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ABSTRACT

Dynamic transfer learning refers to the knowledge transfer from a static source task with
adequate label information to a dynamic target task with little or no label information. However,
most existing theoretical studies and practical algorithms of dynamic transfer learning assume
that the target task is continuously evolving over time. This strong assumption is often violated
in real world applications, e.g., the target distribution is suddenly changing at some time stamp.
To solve this problem, in this paper, we propose a novel meta-learning framework 1.2s based
on a progressive meta-task scheduler for dynamic transfer learning. The crucial idea of 1.2s
is to incrementally learn to schedule the meta-pairs of tasks and then learn the optimal model
initialization from those meta-pairs of tasks for fast adaptation to the newest target task. The
effectiveness of our 1.2 s framework is verified both theoretically and empirically.

Keywords: transfer learning, distribution shift, dynamic environment, meta-learning, task scheduler, image classification

1 INTRODUCTION

Transfer learning (Pan and Yang, 2009; Tripuraneni et al., 2020; Wu et al., 2021, 2022) improves the
generalization performance of a learning algorithm on the target task, by leveraging the knowledge from
a relevant source task. It has been studied (Ben-David et al., 2010; Long et al., 2015; Ganin et al., 2016;
Zhang et al., 2019) that the knowledge transferability across tasks can be theoretically guaranteed under
mild conditions, e.g., source and target tasks share the same labeling function. One assumption behind
those works is that source and target tasks are sampled from a stationary task distribution. More recently, it
is observed that in the context of transfer learning, the tasks might be sampled from a non-stationary task
distribution, i.e., the learning task might be evolving over time in real scenarios. It can be formulated as a
dynamic transfer learning problem from a static source task! with adequate label information to a dynamic
target task with little or no label information (see Figure 1).

Most existing works (Hoffman et al., 2014; Bobu et al., 2018; Kumar et al., 2020; Wang et al., 2020a; Wu
and He, 2020, 2022b) on dynamic transfer learning assume that the target task is continuously changing
over time. This assumption allows deriving the generalization error bound of dynamic transfer learning

! Tt can also be generalized to the scenarios (Wu and He, 2022b) where the knowledge is transferred from a dynamic source task to a dynamic target task.
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Figure 1. Illustration of dynamic transfer learning from a static source task (e.g., sketch image classification
with fully labeled examples) to a dynamic target task (e.g., real-world image classification with only
unlabeled examples)

using the distribution shift at any consecutive time stamps. Nevertheless, we show that these error bounds
are not tight when the task distribution changes suddenly at some time stamp. Therefore, previous works can
be hardly applied to real scenarios where the task distribution might not always be evolving continuously.
This sudden distribution shift can be induced by some unexpected issues, e.g., adversarial attacks (Wu and
He, 2021), system failures (Lu et al., 2018), etc.

To solve this problem, we derive the generalization error bound of dynamic transfer learning in terms of
adaptively scheduled meta-pairs of tasks. Moreover, it is observed that this result is closely related to the
existing error bounds (Wang et al., 2022; Wu and He, 2022b). It is found that previous works showed the
error bounds in terms of the distribution shift at any consecutive time stamps. In contrast, we consider all
the meta-pairs of tasks, e.g., a pair of tasks transferring the knowledge from an old time stamp to a new time
stamp. As a result, our error bound can be tight even when the task distribution is suddenly shifted at some
time stamp. Then, by minimizing the error bound, we propose a novel meta-learning framework L2 S based
on a progressive meta-task scheduler for dynamic transfer learning. In this framework, we automatically
learn the sampling probability for meta-pairs of tasks based on task relatedness. The effectiveness of L2 S
framework is then verified on a variety of dynamic transfer learning tasks. The major contributions of this
paper are summarized as follows.

e We consider a relaxed assumption of dynamic transfer learning, i.e., the target task distribution might
change suddenly at some time stamp when it is evolving over time. The generalization error bounds of
dynamic transfer learning can then be derived with this relaxed assumption.

e We propose a novel meta-learning framework 1.2 S based on a progressive meta-task scheduler for
dynamic transfer learning. Different from recent work (Wu and He, 2022b), L2 S learns to schedule
the meta-pairs of tasks based on task relatedness.

e Experiments on various data sets demonstrate the effectiveness of our L2 S framework over state-of-
the-art baselines.

The rest of the paper is organized as follows. We review the related work in Section 2. The problem of
dynamic transfer learning is defined in Section 3. In Section 4, we derive the error bounds of dynamic
transfer learning, followed by the proposed L2 S framework in Section 5. The empirical analysis on L2S is
provided in Section 6. Finally, we conclude the paper in Section 7.

2 RELATED WORK

In this section, we briefly introduce the related work on dynamic transfer learning and meta-learning.
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2.1 Dynamic Transfer Learning

Dynamic transfer learning (Hoffman et al., 2014; Bitarafan et al., 2016; Mancini et al., 2019) refers to the
knowledge transfer from a static source task to a dynamic target task. Compared to standard transfer learning
on the static source and target tasks (Pan and Yang, 2009; Tripuraneni et al., 2020; Wu and He, 2021; Zhou
et al., 2017, 2019a,b), dynamic transfer learning is a more challenging but realistic problem setting due
to its time evolving task relatedness. More recently, various dynamic transfer learning frameworks are
built from the following aspects: self-training (Kumar et al., 2020; Chen and Chao, 2021; Wang et al.,
2022), incremental distribution alignment (Bobu et al., 2018; Wulfmeier et al., 2018; Wang et al., 2020a;
Wu and He, 2022a), meta-learning (Liu et al., 2020; Wu and He, 2022b), contrastive learning (Tang et al.,
2021; Taufique et al., 2022), etc. Specifically, most existing works assume that the task distribution is
continuously evolving over time. Very little effort has been devoted to studying dynamic transfer learning
when this assumption is violated in real scenarios. Compared to previous works (Liu et al., 2020; Wang
et al., 2022; Wu and He, 2022b), in this paper, we focus on a more realistic dynamic transfer learning with
a relaxed assumption that the task distribution could be suddenly changed at some time stamp.

2.2 Meta-Learning

Meta-learning (Hospedales et al., 2021) leverages the knowledge from a set of prior meta-training tasks
for fast adaptation to new tasks. In the context of few-shot classification, meta-learning aims to find the
optimal model initialization (Finn et al., 2017, 2018; Wang et al., 2020b; Yao et al., 2021) from previously
seen tasks such that this model can be fine-tuned on a new task by performing a few gradient steps. It
assumes that all the tasks follow a stationary task distribution. More recently, this meta-learning paradigm
has been extended into the online learning setting where a sequence of tasks is sampled from non-stationary
task distributions (Finn et al., 2019; Acar et al., 2021). Following previous work (Wu and He, 2022b), we
formulate dynamic transfer learning as a meta-learning problem, which aims to learn the optimal model
initialization for knowledge transfer across any meta-pair of tasks. In contrast to (Wu and He, 2022b)
where the meta-pairs of tasks are simply constructed from tasks at consecutive time stamps, we propose to
learn the sampling probability for meta-pairs of tasks based on the task relatedness during model training.
This can help our meta-learning framework avoid the negative transfer induced by the meta-pairs of tasks
sampled from suddenly shifted task distribution.

3 PRELIMINARIES

In this section, we present the notation and formal problem definition of dynamic transfer learning.

3.1 Notation

Let X and ) be the input feature space and output label space respectively. We consider the dynamic
transfer learning problem (Hoffman et al., 2014; Bobu et al., 2018) with a static source task D® and a
dynamic target task {D; ;V: 1 with time stamp j. In this case, we assume that there are m® labeled training

examples D* = {(x7,
t

D; = {x! j Zjl in the j™ target task. Let 7 be the hypothesis class on X where a hypothesis is a function

h:X — Y. L(-,-) is the loss function such that £ : J) x J) — R. The expected classification error on the
source task D is defined as €°(h) = E(y y)~ps[L(h(x),y)] for any h € H, and its empirical estimate is

given by é*(h) = L 2751 L(h(x;), ;). The expected error ¢ (h) and empirical error € (h) of the target

ms J J
task at the 5" time stamp can also be defined similarly.

y?) ;'131 in the source task. Let mz. be the number of unlabeled training examples
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Figure 2. Challenges of dynamic transfer learning where the task distribution is suddenly changed at time
stamp 3. Here orange circle and green square denote data points from two classes, and the dashed line
indicates the optimal decision boundary at different time stamps.

3.2 Problem Definition

Following previous works (Hoffman et al., 2014; Bitarafan et al., 2016; Bobu et al., 2018), we formally
define the problem of dynamic transfer learning as follows.

Definition 3.1. (Dynamic Transfer Learning) Given a labeled static source task D® and an unlabeled
dynamic target task {D; ;V: 1> dynamic transfer learning aims to learn the prediction function for the newest
target task va 41 by leveraging the knowledge from historical source and target tasks.

The key challenge of dynamic transfer learning is the time evolving task relatedness between source and
target tasks. Recent works (Liu et al., 2020; Wu and He, 2022b; Wang et al., 2022) showed the generalization
error bounds by assuming that the data distribution of the target task is continuously changing over time.
Intuitively, in this case, the expected error bound on the newest target task is bounded in terms of the largest
distribution gap (e.g., maXg<;<nN d»HAH(D;, D; 41)) across time stamps. As a result, these generalization
error bounds are not tight when the task distribution is significantly shifted at some time stamp. As shown
in Figure 2, the task distribution is shifted smoothly from time stamp 1 to time stamp 2. However, it
changes sharply from time stamp 2 to time stamp 3. In real scenarios, this sharp distribution shift might be
induced by some unexpected issues, e.g., adversarial manipulation (Wu and He, 2021). This thus motivates
us to study dynamic transfer learning with a much more relaxed assumption that the task distribution could

be suddenly shifted at some time stamp.

4 THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis for dynamic transfer learning.

4.1 Generalization Error Bound

We derive the generalization error bound of dynamic transfer learning as follows. Following (Ben-David
et al., 2010; Liu et al., 2020), we use H-divergence to measure the distribution shift across tasks and
Vapnik-Chervonenkis (VC) dimension to measure the complexity of a class of functions H. Without loss
of generality, we would like to consider a binary classification problem (i.e., ) = {0, 1}) with the loss
function £(9,y) = |J — y|. The following theorem showed that the expected error of the newest target task
Df\, 1 can be bounded in terms of the historical source and target knowledge.

THEOREM 4.1. (Generalization Error Bound) Let H be a hypothesis space of VC dimension d. If there
are m labeled source examples i.i.d. drawn from D? (denoted as Df) as well) and m unlabeled target
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examples i.i.d. drawn from D; for each time stamp j = 1,--- , N + 12, then for any § > 0 and h € H, with
probability at least 1 — 0, the expected error of the newest target task D}f\, 41 can be bounded as follows.

N N+1
6]\7.5_1 < Z Z wzy( + Mij - d?-{,AH (D57D§) >
1=0 j=i+1
N N+1
dlog(2m) + log(2/9) + > i1, Zj i w” log(1/4)
+O | A+ om

where Zi]\io Zj\g}rl wij = 1, and wi; > 0if 1 < j, w;j = 0 otherwise. n;; = % ifl1<j<Nandi<j,
1

and n;j = (1 + %w’”) if j =N+ 1landi < j, nij = 0 otherwise. Here \ denotes the combined

error of the ideal hypothesis over all the tasks, i.e., A\ = minpecy Zi]\f(;l e'(h), and dyan (-, ) denotes the
empirical estimate of H-divergence over finite examples.

Note that this error bound holds with other existing distribution discrepancy measures (see Corollary 4.3),
though we consider H-divergence (Ben-David et al., 2010) in Theorem 4.1. Furthermore, we show the
generalization error bound of dynamic transfer learning from the perspective of meta-learning. That is,
instead of sharing the hypothesis & € # for all the tasks, we learn a common initialized model h € H across
tasks. Then the task-specific model h; via one-step gradient update for the target at the i time stamp, i.e.,
0; = 0 — BV L™ where 6;, 0 denotes the parameters of h;, h respectively and Emet“ is the meta-learning
loss for updating the task-specific model parameters. If we let L€ = ¢l(h) = Z oy L(h(Xki), Yki)s
the following theorem provides the generalization error bound based on meta- learnlng

THEOREM 4.2. (Meta-Learning Generalization Error Bound) Let H be a hypothesis space of VC
dimension d. If there are m labeled source examples i.i.d. drawn from D? (denoted as D6 as well) and m
unlabeled target examples i.i.d. drawn from D; for each time stamp j = 1,--- | N + 1, then for any 6 > 0
and a proper inner learning rate [3, with probability at least 1 — 0, the expected error of the newest target
task Df\, 41 can be bounded in the following.

N N+1
6N—|—1 (hnt1) < Z Z Wij (5 +7h] dHAH (Df>D§)>
1=0 j=i+1
1 X dlog(2m) + log(2/§) + Zi]\;O Z;VJ;}H ww log(1/0)
+ 0 Z mZHV@hxsz + A+ -
1=0

where Z?LO Zj\g}rl wij = 1, and w;j > 0 if i < j, wij = 0 otherwise. n;; = % if1<j<Nandi< j,

1—1 )
and 1;; = % (1 + %%) ifj=N+1landi < j, n;j = 0 otherwise. Here X\ denotes the combined

error of the ideal hypothesis over all the tasks, i.e., A\ = minjcy zi]\i—gl e'(h), and dyan (-, ) denotes the
empirical estimate of H-divergence over finite examples.

2 Here we assume that it generates the same number of examples at every time stamp, i.e., m® = mt1 == m’}v 11 = m, but the theoretical results can

also be generalized into the scenarios with different number of samples in source and target tasks.
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We observe from Theorem 4.2 that the parameter w;; plays an important role in the generalization error
bound of dynamic transfer learning. Intuitively, it is more likely to assign higher value w;; for the easy
meta-pair of tasks D; — D, with stronger class discrimination over D; (i.e., smaller € (h;)) and smaller
distribution shift between D; and D; (i.e., smaller (JH an (D, D;)).

4.2 Connection to Existing Bounds

The following corollary shows that the error bound in Theorem 4.1 can be generalized by considering
various domain discrepancy measures.

COROLLARY 4.3. With the same assumptions in Theorem 4.1, for any 6 > 0 and h € H, there exist
j > 0and n;; > 0, with probability at least 1 — 0, the expected error of the newest target task Dt N1 can
be bounded in the following.

N N+1

() <303 wiy (&0 +my - d (DLDS) ) + (1)

1=0 j=i+1

where (j(, -) can be instantiated with existing distribution discrepancy measures, including discrepancy
distance (Mansour et al., 2009), maximum mean discrepancy (Long et al., 2015), Wasserstein distance (Shen
etal., 2018), f-divergence (Acuna et al., 2021), etc. Here €2 denotes the corresponding sample complexity
when the distribution discrepancy measure is selected.

Corollary 4.3 shows the flexibility in generalizing existing static transfer learning theories (Mansour et al.,
2009; Ben-David et al., 2010; Ghifary et al., 2016; Shen et al., 2018; Zhang et al., 2019; Acuna et al., 2021)
into the dynamic transfer learning setting. Moreover, it is observed that Corollary 4.3 is closely related
to the existing generalization error bounds (Wang et al., 2022; Wu and He, 2022b) of dynamic transfer
learning, under different parameters w;; and 7;;.

e When w;; and 7);; are given by
e, ifi=0
Wij = — ifl1<i< Nandi+1=

, otherwise

pVR2+1(N +1), ifi=0andj=1
Nij =3 pVRZ+1(N +1)/7, if1l<i<Nandi+1=j

0, otherwise

where 7 € R. Then, when 7 — 0, Corollary 4.3 recovers the generalization error bound (Wang et al.,
2022).

N+1

1 (hng1) < € (ho) + pV R? + Zde (D1, D))

(\/W P ¢_ \/logmzv3“ \/log%é))
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where H is the hypothesis class of R-Lipschitz L-layer fully-connected neural networks with 1-
Lipschitz activation function.

e When w;; and 7);; are given by
e g fi+l=j L i1 =
ij = . Nij = .
0, otherwise 0, otherwise

Then, Corollary 4.3 recovers the generalization error bound (Wu and He, 2022b).

N+1

t
6N+1 E
Z_

where (17 is a Rademacher complexity term.

1
N1 ( &_1(h) + dyan (D} 1,17)) +Q, 2)

Compared to existing theoretical results (Wang et al., 2022; Wu and He, 2022b), with appropriate wj;,
our generalization error bound in Corollary 4.3 is much more tighter when there exists some time stamp ¢
such that ciH AH (Dg_l, Df) is large. It thus motivates us to develop a progressive meta-task scheduler in
the meta-learning framework for dynamic transfer learning. The crucial idea is to automatically learn the
values w;, based on the intuition that assigning large value w;; on easy meta-pair of tasks D; — D; would
make our error bound much tighter.

5 METHODOLOGY

Following (Wu and He, 2022b), we propose a meta-learning framework named L2 S for dynamic transfer
learning by empirically minimizing the error bound in Theorem 4.2. Instead of uniformly sampling the
meta-pairs of tasks in the consecutive time stamps (Wu and He, 2022b), in this paper, we learn a progressive
meta-task scheduler for automatically formulating the meta-pairs of tasks from the dynamic target task.

The overall objective function of L2S for learning the prediction function of Df\, 41 on the (N + 1)t
time stamp is given as follows.

N N+1
melnmlnj (0, w) Z Z Wi (e (0)) + 1 - dyan (Dg,D;;Mij(H))>
1=0 j=i+1
N N+1 3)
S.t. Z Z Wij = 1
i=0 j=it+1

S.t. Ml‘j (9) =0 ﬂV@ﬁmem(Dg, 'D;)

where 0 is the trainable parameters and £™¢'¢ (D!, Dj) 1s the meta-training loss. 7 > 0 is a hyper-parameter
to balance the classification error and discrepancy minimization.

The proposed L2S framework has three crucial components: meta-pairs of tasks, meta-training, and
meta-testing. The overall training procedures of 1.2 S are illustrated in Algorithm 1.

e Meta-Pairs of Tasks: Following the theoretical results in Subsection 4.1, we formulate the candidate
meta-pairs of tasks from any two different time stamps (DY, Dj) (# < j). It can be considered as a
simple knowledge transfer from Dj to Y. Here we simply denote the source task D* as Dj. Since

Frontiers 7
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174 we focus on learning the prediction function on the target task at a new time stamp, we consider the
175 knowledge transfer from an old time stamp ¢ to a new time stamp j, i.e., ¢ < j. Note that as suggested
176 in Theorem 4.2, those candidate meta-pairs of tasks might not have equal sampling probability for
177 meta-training. Therefore, we propose a progressive meta-pair scheduler to incrementally learn the
178 sampling probability of every candidate meta-pair of tasks.

As shown in Theorem 4.2, the sampling probability w;; is strongly related to the classification
error on D! and the empirical distribution discrepancy between D! and D;. However, we have only
unlabeled training examples for the target task. It is intractable to accurately estimate the classification
error on Df (z = 1,2,---) for the target task. One solution is that we can incrementally estimate
the pseudo-labels of unlabeled target examples, and then obtain the classification error using these
pseudo-labels. But it will be largely affected by the quality of the pseudo-labels. Instead, in this paper,
we simply learn the sampling probability using the empirical distribution discrepancy between D! and
D; because this distribution discrepancy involves only the unlabeled examples. That is, the sampling
probability w;; is learned as follows.

exp <1/CZHAH <Df, D;))

wij = T “4)
179 where [' is a normalization term. it indicates that the meta-pair of tasks with a smaller distribution
180 discrepancy has a larger probability of being sampled for meta-training. Intuitively, the smaller
181 distribution discrepancy guarantees the knowledge transfer across tasks (Ganin et al., 2016; Zhang
182 et al., 2019). Therefore, we can sample a set of meta-pairs of tasks S based on the sampling probability

183 for meta-training.

184 e Meta-Training: Following (Wu and He, 2022b), the meta-training over meta-pairs of tasks is given as
185 follows. Let (;;(8) = é-(M;;(8)) +n - dyan <Df, D; M (9)) be the loss function over the validation
186 set on a meta-pair of tasks. Then the model initialization ¢ can be learned by

0 « arg mein Z Gij(0)
(i,4)eS 5)
M;j(8) < 6 — BV L""(D}, D)

187 where M;; : 0 — 0;; is a function which maps the model initialization ¢ into the optimal task-specific
188 parameter 6;;. Similar to the model-agnostic meta-learning (MAML) (Finn et al., 2017), M;; () can
189 be instantiated by one or a few gradient descent updates in practice. In this case, the meta-training loss
190 is given by LM% (DY, D;) = e(M;;(0)) +n - Ay an <Df-, D}?; Mij(9)> over the training set.

191 As illustrated in Algorithm 1, the predictive function is incrementally learned for the target task at
192 every historical time stamp, and then the pseudo-labels of unlabeled target examples can be inferred.

e Meta-Testing: The optimal parameters 6 on the newest target task DY 41 could be learned by
fine-tuning the optimal model initialization 6 on a selective meta-pair of tasks (D,tf, DY, 1)

On+1 = Myn41)(0) < 0 — BVoL" (D}, Dy 1) (6)
193 where 6 is the optimized model initialization learned in the meta-training phase. Here we choose the
194 meta-pair of tasks (D!, D’}\, 1) by estimating the sampling probability w(n41) (B =0,1,---,N)and
195 choosing £ with the largest value wy,(y 1)

Frontiers 8
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Algorithm 1 Learning to Schedule (1.2 S)

Input: A source task D? (denoted as Dé) and a dynamic target task {D;

N

j=1» the newest target task DY, 1

Output: Prediction performance on the new target task Dﬁv 1

1:

2:
3
4
5
6:
7
8:

9:
10:

Initialize the set of meta-pairs of tasks S = ();
————————— Meta-training - — — — — — — — —
for k. =1to N do

Find all the candidate meta-pairs of tasks from Df), S DZ;
Estimate the sampling probability for these meta-pairs using Eq. (4);
Select a set of meta-pairs of tasks according to the sampling probability;
Learn the model initialization 6* via Eq. (5);
. Generate the pseudo-label for D! ;
end for

————————— Meta-testing — — — — — — — — —
Fine-tune on the newest target task Df\, 41 vVia Eq.(6);

return Predicted labels on the newest target task Df\, 41

6

EXPERIMENTS

196 In this section, we provide the empirical analysis of L2 S framework on various data sets.

197 6.1

Experimental Setup

198  We used the following publicly available image data sets:

199 °
200
201
202
203
204
205
206
207
208
209
210
211

212 .
213
214
215
216
217
218

Rotating MNIST (Kumar et al., 2020): The original MNIST (LeCun et al., 1998) is a digital image
data set with 60000 images from 10 categories. Rotating MNIST is a semi-synthetic version of MNIST
where each image is rotated by a degree. Following (Bobu et al., 2018; Kumar et al., 2020), we rotate
each image by an angle for generating the time-evolving classification task. More specifically, for
the source task, we randomly choose 32 images and then rotate them by an angle between 0 and 10
degrees. All the images in the source task are associated with class labels. For the time-evolving target
task, we randomly choose 32 images at every time stamp j (j = 1,--- , 35) and rotate them by an
angle between 10 - j and 10 - (j + 1) degrees. It can be seen that in this case, the data distribution of
the target task is continuously evolving over time. Therefore, we denote the aforementioned Rotating
MNIST as a data set “with continuous evolvement”. In contrast, we consider the dynamic transfer
learning scenarios “with large distribution shift”, where the samples at the last 18 time stamps of the
target task are randomly shuffled. That is, the target task might not be evolving smoothly with respect
to the rotation degree.

ImageCLEF-DA (Long et al., 2017): ImageCLEF-DA has three image classification tasks: Caltech-256
(C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P). Following (Wu and He, 2022b), we
generate the time evolving target task by adding random noise and rotation to the original images.
For example, if we consider Caltech-256 (C) as the target task, we can generate a time-evolving
target task by rotating the original images of Caltech-256 with a degree Oy4(j) (j = 1,2---,5 is
the time stamp) and adding the random salt&pepper noise with the magnitude O,,(j), i.e., O4(j) =
15-(7—1),0,(j) =0.01-(j — 1), N =4.

219 Following (Bobu et al., 2018; Wu and He, 2022b), we report both the classification accuracy on the newest
220 target task (Acc) and the average classification accuracy on the historical target tasks (H-Acc) in the
221 experiments. The comparison baselines we used in the experiments include: (1) static transfer learning
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Figure 3. Rotating MNIST with (A) continuous evolvement. (B) large distribution shift.
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Figure 4. I — C on ImageCLEF-DA with (C) continuous evolvement. (D) large distribution shift. I — P
on ImageCLEF-DA with (E) continuous evolvement. (F) large distribution shift.

approaches: SourceOnly, DAN (Long et al., 2015), DANN (Ganin et al., 2016), and MDD (Zhang et al.,
2019); and (2) dynamic transfer learning: CUA (Bobu et al., 2018), GST (Kumar et al., 2020), L2E (Wu
and He, 2022b), and our proposed L2 S framework. For a fair comparison, all the methods use the same
base models for feature extraction, e.g., LeNet for Rotating MNIST and ResNet-18 (He et al., 2016) for
ImageCLEF-DA. In addition, we set n = 1, # = 0.01 and the number of inner epochs in Mij(ﬁ) as 1. All
the experiments are performed on a Windows machine with four 3.80GHz Intel Cores, 64GB RAM and
two NVIDIA Quadro RTX 5000 GPUs.

6.2 Results

Figure 3 and Figure 4 show the distribution shift in the dynamic transfer learning tasks, where “S-T”
denotes the distribution difference d(D?, D;) between the source and the target at every time stamp and
“T-T” denotes the distribution difference d(D}?_l, D;) of the target at consecutive time stamp. Here we use
maximum mean discrepancy (MMD) (Gretton et al., 2012) to measure the distribution difference across
tasks. We see that when the target task is continuously evolving over time, d(D;_l, D;) is small. This
enables gradual knowledge transferability in the target task. If there exists a large distribution shift at some
times, i.e., d(D;_l, D;) is large, the strategy of gradual knowledge transferability might fail. In Figure 3
and Figure 4, the large distribution shift happened in the time stamps 17-35 on Rotating MNIST and time
stamp 1 on I — C/P.

Table 1 and Table 2 provides the experimental results of L2 S as well as baselines on Rotating MNIST
and Image-CLEF data sets. We have the following observations from the results. On the one hand, when
the target task is continuously evolving over time, most dynamic transfer learning baselines can achieve
satisfactory performance on both the newest and historical target tasks. The baseline GST (Kumar et al.,
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With continuous evolvement | With large distribution shift

Methods Acc H-Acc Acc H-Acc
SourceOnly 1.0000 0.4393 0.3437 0.4393
DAN (Long et al., 2015) 1.0000 0.4518 0.5625 0.4830
DANN (Ganin et al., 2016) | 1.0000 0.3884 0.3750 0.4000
MDD (Zhang et al., 2019) | 1.0000 0.4250 0.4063 0.4482
CUA (Bobu et al., 2018) 0.9375 0.9277 0.4375 0.8259
GST (Kumar et al., 2020) 0.0625 0.1062 0.1250 0.2259
L2E (Wu and He, 2022b) 0.9688 0.9795 0.6250 0.7179
L2S 1.0000 0.9991 0.9687 0.9116

Table 1. Results of dynamic transfer learning on Rotating MNIST

With continuous evolvement With large distribution shift
Methods I-C I—-P I—-C I—-P
Acc  H-Acc| Acc H-Acc| Acc H-Acc| Acc  H-Acc
SourceOnly 0.3125 0.4250 | 0.2812 0.3938 | 0.3125 0.4125 | 0.2187 0.2562

DAN (Long et al., 2015) 0.2500 0.4000 | 0.2187 0.2688 | 0.3750 0.3750 | 0.2500 0.2625
DANN (Ganin et al., 2016) | 0.3125 0.4438 | 0.3125 0.4188 | 0.3125 0.4125 | 0.1875 0.2750
MDD (Zhang et al., 2019) | 0.3437 0.4750 | 0.3125 0.4562 | 0.3125 0.4062 | 0.2500 0.3188
CUA (Bobu et al., 2018) 0.4063 0.5125 | 0.5312 0.5438 | 0.4375 0.4625 | 0.3437 0.4000
GST (Kumar et al., 2020) | 0.5000 0.5312 | 0.4375 0.4312 | 0.2812 0.3062 | 0.2500 0.2562
L2E (Wu and He, 2022b) | 0.5625 0.6875 | 0.5625 0.5875 | 0.3750 0.4812 | 0.3750 0.4812
L2S 0.5625 0.6125 | 0.6562 0.6188 | 0.4375 0.5500 | 0.4375 0.4812

Table 2. Results of dynamic transfer learning on ImageCLEF-DA
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Figure 5. Ablation study with different number of inner epochs

2020) fails on Rotating MNIST, because the self-training approach might be more likely to accumulate the
classification error when the target task is evolving for a long time. On the other hand, the performance of
CUA (Bobu et al., 2018) and L2E (Wu and He, 2022b) drops significantly when there is a large distribution
shift within the target task at some time stamp. In contrast, by adaptively selecting the meta-pairs of tasks,
the proposed 1.2 S framework can mitigate the issue of the potential large distribution shift in the targe task.
Specifically, compared to L2E (Wu and He, 2022b), L2 S improves the performance by a large margin.
This confirms the efficacy of the proposed progressive meta-pair scheduler.

6.3 Analysis

We provide the ablation study of our 1.2 S framework with respect to the number of inner training epochs.
The results on the newest target task of Rotating MNIST are shown in Figure 5, where we use 1 or 5 inner
epochs for our meta-learning framework. We see that using more inner epochs can improve the convergence
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of L2S but it sacrifices the classification accuracy on the historical target task. This is because L2 S with
more inner epochs would enforce the fine-tuned model to be more task-specific. Thus, we set the number
of inner epochs as 1 in our experiments.

7 CONCLUSION

In this paper, we study the problem of dynamic transfer learning from a labeled source task to an unlabeled
dynamic target task. We start by deriving the generalization error bounds of dynamic transfer learning
by assigning the meta-pairs of tasks with different weights. This allows us to provide the tighter error
bound when there is a large distribution shift of the target task at some time stamp. Then we develop a
novel meta-learning framework L2 S with progressive meta-task scheduler for dynamic transfer learning.
Extensive experiments on several image data sets demonstrate the effectiveness of the proposed L2S
framework over state-of-the-art baselines.
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