Fairness-Aware Clique-Preserving
Spectral Clustering of Temporal Graphs

Donggqi Fu

Dawei Zhou

Ross Maciejewski

University of Illinois at Virginia Tech Arizona State University
Urbana-Champaign Virginia, USA Arizona, USA
Illinois, USA zhoud@vt.edu rmacieje@asu.edu

dongqif2@illinois.edu

Arie Croitoru
George Mason University
Virginia, USA
acroitor@gmu.edu

ABSTRACT

With the widespread development of algorithmic fairness, there
has been a surge of research interest that aims to generalize the
fairness notions from the attributed data to the relational data
(graphs). The vast majority of existing work considers the fairness
measure in terms of the low-order connectivity patterns (e.g., edges),
while overlooking the higher-order patterns (e.g., k-cliques) and
the dynamic nature of real-world graphs. For example, preserving
triangles from graph cuts during clustering is the key to detecting
compact communities; however, if the clustering algorithm only
pays attention to triangle-based compactness, then the returned
communities lose the fairness guarantee for each group in the graph.
Furthermore, in practice, when the graph (e.g., social networks)
topology constantly changes over time, one natural question is how
can we ensure the compactness and demographic parity at each
timestamp efficiently. To address these problems, we start from the
static setting and propose a spectral method that preserves clique
connections and incorporates demographic fairness constraints in
returned clusters at the same time. To make this static method fit
for the dynamic setting, we propose two core techniques, Laplacian
Update via Edge Filtering and Searching and Eigen-Pairs Update with
Singularity Avoided. Finally, all proposed components are combined
into an end-to-end clustering framework named F-SEGA, and we
conduct extensive experiments to demonstrate the effectiveness,
efficiency, and robustness of F-SEGA.

CCS CONCEPTS

» Mathematics of computing — Graph algorithms; « Informa-
tion systems — Clustering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 23, April 30-May 4, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04...$15.00
https://doi.org/10.1145/3543507.3583423

Marcus Boyd
University of Maryland, College Park
Maryland, USA
boydma@umd.edu

Jingrui He
University of Illinois at
Urbana-Champaign
Illinois, USA
jingrui@illinois.edu

KEYWORDS

Spectral Clustering, Fairness, Clique Patterns, Temporal Graphs

ACM Reference Format:

Donggi Fu, Dawei Zhou, Ross Maciejewski, Arie Croitoru, Marcus Boyd,
and Jingrui He. 2023. Fairness-Aware Clique-Preserving Spectral Clustering
of Temporal Graphs. In Proceedings of the ACM Web Conference 2023 (WWW
'23), April 30-May 4, 2023, Austin, TX, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3543507.3583423

1 INTRODUCTION

3-clique
(regardless of f E [[l=3
node group) topology

evolves

<t

] = .) N
= triangle-preserving spectral clustering 5
® @ (fair vs. unfair) @

i (=3 ‘
clustering
evolves
t=1 t=2
M 1

Figure 1: Evolving Structure breaks the Fairness during the
Continuous Clustering. At ¢ = 0, the unfair cut (purple) aligns
with the fair cut (red); then, at ¢t = 1, unfair communities are
discovered for only considering the cluster compactness but
ignoring the demographic fairness.

node of group A
node of group B

inserted edge =rrreeee
deleted edge

fair graph cut
unfair graph cut

Nowadays, for the applications that require fair clustering, re-
search interests are devoted to designing various fair objectives [6,
11, 25-27, 29, 32], to ensure the fairness for the social good. For
example, based on relational data, the fairness constraints are estab-
lished to guide the spectral clustering such that the demographics
of each detected community are proportional to the whole distribu-
tion [29]. But the majority of existing graph clustering algorithms
consider the fairness constraints in terms of the low-order con-
nectivity patterns (e.g., edges) while overlooking the higher-order
patterns (e.g., k-cliques). Actually, clique density is a key factor
in many graph clustering applications. For example, k-clique pre-
served clusters (especially k = 3) play a fundamental role in under-
standing the social network structures [15, 23, 30, 39], as well as in
identifying protein complexes and discovering new modules [1, 48].

https://doi.org/10.1145/3543507.3583423
https://doi.org/10.1145/3543507.3583423

WWW °23, April 30-May 4, 2023, Austin, TX, USA

Therefore, designing fairness constraints (e.g., proportional demo-
graphics) for high-order (e.g., clique-preserving) clustering has a
huge application potential but largely remains nascent. For exam-
ple, in the citation network or co-author network, the high-order
clusters can be used for the expert team formation [31], but the
dense connections usually occur at the intra-subject level. With-
out proportional demographics, the formed team could not handle
interdisciplinary tasks requiring diverse backgrounds. Another ex-
ample is triangle-preserved communities, which are suited for the
community-driven recommendations [43]. However, when these
communities are tasked with voting, without proportional demo-
graphics, the voice of different groups, especially minority groups,
can barely be heard.

When we focus on clique-preserving dense clusters, it is not
clear how to guarantee fairness at the same time. Furthermore,
when the graph structure evolves [2, 18, 20, 28] , it can be even
more challenging to ensure the clustering compactness and demo-
graphic parity simultaneously (e.g., evolving structures can break
previously obtained fairness). Figure 1 illustrates the difficulty of
achieving demographic-fair and triangle-preserving clustering on
evolving graphs: even if the initial high-order clustering is demo-
graphically fair, as structure evolves, the fairness can be broken
if the cluster compactness is the only objective along with time.
Moreover, the straightforward application of (high-order) spectral
clustering methods [5, 41, 51] can be computationally prohibitive,
and the additional fairness and frequently updated graph structures
may further render the existing computational resources inade-
quate. The core problem is how to maintain fair and dense clusters
effectively and efficiently when the underlying structure is evolving.

Therefore, we need to model the two separate objectives (i.e.,
demographic fairness and clustering compactness) in a unified spec-
tral clustering framework. Then, efficient and effective techniques
are indispensable for adapting this framework to the dynamic set-
ting. In this paper, we start from the static setting and propose a
fairness-aware clique-preserving spectral clustering method, which
preserves clique connections from graph cuts and guides the cluster-
ing results to be fair, i.e., the demographics of each cluster are close
to the entire graph. Then, to adapt to the dynamic setting, we pro-
pose two core components: (1) Laplacian Update via Edge Filtering
and Searching, and (2) Eigen-Pairs Update with Singularity Avoided.
Thus, demographic-fair and clique-dense clusters under new arrival
graph structures can be incrementally tracked instead of solving
them from scratch. Finally, we combine the proposed techniques
into an end-to-end clustering framework named F-SEGA.

Our main contributions are summarized as follows.

e Problem: We unify the problem of fairness-aware and clique-
preserving spectral clustering, and extend it to dynamic graphs.

e Method: We propose a solution, F-SEGA, for demographic-fair
and clique-dense dynamic clustering with theoretical analysis.

o Evaluation: We design extensive experiments to demonstrate
the effectiveness, efficiency, and robustness of F-SEGA.

o Application: We identify the connection of F-SEGA to real-
world applications by designing a case study of dynamically and
proportionally allocating human resources.

The problem of fairness-aware and clique-preserving clustering
of temporal graphs is defined in Section 2. In Section 3, we intro-
duce the static clustering method and corresponding techniques to

Donggqi Fu et al.

Table 1: Table of Notation

Symbol ‘ Definition or Description

G temporal graph G = {G(l),G(z),...,G(T)}

14 set of each ever-appeared node in graph G

h number of groups in graph G

Vs set of nodes belonging to the s-th group of G, s € {1,..., h}
F member-group matrix of graph G

G snapshot graph at time ¢

Cl(g the [-th cluster of G(*)
AE® updated edge set at time ¢ changing G into G(*+1)
AD standard (edge-based) adjacency matrix of G(*)

w® clique-weighted adjacency matrix of G

Dp® clique-weighted degree matrix of G

L® clique-weighted Laplacian matrix of G

MO fairness-constrained clique-weighted Laplacian of G0

adapt it to the dynamic setting. Then we present our F-SEGA clus-
tering framework in Section 4. Experimental results are provided
in Section 5. Finally, we review the related work in Section 6 before
we conclude the paper in Section 7.

2 PRELIMINARY AND PROBLEM DEFINITION

Throughout this paper, we use lower-case letters for scalars (e.g.,
a), upper-case letters for sets (e.g., V), bold lower-case letters for
column vectors (e.g., x), and bold upper-case letters for matrices
(e.g., A). We follow the matrix indexing, i.e., A(i,:) denotes the i-
th row of A, and use the parenthesized superscript to denote the
timestamp (e.g., G1). We use T to denote the matrix transpose.

Cliques. A k-clique is a complete subgraph consisting of k nodes,
and each pair of nodes are connected with an edge. For instance,
an edge is a 2-clique, and a triangle is a 3-clique.

Clique-Preserving Normalized Cut. Normalized cut (Ncut)
[41] measures the compactness of the resulting clusters regarding
edge connections. A small Ncut indicates a good partition where
many edges are preserved in clusters. Here, we define the Clique-
Preserving Ncut (CPNcut) to cover any k-cliques.

q
t(C;,V\ Ci,N
CPNcut(Cy,...,Cq,N) = Z %
12

i=1
where N denotes the target k-clique to be preserved from partitions,
cut(C,V \ C;,N) is the number of broken cliques for partitioning
graph G into cluster C; and its complement V' \ C;, and p(C;,N)
denotes the number of instances of cliques within C;. When k = 2,
the defined CPNcut is Ncut; when k > 3, CPNcut measures the
compactness of high-order clique connections.

Demographic Fairness Constraints. A clustering is fair if the
demographics of each cluster are close to the demographics of the
whole graph [14, 29], which is expressed as follows.

Vs NGil _ |Vs]
Vs e{1,...,h}, Ci Vi 2)
where Vs stands for the set of nodes of the s-th group when the
entire set of nodes V = U?:l Vs has h different groups in total, and
C;j is the i-th cluster produced by a clustering method.

Graph Arrival Model. We consider a temporal graph as a se-
quence of snapshots, G = {G(l),G(Z),A..,G(T)}, where G(V) =
(v, E®) is undirected and unweighted, V() and E(*) represent
the set of nodes and edges at timestamp ¢ respectively. Follow-
ing [9, 42], an inserted (or deleted) node at timestamp ¢ is regarded

1)

Fairness-Aware Clique-Preserving
Spectral Clustering of Temporal Graphs

as an existing dangling node at all previous timestamps (or all
future timestamps). Thus, we denote |V(t)| = |V| = n, ie, y(®
consists of each appeared node in the whole life of G, such that
the dimension of affinity matrices over time is consistent. Also, we
assume the demographic group information of a node remains over
time [29], Vs(t) = VS(Hl) , e.g., a male user in the social network
always belongs to the male group as the graph structure evolves.
Between two consecutive snapshots, we define the set of updated
edges as AE®) = AED UAEY = (D \ EO} U (E® \ E(+D},
where AEY) and AE"") denote the inserted and deleted edges at
timestamp ¢ to change GW into G(*1).

Our goal is to partition the temporal graph G while largely
preserving user-specified k-cliques from fair cuts through all given
timestamps. To be specific, at timestamp ¢, we aim to partition graph
GW into q disjoint clusters Uiq:l C;t) =Vand Ci(t) OCJ(.t) = (Q with
i#je{12,...,q} via the following objective.

T
. () (¥)
Igl,‘};CPNC“t(Cl s Cy ,N) 3)
s.t.

N v

VSE{l,...,h}.W—m, E{l,...,T} (4)
i

Our problem can be formally defined as follows.

PrROBLEM. Fairness-Aware Clique-Preserving Clustering of Tempo-
ral Graphs
Input: (i) a temporal graph G = (G, ..., (ii) the number
of clusters q, and (iii) a k-clique N.
Output: clusters {Cit), e Cét)}fort € {1,...,T} satisfying clique-
dense and demographic-fair objectives (Eq. 3 and Eq. 4).

3 PROPOSED TECHNIQUES

We start with the static setting and explain how to obtain the
fairness-aware clique-preserving clustering (Section 3.1). Then we
adapt this static method to the dynamic setting via two components:
Laplacian Update via Edge Filtering and Searching (Section 3.2),
and Eigen-Pairs Update with Singularity Avoided (Section 3.3).

3.1 Fairness-Aware Clique-Preserving Spectral
Clustering: From Static to Dynamic
Clique-Preserving Spectral Clustering. Traditional spectral clus-
tering (e.g., [41]) is a special case of minimizing CPNcut if the target
clique N is set to be an edge (k = 2). To accommodate high-order
(k = 3) clique patterns, CPNcut (i.e., Eq. 1) is instantiated as follows.

q
cut(C, V \ C;,N)
CPNcut(Cy,...,Cq,N) = —— — ~ wirt
K ; H(CLN)
at(CV\CN) = > W),)

i€Cy,jeV\Cy

pCN) = Y Wi, j)
ieCpjev

where W € R™" is the clique-weighted adjacency matrix, n is the
number of nodes, and W (i, j) is the number of instances of clique

WWW ’23, April 30-May 4, 2023, Austin, TX, USA

N containing edge (i, j). For example, if k = 3 and edge (i, j) makes
up 4 different triangles, then W(i, j) = 4.
For a clustering result U;I: 1 C1. if we represent it by a node-cluster
assignment matrix H € R™ as follows,
o {1/w<cl,N> i€C
(0= (6)
0 otherwise
then we will get CPNcut(Cy, . ..,Cq,N) = Tr(HTLH), where HT
is the transpose of matrix H, Tr(-) denotes the trace of a matrix,
L = D-W € R™" is the Laplacian matrix, D is the clique-weighted
degree matrix, i.e., D = diag(We), and e is the vector with all ones’.
Therefore, minimizing CPNcut equals to the trace minimization
problem, i.e., min CPNcut(Cy,.. ., Cq, N) = min Tr(H" LH), with
H defined in Eq. 6. Since this minimization problem is discrete
and proven NP-complete [41], we relax this problem by allowing
the entries of matrix H to take any real values. Then the trace
minimization objective is rewritten as follows.

min Tr(H' LH)st. H' DH=1 (7)
HeR™4q
Substituting H = D™Y/2T with T € R™ 4, we have
min Tr(TTD Y2LD 2Ty st. T'T=1 (8)
TeRm*q

Then the trace minimization problem (i.e., Eq. 8) for finding the
optimal T can be solved by Rayleigh-Ritz theorem (Section 5.2.2(6)
in [33]), which computes the g smallest eigenvalues of D2 p-1/2
and stores the corresponding eigenvectors as columns of the optimal
T. To infer the clustering result from H = D™/2T, we can apply
the K-means algorithm [47] on the rows of H.

Fairness Constraints on Clique-Preserving Clusters. To make
the clique-preserving spectral clustering demographic fair, we need
to add the fairness constraint (i.e., Eq. 4) to the clique-preserving
clustering. We first derive Eq. 4 as follows.

Vs NGl Vs
Vse .. hy 20Gl_ W
ICil 4

@Vse{1,...,h—1}:Z(fs(i)—%)H(i,l):o
i=1

©)

where f; € R" is the group-membership vector: if node i belongs
to the group s, then f;(i) = 1; otherwise, f;(i) = 0. Eq. 9 can be
proven by replacing H (i, [) with Eq. 6. With the fairness constraint,
i.e., Eq. 9, the objective of clique-preserving spectral clustering (i.e.,
Eq. 7) can be extended as follows.

min Tr(H'LH)st HHDH=IandFTH=0 (10)
HeR™4q

where F € R™(h~1) jg the group-membership matrix with column
vectors f; — l‘:fl - e, and 0 stands for the zero matrix.

To solve Eq. 10 by Rayleigh-Ritz theorem [33], we substitute
H = ZQ_IX for Z € RPx(n—h+1) ith Q¢ R(n=h+1)x(n-h+1)

min Tr(X'Q!'ZTLZO'X)st. X"X =1 11)
X eR(n-h+1)xq

where Z is the matrix whose columns are the orthonormal basis of
the nullspace of FT, and Q? = ZTDZ. Thus, Z and Q are directly
solvable from F and D. Similarly, we first need to compute g smallest
eigenvalues? of matrix Q"1 ZT LZQ™!, and store the corresponding

'diag(-) is defined as the standard diagonalize operation.
2We assume q < n — h + 1 for valid solutions.

WWW °23, April 30-May 4, 2023, Austin, TX, USA

eigenvectors as columns of the optimal X; then we infer a clique-
preserving and demographic-fair clustering from H = ZQ~!X by
K-means. For notation clarity, we denote the matrix M as follows
and name it fairness-constrained clique-weighted Laplacian matrix.

M = Q—IZTLZQ—l c R(n—h+1)><(n—h+1) (12)

Challenges from the Dynamic Setting. To extend the unified
objective (i.e., Eq. 10) to the dynamic setting, two challenges need
to be addressed when the input graph is evolving over time.

o Updated edges change the graph structure. Instead of rebuilding
MY from scratch every single timestamp, we need to identify
the unchanged structures and update the outdated structures
inside M(® for efficiency (Section 3.2).

o Instead of solving eigenvalues and eigenvectors (i.e., eigen-pairs)
of M(*1) from scratch every single timestamp, we need to com-
pute them in a fast manner. Moreover, we also need to eliminate
accumulated tracking errors, if any (Section 3.3).

3.2 Laplacian Update via Edge Filtering and
Searching

When the new graph arrives, updated edge set AE®) changes
the fairness-constrained Laplacian matrix M ®) into M+ In
Section 3.1, M = Q7 1ZTLZQ™!, where Z and Q depend on the
member-group matrix F. Since we assume the demographic group
membership of each node remains the same, the Laplacian matrix
LW =p® _w® jsthe changing part of M) To update LW we
focus on updating WD e, clique-weighted adjacency matrix.

Updating the corresponding matrices between two consecutive
timestamps determines the time complexity of many temporal
graph algorithms [17, 19, 21, 24, 44]. According to [21], in the
worst case, updating our W for one single updated edge will
cost O(nk=2), where n is the number of nodes in the graph G, and
k is the number of nodes in the target clique N. However, not every
updated edge will change the previous spectral clustering result,
and we call such an edge insensitive updated edge, otherwise, we
regard it as a sensitive updated edge. Hence, we aim to filter insensi-
tive updated edges other than involving them in the update of W,
First, we model insensitive updated edges as follows.

Definition 3.1 (Insensitive Updated Edge). At timestamp ¢, given
the clustering result U?Zl Cl(t), an updated edge e = (i, j) € AE®
is insensitive if it satisfies the following conditions:

ijeC”, e=(ij) e e,
(13)
Dist (VA CY) > 1, Dise .V C}7) > 1

or
iec® jev\c®, e=(ij) e AED,
L » ! (14)
Dise(,V\ CY) <1

where Djg (v, C(t)) denotes the shortest distance (i.e., the number
of hops) from node v to reach any node within the cluster C(*). The

condition Djg; (i, V\C l(t)) > 1 indicates that node i does not induce
any k-clique on the clustering boundary.

Note that the insensitive edge is independent of its nodes group
membership, and it is only related to graph structures. Intuitively,
Eq. 13 can be understood as an "inserted intra-cluster edge", and

Donggqi Fu et al.

Algorithm 1 Laplacian Update via Edge Filtering and Searching

Input:
updated edge set AE(t), matrices A(t), W(t), and D)
Output:
matrices A+HD WD) p(+) ang [+
1: if each e € AE(!) satisfies Eq. 13 or Eq. 14 then

2. Save AE() for next timestamp updates
3: else
& fore=(i,j) € AE®) do /*Denote i with the larger degree*/
5 Update adjacency matrix AW for edge (i, j)
6 Mark all the nodes adjacent to i based on A
7 for each node r adjacent to j do
8 if node r is marked then
9 Input each node pair of i, j, r into Eq. 15
10: end if
11: end for
12: Erase marks
13: end for
14: end if

Eq. 14 can be understood as a "deleted inter-cluster edge"; whereas a
sensitive edge is an "inserted inter-cluster edge” or a "deleted intra-
cluster edge”. It is easy to prove that a single insensitive updated edge
will not change the previous spectral clustering (i.e., the optimal
partition U(l]: e l(t) still achieves the optimal CPNcut ratio at ¢ +1).

Therefore, comparing with updating W) for one insensitive edge
e = (i, j) costing O(n*~2), our proposed edge filtering operation
(i-e., Eq. 13 and Eq. 14) only costs O(max(D® (i, i), DD (j, j))) for
identifying that insensitive edge, filtering it out for the current time
update, and saving it for the future timestamps. However, even if
AE(®) only contains insensitive updated edges, multiple insensitive
edges may change the spectral clustering structure under extreme
circumstances. In the proof of Proposition 1, we analyze the extreme
scenario when many insensitive updated edges affect the previously
identified optimal clustering.

PROPOSITION 1. Assuming that the clustering U7=1 C;t) is ob-
tained by minimizing CPNcut ratio under the fairness constraint
at time t and AEX) only contains insensitive updated edges, the ex-

treme cases exists (e.g., when the insensitive added edges are heavily

localized) that the structure U;I:1 Cl(t) is not guaranteed to have the

minimal CPNcut ratio at time t + 1. (Proof in Appendix.)
Proposition 1 suggests that even if AE () only consists of insensi-
tive updated edges, the previous optimal clustering may not remain
optimal when those updates are centralized on a local area of graph
G However, in practice, the graph itself and the corresponding
updates can be usually sparse [2], and we can assume the extreme
cases (e.g., updates are densely localized) in Proposition 1 are rare
and obvious against the sparse background. Hence, if extreme cases
happen, we may relatively easily observe them (e.g., by identifying
the distance among updates or comparing the conductance of local
updates with the previously-obtained conductance of the entire
graph) and re-run the static algorithm from scratch. Thus, in the
dynamic setting, we can filter AE () when it only contains insensi-
tive updated edges and save the filtered edges for future updates.
But when AE() contains a single sensitive updated edge, even if
the majority of AE(*) is insensitive, the whole AE(!) need to be

Fairness-Aware Clique-Preserving
Spectral Clustering of Temporal Graphs

involved into the updating process. Because any sensitive edge
will change the previous clustering structure, which will make the
currently considered insensitive edges invalid.

After edge filtering, we can then update W) efficiently based
on edge searching. First, we start from each inserted (or deleted)
edge and then incrementally search edges that compose instances
(or disappearance) of k-cliques. After that, we add the newly found
cliques to W® Tobe specific, the searching process is instanced by
the enumeration of k-cliques containing the node i of the updated
edge e = (i, j) into the enumeration of (k—1)-cliques in the subgraph
induced by the neighbors of node i, until (k — 1) = 2. We illustrate
the process for k = 3 in Alg. 1 and analyze how a k-clique is
decomposed for the fast enumeration in Proposition 2. In Steps
6-8, enumerating an appeared (or disappeared) triangle due to the
updated edge (i, j) is decomposed into the enumeration of any edge
containing node j in the subgraph induced by the 1-hop neighbors
of node i. After detecting an appearing (or disappearing) triangle,
Step 9 feeds each involved node into Eq. 15 to update W (%),

w® (u,0) = W<t)(u, v)+y (15)
where u and v denote any two nodes which cause the appearance
(or disappearance) of the k-clique N; y = 1 (or —1) if the updated
edge is an inserted (or deleted) edge. With the recursion rule of
decomposing a k-clique into a (k — 1)-clique [13], the searching
time complexity is bounded by the arboricity of the current graph
as shown in Proposition 2.

PROPOSITION 2. Given the graph G\Y) and set AEX) contain-
ing sensitive updated edges, updating matrix W in terms of user-
specified k-clique (k > 2) costs time complexity O(ka*=2m(®)), where
a is the arboricity of graph G, andm'?) is the number of edges in
graph G (Proof in Appendix.)

3.3 Eigen-Pairs Update with Singularity

Avoided
Next, to infer clustering, we need g smallest eigenvalues 1y, ..., Aq
and the corresponding eigenvectors uy, .. ., uq (i.e., eigen-pairs) of

the updated M (t+1) We denote A € R as the column vector con-
sisting of ¢ smallest eigenvalues, i.c, A(i) = A;, andU € R("=r+1)xq
as the matrix consisting of th corresponding g eigenvectors, i.e.,
U(: j) = u;. However, computing eigen-pairs (A1) g+ jg
costly, typically requiring O(n®) time [41], where 7 is the number
of nodes at time t + 1. Therefore, we aim to track them instead
of solving them every single time. To be specific, based on matrix
perturbation theory in [9], when M) changes into M (t+1) | the
change of eigen-pairs is expressed as follows.

MO £ AM) @D + Awg) = A + A2 @ + Awy) (16)

where Alm and ugt) are the i-th eigenvalue and eigenvector of M ®),

i € {1,...,q}. Then we can expand Eq. 16 and obtain Eq. 17.

MO Auj+ AMu'D + AMAw; = 21 Auj+ Al + AL 06D (17)
Eigenvalue Update. Based on Eq. 17, we multiply ui(t)T on both
sides. Suppose matrix M (®) is near symmetric, and the eigenvector
has unit length, then we get the following equation.

T
i

uDTAMu +uDTAMAw; = A +u DT ANMa (18)

WWW ’23, April 30-May 4, 2023, Austin, TX, USA

Algorithm 2 Eigen-Pairs Update with Singularity Avoided

Input:
eigen-pairs (A", U(")), perturbation matrix AM
Output:
eigen-pairs (A(+D), U (t+D)
1: Compute X0 =yOTaAmMu®
/*Eigenvalue Update*/
2 AA = diag(X (D)
3 A = AD 4 AN
/*Eigenvector Update*/
4: Singularity = False
5: fori=1:qgdo
6 Form BU(j, j) = A" + A - /1](.” forj=1....q
7. Compute b; = (B® — x0)~1x(, 1) (®
g if (B® —x)is singular then

9: Singularity = True; Break
10: endif

11: u§t+l) = ul(t) + 23:1 bi(j)uj(.t)
12: end for

13: if Singularity == True then
14: fori=1:qgdo
(+1) _ ui(t)

15: ul
HT (t)

_ (t+1), _ 4 MMy (p . .
16: u; _—/1;”—/1;” u;’ forj=1,....,qand j #i
17: end for
18: end if

According to the assumption of [9] that Ad; < 4; and Au; < u;,
then ulmTAMAui and ui(t)TAA,-Aulgt) in Eq. 18 are safely omitted
during the computation of AA;. Therefore, we get eigenvalue update
equation as follows.

A 230 Ay, st AL =uDTaMu (19)

Eigenvector Update. Since we assume the dimensions of M ®
and M+ are the same, the vector Au; can be expressed by the
weighted sum of current eigenvectors as Au; = 2321 Bji u](.t). Next,
we need to estimate each weight f;; to get Au;, and finally obtain
uEHl) = ul@ + Au;.

To solve for each f;;, again starting from Eq. 17, we replace
Au; with Z?:l Bji uj(.t) and multiply any eigenvector uj(,t) (1<
p < q, p # i) on both sides. Then, based on the orthogonality of
eigenvectors, we rearrange terms and get the following equation.

X(, i) —BWp;+ XxBb; =0 (20)
where X(©) = UOTAMU®) . B(Y) € R99 is the diagonal matrix
with B®)(j, j) = A{" + A% - 2\"), and J; is from Eq. 19. b; € RY

is the weight vector to compute Auj, i.e., bi(j) = fji. Rearranging
Eq. 20, we have the weight computation equation below.

b; = (B — xD)~1x(;,i)(» (21)
With b;, we can then compute ui(Hl) as follows.
(2+1) (2) N (2)
u; =u;’ +Au;, st Au; = Zbi(j)uj (22)
j=1

WWW °23, April 30-May 4, 2023, Austin, TX, USA

However, in Eq. 21, when a certain eigenvalue does not change,
then B is a singular matrix. Since the graph and its update are
usually sparse, B — x®) s also highly likely to be singular, then
an unchanged eigenvalue will stop other eigenvectors’ update.
To address this issue, we aim to update eigenvector u; indepen-
dent of its AA;. Again, starting from Eq. 17 and omitting trivial
terms AMAu; and A/liAui(t), we obtain the approximation solution
M@ Aui+AMui(t) = Al@ Aui+A/1iui(t), where we replace Au; with

23:1 Biji uj(.t) and get the weight §;; as follows.
u;t)TAMulm
pji = ——+ (23)
&) _ 4
A= /lj

Then, the alternative eigenvector update operation is as follows.

7 w7 AMu®
u§t+1) - ul@ + Auj, s.t. Au; = Z W,‘J@ (29)
=t 4 T4

Note that, comparing with Eq. 22, Eq. 24 is less accurate by omit-
ting two mentioned trivial terms, but the matrix singularity issue
is avoided. Now, we are ready to present Alg 2. to track eigenval-
ues and eigenvectors of M(**1)_In Alg. 2, Steps 2-3 update the
eigenvalue based on Eq. 19, Steps 5-12 update the eigenvector ac-
cording to Eq. 22 if singularity issue does not happen, otherwise
Steps 13-18 update the eigenvector according to Eq. 24. The total
time complexity of Alg. 2 is bounded, as shown in Proposition 3.

PROPOSITION 3. Given the perturbation matrix AM from time t
tot+1, using Alg. 2 to track (A*D, U*D)) costs time complexity
O(q* + ng®), where q stands for the number of tracked eigenvalues,
and n is the number of nodes. (Proof in Appendix.)

4 F-SEGA ALGORITHM

In this section, we combine all proposed techniques and introduce
the end-to-end clustering framework, F-SEGA, in Alg. 3. Given
the user-specified k-clique N, the desired number of clusters g, the
group-membership matrix F, the clique-weighted adjacency matrix
WO at t = 0, and the updated edge set {AE(O), .. .,AE(T’I)}, F-
SEGA algorithm outputs the clique-preserving and fairness-aware
clustering associated with each timestamp t. In Alg. 3, the initial
clustering at ¢+ = 0 can be obtained through the proposed static
algorithm (Section 3.1). Then, Step 2 updates Laplacian matrix L®
into L(*1 to obtain M+ through Eq. 12. After that, Step 3 tracks
eigen-pairs of the obtained M (t+1) by leveraging the perturbation
between M(**) and M) in Alg. 2. Finally, Step 4 returns the
clique-preserving and fair clustering result.

THEOREM 4.1 (TIME CoMPLEXITY OF F-SEGA). The time complex-
ity of the proposed F-SEGA algorithm is bounded by O(kaF=2m(®) 4+
q* + ¢%n) at each timestamp t, where k is the number of nodes in
user-defined clique N, « is the arboricity of graph G, and m®) is
the number of edges in graph GW. (Proof in Appendix.)

5 EXPERIMENTS

We evaluate the effectiveness, efficiency, and parameter sensitiv-
ity of F-SEGA 3through comparison with baselines and ablation

3https://github.com/DongqiFu/F-SEGA

Donggqi Fu et al.

Algorithm 3 Fairness-Aware Clique-Preserving Spectral Cluster-
ing of Temporal Graphs (F-SEGA)

Input:
k-clique N, number of clusters g, matrices A(O), W<°), F, and
updated edge set {AE(O), e, AE(T_I)}.
Output:
clusters {Cl(t), .. C((It)}, where t € {1,2,...,T}
1: fort=0:T—-1do
2. Update graph Laplacian matrix L into L(+D through
Alg. 1 to obtain M(**1) by Eq. 12.
3. Track (A*D) U(+D) through Alg. 2 by leveraging M (")
and M{+D),

& SetU*D as X(*+1) in Eq. 11 to form H**Y) for obtaining
(t+1) C(t+1)}
.. Cq

clustering {C
5: end for

1 >t

studies. We also provide a case study of using F-SEGA to design a
proportional allocation of human resources.

5.1 Experiment Setup

Real-World Temporal Graphs. HighSchool-2011 [16] stores dy-
namic human contacts, where 126 nodes denote students, and the
28,561 timestamped edges denote the face-to-face contacts between
students during 4 days. The groups of students include males and
females. HighSchool-2013 [35] is another dynamic human contact
graph of 327 high school students during 5 days. The nodes denote
students grouped by males and females, and the 188,509 times-
tamped edges denote contacts. PrimarySchool [22] is a dynamic
interaction graph of 232 students and 10 teachers grouped by males
and females, and 125,773 timestamped edges denote the contacts
among them. ASA [40] stands for a dynamic inter-personal graph,
where 5,767 nodes represent male and female employees from 384
limited companies, and 873,716 timestamped edges represent the
affiliation among employees in 10 years. Hospital [46] is a dynamic
human contact graph among patients and healthcare workers in
a hospital ward for 5 days. 75 nodes in the Hospital graph are
divided into four groups: patients, nurses, medical doctors, and
administrative staff. 32,424 timestamped edges denote the contacts.

Data Pre-processing. Due to different time granularities (e.g.,
seconds and months) and different durations (e.g., 4 days and 10
years) among real-world temporal graphs, we unify all timestamps
into 11 snapshots, where the snapshot G occupies 80% — 90%
of the entire observed graph in terms of the volume (i.e., number
of edges), and each updated edge set AE(t), t € {0,...,9} contains
updated edges with the number of 1% — 2% volume of the whole
observed graph.

5.2 Baseline Algorithms

We include spectral clustering algorithms from 3 aspects, i.e., fair
and unfair, low-order and high-order, and static and dynamic.
SC [41] is the standard (i.e., edge-based) spectral clustering aiming
for minimizing Ncut. TripSC [9] tracks eigen-pairs of Laplacian
matrix to meet the dynamic spectral clustering baseline. MSC [5]
stands for the motif spectral clustering, which is a high-order algo-
rithm proposed to minimize the number of broken motifs due to
the graph cuts. Different from cliques, motifs do not have to be fully
connected. FSC [29] represents the fair spectral clustering, which

https://github.com/DongqiFu/F-SEGA

Fairness-Aware Clique-Preserving
Spectral Clustering of Temporal Graphs

WWW ’23, April 30-May 4, 2023, Austin, TX, USA

Table 2: Comparison of Effectiveness and Efficiency

Data HighSchool-2011 (Small Number of Clusters) HighSchool-2011 (Large Number of Clusters)
Method \ Metric Ncut CPNcut Avg. Balance Time (cs) Ncut CPNcut Avg. Balance Time (cs)
SC 3.1389 £ 0.8599 | 3.0331 £ 0.9046 | 0.4596 + 0.0454 | 9.5270 + 2.4491 | 11.7701 £ 1.0063 | 11.7578 £0.9956 | 0.2679 + 0.0245 | 29.7407 + 4.3385
TripSC 3.9756 £ 1.0791 | 3.9507 £ 1.1274 | 0.4519 £ 0.0669 | 4.7160 + 0.2390 | 12.6620 + 1.2201 | 12.4800 + 1.0953 | 0.3458 £ 0.0268 | 5.8290 + 0.0238
MSC 3.1443 + 0.8973 | 2.9554 +0.8900 | 0.3888 + 0.0850 | 17.0819 +2.1950 | 12.1444 + 0.9648 | 12.1707 £ 0.9624 | 0.2686 + 0.0503 | 47.5360 + 4.0390
FSC 3.4110 £ 0.7931 | 3.3047 + 0.8312 | 0.4457 + 0.0185 | 23.8289 + 2.3470 | 11.8866 + 0.9955 | 11.9571 + 1.0047 | 0.2473 £ 0.0228 | 55.2460 + 4.5900
F-SEGA 4.4525 + 0.9885 | 4.4435 + 0.9947 | 0.6281 + 0.0851 | 15.4022 + 0.9090 | 13.4689 + 1.5127 | 13.4726 + 1.4659 | 0.4023 + 0.0413 | 15.1860 £ 1.1020
Data HighSchool-2013 (Small Number of Clusters) HighSchool-2013 (Large Number of Clusters)
Method \ Metric Ncut CPNcut Avg. Balance Time (cs) Ncut CPNcut Avg. Balance Time (cs)
SC 1.4866 + 0.4334 | 0.6458 + 0.2347 | 0.4708 + 0.0135 | 33.2589 + 2.3160 | 8.3264 + 0.9598 6.9722 £ 0.9852 | 0.3596 + 0.0276 | 55.7780 + 5.3360
TripSC 1.7915 + 0.2823 | 1.0755 + 0.5641 | 0.4531 + 0.0182 | 27.5309 + 0.4920 | 12.4063 + 0.7526 | 12.2279 + 0.8568 | 0.4568 + 0.1048 | 29.5580 + 7.2800
MSC 1.4664 + 0.4205 | 0.6483 + 0.1829 | 0.4695 + 0.0139 | 63.0641 + 2.2970 | 8.4577 +1.0816 7.0812 +£1.1676 | 0.3971 + 0.0432 | 84.5730 + 4.9880
FSC 1.5203 £ 0.4895 | 0.6620 + 0.2860 | 0.5160 + 0.0466 | 52.8459 + 2.5430 | 8.3129 + 0.9832 6.9370 = 0.9918 | 0.3430 + 0.0264 | 76.1430 + 5.9880
F-SEGA 1.5296 + 0.3493 | 0.6728 + 0.1800 | 0.4620 + 0.0058 | 23.1415 + 0.1730 | 11.1068 + 1.1258 | 10.4639 + 1.1930 | 0.4481 + 0.0827 | 23.2780 + 0.5130
Data PrimarySchool (Small Number of Clusters) PrimarySchool (Large Number of Clusters)
Method \ Metric Ncut CPNcut Avg. Balance Time (cs) Ncut CPNcut Avg. Balance Time (cs)
SC 3.2948 + 0.7586 | 3.1690 £+ 0.7504 | 0.7346 £ 0.0621 | 26.5813 £ 2.9490 | 7.6632 + 0.9263 7.4345 + 0.8838 | 0.6385 + 0.0145 | 33.1950 + 4.3430
TripSC 3.3368 +£0.7193 | 3.1903 + 0.7137 | 0.7090 + 0.0319 | 17.1575 £ 0.2420 | 9.0180 + 0.9117 8.8868 +0.9408 | 0.6235 + 0.0432 | 17.2640 + 0.4350
MSC 3.3528 +0.7852 | 3.1730 £ 0.7744 | 0.7098 £ 0.0232 | 74.5010 £ 2.7000 | 7.4506 + 0.5170 7.4875 + 0.8808 | 0.6775 + 0.0331 | 90.0930 + 4.0000
FSC 3.2830 £ 0.7488 | 3.1894 + 0.7390 | 0.7430 £ 0.0566 | 49.4491 +3.2140 | 7.6606 + 0.9217 7.4255 £ 0.8698 | 0.6747 £ 0.0331 | 67.6080 + 4.4381
F-SEGA 3.4018 + 0.7412 | 3.2126 £ 0.7205 | 0.6717 £0.0143 | 21.8349 +0.6260 | 8.7635 + 1.8539 8.4676 = 1.7872 | 0.6338 + 0.0500 | 22.1440 + 0.2928

adds the fairness constraints on the standard spectral clustering to
make the demographics of each cluster close to the whole graph.
For static baselines, we report the clustering result that is solely
obtained on the last snapshot. For dynamic baselines, we report the
tracked clustering result until the last snapshot, whose tracking is
started from the first snapshot. We provide ablations by removing
different components of F-SEGA individually in Appendix E.

5.3 Effectiveness Comparison

Evaluation Metrics. (1) Ncut, which measures the compactness
of clustering through broken edges, low Ncut score indicates that
clusters are densely connected by edges; (2) CPNcut, which mea-
sures the compactness of clusters in terms of broken k-cliques, in
experiments we set k = 3, low CPNcut score indicates that clusters
are densely connected by k-cliques; (3) Time, which records the
consumed time of each algorithm; (4) Average Balance [29], which
measures the fairness of clustering by calculating the demographics
of each cluster, higher balance bal(-) indicates a cluster is fairer.
Ncut and CPNcut are realized by Eq. 1 by changing the order of N,
and Average Balance is realized as follows.

il Zbal(cl) Icil Zs#s e{1

Quantltatlve Analysis. The six settings (i.e., three datasets with
a small number of clusters ¢ = {5,6,7} and a large number of
clusters ¢ = {14, 15, 16}) in Table 2 reflects two scenarios in the
real world. First, the initial distribution of the input graph
is not demographic fair. As shown in HighSchool-2011(Large),
when all other baselines find roughly similar sub-optimal compact
and fair clustering, our F-SEGA identifies a fairer (i.e., higher av-
erage balance) clustering while sacrificing very little compactness
(e.g., competitive low CPNcut ratio). In Highschool-2011(Small)
and HighSchool-2013(Large), the input data is not fairly distributed
either. Our F-SEGA still achieves very competitive fairness scores
with only a little decreases in the compactness metric. Second,
the initial distribution of the input graph is already demo-

Vsne|

€ [0,1]
Ly Ve n Gl

graphic fair. For example, no matter with Highschool-2013(Small),

PrimarySchool(Small), or PrimarySchool(Large), the initial distri-
bution is fair as all baselines fall into the same performance level.
Despite some random tracking errors, our F-SEGA still achieves
competitive performance in a very efficient manner.

F-SEGA achieves good overall performance among high-order

density, demographic fairness, and time complexity. Taking HighSchool-

2011 dataset as an example shown in Figure 2, F-SEGA is the closest
one to the comprehensiveness, i.e., the line (x = y = z).

15

1.0

0.5

(awiy/1) AousP3

0.0
0.8 06 0.4 02 0.0
Compactness.

0001, 020
Fairnese ;.02 0.3 0.4 0805 5 O
SS (Avg, gy 04 0.5 1007 es®

ance) com P2

p PNC"‘“

Figure 2: Comprehensiveness in HighSchool-2011 (Large).

5.4 Parameter Sensitivity

Different choices of the number of clusters (i.e., q) affect the struc-
ture of clustering. Here, we aim to investigate the performance
consistency of F-SEGA in different clustering settings. To this end,
we evaluate the compactness performance (i.e., CPNcut) and the
fairness performance (i.e., Average Balance) for different g values.
We report the performance on HighSchool-2011. Comparing with
MSC [5] (designed for the high-order but unfair spectral clustering)
at the final snapshot, we have the following observations. (1) In
Figure 3a, CPNcut increases as q increases, because more cliques
are cut as the number of clusters increases. (2) In Figure 3b, as ¢
increases, the fairness performance (i.e., Average Balance) does not
have a clear increasing or decreasing pattern because it is based on
the distribution of the given data; (3) We can see adding fairness
constraints produces much fairer clustering but costs compactness.

5.5 Case Study
In the case study, we use the proposed F-SEGA to design a propor-
tional strategy for allocating human resources in a hospital ward.

WWW °23, April 30-May 4, 2023, Austin, TX, USA

14| @ MsC X H* 0.7 X & Msc
e F-SEGA p) ¥ \ ~#— F-SEGA
12 N 0.6 [\
10 »* & g [X
5 e 5051 | @ \ *
8 ; T © [C=] \
§ > 3 -i) x —k
6 * o S04k '
* o Ed LA by
Y o DA]
* @ 03 o Re oo
2 ! /]
[A * [J

2
4 5 6 7 8 910111213141516
Number of Clusters (q)

4 5 6 7 8 91011121314 1516
Number of Clusters (q)

(a) CPNcut w.r.t. q (b) Balance w.r.t. q

Figure 3: Performance on Different Clustering Sizes.

In Hospital graph data, there are four groups of people: patients,
nurses, doctors, and administrative staff. Given their existing con-
nections, it is critical to design an efficient communication and
resource allocation strategy [50]. Ideally, we want healthcare work-
ers and patients to be densely connected in each cluster such that
patients can obtain timely communication and care. Also, each
cluster should contain similar proportions of people from all four
groups to ensure a balanced workload for healthcare workers.

° e Doctor
po Staff
. e Nurse
« P e Patient

Figure 4: Proportional human resource allocation in Hospital
graph. Grey nodes denote patients, blue nodes denote nurses,
red nodes denote medical doctors, and yellows nodes denote
administrative staff.

To this end, we use F-SEGA algorithm to track the clustering of
Hospital graph and show the clustering result on the last snapshot
in Figure 4. Here, we set the triangle as the target clique being
preserved from graph cuts for representing efficient communica-
tion among people and g = 6. We observe that F-SEGA produces
a set of clusters that are not only triangle-dense but also contain
similar proportions of people from all four groups. To be specific,
we discover that healthcare workers are assigned densely and pro-
portionally in each cluster, which suggests that F-SEGA could help
dynamically design the human resource allocation in a proportional
and efficient manner given the original connections.

6 RELATED WORK

Fair Clustering. Fairness constraints in the clustering problems
receive a surge of research interests. Different fair clustering algo-
rithms [6, 11, 14, 25, 26, 29, 32, 49] are designed for different fair
objectives, like protecting minority groups or hiding sensitive at-
tributes. Fair clustering algorithms reduce bias in many applications,
like computer vision [32]. In [14], researchers aim to protect groups
such that the demographic distribution in every cluster should be

Donggqi Fu et al.

approximately equal to the entire dataset. Different from [14] who
always produces fair clustering results no matter how much cost
increases compared with unfair clustering methods, researchers
in [29] add the fairness constraints on the spectral clustering algo-
rithm to guide a fair clustering result if such result exists but only
pay a little price for the compactness loss of the returned clusters.

High-Order Clustering. For the graph clustering problems, the
standard spectral clustering algorithms [36, 41] study the graph
structure by investigating the eigenvalues and eigenvectors of the
graph Laplacian matrix. To preserve high-order connection patterns
from cuts, tensor-based spectral clustering methods [4, 51] are
proposed. In [5, 45], a re-weighting method is introduced to model
the high-order patterns, this method represents the input graph
into a weighted two-dimensional matrix where each entry stands
for the number of high-order patterns that edge occupies, then
the eigen-decomposition solution of that two-dimensional matrix
can be used for indicating clustering results to preserve high-order
patterns. This re-weighting method is also adopted to solve the
high-order local clustering problem [53]. In the high-order local
clustering algorithms [21, 53-55], the local cluster is produced by
only exploring a small portion of the entire graph given the seed
node. Recently, authors in [7] consider the heterogeneity among
nodes and edges and propose the high-order spectral clustering
method in heterogeneous graphs.

Dynamic Clustering. For dynamic graphs, early dynamic clus-
tering methods [3, 8] obtain the static clustering results indepen-
dently at each timestamp, then matching or mapping them to inves-
tigate the evolutionary pattern of dynamic graphs. In the dynamic
setting, some methods are proposed for the temporal smoothness
like [12] which prefers the clustering result not only fitting the cur-
rent data well but also stable and less sensitive to short-term updates.
And some other dynamic clustering methods are proposed for fast
clustering solutions in the dynamic setting, like [9, 10, 34, 37, 38, 52].
For example, in [38], authors propose the incremental spectral clus-
tering method, which incrementally updates the eigenvalues and
eigenvectors of the Laplacian matrix for indicating clustering re-
sults at each timestamp. Most dynamic graph clustering algorithms
focus on edges (i.e., low-order structures) connectivity information.

To the best of our knowledge, F-SEGA is the first attempt to
access high-order clustering under the group fairness constraints in
the dynamic setting, which reconciles the two clustering constraints
with the clustering efficiency.

7 CONCLUSION

In this paper, we propose F-SEGA for fairness-aware and clique-
preserving spectral clustering of temporal graphs. In addition to
the theoretical derivation of F-SEGA and the analysis of its time
complexity, we empirically evaluate the effectiveness, efficiency,
and robustness of F-SEGA. We also provide a case study to show
the real-world application of F-SEGA.

ACKNOWLEDGEMENT

This work is supported by National Science Foundation under
Award No. IIS-1947203, 1IS-2117902, and IIS-2137468. The views and
conclusions are those of the authors and should not be interpreted
as representing the official policies of the funding agencies or the
government.

Fairness-Aware Clique-Preserving
Spectral Clustering of Temporal Graphs

REFERENCES

(1]

[2

(3]

[

[11]

[12]

[13]

[14

[15]

[16

(17

(18]

[26

[27]

[28

[29]

[30

[31

[32]

[33
[34

[35

[36]

Balazs Adamcsek, Gergely Palla, Illés J. Farkas, Imre Derényi, and Tamas Vic-
sek. CFinder: locating cliques and overlapping modules in biological networks.
Bioinformatics, 2006.

Charu C. Aggarwal and Karthik Subbian. Evolutionary network analysis: A
survey. ACM Comput. Surv., 2014.

Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. An event-based frame-
work for characterizing the evolutionary behavior of interaction graphs. In KDD,
2007.

Austin R. Benson, David F. Gleich, and Jure Leskovec. Tensor spectral clustering
for partitioning higher-order network structures. In SDM, 2015.

Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-order organization
of complex networks. Science, 2016.

Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Ne-
gahbani. Fair algorithms for clustering. In NeurIPS, 2019.

Aldo G. Carranza, Ryan A. Rossi, Anup Rao, and Eunyee Koh. Higher-order
clustering in complex heterogeneous networks. In KDD, 2020.

Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evolutionary cluster-
ing. In KDD, 2006.

Chen Chen and Hanghang Tong. Fast eigen-functions tracking on dynamic
graphs. In SDM, 2015.

Chen Chen and Hanghang Tong. On the eigen-functions of dynamic graphs:
Fast tracking and attribution algorithms. Stat. Anal. Data Min., 2017.

Xingyu Chen, Brandon Fain, Liang Lyu, and Kamesh Munagala. Proportionally
fair clustering. In ICML, 2019.

Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L. Tseng. Evo-
lutionary spectral clustering by incorporating temporal smoothness. In KDD,
2007.

Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms.
SIAM J. Comput., 1985.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair
clustering through fairlets. In NeurIPS, 2017.

Imre Derényi, Gergely Palla, and Tamas Vicsek. Clique percolation in random
networks. Physical Review Letters, 2005.

Julie Fournet and Alain Barrat. Contact patterns among high school students.
PLoS ONE, 2014.

Donggqi Fu, Yikun Ban, Hanghang Tong, Ross Maciejewski, and Jingrui He. DISCO:
comprehensive and explainable disinformation detection. In CIKM 2022, 2022.
Donggqi Fu, Liri Fang, Ross Maciejewski, Vetle I. Torvik, and Jingrui He. Meta-
learned metrics over multi-evolution temporal graphs. In KDD 2022, 2022.
Donggqi Fu and Jingrui He. SDG: A simplified and dynamic graph neural network.
In SIGIR, 2021.

Donggi Fu and Jingrui He. Natural and artificial dynamics in graphs: Concept,
progress, and future. Frontiers in Big Data, 2022.

Donggqi Fu, Dawei Zhou, and Jingrui He. Local motif clustering on time-evolving
graphs. In KDD, 2020.

Valerio Gemmetto, Alain Barrat, and Ciro Cattuto. Mitigation of infectious
disease at school: targeted class closure vs school closure. BMC infectious diseases,
2014.

Mark S Granovetter. The strength of weak ties. In Social networks. Elsevier, 1977.
Ling Huang, Donghui Yan, Michael I. Jordan, and Nina Taft. Spectral clustering
with perturbed data. In NeurIPS, 2008.

Lingxiao Huang, Shaofeng H.-C. Jiang, and Nisheeth K. Vishnoi. Coresets for
clustering with fairness constraints. In NeurIPS, 2019.

Jian Kang, Jingrui He, Ross Maciejewski, and Hanghang Tong. Inform: Individual
fairness on graph mining. In KDD, 2020.

Jian Kang, Tiankai Xie, Xintao Wu, Ross Maciejewski, and Hanghang Tong.
Infofair: Information-theoretic intersectional fairness. In IEEE BigData, 2022.
Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. Representation learning for dynamic graphs:
A survey. J. Mach. Learn. Res., 2020.

Matthéus Kleindessner, Samira Samadi, Pranjal Awasthi, and Jamie Morgenstern.
Guarantees for spectral clustering with fairness constraints. In ICML, 2019.
Gueorgi Kossinets and Duncan] Watts. Empirical analysis of an evolving social
network. Science, 2006.

Liangyue Li and Hanghang Tong. Computational approaches to the network
science of teams. 2020.

Peizhao Li, Han Zhao, and Hongfu Liu. Deep fair clustering for visual learning.
In CVPR, 2020.

Helmut Litkepohl. Handbook of matrices, volume 1. Wiley Chichester, 1996.
Lionel Martin, Andreas Loukas, and Pierre Vandergheynst. Fast approximate
spectral clustering for dynamic networks. In ICML, 2018.

Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high
school: A comparison between data collected using wearable sensors, contact
diaries and friendship surveys. PLOS ONE, 2015.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. In NeurIPS, 2001.

[37

[38

[39

[40

N
=

[42

[43

[44

[45

‘o
=

WWW ’23, April 30-May 4, 2023, Austin, TX, USA

Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas S. Huang. In-
cremental spectral clustering with application to monitoring of evolving blog
communities. In SDM, 2007.

Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas S Huang. In-
cremental spectral clustering by efficiently updating the eigen-system. Pattern
Recognition, 2010.

Gergely Palla, Imre Derényi, Illés Farkas, and Tamas Vicsek. Uncovering the
overlapping community structure of complex networks in nature and society.
nature, 2005.

Cathrine Seierstad and Tore Opsahl. For the few not the many? the effects of
affirmative action on presence, prominence, and social capital of women directors
in norway. Scandinavian Journal of Management, 2011.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 2000.

Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos.
Proximity tracking on time-evolving bipartite graphs. In SDM, 2008.

Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of
facebook networks. CoRR, 2011.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
Dyrep: Learning representations over dynamic graphs. In ICLR, 2019.
Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. Scal-
able motif-aware graph clustering. In WWW, 2017.

Philippe Vanhems, Alain Barrat, Ciro Cattuto, Jean-Frangois Pinton, Nagham
Khanafer, Corinne Régis, Byeul-a Kim, Brigitte Comte, and Nicolas Voirin. Esti-
mating potential infection transmission routes in hospital wards using wearable
proximity sensors. PLoS ONE, 2013.

Ulrike von Luxburg. A tutorial on spectral clustering. Stat. Comput., 2007.
Jianxin Wang, Xiaoqing Peng, Min Li, and Yi Pan. Construction and application
of dynamic protein interaction network based on time course gene expression
data. Proteomics, 2013.

Yian Wang, Jian Kang, Yinglong Xia, Jiebo Luo, and Hanghang Tong. ifig: Indi-
vidually fair multi-view graph clustering. In IEEE BigData, 2022.

Nimnath Withanachchi, Yasuo Uchida, Shyama Nanayakkara, Dulani Sama-
ranayake, and Akiko Okitsu. Resource allocation in public hospitals: Is it effec-
tive? Health Policy, 2007.

Tao Wu, Austin R. Benson, and David F. Gleich. General tensor spectral co-
clustering for higher-order data. In NeurIPS, 2016.

Donghui Yan, Ling Huang, and Michael L Jordan. Fast approximate spectral
clustering. In KDD, 2009.

Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higher-order
graph clustering. In KDD, 2017.

Dawei Zhou, Jingrui He, Hasan Davulcu, and Ross Maciejewski. Motif-preserving
dynamic local graph cut. In IEEE BigData, 2018.

Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong,
Hasan Davulcu, and Jingrui He. A local algorithm for structure-preserving graph
cut. In KDD, 2017.

WWW °23, April 30-May 4, 2023, Austin, TX, USA

A PROOF OF PROPOSITION 1

To prove Proposition 1, we need to show the optimal graph cuts
H,(Ft) at time ¢ may not achieve the optimized CPNcut ratio at t + 1,
which implies the tie graph cuts Hg) and inferior graph cuts
n? (w.r.t CPNcut ratio) may be chosen as the optimum for time
t + 1. To give a relatively full analysis, we first discuss that in a
general case that H,Et) is still the optimum at ¢ + 1, and give some
extreme cases that it will not be the optimum.

For an insensitive inserted edge, according to Eq. 5, it will only
increase or remain the volume of each cluster of Hit) and remain

the number of broken cliques. Therefore, the CPNcut ratio of H,(Ft)

remains or in-depth minimizes under the fairness constraint.

e However, extreme cases can happen that 1% can be the opti-
mum at ¢ + 1 for only insensitive inserted edges. For example, as
shown in Figure 5a (for 3-clique), AE only contains insensitive
inserted edges w.r.t Hit) , but when the huge number of insensi-
tive updated edges arrives intensively and locally on the right

complement of 1Y, the volume of the right cluster will increase

dramatically and 1" can be H,(FHU. In the real world, the graph

is usually sparse, and each time update is also much smaller com-

pared to the volume of cluster [21], such that we based on this
assumption and infer 1Y will not be H,(fﬂ).

e Extreme cases can also happen that H(:t) is qualified for Hi”l)
when the inserted insensitive edges w.r.t H,(f) are also insensitive
to Hg) as shown in Figure 5b (for 3-clique). In this scenario,
temporal smoothness [12] will choose H,(kt) as I'[,EHI), ie., the
previously selected graph cuts have a preference when tied.

n® nd

(a) Extreme Case L.

(b) Extreme Case II.

Figure 5: Inserted Insensitive Edges Analysis.

For a deleted insensitive edge, if that inter-cluster deleted
edge occupies s k-cliques N, then s k-cliques will disappear and the
volume of graph G0, y(G(t), N), will decrease s - @, because
the weights of edges in each of s k-cliques are decreased. According

to Eq. 5, for a cluster Cl<t)’ cut(Cp, V \ C;, N) will decrease at most

s- k(szl) and p(Cy, N) will decrease at most (1—17) - s - @,
n=%¢€(0,1),andk € {1,....k - 1}.If n > 0.5, since p(C;,N) >
cut(Cp, V' \ C;,N), the CPNcut ratio of Hit) will decrease at t + 1.
Even n — 0, we consider p(C;,N) > cut(C;, V \ C;,N) then the
CPNcut ratio of H,(Ft) will remain at t + 1. Thus, the CPNcut ratio of

Hi) remains or in-depth minimizes under the fairness constraint.

e An extreme case as shown in in the Figure 6, Hg) achieves the
same CPNcut ratio (k=3) as H,(kt) in terms of insensitive deleted

edges. An insensitive deleted edge to H,(f) is also insensitive to

Donggqi Fu et al.

) , which means 1" has the change to be H,(fﬂ). If that hap-

pens, temporal smoothness [12] will still choose H,Et) as Hi“l),
i.e., the previous selected graph cuts have preference when tied.

Figure 6: Extreme Case III.

B PROOF OF PROPOSITION 2

We first prove that the proposed Fast Update of Graph Laplacian
method updates Laplacian matrix L() in terms of the 3-clique
requires O(am?)) time. Then we generalize the proof to arbitrary
k. In the outermost for-loop of Alg. 1, node i denotes the node with
the larger degree in the updated edge (i, j). Step 3 and Step 9 require
0(d® (1)) time, and Step 4 requires O(Z(i,j)eAE(‘) dD (j)) time,
where d!) (1) denotes the standard (i.e., edge-based) degree of the
node u and d® (u) = Yoev(® AW (4,v). Therefore, for the total
running time O(updating), we have

O(updating) = Z o(d" (i) + Z

i€V, (1) (i,j) eAE®)

< > odPm+ > dV()

iev(®) (i,7) EAE®)

<omN+o(> dP()

(i,j) eAE(®)

<om®W)y+0(Z

(u,0) EAE(®)

dD ()

(25)

min{d® (u), dV (0)})

where V, () stands of the set of nodes in AE (), We assume that
|AE(t) | < m® | then according to [13], we have

> min{d® (@), d9(0)} < 2am (26)
(u,0) EAE®)

where « is the arboricity of the graph G and stands for the mini-
mum number of edge-disjoint spanning forests of G Note that
the bounded time complexity is independent of the number of up-
dated edges due to the summation. Thus, we have the total running
time O(updating) < O(am®). With the recursion rule of listing
k-clique [13], we can detect the appearance (or disappearance) of
k-cliques at each timestamp by recursively applying Alg. 1 until
k-1=2, and the total time complexity is bounded by O(ka*=2m(®),

C PROOF OF PROPOSITION 3
First of all, for Step 1 of Alg. 2, we have

uft)'AMuﬁt) = Z AM(s, 1) ulm (s) u;t)(r) (27)

(s.r)
where (s,r) stands for the non-zero entry of AM. We denote the
number of non-zero entries of AM as o, then Step 1 costs O(q0)
time complexity. Then, compared with the second for-loop (i.e.,
Steps 14-17), it is easy to prove that the dominant part of Alg.2 is

Fairness-Aware Clique-Preserving
Spectral Clustering of Temporal Graphs

WWW ’23, April 30-May 4, 2023, Austin, TX, USA

1254
0.20 1 — MSC 0.45 4 — FSC
® 100 A
= 015 2 0407 -
3 = 2 759 — FsC
4 L
£ 010 @ 033 E — MsC
Q) = 504
< 0.30
0.05 1 25
0.25 4
0.00 T y 7 T T T T T T
F-SEGA F-SEGA-L F-SGEA-UF F-SEGA F-SEGA-L F-SGEA-UF F-SEGA F-SEGA-L F-SGEA-UF
(a) Ablation in ASA (b) Ablation in ASA (c) Ablation in ASA

(w.r.t. CPNcut).

(w.r.t. Avg. Balance).

(w.r.t. Time).

Figure 7: Ablation Study of F-SEGA.

the first for-loop (i.e., Steps 5-12) [10], where the inverse operation
of Step 7 costs O(q>), and the multiplication operation of Step 11
costs O(ngq). Therefore, the first for-loop costs O(g* + ng?). Since
0 < n, Alg.2 will cost O(g* + ng?) in the worst case.

D PROOF OF THEOREM 4.1

F-SEGA consists of two sequential parts, i.e., Laplacian update and
eigen-pairs update. Therefore, the time complexity is easy to be
proved by Proposition 2 and Proposition 3.

E ABLATION STUDIES

Here, we provide ablations by removing different components of
F-SEGA individually. (1) By removing the fairness constraint (i.e.,
Eq. 9), F-SEGA-UF solves the clique-preserving spectral clustering in
the dynamic setting. (2) By replacing the clique-weighted adjacency
matrix W with the standard adjacency matrix A, F-SEGA-L targets
to the low-order and fair clustering in the dynamic setting.

Regarding the ablation study in ASA data as shown in Figure 7a-
7c, where the dynamics setting is the same as other datasets, and
the number of clusters g is set to be 2. We can see each proposed
technique plays its own role. For example, F-SEGA-L fails to find
high-order dense clustering, and F-SEGA-UF could not identify
a fair clustering. For the time complexity, since the high-order
connections make matrices more sparse, F-SEGA runs faster than F-
SEGA-L, and F-SEGA-UF runs fastest by avoiding intensive inverse
operations for fairness constraints.

F LIMITATIONS

In Eq. 6, matrix H is a node-cluster assignment matrix, where each
node belongs to only one cluster. Given the format of H in Eq. 6,
the trace of H LH exactly equals to CPNcut in Eq. 5. That’s why
minimizing CPNcut equals to minimizing the trace of H' LH.

Then, if we can obtain H as Eq. 6 expressed (i.e., 0 and 1/+/u(Cy, N)
valued), the clusters can be directly read out from H. However, in a
more general case, we need to relax H by letting its entries take any
real values. That’s where the approximation originates, and also
the reason we need K-means to infer clusters from the real-valued
matrix H.

Using K-means is an effective approximation for classic spectral
clustering [36, 47]. In our setting, i.e., adding fairness constraints
to clustering (i.e., Eq. 3 + Eq. 4), using K-means also has good em-

pirical performance as shown in our experiments or in [29]. To the
best of our knowledge, the theoretical bound of compactness and

fairness for using K-means is still an open problem. In [29], the au-
thors proved that using K-means (in the static setting) can partition
an SBM-generated synthetic graph with a bounded accuracy, but
without fairness error analysis. Currently, K-means is a commonly
used and necessary way to infer clustering, and analyzing the exact
compactness and fairness error bound in the general case is a very
interesting topic.

	Abstract
	1 Introduction
	2 Preliminary and Problem Definition
	3 Proposed Techniques
	3.1 Fairness-Aware Clique-Preserving Spectral Clustering: From Static to Dynamic
	3.2 Laplacian Update via Edge Filtering and Searching
	3.3 Eigen-Pairs Update with Singularity Avoided

	4 F-SEGA Algorithm
	5 Experiments
	5.1 Experiment Setup
	5.2 Baseline Algorithms
	5.3 Effectiveness Comparison
	5.4 Parameter Sensitivity
	5.5 Case Study

	6 Related Work
	7 Conclusion
	References
	A Proof of Proposition 1
	B Proof of Proposition 2
	C Proof of Proposition 3
	D Proof of Theorem 4.1
	E Ablation Studies
	F Limitations

