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ABSTRACT2

Dynamic transfer learning refers to the knowledge transfer from a static source task with3
adequate label information to a dynamic target task with little or no label information. However,4
most existing theoretical studies and practical algorithms of dynamic transfer learning assume5
that the target task is continuously evolving over time. This strong assumption is often violated6
in real world applications, e.g., the target distribution is suddenly changing at some time stamp.7
To solve this problem, in this paper, we propose a novel meta-learning framework L2S based8
on a progressive meta-task scheduler for dynamic transfer learning. The crucial idea of L2S9
is to incrementally learn to schedule the meta-pairs of tasks and then learn the optimal model10
initialization from those meta-pairs of tasks for fast adaptation to the newest target task. The11
effectiveness of our L2S framework is verified both theoretically and empirically.12
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1 INTRODUCTION

Transfer learning (Pan and Yang, 2009; Tripuraneni et al., 2020; Wu et al., 2021, 2022) improves the14
generalization performance of a learning algorithm on the target task, by leveraging the knowledge from15
a relevant source task. It has been studied (Ben-David et al., 2010; Long et al., 2015; Ganin et al., 2016;16
Zhang et al., 2019) that the knowledge transferability across tasks can be theoretically guaranteed under17
mild conditions, e.g., source and target tasks share the same labeling function. One assumption behind18
those works is that source and target tasks are sampled from a stationary task distribution. More recently, it19
is observed that in the context of transfer learning, the tasks might be sampled from a non-stationary task20
distribution, i.e., the learning task might be evolving over time in real scenarios. It can be formulated as a21
dynamic transfer learning problem from a static source task1 with adequate label information to a dynamic22
target task with little or no label information (see Figure 1).23

Most existing works (Hoffman et al., 2014; Bobu et al., 2018; Kumar et al., 2020; Wang et al., 2020a; Wu24
and He, 2020, 2022b) on dynamic transfer learning assume that the target task is continuously changing25
over time. This assumption allows deriving the generalization error bound of dynamic transfer learning26

1 It can also be generalized to the scenarios (Wu and He, 2022b) where the knowledge is transferred from a dynamic source task to a dynamic target task.
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Figure 1. Illustration of dynamic transfer learning from a static source task (e.g., sketch image classification
with fully labeled examples) to a dynamic target task (e.g., real-world image classification with only
unlabeled examples)

using the distribution shift at any consecutive time stamps. Nevertheless, we show that these error bounds27
are not tight when the task distribution changes suddenly at some time stamp. Therefore, previous works can28
be hardly applied to real scenarios where the task distribution might not always be evolving continuously.29
This sudden distribution shift can be induced by some unexpected issues, e.g., adversarial attacks (Wu and30
He, 2021), system failures (Lu et al., 2018), etc.31

To solve this problem, we derive the generalization error bound of dynamic transfer learning in terms of32
adaptively scheduled meta-pairs of tasks. Moreover, it is observed that this result is closely related to the33
existing error bounds (Wang et al., 2022; Wu and He, 2022b). It is found that previous works showed the34
error bounds in terms of the distribution shift at any consecutive time stamps. In contrast, we consider all35
the meta-pairs of tasks, e.g., a pair of tasks transferring the knowledge from an old time stamp to a new time36
stamp. As a result, our error bound can be tight even when the task distribution is suddenly shifted at some37
time stamp. Then, by minimizing the error bound, we propose a novel meta-learning framework L2S based38
on a progressive meta-task scheduler for dynamic transfer learning. In this framework, we automatically39
learn the sampling probability for meta-pairs of tasks based on task relatedness. The effectiveness of L2S40
framework is then verified on a variety of dynamic transfer learning tasks. The major contributions of this41
paper are summarized as follows.42

• We consider a relaxed assumption of dynamic transfer learning, i.e., the target task distribution might43
change suddenly at some time stamp when it is evolving over time. The generalization error bounds of44
dynamic transfer learning can then be derived with this relaxed assumption.45

• We propose a novel meta-learning framework L2S based on a progressive meta-task scheduler for46
dynamic transfer learning. Different from recent work (Wu and He, 2022b), L2S learns to schedule47
the meta-pairs of tasks based on task relatedness.48

• Experiments on various data sets demonstrate the effectiveness of our L2S framework over state-of-49
the-art baselines.50

The rest of the paper is organized as follows. We review the related work in Section 2. The problem of51
dynamic transfer learning is defined in Section 3. In Section 4, we derive the error bounds of dynamic52
transfer learning, followed by the proposed L2S framework in Section 5. The empirical analysis on L2S is53
provided in Section 6. Finally, we conclude the paper in Section 7.54

2 RELATED WORK

In this section, we briefly introduce the related work on dynamic transfer learning and meta-learning.55
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2.1 Dynamic Transfer Learning56

Dynamic transfer learning (Hoffman et al., 2014; Bitarafan et al., 2016; Mancini et al., 2019) refers to the57
knowledge transfer from a static source task to a dynamic target task. Compared to standard transfer learning58
on the static source and target tasks (Pan and Yang, 2009; Tripuraneni et al., 2020; Wu and He, 2021; Zhou59
et al., 2017, 2019a,b), dynamic transfer learning is a more challenging but realistic problem setting due60
to its time evolving task relatedness. More recently, various dynamic transfer learning frameworks are61
built from the following aspects: self-training (Kumar et al., 2020; Chen and Chao, 2021; Wang et al.,62
2022), incremental distribution alignment (Bobu et al., 2018; Wulfmeier et al., 2018; Wang et al., 2020a;63
Wu and He, 2022a), meta-learning (Liu et al., 2020; Wu and He, 2022b), contrastive learning (Tang et al.,64
2021; Taufique et al., 2022), etc. Specifically, most existing works assume that the task distribution is65
continuously evolving over time. Very little effort has been devoted to studying dynamic transfer learning66
when this assumption is violated in real scenarios. Compared to previous works (Liu et al., 2020; Wang67
et al., 2022; Wu and He, 2022b), in this paper, we focus on a more realistic dynamic transfer learning with68
a relaxed assumption that the task distribution could be suddenly changed at some time stamp.69

2.2 Meta-Learning70

Meta-learning (Hospedales et al., 2021) leverages the knowledge from a set of prior meta-training tasks71
for fast adaptation to new tasks. In the context of few-shot classification, meta-learning aims to find the72
optimal model initialization (Finn et al., 2017, 2018; Wang et al., 2020b; Yao et al., 2021) from previously73
seen tasks such that this model can be fine-tuned on a new task by performing a few gradient steps. It74
assumes that all the tasks follow a stationary task distribution. More recently, this meta-learning paradigm75
has been extended into the online learning setting where a sequence of tasks is sampled from non-stationary76
task distributions (Finn et al., 2019; Acar et al., 2021). Following previous work (Wu and He, 2022b), we77
formulate dynamic transfer learning as a meta-learning problem, which aims to learn the optimal model78
initialization for knowledge transfer across any meta-pair of tasks. In contrast to (Wu and He, 2022b)79
where the meta-pairs of tasks are simply constructed from tasks at consecutive time stamps, we propose to80
learn the sampling probability for meta-pairs of tasks based on the task relatedness during model training.81
This can help our meta-learning framework avoid the negative transfer induced by the meta-pairs of tasks82
sampled from suddenly shifted task distribution.83

3 PRELIMINARIES

In this section, we present the notation and formal problem definition of dynamic transfer learning.84

3.1 Notation85

Let X and Y be the input feature space and output label space respectively. We consider the dynamic86
transfer learning problem (Hoffman et al., 2014; Bobu et al., 2018) with a static source task Ds and a87
dynamic target task {Dt

j}Nj=1 with time stamp j. In this case, we assume that there are ms labeled training88

examples Ds = {(xs
i , y

s
i )}m

s

i=1 in the source task. Let mt
j be the number of unlabeled training examples89

Dt
j = {xt

ij}
mt

j

i=1 in the jth target task. LetH be the hypothesis class on X where a hypothesis is a function90
h : X → Y . L(·, ·) is the loss function such that L : Y × Y → R. The expected classification error on the91
source task Ds is defined as ϵs(h) = E(x,y)∼Ds [L(h(x), y)] for any h ∈ H, and its empirical estimate is92

given by ϵ̂s(h) = 1
ms

∑ms

i=1 L(h(xi), yi). The expected error ϵtj(h) and empirical error ϵ̂tj(h) of the target93

task at the jth time stamp can also be defined similarly.94
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Figure 2. Challenges of dynamic transfer learning where the task distribution is suddenly changed at time
stamp 3. Here orange circle and green square denote data points from two classes, and the dashed line
indicates the optimal decision boundary at different time stamps.

3.2 Problem Definition95

Following previous works (Hoffman et al., 2014; Bitarafan et al., 2016; Bobu et al., 2018), we formally96
define the problem of dynamic transfer learning as follows.97

Definition 3.1. (Dynamic Transfer Learning) Given a labeled static source task Ds and an unlabeled98
dynamic target task {Dt

j}Nj=1, dynamic transfer learning aims to learn the prediction function for the newest99

target task Dt
N+1 by leveraging the knowledge from historical source and target tasks.100

The key challenge of dynamic transfer learning is the time evolving task relatedness between source and101
target tasks. Recent works (Liu et al., 2020; Wu and He, 2022b; Wang et al., 2022) showed the generalization102
error bounds by assuming that the data distribution of the target task is continuously changing over time.103
Intuitively, in this case, the expected error bound on the newest target task is bounded in terms of the largest104
distribution gap (e.g., max0≤j≤N dH∆H(Dt

j ,Dt
j+1)) across time stamps. As a result, these generalization105

error bounds are not tight when the task distribution is significantly shifted at some time stamp. As shown106
in Figure 2, the task distribution is shifted smoothly from time stamp 1 to time stamp 2. However, it107
changes sharply from time stamp 2 to time stamp 3. In real scenarios, this sharp distribution shift might be108
induced by some unexpected issues, e.g., adversarial manipulation (Wu and He, 2021). This thus motivates109
us to study dynamic transfer learning with a much more relaxed assumption that the task distribution could110
be suddenly shifted at some time stamp.111

4 THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis for dynamic transfer learning.112

4.1 Generalization Error Bound113

We derive the generalization error bound of dynamic transfer learning as follows. Following (Ben-David114
et al., 2010; Liu et al., 2020), we use H-divergence to measure the distribution shift across tasks and115
Vapnik-Chervonenkis (VC) dimension to measure the complexity of a class of functionsH. Without loss116
of generality, we would like to consider a binary classification problem (i.e., Y = {0, 1}) with the loss117
function L(ŷ, y) = |ŷ − y|. The following theorem showed that the expected error of the newest target task118
Dt

N+1 can be bounded in terms of the historical source and target knowledge.119

THEOREM 4.1. (Generalization Error Bound) LetH be a hypothesis space of VC dimension d. If there
are m labeled source examples i.i.d. drawn from Ds (denoted as Dt

0 as well) and m unlabeled target
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examples i.i.d. drawn from Dt
j for each time stamp j = 1, · · · , N +12, then for any δ > 0 and h ∈ H, with

probability at least 1− δ, the expected error of the newest target task Dt
N+1 can be bounded as follows.

ϵtN+1(h) ≤
N∑
i=0

N+1∑
j=i+1

wij

(
ϵ̂ti(h) + ηij · d̂H∆H

(
Dt

i ,Dt
j

) )

+O

λ+

√
d log(2m) + log(2/δ) +

∑N
i=0

∑N+1
j=i+1 w

2
ij log(1/δ)

2m


where

∑N
i=0

∑N+1
j=i+1 wij = 1, and wij ≥ 0 if i < j, wij = 0 otherwise. ηij = 1

2 if 1 ≤ j ≤ N and i < j,120

and ηij =
1
2

(
1 +

∑i−1
k=0 wki

wij

)
if j = N + 1 and i < j, ηij = 0 otherwise. Here λ denotes the combined121

error of the ideal hypothesis over all the tasks, i.e., λ = minh∈H
∑N+1

i=0 ϵti(h), and d̂H∆H(·, ·) denotes the122
empirical estimate ofH-divergence over finite examples.123

Note that this error bound holds with other existing distribution discrepancy measures (see Corollary 4.3),124
though we consider H-divergence (Ben-David et al., 2010) in Theorem 4.1. Furthermore, we show the125
generalization error bound of dynamic transfer learning from the perspective of meta-learning. That is,126
instead of sharing the hypothesis h ∈ H for all the tasks, we learn a common initialized model h̄ ∈ H across127
tasks. Then the task-specific model hi via one-step gradient update for the target at the ith time stamp, i.e.,128
θi = θ̄−β∇θLmeta, where θi, θ̄ denotes the parameters of hi, h̄ respectively and Lmeta is the meta-learning129
loss for updating the task-specific model parameters. If we let Lmeta = ϵ̂ti(h̄) =

1
m

∑m
k=1 L(h̄(xki), yki),130

the following theorem provides the generalization error bound based on meta-learning.131

THEOREM 4.2. (Meta-Learning Generalization Error Bound) Let H be a hypothesis space of VC
dimension d. If there are m labeled source examples i.i.d. drawn from Ds (denoted as Dt

0 as well) and m
unlabeled target examples i.i.d. drawn from Dt

j for each time stamp j = 1, · · · , N + 1, then for any δ > 0
and a proper inner learning rate β, with probability at least 1− δ, the expected error of the newest target
task Dt

N+1 can be bounded in the following.

ϵtN+1(hN+1) ≤
N∑
i=0

N+1∑
j=i+1

wij

(
ϵ̂ti(hi) + ηij · d̂H∆H

(
Dt

i ,Dt
j

) )

+O

 N∑
i=0

(
1

m

m∑
k=1

∣∣∣∣∇θh̄(xki)
∣∣∣∣)2

+ λ+

√
d log(2m) + log(2/δ) +

∑N
i=0

∑N+1
j=i+1 w

2
ij log(1/δ)

m


where

∑N
i=0

∑N+1
j=i+1 wij = 1, and wij ≥ 0 if i < j, wij = 0 otherwise. ηij = 1

2 if 1 ≤ j ≤ N and i < j,132

and ηij =
1
2

(
1 +

∑i−1
k=0 wki

wij

)
if j = N + 1 and i < j, ηij = 0 otherwise. Here λ denotes the combined133

error of the ideal hypothesis over all the tasks, i.e., λ = minh∈H
∑N+1

i=0 ϵti(h), and d̂H∆H(·, ·) denotes the134
empirical estimate ofH-divergence over finite examples.135

2 Here we assume that it generates the same number of examples at every time stamp, i.e., ms = mt
1 = · · · = mt

N+1 = m, but the theoretical results can
also be generalized into the scenarios with different number of samples in source and target tasks.
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We observe from Theorem 4.2 that the parameter wij plays an important role in the generalization error136
bound of dynamic transfer learning. Intuitively, it is more likely to assign higher value wij for the easy137
meta-pair of tasks Di → Dj with stronger class discrimination over Di (i.e., smaller ϵ̂ti(hi)) and smaller138

distribution shift between Di and Dj (i.e., smaller d̂H∆H(Dt
i ,Dt

j)).139

4.2 Connection to Existing Bounds140

The following corollary shows that the error bound in Theorem 4.1 can be generalized by considering141
various domain discrepancy measures.142

COROLLARY 4.3. With the same assumptions in Theorem 4.1, for any δ > 0 and h ∈ H, there exist
wij ≥ 0 and ηij ≥ 0, with probability at least 1− δ, the expected error of the newest target task Dt

N+1 can
be bounded in the following.

ϵtN+1(h) ≤
N∑
i=0

N+1∑
j=i+1

wij

(
ϵ̂ti(h) + ηij · d̂

(
Dt

i ,Dt
j

))
+ Ω (1)

where d̂(·, ·) can be instantiated with existing distribution discrepancy measures, including discrepancy143
distance (Mansour et al., 2009), maximum mean discrepancy (Long et al., 2015), Wasserstein distance (Shen144
et al., 2018), f -divergence (Acuna et al., 2021), etc. Here Ω denotes the corresponding sample complexity145
when the distribution discrepancy measure is selected.146

Corollary 4.3 shows the flexibility in generalizing existing static transfer learning theories (Mansour et al.,147
2009; Ben-David et al., 2010; Ghifary et al., 2016; Shen et al., 2018; Zhang et al., 2019; Acuna et al., 2021)148
into the dynamic transfer learning setting. Moreover, it is observed that Corollary 4.3 is closely related149
to the existing generalization error bounds (Wang et al., 2022; Wu and He, 2022b) of dynamic transfer150
learning, under different parameters wij and ηij .151

• When wij and ηij are given by

wij =


1

N+1 , if i = 0
τ

N+1 , if 1 ≤ i ≤ N and i+ 1 = j

0, otherwise

ηij =


ρ
√
R2 + 1(N + 1), if i = 0 and j = 1

ρ
√
R2 + 1(N + 1)/τ, if 1 ≤ i ≤ N and i+ 1 = j

0, otherwise

where τ ∈ R. Then, when τ → 0, Corollary 4.3 recovers the generalization error bound (Wang et al.,
2022).

ϵtN+1(hN+1) ≤ ϵs(h0) + ρ
√
R2 + 1

N+1∑
i=1

dWp

(
Dt

i−1,Dt
i

)
+O

(
N

√
log(1/δ)

m
+

N√
m

+
1√
mN

+

√
log(mN)3L−2

mN
+

√
log(1/δ)

mN

)
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where H is the hypothesis class of R-Lipschitz L-layer fully-connected neural networks with 1-152
Lipschitz activation function.153

• When wij and ηij are given by

wij =

{
1

N+1 , if i+ 1 = j

0, otherwise
ηij =

{
1, if i+ 1 = j

0, otherwise

Then, Corollary 4.3 recovers the generalization error bound (Wu and He, 2022b).

ϵtN+1(h) ≤
N+1∑
i=1

1

N + 1

(
ϵ̂ti−1(h) + d̂H∆H

(
Dt

i−1,Dt
i

))
+ ΩL (2)

where ΩL is a Rademacher complexity term.154

Compared to existing theoretical results (Wang et al., 2022; Wu and He, 2022b), with appropriate wij ,155
our generalization error bound in Corollary 4.3 is much more tighter when there exists some time stamp i156
such that d̂H∆H

(
Dt

i−1,Dt
i

)
is large. It thus motivates us to develop a progressive meta-task scheduler in157

the meta-learning framework for dynamic transfer learning. The crucial idea is to automatically learn the158
values wij , based on the intuition that assigning large value wij on easy meta-pair of tasks Di → Dj would159
make our error bound much tighter.160

5 METHODOLOGY

Following (Wu and He, 2022b), we propose a meta-learning framework named L2S for dynamic transfer161
learning by empirically minimizing the error bound in Theorem 4.2. Instead of uniformly sampling the162
meta-pairs of tasks in the consecutive time stamps (Wu and He, 2022b), in this paper, we learn a progressive163
meta-task scheduler for automatically formulating the meta-pairs of tasks from the dynamic target task.164

The overall objective function of L2S for learning the prediction function of Dt
N+1 on the (N + 1)th165

time stamp is given as follows.166

min
θ

min
w
J (θ,w) =

N∑
i=0

N+1∑
j=i+1

wij

(
ϵ̂ti(Mij(θ)) + η · d̂H∆H

(
Dt

i ,Dt
j ;Mij(θ)

) )

s.t.
N∑
i=0

N+1∑
j=i+1

wij = 1

s.t. Mij(θ) = θ − β∇θLmeta(Dt
i ,Dt

j)

(3)

where θ is the trainable parameters and Lmeta(Dt
i ,Dt

j) is the meta-training loss. η ≥ 0 is a hyper-parameter167
to balance the classification error and discrepancy minimization.168

The proposed L2S framework has three crucial components: meta-pairs of tasks, meta-training, and169
meta-testing. The overall training procedures of L2S are illustrated in Algorithm 1.170

• Meta-Pairs of Tasks: Following the theoretical results in Subsection 4.1, we formulate the candidate171
meta-pairs of tasks from any two different time stamps (Dt

i ,Dt
j) (i < j). It can be considered as a172

simple knowledge transfer from Dt
i to Dt

j . Here we simply denote the source task Ds as Dt
0. Since173
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we focus on learning the prediction function on the target task at a new time stamp, we consider the174
knowledge transfer from an old time stamp i to a new time stamp j, i.e., i < j. Note that as suggested175
in Theorem 4.2, those candidate meta-pairs of tasks might not have equal sampling probability for176
meta-training. Therefore, we propose a progressive meta-pair scheduler to incrementally learn the177
sampling probability of every candidate meta-pair of tasks.178

As shown in Theorem 4.2, the sampling probability wij is strongly related to the classification
error on Dt

i and the empirical distribution discrepancy between Dt
i and Dt

j . However, we have only
unlabeled training examples for the target task. It is intractable to accurately estimate the classification
error on Dt

i (i = 1, 2, · · · ) for the target task. One solution is that we can incrementally estimate
the pseudo-labels of unlabeled target examples, and then obtain the classification error using these
pseudo-labels. But it will be largely affected by the quality of the pseudo-labels. Instead, in this paper,
we simply learn the sampling probability using the empirical distribution discrepancy between Dt

i and
Dt

j because this distribution discrepancy involves only the unlabeled examples. That is, the sampling
probability wij is learned as follows.

wij =
exp

(
1/d̂H∆H

(
Dt

i ,Dt
j

))
Γ

(4)

where Γ is a normalization term. it indicates that the meta-pair of tasks with a smaller distribution179
discrepancy has a larger probability of being sampled for meta-training. Intuitively, the smaller180
distribution discrepancy guarantees the knowledge transfer across tasks (Ganin et al., 2016; Zhang181
et al., 2019). Therefore, we can sample a set of meta-pairs of tasks S based on the sampling probability182
for meta-training.183

• Meta-Training: Following (Wu and He, 2022b), the meta-training over meta-pairs of tasks is given as184

follows. Let ζij(θ) = ϵ̂ti(Mij(θ))+ η · d̂H∆H
(
Dt

i ,Dt
j ;Mij(θ)

)
be the loss function over the validation185

set on a meta-pair of tasks. Then the model initialization θ can be learned by186

θ ← argmin
θ

∑
(i,j)∈S

ζij(θ)

Mij(θ)← θ − β∇θLmeta(Dt
i ,Dt

j)

(5)

where Mij : θ → θij is a function which maps the model initialization θ into the optimal task-specific187
parameter θij . Similar to the model-agnostic meta-learning (MAML) (Finn et al., 2017), Mij(θ) can188
be instantiated by one or a few gradient descent updates in practice. In this case, the meta-training loss189

is given by Lmeta(Dt
i ,Dt

j) = ϵ̂ti(Mij(θ)) + η · d̂H∆H
(
Dt

i ,Dt
j ;Mij(θ)

)
over the training set.190

As illustrated in Algorithm 1, the predictive function is incrementally learned for the target task at191
every historical time stamp, and then the pseudo-labels of unlabeled target examples can be inferred.192

• Meta-Testing: The optimal parameters θN+1 on the newest target task Dt
N+1 could be learned by

fine-tuning the optimal model initialization θ on a selective meta-pair of tasks (Dt
k,Dt

N+1).

θN+1 = Mk(N+1)(θ)← θ − β∇θLmeta(Dt
k,Dt

N+1) (6)

where θ is the optimized model initialization learned in the meta-training phase. Here we choose the193
meta-pair of tasks (Dt

k,Dt
N+1) by estimating the sampling probability wk(N+1) (k = 0, 1, · · · , N ) and194

choosing k with the largest value wk(N+1).195
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Algorithm 1 Learning to Schedule (L2S)
Input: A source task Ds (denoted as Dt

0) and a dynamic target task {Dt
j}Nj=1, the newest target task Dt

N+1.
Output: Prediction performance on the new target task Dt

N+1.
1: Initialize the set of meta-pairs of tasks S = ∅;
−−−−−−−−−Meta-training −−−−−−−−−

2: for k = 1 to N do
3: Find all the candidate meta-pairs of tasks from Dt

0, · · · ,Dt
k;

4: Estimate the sampling probability for these meta-pairs using Eq. (4);
5: Select a set of meta-pairs of tasks according to the sampling probability;
6: Learn the model initialization θ̃∗ via Eq. (5);
7: Generate the pseudo-label for Dt

k;
8: end for
−−−−−−−−−Meta-testing −−−−−−−−−

9: Fine-tune on the newest target task Dt
N+1 via Eq.(6);

10: return Predicted labels on the newest target task Dt
N+1.

6 EXPERIMENTS

In this section, we provide the empirical analysis of L2S framework on various data sets.196

6.1 Experimental Setup197

We used the following publicly available image data sets:198

• Rotating MNIST (Kumar et al., 2020): The original MNIST (LeCun et al., 1998) is a digital image199
data set with 60000 images from 10 categories. Rotating MNIST is a semi-synthetic version of MNIST200
where each image is rotated by a degree. Following (Bobu et al., 2018; Kumar et al., 2020), we rotate201
each image by an angle for generating the time-evolving classification task. More specifically, for202
the source task, we randomly choose 32 images and then rotate them by an angle between 0 and 10203
degrees. All the images in the source task are associated with class labels. For the time-evolving target204
task, we randomly choose 32 images at every time stamp j (j = 1, · · · , 35) and rotate them by an205
angle between 10 · j and 10 · (j + 1) degrees. It can be seen that in this case, the data distribution of206
the target task is continuously evolving over time. Therefore, we denote the aforementioned Rotating207
MNIST as a data set “with continuous evolvement”. In contrast, we consider the dynamic transfer208
learning scenarios “with large distribution shift”, where the samples at the last 18 time stamps of the209
target task are randomly shuffled. That is, the target task might not be evolving smoothly with respect210
to the rotation degree.211

• ImageCLEF-DA (Long et al., 2017): ImageCLEF-DA has three image classification tasks: Caltech-256212
(C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P). Following (Wu and He, 2022b), we213
generate the time evolving target task by adding random noise and rotation to the original images.214
For example, if we consider Caltech-256 (C) as the target task, we can generate a time-evolving215
target task by rotating the original images of Caltech-256 with a degree Od(j) (j = 1, 2 · · · , 5 is216
the time stamp) and adding the random salt&pepper noise with the magnitude On(j), i.e., Od(j) =217
15 · (j − 1), On(j) = 0.01 · (j − 1), N = 4.218

Following (Bobu et al., 2018; Wu and He, 2022b), we report both the classification accuracy on the newest219
target task (Acc) and the average classification accuracy on the historical target tasks (H-Acc) in the220
experiments. The comparison baselines we used in the experiments include: (1) static transfer learning221
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Figure 3a. With continuous evolvement
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Figure 3b. With large distribution shift

Figure 3. Rotating MNIST with (A) continuous evolvement. (B) large distribution shift.
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Figure 4b. I → C with
large distribution shift

1 2 3 4 5
Time…stamp

0.1

0.2

0.3

0.4

0.5

M
M
D S-T

T-T

Figure 4c. I → P with
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Figure 4. I→ C on ImageCLEF-DA with (C) continuous evolvement. (D) large distribution shift. I→ P
on ImageCLEF-DA with (E) continuous evolvement. (F) large distribution shift.

approaches: SourceOnly, DAN (Long et al., 2015), DANN (Ganin et al., 2016), and MDD (Zhang et al.,222
2019); and (2) dynamic transfer learning: CUA (Bobu et al., 2018), GST (Kumar et al., 2020), L2E (Wu223
and He, 2022b), and our proposed L2S framework. For a fair comparison, all the methods use the same224
base models for feature extraction, e.g., LeNet for Rotating MNIST and ResNet-18 (He et al., 2016) for225
ImageCLEF-DA. In addition, we set η = 1, β = 0.01 and the number of inner epochs in Mij(θ) as 1. All226
the experiments are performed on a Windows machine with four 3.80GHz Intel Cores, 64GB RAM and227
two NVIDIA Quadro RTX 5000 GPUs.228

6.2 Results229

Figure 3 and Figure 4 show the distribution shift in the dynamic transfer learning tasks, where “S-T”230
denotes the distribution difference d(Ds,Dt

j) between the source and the target at every time stamp and231

“T-T” denotes the distribution difference d(Dt
j−1,Dt

j) of the target at consecutive time stamp. Here we use232
maximum mean discrepancy (MMD) (Gretton et al., 2012) to measure the distribution difference across233
tasks. We see that when the target task is continuously evolving over time, d(Dt

j−1,Dt
j) is small. This234

enables gradual knowledge transferability in the target task. If there exists a large distribution shift at some235
times, i.e., d(Dt

j−1,Dt
j) is large, the strategy of gradual knowledge transferability might fail. In Figure 3236

and Figure 4, the large distribution shift happened in the time stamps 17-35 on Rotating MNIST and time237
stamp 1 on I→ C/P.238

Table 1 and Table 2 provides the experimental results of L2S as well as baselines on Rotating MNIST239
and Image-CLEF data sets. We have the following observations from the results. On the one hand, when240
the target task is continuously evolving over time, most dynamic transfer learning baselines can achieve241
satisfactory performance on both the newest and historical target tasks. The baseline GST (Kumar et al.,242
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Methods With continuous evolvement With large distribution shift
Acc H-Acc Acc H-Acc

SourceOnly 1.0000 0.4393 0.3437 0.4393
DAN (Long et al., 2015) 1.0000 0.4518 0.5625 0.4830
DANN (Ganin et al., 2016) 1.0000 0.3884 0.3750 0.4000
MDD (Zhang et al., 2019) 1.0000 0.4250 0.4063 0.4482
CUA (Bobu et al., 2018) 0.9375 0.9277 0.4375 0.8259
GST (Kumar et al., 2020) 0.0625 0.1062 0.1250 0.2259
L2E (Wu and He, 2022b) 0.9688 0.9795 0.6250 0.7179
L2S 1.0000 0.9991 0.9687 0.9116

Table 1. Results of dynamic transfer learning on Rotating MNIST

Methods
With continuous evolvement With large distribution shift

I→ C I→ P I→ C I→ P
Acc H-Acc Acc H-Acc Acc H-Acc Acc H-Acc

SourceOnly 0.3125 0.4250 0.2812 0.3938 0.3125 0.4125 0.2187 0.2562
DAN (Long et al., 2015) 0.2500 0.4000 0.2187 0.2688 0.3750 0.3750 0.2500 0.2625
DANN (Ganin et al., 2016) 0.3125 0.4438 0.3125 0.4188 0.3125 0.4125 0.1875 0.2750
MDD (Zhang et al., 2019) 0.3437 0.4750 0.3125 0.4562 0.3125 0.4062 0.2500 0.3188
CUA (Bobu et al., 2018) 0.4063 0.5125 0.5312 0.5438 0.4375 0.4625 0.3437 0.4000
GST (Kumar et al., 2020) 0.5000 0.5312 0.4375 0.4312 0.2812 0.3062 0.2500 0.2562
L2E (Wu and He, 2022b) 0.5625 0.6875 0.5625 0.5875 0.3750 0.4812 0.3750 0.4812
L2S 0.5625 0.6125 0.6562 0.6188 0.4375 0.5500 0.4375 0.4812

Table 2. Results of dynamic transfer learning on ImageCLEF-DA
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Figure 5a. Training loss
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Figure 5. Ablation study with different number of inner epochs

2020) fails on Rotating MNIST, because the self-training approach might be more likely to accumulate the243
classification error when the target task is evolving for a long time. On the other hand, the performance of244
CUA (Bobu et al., 2018) and L2E (Wu and He, 2022b) drops significantly when there is a large distribution245
shift within the target task at some time stamp. In contrast, by adaptively selecting the meta-pairs of tasks,246
the proposed L2S framework can mitigate the issue of the potential large distribution shift in the targe task.247
Specifically, compared to L2E (Wu and He, 2022b), L2S improves the performance by a large margin.248
This confirms the efficacy of the proposed progressive meta-pair scheduler.249

6.3 Analysis250

We provide the ablation study of our L2S framework with respect to the number of inner training epochs.251
The results on the newest target task of Rotating MNIST are shown in Figure 5, where we use 1 or 5 inner252
epochs for our meta-learning framework. We see that using more inner epochs can improve the convergence253
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of L2S but it sacrifices the classification accuracy on the historical target task. This is because L2S with254
more inner epochs would enforce the fine-tuned model to be more task-specific. Thus, we set the number255
of inner epochs as 1 in our experiments.256

7 CONCLUSION

In this paper, we study the problem of dynamic transfer learning from a labeled source task to an unlabeled257
dynamic target task. We start by deriving the generalization error bounds of dynamic transfer learning258
by assigning the meta-pairs of tasks with different weights. This allows us to provide the tighter error259
bound when there is a large distribution shift of the target task at some time stamp. Then we develop a260
novel meta-learning framework L2S with progressive meta-task scheduler for dynamic transfer learning.261
Extensive experiments on several image data sets demonstrate the effectiveness of the proposed L2S262
framework over state-of-the-art baselines.263
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