giinnemann, S. (2019). Predict then propagate: Graph neural networks
meet personalized pagerank. In ICLR 2019

Kook, Y., Ko, J., and Shin, K. (2020). Evolution of real-world hypergraphs: Patterns and models without
oracles. In ICDM 2020

Kumar, S., Zhang, X., and Leskovec, J. (2019). Predicting dynamic embedding trajectory in temporal
interaction networks. In KDD 2019

Kwak, H., Lee, C., Park, H., and Moon, S. B. (2010). What is twitter, a social network or a news media?
In WWW 2010

Frontiers 19

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

Lacasa, L., Luque, B., Ballesteros, F., Luque, J., and Nuno, J. C. (2008). From time series to complex
networks: The visibility graph. PNAS

Lentz, H., Selhorst, T., and Sokolov, I. M. (2012). Unfolding accessibility provides a macroscopic approach
to temporal networks. CoRR

Leskovec, J., Backstrom, L., Kumar, R., and Tomkins, A. (2008). Microscopic evolution of social networks.
In KDD 2008

Leskovec, J. and Faloutsos, C. (2007). Scalable modeling of real graphs using kronecker multiplication. In
ICML 2007

Leskovec, J., Kleinberg, J. M., and Faloutsos, C. (2005). Graphs over time: densification laws, shrinking
diameters and possible explanations. In KDD 2005

Leydesdorff, L. and Schank, T. (2008). Dynamic animations of journal maps: Indicators of structural
changes and interdisciplinary developments. J. Assoc. Inf. Sci. Technol.

Li, G., Miiller, M., Thabet, A. K., and Ghanem, B. (2019). Deepgcns: Can gcns go as deep as cnns? In
ICCV 2019

Li, H., Wang, X., Zhang, Z., Yuan, Z., Li, H., and Zhu, W. (2021). Disentangled contrastive learning on
graphs. In NeurIPS 2021

Li, Y., Yu, R., Shahabi, C., and Liu, Y. (2018). Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. In ICLR 2018

Liu, L., Du, B., Ji, H., Zhai, C., and Tong, H. (2021). Neural-answering logical queries on knowledge
graphs. In KDD 2021

Liu, M., Luo, Y., Uchino, K., Maruhashi, K., and Ji, S. (2022a). Generating 3d molecules for target protein
binding. In ICML 2022

Liu, Q., Allamanis, M., Brockschmidt, M., and Gaunt, A. L. (2018). Constrained graph variational
autoencoders for molecule design. In NeurIPS 2018

Liu, X., Cheng, J., Song, Y., and Jiang, X. (2022b). Boosting graph structure learning with dummy nodes.
In ICML 2022

Liu, Z., Zhou, D., Zhu, Y., Gu, J., and He, J. (2020). Towards fine-grained temporal network representation
via time-reinforced random walk. In AAAI 2020

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., et al. (2020). Parameterized explainer for graph
neural network. In NeurIPS 2020

Luo, Y. and Ji, S. (2022). An autoregressive flow model for 3d molecular geometry generation from scratch.
In ICLR 2022

Mira-Iglesias, A., Navarro-Pardo, E., and Conejero, J. A. (2019). Power-law distribution of natural visibility
graphs from reaction times series. Symmetry

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., and Jaiswal, S. (2017). graph2vec:
Learning distributed representations of graphs. CoRR

Nassar, H., Kennedy, C., Jain, S., Benson, A. R., and Gleich, D. F. (2020). Using cliques with higher-order
spectral embeddings improves graph visualizations. In WWW 2020

Ng, A. Y., Jordan, M. L., and Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In
NeurIPS 2001

Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K., Koh, E., and Kim, S. (2018). Continuous-time
dynamic network embeddings. In Companion of WWW 2018

Nguyen, H. H., Imine, A., and Rusinowitch, M. (2015). Anonymizing social graphs via uncertainty
semantics. In CCS 2015

Frontiers 20

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

Nguyen, V., Sugiyama, K., Nakov, P., and Kan, M. (2020). FANG: leveraging social context for fake news
detection using graph representation. In CIKM 2020

Nobre, C., Wootton, D., Harrison, L., and Lex, A. (2020). Evaluating multivariate network visualization
techniques using a validated design and crowdsourcing approach. In CHI 2020

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., et al. (2020). Evolvegcn:
Evolving graph convolutional networks for dynamic graphs. In AAAI 2020

Park, H. and Kim, M. (2018). Evograph: An effective and efficient graph upscaling method for preserving
graph properties. In KDD 2018

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. In
EMNLP 2014

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: online learning of social representations. In
KDD 2014

Perri, V. and Scholtes, I. (2019). Higher-order visualization of causal structures in dynamics graphs. CoRR

Pfitzner, R., Scholtes, 1., Garas, A., Tessone, C. J., and Schweitzer, F. (2012). Betweenness preference:
Quantifying correlations in the topological dynamics of temporal networks. CoRR

Qin, Z., Yu, T., Yang, Y., Khalil, I., Xiao, X., and Ren, K. (2017). Generating synthetic decentralized social
graphs with local differential privacy. In CCS 2017

Qiu, J.,, Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., et al. (2020). GCC: graph contrastive coding
for graph neural network pre-training. In KDD 2020

Rauber, P. E., Falcdo, A. X., and Telea, A. C. (2016). Visualizing time-dependent data using dynamic t-sne.
In EuroVis 2016

Rong, Y., Huang, W., Xu, T., and Huang, J. (2020). Dropedge: Towards deep graph convolutional networks
on node classification. In ICLR 2020

Rosenstein, M. T., Marx, Z., Kaelbling, L. P., and Dietterich, T. G. (2005). To transfer or not to transfer. In
NIPS 2005 workshop on transfer learning. vol. 898, 14

Sankar, A., Wu, Y., Gou, L., Zhang, W., and Yang, H. (2020). Dysat: Deep neural representation learning
on dynamic graphs via self-attention networks. In WSDM 2020

Saxena, A., Chakrabarti, S., and Talukdar, P. P. (2021). Question answering over temporal knowledge
graphs. In ACL 2021

Scholtes, 1. (2017). When is a network a network?: Multi-order graphical model selection in pathways and
temporal networks. In KDD 2017

Shang, C., Wang, G., Qi, P., and Huang, J. (2022). Improving time sensitivity for question answering over
temporal knowledge graphs. In ACL 2022

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.

Intell.

Simonovsky, M. and Komodakis, N. (2018). Graphvae: Towards generation of small graphs using
variational autoencoders. CoRR

Spielman, D. A. and Teng, S. (2013). A local clustering algorithm for massive graphs and its application to
nearly linear time graph partitioning. SIAM J. Comput.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). LINE: large-scale information
network embedding. In WWW 2015

Tong, H., Faloutsos, C., Gallagher, B., and Eliassi-Rad, T. (2007). Fast best-effort pattern matching in
large attributed graphs. In KDD 2007

Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. (2019). Dyrep: Learning representations over dynamic
graphs. In ICLR 2019

Frontiers 21

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

Tsiotas, D. and Magafas, L. (2020). The effect of anti-covid-19 policies on the evolution of the disease: A
complex network analysis of the successful case of greece. Physics

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, et al. (2017). Attention is all
you need. In NeurIPS 2017

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2018). Graph attention
networks. In ICLR 2018

Velickovic, P., Fedus, W., Hamilton, W. L., Lio, P., Bengio, Y., and Hjelm, R. D. (2019). Deep graph
infomax. In ICLR 2019

Vu, M. N. and Thai, M. T. (2020). Pgm-explainer: Probabilistic graphical model explanations for graph
neural networks. In NeurIPS 2020

Wang, D., Qi, Y., Lin, J., Cui, P, Jia, Q., Wang, Z., et al. (2019). A semi-supervised graph attentive
network for financial fraud detection. In ICDM 2019

Wang, Y., Cai, Y., Liang, Y., Ding, H., Wang, C., Bhatia, S., et al. (2021a). Adaptive data augmentation on
temporal graphs. In NeurIPS 2021

Wang, Y., Chang, Y., Liu, Y., Leskovec, J., and Li, P. (2021b). Inductive representation learning in temporal
networks via causal anonymous walks. In ICLR 2021

Wu, F, Jr., A. H. S., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. Q. (2019). Simplifying graph
convolutional networks. In ICML 2019

Wu, X., Ying, X., Liu, K., and Chen, L. (2010). A survey of privacy-preservation of graphs and social
networks. In Managing and Mining Graph Data

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., and Yu, P. S. (2021). A comprehensive survey on graph
neural networks. IEEE Trans. Neural Networks Learn. Syst.

Xu, D., Cheng, W., Luo, D., Chen, H., and Zhang, X. (2021). Infogcl: Information-aware graph contrastive
learning. In NeurIPS 2021

Xu, D., Ruan, C., Kérpeoglu, E., Kumar, S., and Achan, K. (2019a). Self-attention with functional time
representation learning. In NeurIPS 2019

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., and Achan, K. (2020). Inductive representation learning on
temporal graphs. In ICLR 2020

Xu, K., Hu, W,, Leskovec, J., and Jegelka, S. (2019b). How powerful are graph neural networks? In ICLR
2019

Xu, K. S., Kliger, M., and III, A. O. H. (2013). A regularized graph layout framework for dynamic network
visualization. Data Min. Knowl. Discov.

Xu, Z., Du, B., and Tong, H. (2022). Graph sanitation with application to node classification. In WWW
2022

Yan, S., Xiong, Y., and Lin, D. (2018). Spatial temporal graph convolutional networks for skeleton-based
action recognition. In AAAI 2018

Yan, Y., Liu, L., Ban, Y., Jing, B., and Tong, H. (2021a). Dynamic knowledge graph alignment. In AAAI
2021

Yan, Y., Zhang, S., and Tong, H. (2021b). BRIGHT: A bridging algorithm for network alignment. In
WWW 2021

Yang, C., Wang, H., Zhang, K., Chen, L., and Sun, L. (2021). Secure deep graph generation with link
differential privacy. In IJCAI 2021

Yang, Y., Marriott, K., Butler, M., Goncu, C., and Holloway, L. (2020a). Tactile presentation of network
data: Text, matrix or diagram? In CHI 2020

Frontiers 22

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

Fu et al. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

Yang, Z., Ding, M., Zhou, C., Yang, H., Zhou, J., and Tang, J. (2020b). Understanding negative sampling
in graph representation learning. In KDD 2020

Ying, X. and Wu, X. (2008). Randomizing social networks: a spectrum preserving approach. In SDM
2008

Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. (2019). Gnnexplainer: Generating
explanations for graph neural networks. In NeurIPS 2019

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec, J. (2018). Graphrnn: Generating realistic graphs
with deep auto-regressive models. In ICML 2018

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. (2020). Graph contrastive learning with
augmentations. In NeurIPS 2020

Yu, B., Yin, H., and Zhu, Z. (2018a). Spatio-temporal graph convolutional networks: A deep learning
framework for traffic forecasting. In IJCAI 2018

Yu, W., Cheng, W., Aggarwal, C. C., Zhang, K., Chen, H., and Wang, W. (2018b). Netwalk: A flexible
deep embedding approach for anomaly detection in dynamic networks. In KDD 2018

Zang, C., Cui, P,, Faloutsos, C., and Zhu, W. (2018). On power law growth of social networks. IEEE Trans.
Knowl. Data Eng.

Zeno, G., Fond, T. L., and Neville, J. (2020). Dynamic network modeling from motif-activity. In WWW
2020

Zhang, M. and Chen, Y. (2018). Link prediction based on graph neural networks. In NeurIPS 2018

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. (2018). An end-to-end deep learning architecture for
graph classification. In AAAI 2018

Zhang, S., Li, S., and Yang, J. (2009). GADDI: distance index based subgraph matching in biological
networks. In EDBT 2009

Zhang, S. and Tong, H. (2016). FINAL.: fast attributed network alignment. In KDD 2016

Zhang, X. and Zitnik, M. (2020). Gnnguard: Defending graph neural networks against adversarial attacks.
In NeurIPS 2020

Zhao, L. and Akoglu, L. (2020). Pairnorm: Tackling oversmoothing in gnns. In ICLR 2020

Zheng, L., Fu, D., Maciejewski, R., and He, J. (2022). Deeper-gxx: Deepening arbitrary gnns. CoRR

Zheng, L., Li, Z., L1, J., Li, Z., and Gao, J. (2019). Addgraph: Anomaly detection in dynamic graph using
attention-based temporal GCN. In IJCAI 2019

Zhou, D., Zheng, L., Fu, D., Han, J., and He, J. (2022). Mentorgnn: Deriving curriculum for pre-training
gnns. In CIKM 2022

Zhou, D., Zheng, L., Han, J., and He, J. (2020). A data-driven graph generative model for temporal
interaction networks. In KDD 2020

Zhou, D., Zheng, L., Xu, J., and He, J. (2019). Misc-gan: A multi-scale generative model for graphs.
Frontiers Big Data

Zhou, Q., Li, L., Wu, X., Cao, N., Ying, L., and Tong, H. (2021). Attent: Active attributed network
alignment. In WWW 2021

Zhu, D., Zhang, Z., Cui, P., and Zhu, W. (2019). Robust graph convolutional networks against adversarial
attacks. In KDD 2019

Zhu, 7., Zhang, 7., Xhonneux, L. A. C., and Tang, J. (2021). Neural bellman-ford networks: A general
graph neural network framework for link prediction. In NeurIPS 2021

Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., and Wu, J. (2018). Embedding temporal network via
neighborhood formation. In KDD 2018

Frontiers 23

	Introduction
	Relations among Graph Mining, Graph Representations, and Graph Neural Networks
	Graph Mining
	Graph Representations
	Graph Embedding (Vector Representation)
	Graph Law (Parametric Representation)
	Graph Visualization (Visual Representation)

	Graph Neural Networks

	Natural and Artificial Dynamics in Graphs
	Dynamics in Graph Mining
	Natural Dynamics in Graph Mining
	Artificial Dynamics in Graph Mining
	Natural + Artificial Dynamics in Graph Mining

	Dynamics in Graph Representations
	Natural Dynamics in Graph Representations
	Artificial Dynamics in Graph Representations
	Natural + Artificial Dynamics in Graph Representations

	Dynamics in Graph Neural Networks
	Natural Dynamics in Graph Neural Networks
	Artificial Dynamics in Graph Neural Networks
	Natural + Artificial Dynamics in Graph Neural Networks

	Discussion and Summary

