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ABSTRACT

With decentralized data collected from diverse clients, a personal-
ized federated learning paradigm has been proposed for training
machine learning models without exchanging raw data from local
clients. We dive into personalized federated learning from the per-
spective of privacy-preserving transfer learning, and identify the
limitations of previous personalized federated learning algorithms.
First, previous works suffer from negative knowledge transferability
for some clients, when focusing more on the overall performance
of all clients. Second, high communication costs are required to
explicitly learn statistical task relatedness among clients. Third, it
is computationally expensive to generalize the learned knowledge
from experienced clients to new clients.

To solve these problems, in this paper, we propose a novel feder-
ated parameter propagation (FEDORA) framework for personal-
ized federated learning. Specifically, we reformulate the standard
personalized federated learning as a privacy-preserving transfer
learning problem, with the goal of improving the generalization
performance for every client. The crucial idea behind FEDORA is
to learn how to transfer and whether to transfer simultaneously,
including (1) adaptive parameter propagation: one client is enforced
to adaptively propagate its parameters to others based on their
task relatedness (e.g., explicitly measured by distribution similar-
ity), and (2) selective regularization: each client would regularize
its local personalized model with received parameters, only when
those parameters are positively correlated with the generalization
performance of its local model. The experiments on a variety of
federated learning benchmarks demonstrate the effectiveness of the
proposed FEDORA framework over state-of-the-art personalized
federated learning baselines.
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1 INTRODUCTION

Federated learning [15, 25] is a learning paradigm where multiple
clients collaborate in training machine learning models under the
coordination of a central server. The crucial idea behind federated
learning is to aggregate knowledge from diverse clients [24, 27],
while protecting the privacy-sensitive data from private clients [41].
In recent years, federated learning techniques have been widely
applied to a variety of high-impact domains, e.g., mobile keyboard
prediction [12] and voice recognition [19] in smartphones, fMRI
analysis [22] and drug discovery [3] in healthcare, etc. With decen-
tralized data from different clients, traditional federated learning
algorithms [21, 25, 38] are developed to build a global model by
aggregating knowledge from all clients. But it is shown [46] that
a single global model might not generalize well on the test data
of each individual client when clients follow different data distri-
butions. This motivates the paradigm of personalized federated
learning [6, 24, 34], where a personalized model is learned for each
client (shown in Figure 1(a)).

Most existing personalized federated learning algorithms [7, 14,
20, 23, 34, 36] consider the objective function of multi-task learn-
ing [32] by formulating the model training of each client as one
task. Thus, the goal is to improve the overall performance of all the
personalized models simultaneously. The intuition behind previous
works is that the federated learning system focuses on improving
the overall prediction performance. It cannot guarantee that all
individual clients can benefit from the federated learning system.
That is, some clients might have worse performance than their local
training counterparts (i.e., each client trains the model over its own
local data without communication across clients). This observa-
tion is verified in Figure 2, where four local clients collaborate in
training models (see Figure 2(a)). It can be seen from Figure 2(b)
that compared to local training (denoted as “LOCAL"), personalized
federated learning approaches (e.g., LG-FedAvg [23], Ditto [20],
FedAMP [13]) improve the overall prediction performance (e.g.,
test accuracy over all clients). However, we observe that not all
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Figure 1: Illustration of personalized federated learning. (a)
Personalized federated learning aims to find a personalized
model for each client. (b) From the perspective of transfer
learning, a client learns a personalized model by leveraging
latent knowledge from other clients.

clients can benefit from federated training, e.g., client 4 has lower
accuracy than LOCAL. Intuitively, this result indicates that client
4 is not incentivized to participate in federated training, because
it introduces communication costs (by sharing model parameters)
and achieves no performance improvement.

The observation above motivates us to re-think personalized
federated learning with the following fundamental research ques-
tions. Q1: Are all the clients incentivized to participate in federated
collaboration? Q2: How do clients maximally benefit from federated
collaboration under data heterogeneity across clients? To answer
these questions, in this paper, we study personalized federated
learning by reformulating the model training of each client as a
privacy-preserving transfer learning problem. As shown in Fig-
ure 1(b), for each client k, it considers itself as the target and other
clients (k" € {1,--- ,k—1,k+1,---,K}) as the sources. The goal is
to improve the generalization performance of a learning algorithm
on a client, by transferring the knowledge from other clients. From
this point of view, we show that the aforementioned research ques-
tions are strongly correlated. That is because it is revealed [2, 40]
that the target task can benefit from transfer learning when it has a
limited number of training samples (Q1) and it shares similar data
distribution with the source task (Q1&Q2). More specifically, on
one hand, a target client is incentivized to participate in federated
collaboration when it has limited training samples and there exist
other clients sharing similar data distributions. This also explains
that in Figure 2, with adequate training samples, Client 4 is more
likely to suffer from the negative transfer (i.e., worse performance
compared to LOCAL). On the other hand, a target client would
collaborate with a source client sharing similar data distributions
(indicating they have some common knowledge). The transferred
knowledge from the source client would have a negative impact on
the target learner if the distribution shift between clients is large.

Inspired by the connection between personalized federated learn-
ing and transfer learning, in this paper, we propose a novel federated
parameter propagation (FEDORA) framework to learn personal-
ized models in the federated learning system. The key idea of FE-
DORA is to identify whether the generalization performance of a
client can benefit from the knowledge transferred from other clients,
and how to maximally improve the generalization performance of
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Client 1 Client 2 Client 3 Client 4
(a) Imbalanced training samples across clients
Model Accuracy Average
Client 1 Client 2 Client 3 Client 4 Accuracy
LOCAL 0.5270 0.4840 0.4980 0.8110 0.5800
FedAvg 0.3755 0.4420 0.6455 0.7965 0.5649
LG-FedAvg 0.5440 0.5115 0.5430 0.8095 0.6020
Ditto 0.4095 0.4810 0.6465 0.8095 0.5866
FedAMP 0.5300 0.5210 0.5415 0.8105 0.6008
FEDORA (ours) 0.5565 0.5675 0.5850 0.8195 0.6321

(b) Results of personalized federated learning

Figure 2: Personalized federated learning on non-IID clients
with imbalanced training samples. There are four clients
with data drawn from Rotated MNIST [17]: Client 1 (0°),
Client 2 (30°), Client 3 (60°), and Client 4 (90°), and several
baselines, including FedAvg [25], LG-FedAvg [23], Ditto [20],
and FedAMP [13]. The baselines suffer from the negative
transfer in Client 4, i.e., lower accuracy than LOCAL.

a client by transferring the knowledge from other clients. To this
end, we design two regularization terms for personalized model
training. The first one is selective regularization, where client k
updates its personalized model parameters 0 with received knowl-
edge (encoded by the auxiliary parameters ék) from other clients
if 6y, is positively correlated with the generalization performance
on client k. The second regularization term is adaptive parameter
propagation, where for client k, the transferred knowledge ék is
optimized based on the distribution similarity between client k and
other clientk’ (k" = 1,--- ,k—1,k+1,-- - ,K). The intuition behind
adaptive parameter propagation is that two clients are more likely
to have similar personalized model parameters when they are distri-
butionally similar. Moreover, we provide theoretical generalization
and convergence analysis of FEDORA for personalized federated
learning. Extensive experiments on a variety of federated learn-
ing benchmarks demonstrate the effectiveness of our FEDORA
framework over state-of-the-art baselines.

Compared to previous works, our proposed FEDORA frame-
work has the following advantages. First, FEDORA can signifi-
cantly alleviate the negative transfer of individual clients when par-
ticipating in the federated collaboration. To the best of our knowl-
edge, little effort (if any) has been devoted to studying negative
transfer in previous works [7, 20, 33]. Second, FEDORA adaptively
learns the transferred knowledge for each client based on the dis-
tribution similarity between this client and others. It is much more
flexible than previous works [6, 20, 24] which encode the trans-
ferred knowledge with a single global model for all clients. Third,
FEDORA has the same communication cost as vanilla FedAvg [25],
which is much cheaper than previous adaptive federated learning
approaches [34, 45]. Besides, we would like to point out that our
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work differs from existing federated transfer learning [4, 30]. In this
paper, we focus on understanding standard personalized federated
learning problems from a transfer learning perspective. This is in
sharp contrast to the existing works which either transferred the
knowledge from labeled clients to unlabeled ones [30] or fine-tuned
a globally shared model [4] for personalization.

The major contributions of this paper are summarized as follows.

e We identify the negative transfer of personalized federated
learning from the perspective of privacy-preserving transfer
learning.

o A novel federated parameter propagation (FEDORA) frame-
work is proposed for mitigating the negative transfer in
personalized federated learning, followed by the theoretical
convergence and generalization analysis.

o The effectiveness of FEDORA is confirmed in various per-
sonalized federated learning benchmarks. Besides, we show
that FEDORA can be efficiently adapted to new clients as-
sociated with either labeled or unlabeled training samples.

The rest of this paper is organized as follows. Section 2 reviews
the related work. We introduce the formal definition and major chal-
lenges of personalized federated learning in Section 3. In Section 4,
we propose a novel federated parameter propagation (FEDORA)
framework, followed by its theoretical convergence and gener-
alization analysis. The effectiveness of FEDORA is empirically
evaluated in Section 5. Finally, we conclude the paper in Section 6.

2 RELATED WORK

2.1 Federated Learning

Federated learning (FL) [5, 15, 25, 47] is a learning paradigm where
multiple clients collaborate in training a machine learning model
under the coordination of a central server. A single model is globally
trained for all clients when all the client data are independent and
identically distributed (IID) [21]. But in real scenarios, it can not
guarantee that all the clients collect the training samples from
the same data distribution. It is found [46] that under statistical
data heterogeneity among clients, a single global model might not
generalize well to all the clients.

2.2 Personalized Federated Learning

Personalized federated learning [6, 20, 24] aims to learn the per-
sonalized model for every individual client. In recent years, var-
ious personalized federated learning frameworks have been pro-
posed, including multi-task learning approaches [9, 31, 33, 34],
meta-learning [8], customization regularization [36], partial pa-
rameter sharing [1, 23], etc. From the perspective of knowledge
transferability, most existing algorithms consider two parameter-
sharing mechanisms. One is to use a global model to encode com-
mon knowledge shared by all clients, and then regularize the per-
sonalized model of each client with this global model [6, 20, 24, 36].
The other one is to capture complex relations among individual
clients, and the relation would guide the parameter sharing among
clients [7, 13, 34, 45]. However, most existing algorithms focus on
improving the overall performance of federated learning systems.
Little effort has been devoted to studying the negative transfer in
the context of personalized federated learning.
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3 PRELIMINARIES

3.1 Notation

Let X and Y be the input space and output label space respectively.
In this paper, we consider the personalized federated learning set-
ting [20, 34], where there is a central server and K local clients. Each
client has access to a private training set {xlk, yf}?:kl drawn from a
data distribution Py in the kth (k=1,---,K) client. Here xlk eX
and yf.( € Y denote the input example and output label, respectively.
The data set {xlk, yf }7:"1 is exclusively owned by client k and will
not be shared with the central server or other clients. We let L(-, )
denote the loss function. Then the expected prediction error on
client k is defined as Fy. (6y) = E(xk,yk)~]Pk [L(f(xk), yk; 0)] given
a prediction function f(-), where 0y denotes the model parame-
ters. The empirical prediction error is then defined as Fy.(0;) =

# Z:l:kl L(f(xk), yk; Or).

3.2 Problem Definition

Following [1, 24, 34], the problem of personalized federated learning
is formally defined as follows.

Definition 3.1. (Personalized Federated Learning)
Input: (i) A central server; (ii) a set of local clients with private
training sets; (iii) a learning algorithm f(-).
Output: Personalized prediction function for each client.

The goal of personalized federated learning is to learn a person-
alized model for each client. Most existing algorithms [7, 20, 34, 36]
build the objective function based on multi-task learning, where
each task is the personalized model training in one client. As a
result, those works focus on improving the overall performance of
all the clients. This objective cannot guarantee that all individual
clients have improved performance when participating in the fed-
erated collaboration. This is also empirically confirmed in Figure 2,
where some clients suffer from the negative transfer, though the
overall prediction performance of federated learning is improved.

Therefore, in this paper, we would like to study personalized fed-
erated learning from the perspective of transfer learning. Regarding
knowledge transferability [2, 42], it has been shown that the gen-
eralization performance of a learning algorithm on one client can
be improved by leveraging latent knowledge from other relevant
clients. As shown in Figure 1, personalized federated learning can
be decomposed into a group of transfer learning problems [18]. For
example, given a target client k, it learns the prediction function
on this target client by transferring the knowledge from multiple
source clientsk” € {1,--- ,k—1,k+1,---,K} (shown in Figure 1(b)).

When evaluating the efficacy of a federated learning system, the
commonly used metrics in previous works [7, 20, 34, 36] are average
prediction results over all the clients, e.g., average classification ac-
curacy for image classification [25]. In addition to average accuracy
indicating the overall performance of the federated learning system,
we also consider two additional evaluation metrics as follows.

Definition 3.2. (Relative Accuracy) Given a target client k, the
relative accuracy of personalized federated learning is defined as

Acc (0]’:) — Acc (QIIC‘OCAL)

Acc (HIISOCAL)

R-Acc (GZ) =
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where Acc(-) denotes the test accuracy, 9; denotes the parameters
learned by personalized federated learning (i.e., with federated col-
laboration) on client k, and QIEOCAL denotes the parameters learned
by local training (i.e., without federated collaboration) on client k.

Definition 3.3. (Positive Transferability Ratio) Given a fed-
erated learning system with K clients, the positive transferability
ratio of personalized federated learning is defined as
ZK I [Acc (0 ) Acc (Q}C‘OCAL)]

PTR (67,---,0%) =
(65, 05) = a
where [[a] = 1if a > 0, and I[a] = 0 otherwise.

Both relative accuracy and positive transferability ratio measure
the knowledge transfer performance when client k participates in
federated collaboration. Notably, the positive transferability ratio
PTR(0], - - -, 0f) indicates whether negative transfer happens in
the federated learning system. Higher PTR(@;‘, B ,91*() implies
that most clients benefit from federated collaboration. R-ACC(GZ)
indicates fine-grained performance improvement/degradation that

client k achieves from federated collaboration.

3.3 Challenges

In addition to data privacy and communication costs pointed out
by previous works [15, 25], we identify additional challenges of
personalized federated learning from the perspective of privacy-
preserving transfer learning.

It is notable that each client can train a local model (termed
LOCAL) over its own private training examples. By participating
in federated training, a client is able to receive latent knowledge
from other clients. However, the received knowledge might have a
negative impact on the client learner. Following [2], this negative
transfer phenomenon can be characterized by two critical factors
in the context of personalized federated learning: the distribution
difference between clients and the number of training samples
in the client. To be specific, the distribution divergence between
Py (x,y) of client k and Py (x, y) of client k” over X XY is the root of
the negative transfer [40]. Moreover, if there are abundant labeled
data in a target client, the knowledge transferred from a slightly
different source client could hurt the generalization performance.
This motivates us to consider the challenge of negative knowledge
transferability for each client in personalized federated learning.

4 FEDERATED PARAMETER PROPAGATION

In this section, we present a novel federated parameter propagation
framework (FEDORA) for personalized federated learning.

4.1 Objective Function

The goal of personalized federated learning is to learn an optimal
personalized model for each client, by transferring the knowledge
from other relevant clients. As pointed out in previous work [2, 42],
when transferring the knowledge from a source task to a target
task, the transfer performance is strongly correlated with both
distribution differences between tasks and the number of training
samples in the target task. This motivates us to propose a federated
parameter propagation framework (FEDORA) for personalized
federated learning. The overall objective function is formulated as:
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where wys denotes the distribution similarity between client k and
client k” and Dy = fo,:l Wi O is the personalized parameters

K
min = Z
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—
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a
2

and ék is the auxiliary personalized parameters in client k. Here
a > 0 and A > 0 balance different terms in our objective function.

Intuitively, the first term represents empirical prediction error
for learning personalized parameters 6y (k = 1, - - - , K). The second
term enforces 0 to approximate auxiliary personahzed parameters
9k In this case, Qk would encode the knowledge transferred from
other clients. A indicates whether client k would benefit from the
received knowledge. A — 0 implies that client k would focus more
on local training over its own training samples, and the received
knowledge ék might hurt the generalization performance of client k.
The third term of our objective function is to regularize the auxiliary
personalized parameters based on distribution similarity between
clients. That is, when two clients are distributionally similar, they
would share similar model parameters.

Remark. It can be seen that in the special case where ék =0,
forallk € {1,--- ,K}and Ay = - -+ = Ax = A, our objective function
is equivalent to existing federated multi-task learning algorithms,
eg., MOCHA [34] FedU [7], with the objective function.

Wik’
o L Z Z (x,,yl,9k)+—zz ||€k_9k’||2
=1k’=1
Compared to previous works [7, 34], FEDORA is more flexible
because client k can choose whether to collaborate by dynamically
adjusting A during model training (see Subsection 4.2.3).

4.2 Model Training

By minimizing the objective function of Eq. (1), we iteratively up-
date the parameters 6 and 0, including (a) fixing 0 and updating
O for k =1,---,K in parallel, ie.,

1 & .
min — L(x,k,yfﬁk) + A l10k — Oxl13 )
O Mk =

and (b) fixing Bk and updating ék, i e,

Jmin Z”‘)k‘ek”ﬁ‘z Z k!

In thls case, Eq. (2) optimizes the personahzed parameters 0y via
empirical risk minimization with respect to local training data in
client k. It implies that 0y (k = 1, -- - , K) can be updated locally in
parallel. In contrast, Eq. (3) updates ék globally, because it requires
the auxiliary parameters ék/ (k" # k) from other clients. Therefore,
following [15, 25], we can roughly summarize the federated training
procedures of FEDORA as follows.

(i) Forward Communication: The server broadcasts the auxiliary

C 3)

O - b

personalized parameters to clients, e.g., send ék to client k;
(ii) Client Update: Each client updates its own personalized pa-
rameters 6y via Eq. (2);



Personalized Federated Learning with Parameter Propagation

(iii) Backward Communication: Each client uploads the personal-
ized parameters 6y back to the server;

(iv) Server Update: The server updates the auxiliary personalized
parameters ék (k=1,---,K)viaEq. (3).

We see that similar to FedAvg [25], the communication cost of
FEDORA is determined by ék and 0y during federated training,
i.e., a client shares 6y to the central server and receives 6§ from
the server. Thus, it is much cheaper than existing federated multi-
task learning algorithms, e.g., MOCHA [34], FedFOMO [45]. This is
because each client in these algorithms receives the model parame-
ters from multiple clients. Next, we present the detailed training
procedures of our FEDORA framework.

4.2.1 Preprocessing. The intuition behind FEDORA framework is
that two clients share similar personalized parameters if they are
distributionally similar. Before introducing the iterative optimiza-
tion solution of FEDORA, we first estimate the data distribution
similarity between clients in the context of federated learning.
Inspired by [37], we measure the client similarity (i.e., wggs be-
tween client k and client k”) by exploring the subspaces induced
by training samples across clients. As shown in [40], the distri-
bution shift across clients can be induced by both input features
and output labels. As a result, we focus on estimating the client
similarity over the joint data distribution X x Y. Given a training
set X = {xlf, e ,xlrik} with associated labels Y, = {y]f, e ,yﬁk}
in client k, we perform truncated SVD on Xj o Y3 and obtain the
subspace representation Uy = [u ,u’;] (p < rank(Xy)), ie.,
X oY, = UkaV . Here o denotes the vector concatenation.
Then, the similarity of two orthonormal subspaces can be mea-
sured by the principal angles. To be specific, given two subspaces

U, = span{u’f, S uljj} and Uy, = span{u]f/, cee ,u];}, the princi-
pal angles [11] are formally defined as:
k
Kk’ . < “ b1>
= min arccos | ———-—
af e Uy, b e Uy la 116711
k pk
" . a5, 5)
& = min s| ————
K e Uk e Uy |lak 111651
p f) pH1"p
a’;J_a’f,w,aI;_l

b LbF, - bk,
The orthonormal subspaces Uy and Uy are identical when {1 =
- = {p = 0. Then based on the principal angles, we define the
similarity between client k and client k" as follows.

P
Wik = Z cos {F* 4)
i=1
Previous work [11] shows that the principal angles can be efficiently
calculated by the following matrix decomposition.

UkTUk/ =P (diag (cos {Ck,, “+-,COS8 {;fk’)) pT (5)
where P and P are orthogonal matrices by performing SVD on
UkTUk/ and cos {{‘k/, “++,COS é}’fk' are the corresponding eigenval-

ues. The estimation of client similarity in federated learning is
summarized in Algorithm 1 (Lines 1-5). Each client extracts the
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orthonormal subspace representation Uy = [u]f, e ,u];] over its

own training samples, and then uploads Uy to the central server.
The central server would estimate the pair-wise client similarity
using Eq. (4) and Eq. (5).

Remark. Compared to previous works [13, 31, 44, 45], the client
similarity in Eq. (4) has the following advantages. First, our client
similarity measure Eq. (4) is directly correlated with the data distri-
butions of clients. But previous works implicitly estimate the client
similarity using local model parameters. Second, the estimation of
Eq. (4) is computationally efficient, because it only requires one-
time calculation (see Line 5 in Algorithm 1). In contrast, previous
works would have to calculate the client similarity in every training
round of federated learning.

Besides, Lemma 4.1 shows the connections between our frame-
work and previous works [20, 36] by using constant client similarity.

LEMMA 4.1. With different measures of client similarity, our objec-
tive function Eq. (1) has the following special cases.
o Ifwip =1 fork = k' and wgpr = 0 fork # k/, then we
have ék = 0. Moreover, the optimization problem of Eq. (1)
becomes standard local training with the objective function

mn 312 z (e st20

{0 &
¢ Ifwkk' = ny fork, k € {1 -,K} anda — oo, then we have
Zk’ 1 an' O+ . Moreover, the optimization problem
]

oqu. (1) becomes customized personalized federated learning
(e.g., Ditto [20]) with the objective function

K (|
min Z(—ZL(x,k,yf;Qk)+/1k||9k—W||§)

{Qk}k k=1 nkil

where w = Zk' Hk/ is the weighted personalized pa-

rameters.
4.2.2  Parameter Propagation for Server Update. The central server
updates the auxiliary personalized parameters ék (k=1---,K)by
minimizing the sub-problem Eq. (3) of our objective function. The
following lemma shows that Eq. (3) has a closed-form solution.

LEMMA 4.2. Let® = [01,60,,- - ,HK]T e REXdo gnd @ = [él, éz,

L0k 1T € RKXdo pe the personalized model parameters and aux-

iliary personalized model parameters respectively, where dy denotes

the dimensionality of model parameters. The optimal solution to the
objective of Eq. (3) satisfies the equation

. -1
= (1-x) (I—KD_1W) ) ©)
where k = 1% It has an equivalent iterative solution:
om (ICD_1W) o(m-1) 4 (1-x)0© (7)
where @](CO) = ©. Moreover, (™) converges, i.e., limpy o0 6lm) = §*,

when m goes to infinity.

Lemma 4.2 illustrates the intuition behind server updates of
FEDORA. To be specific, Eq. (7) can be rewritten as
K

5(m) _ @ 5(m-1) 1
9 (l + a)Dy s 1Wkk gk' * 1 +0{0k

We see that client kK would be more likely to iteratively aggregate
the knowledge from client k’, when they have higher distribution
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similarity wyy . Moreover, similar to personalized PageRank [29],
O has probability ﬁ of being updated via its counterpart 6, and
probability 1% of being updated using other clients.

4.2.3 Personalized Training for Client Update. When receiving the
auxiliary personalized parameters ék from the server, client k would
update its personalized model parameters §; by minimizing the
sub-problem Eq. (2) of our objective function. In this case, A can
be considered as an indicator to show whether the transferred
knowledge ék can benefit the personalized model training of client
k. From the perspective of transfer learning [2, 42], the goal of
personalized learning on client k is to improve the generalization
performance by leveraging the knowledge from other clients (en-
coded by ék) Therefore, we define the selection parameter A; by
empirically evaluating the generalization performance of auxiliary
personalized parameters ék.

2 = max (& L (66) = Li(60)) ®)
where L (-) denotes the prediction error on the validation set of
client k and € > 0 is a constant (¢ = 1le — 8 used in the experiments).
The intuition behind Eq. (8) is that the auxiliary personalized pa-
rameters ék will guide the personalized model training of client
k, only when ék can generalize better than 6. In the experiments,
we show that this simple selection strategy over Aj can largely
mitigate the negative transfer of local clients.

When Ay, is learned, client k would update its personalized pa-
rameters 6y using standard gradient descent as follows.

1

O — O =1V, (i 2oL (xEuk00) + Aclon - ekn%) ©
i=1

where 1 > 0 is the learning rate.

The overall training procedures of FEDORA are summarized in
Algorithm 1. It first estimates the client similarity based on the data
distributions of local clients. Then FEDORA iteratively updates
the personalized parameters 0y and auxiliary parameters ék by
minimizing the overall objective function in Eq. (1).

4.3 Generalization to New Clients

In addition to standard model training, we show that our FEDORA
framework can easily generalize to new clients. In this paper, we
consider two federated learning scenarios: (1) new clients have
labeled training samples, and (2) new clients only have unlabeled
training samples. In the first case, the new client extracts the or-
thonormal subspace representation Uk, and then uploads Uk
to the central server. The server would estimate the distribution
similarity between this new client and other clients. Based on the
distribution similarity, the server calculates the auxiliary parame-
ters éK+1 via Eq. (6) and sends it back to the new client. Finally, the
new client can optimize its personalized parameters fx.1 (see Eq.
(9)) by regularizing 0k, with the received auxiliary parameters
0x+1. We summarize the training procedures in Algorithm 2.

In the second scenario where new clients only have unlabeled
training samples, these clients do not support building pure locally
trained models or fine-tuning the received parameters from the
federated learning system. We show that our FEDORA framework
can generate the auxiliary parameters éK+1 for the new client un-
der mild assumptions. If all the clients follow the covariate shift
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Algorithm 1 Federated Parameter Propagation (FEDORA)

Input: K private clients with data {xll.c, y{c}:lzkl (k=1,---,K),a
learning algorithm f(-).
Output: Personalized model parameters {6 }f: .

1: for clientk = 1,---,K in parallel do

2. Compute base vectors Uy of subspace in client k
3. Upload Uy to the central server
4: end for
5: Estimate client similarity wyss via Eq. (4) on the server
6: Initialize personalized parameters 6 on local client
7: Initialize auxiliary parameters 0, on central server
8: for eachroundr =0,1,--- , do
9 for client k = 1,- - - , K in parallel do
10: Estimate A using Eq. (8)
11: for local epochi=1,--- ,Edo
12: Update personalized parameters 6 using Eq. (9)
13: end for
14: Upload 8y to the central server

15:  end for

16:  Update auxiliary parameters using Eq. (6) or Eq. (7)

17: Send updated auxiliary parameters back to local clients
18: end for

Algorithm 2 Generalization to a New Client

Input: A new client with data {le“, le+1 ke

Output: Personalized model parameter 0y¢4y

: Compute base vectors Ug41 of subspace in the new client

: Upload Uk, to the central server

. Estimate client similarity between this new client and old ones
: Calculate the auxiliary parameters éK+1

: Send the auxiliary parameters éK+1 to the new client

: Update personalized parameters 0k using Eq. (9)

[ S T N T

assumption [2], i.e., they have the same labeling function P (y|x) =
Pi (y|x) but different marginal distributions Py (y|x) # Py (y|x),
we can estimate the client similarity based on the subspace repre-
sentation Uy induced by features X (i.e., X = UkaVkT). In this
case, when a new client with unlabeled training samples appears,
FEDORA can estimate the client similarity between this new client
and other ones based on the feature-guided subspace representation.
Then the parameter propagation mechanism in Eq. (6) would gener-
ate the auxiliary parameters éK+1 for the new client. The objective
function of Eq. (2) shows that when no labeled training samples
are available on the new client, it achieves the optimal solution at
Ok41 = éK+1 (see more empirical analysis in Subsection 5.3.1).

4.4 Discussion

In this subsection, we analyze the convergence and generalization
performance of FEDORA for personalized federated learning,.

We first study the convergence of FEDORA. The objective func-
tion of FEDORA can be rewritten as follows.

5 (00 + o=} + 56 (6k) o
k=1
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where Fi.(60r) = E(xk,yk)Nka [L(xk, yk; 0r)] and G ({ék}llle) =
T
Wik’
oK, 2K e o - e
Before analyzing the model convergence, we first introduce some
assumptions commonly used in federated learning [7, 36].

AsSSUMPTION 1 (STRONG CONVEXITY OF Fr). Fr(6) is u-strongly
convex w.r.t. Oy, Vk. That is, for any 0, 6’,

F(0') = Fr(8) + VF(0)T (8 — 0) + ‘5’||9 —0')2

ASSUMPTION 2 (5-APPROXIMATE SOLUTION). In each roundr, after
local updates, the learned parameters Oy (r) approximate the optimal
parameters QZ(r) = arg ming, F(0) + ArllOk — Qk(r)||§ as follows.

10r) = 0 ()l < 6

THEOREM 4.3. Let® = [0y,0s, -+ ,0k]T and® = [01, 05, - - - , 0]T
be the personalized model parameters and auxiliary personalized
model parameters respectively. With Assumptions 1 and 2 above, after
R training rounds, we have

. 2
IOR) - ©|Ip < (H

R
22
+u) 18(0) - &1 + L2 VK

where A = max{Ay,---,Ax}, ©(0) is the initialized personalized
model parameters, and © is the global minimizer of the objective in
Eq. (10).

It can be seen from Theorem 4.3 that the estimation error linearly
converges with bounded error.

Then we derive the generalization error of FEDORA for person-
alized federated learning.

ASSUMPTION 3 (SMOOTHNESS). For each k € {1,---
v-smooth, ie., for any parameters 0, ¢’,
|VF(0) = VE(0)]|, < v|lo - ¢,

THEOREM 4.4. With Assumption 3 and bounded loss function
L(-,), ie, L(x,y) < M for any example (x,y) within all the clients,
if the expected local minimizer Oy of clientk (k =1,---,K) is given

,K}, Fk is

by Oy = arg ming, Bk k). p, [L (xk, yk; Gk)], and the empirical
local minimizer 0;2 of client k is given by the objective function in
Eq (1), then for any § € (0, 1), with probability at least 1 — &', the
following holds

Ep, [L (x, y; 9;)] < Ep [L (x.y:0¢) | +

S -

D
&= Drke

=

|5 +3dy (P, Pk'))

a2, (2d1log 2(n+1)+log i,) 7
K %k 5 5 log4/8" .
(Zk’ e + §M 2ng 2
the sample complexity term and dy (-, ) is Y -discrepancy [26] indi-
cating the distribution difference between clients, i.e., dy (Py, Py) =
SUp fe |E(x,y)~]P’k [L(f(x).y)] - IE‘:'(x,y)~]P’k/ [L(f(x), ]I

Theorem 4.4 shows that the expected prediction error of client
k is bounded in terms of the distribution distance dy (P, Py/)
between clients. It indicates that the error bound on client k can be
empirically minimized by assigning large weight wyy to the client
k’ when they have a small distribution distance. This is consistent
with Subsection 4.2.1, where we define the weight wy, explicitly
based on the distribution similarity of client k and client k’.

where Q = 2
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5 EXPERIMENTS
5.1 Experimental Setup

5.1.1 Data Sets. In the experiments, we use the following data sets:

MNIST [17], Fashion-MNIST [43], CIFAR-10 [16], Yearbook [10],

GTSRB [35], and agriculture data [28, 39]. Following [9, 25], we
consider two methods to partition the non-IID data over clients.

For MNIST, Fashion-MNIST, and GTSRB, we partition the training

images into K clients, where the images in each client are rotated

with a certain angle. For the rotated MNIST, Fashion-MNIST, and

GTSRB, the data heterogeneity among clients is induced by the
feature shift. There are 36, 72, and 10 clients in rotated MNIST,

Fashion-MNIST, and GTSRB respectively. For CIFAR-10, we fol-

low the pathological non-IID setting where each client has data

with at most two classes. In addition, Yearbook consists of 37921

frontal-facing American high school yearbook photos from 1930 to
2013 for gender classification. Agriculture data sets contain maize
the soybean data collected from Illinois and Nebraska over years.

The task in the agriculture data sets is to predict diverse traits (e.g.,
Nitrogen) of plants related to the plants’ growth using leaf hyper-

spectral reflectance. Therefore, Yearbook and agriculture data sets
can be naturally partitioned into different clients based on the data
collection time. Then Yearbook has 84 clients and Agriculture has
11 clients. Data heterogeneity exists in Yearbook and agriculture
data sets because the underlying sampling distribution might be
changing over time.

5.1.2  Baselines. The baselines used in the experiments include
(global) federated learning approaches: FedAvg [25], FedProx [21]
and their variants with fine-tuning (FedAvg+FT and FedProx+FT),
and the following personalized federated learning approaches.

e LOCAL: Each client trains its own personalized model without
knowledge communication.

e Parameter Decoupling: LG-FedAvg [23], FedPer [1] and pFedHN [33]
partially share the model parameters indicating the shared com-
mon knowledge among clients.

e Model Interpolation: APFL [6] and Ditto [20] learn personalized
models using a mixture of global and local models.

e Clustering: IFCA [9] and FeSEM [44] alternately estimate the
cluster identities and optimize model parameters for each cluster.

e Multi-Task Learning: FedFOMO [45], Fed AMP [13] and FedU [7]
explicitly capture relationships among the clients with different
data distributions.

5.1.3 Model Configuration. In the experiments, we use a 3-layer
MLP for MNIST, Fashion-MNIST, Yearbook and agriculture data
sets. A 5-layer CNN is adopted for CIFAR-10 and GTSRB. We use
cross-entropy loss for image classification (MNIST, Fashion-MNIST,

Yearbook, CIFAR-10 and GTSRB) and mean square error as the loss

function for agriculture analysis. In addition, we set p = 1 and
a = 1in the experiments. All the experiments are performed on a

Windows machine with four 3.80GHz Intel Cores, 64GB RAM, and

two NVIDIA Quadro RTX 5000 GPUs.
5.2 Results

Table 1 and Table 2 provide the results of personalized federated

learning on image and agriculture data sets (the best results are
indicated in bold) where each client has the same number of train-
ing samples. As illustrated in Subsection 3.2, we report the average
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Model Rotated MNIST Rotated Fashion-MNIST CIFAR-10 Yearbook Rotated GTSRB
AccT R-AccT PTRT AccT R-AccT PTRT AccT R-AccT PTRT AccT R-AccT PTRT AccT R-AccT PTIRT
LOCAL ‘ 0.7642 - - 0.7057 - - 0.7617 - - 0.8068 - - 0.5531 - -
FedAvg [25] 0.6889 -0.0976 0 0.6441 -0.0847 0.1250 0.6531 -0.1382 0.3000 0.8165 0.0191 0.5119 0.6375 0.2006 0.8000
FedAvg+FT 0.7411 -0.0293 0.3056 0.6848 -0.0283 0.3472 0.7992 0.0513 0.9000 0.8180 0.0195 0.5595 0.6375 0.2185 0.8000
FedProx [21] 0.5375 -0.2962 0 0.5968 -0.1521 0 0.6984 -0.0799 0.2000 0.7995 -0.0027 0.4405 0.7031 0.3384 0.9000
FedProx+FT 0.6893 -0.0973 0.0278 0.6788 -0.0358 0.3056 0.7953 0.0460 0.9000 0.8227 0.0258 0.5595 0.7312 0.3984 0.9000
LG-FedAvg [23]| 0.7804 0.0214 0.9444 0.7137 0.0115 0.7361 0.7656  0.0054 0.8000 0.8072  0.0007 0.8095 0.5938 0.1044 0.8000
FedPer [1] 0.7741 0.0135 0.6389 0.6725 -0.0457 0.1389 0.8352 0.0990 1.0000 0.7974 -0.0096 0.4167 0.6687 0.2607 0.8000
pFedHN [33] 0.8004 0.0486 0.8611 0.7215 0.0249 0.6944  0.7766 0.0221 0.6000 0.8263 0.0313 0.6310 0.4500 -0.1778 0.2000
APFL [6] 0.7871 0.0303 0.8889 0.7134 0.0112 0.7639 0.8258 0.0866 0.9000 0.8128 0.0081 0.7619 0.6469 0.1995 0.9000
Ditto [20] 0.7806 0.0220 0.7222 0.7212 0.0232 0.7361 0.8078 0.0630 0.9000 0.8148 0.0112 0.6429 0.7063 0.3345 0.8000
IFCA [9] 0.7915 0.0365 0.6944 0.7305 0.0370 0.7639 0.8227 0.0828 0.9000 0.8122 0.0076 0.5238 0.7344 0.3852 1.0000
FeSEM [44] 0.7720 0.0110 0.6111 0.7074 0.0051 0.5278 0.8547 0.1255 1.0000 0.7821 -0.0258 0.3810 0.6562 0.2274 0.8000
FedFOMO [45] | 0.7749 0.0140 0.9167 0.7110 0.0076 0.7639 0.8242 0.0797 1.0000 0.8111 0.0059 0.7619 0.6156 0.1321 1.0000
FedU [7] 0.7837 0.0260 0.8889 0.7208 0.0225 0.8056 0.7836  0.0295 0.9000 0.8092 0.0047 0.5357 0.5625 0.0549 0.6000
FedAMP [13] 0.7869 0.0298 1.0000 0.7203 0.0213 0.8056 0.7953 0.0457 0.8000 0.8111 0.0059 0.6905 0.5625 0.0233 0.6000
FEDORA ‘ 0.8251 0.0806 1.0000 0.7433 0.0548 0.9028 0.8570 0.1288 1.0000 0.8341 0.0386 0.9167 0.7375 0.3773 1.0000

Table 1: Results on image data sets (Acc: average accuracy, R-Acc: average relative accuracy, PTR: positive transferability ratio)
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Figure 3: Relative performance improvement of each client on Rotated MNIST

Model | MAE| R-MAET PIR1T
LOCAL 0.5576 - -

FedPer [1] 04399  0.1224  0.6364
pFedHN [33] 04262  0.1289  0.6364
APFL [6] 04263  0.1398  0.8182
Ditto [20] 04331  0.1281  0.8182
FedFOMO [45] | 0.4488  0.0973  0.8182
FedU [7] 05421  0.0289  0.8182
FedAMP [13] | 04433  0.1103  0.8182
FEDORA 0.4185 0.1499 0.9091

Table 2: Results on agriculture data set

classification accuracy, average relative accuracy, and positive trans-
ferability ratio for image classification in Table 1. For the regression
task in the agriculture data set, we use the Mean Absolute Error
(MAE) between the predicted outputs and the ground-truth out-
puts (i.e., Nitrogen content). Similarly, we report the average MAE,
average relative MAE, and positive transferability ratio in Table 2.
We have the following observations. (1) Higher accuracy does not
imply that all the clients benefit from federated collaboration (e.g.,
IFCA [9] obtains much higher accuracy on Rotated MNIST than LF-
FedAvg [23], but it suffers from negative transfer on local clients).
Relative accuracy (relative MAE) and positive transferability ra-
tio can better characterize whether the negative transfer happens
in local clients. (2) The proposed FEDORA framework achieves

Model Rotated MNIST Rotated Fashion-MNIST
AccT R-AccT PTRT AccT R-AccT PTRT
LOCAL |07736 - - 07079 - -
FedAvg [25] 0.5961 -0.2310 0.1944  0.5156 -0.2697 0.0694
FedAvg+FT 0.7631 -0.0131 0.3333 0.6671 -0.0559 0.2083
FedProx [21] 0.5564 -0.2826 0.1389 0.4529 -0.3590 0.0417
FedProx+FT 0.7111 -0.0805 0.1944 0.6387 -0.0955 0.1111
LG-FedAvg [23]] 0.7916  0.0240 0.8611 0.7187 0.0154 0.7500
FedPer [1] 0.7676 -0.0071 0.4722 0.6599 -0.0654 0.1806
pFedHN [33] 0.7927 0.0254 0.6667 0.7254 0.0275 0.7083
APFL [6] 0.7934 0.0262 0.8889 0.7219 0.0204 0.8056
Ditto [20] 0.7908 0.0231 0.5000 0.6738 -0.0464 0.2083
IFCA [9] 0.8263 0.0693 0.8889 0.7356 0.0414 0.7500
FeSEM [44] 0.7876 0.0183 0.5833 0.7171 0.0154 0.6389
FedFOMO [45] | 0.7959 0.0293 0.8611 0.7225 0.0213 0.7639
FedU [7] 0.7928 0.0255 0.8333 0.7229 0.0226 0.7778
FedAMP [13] 0.7906 0.0228 0.9167 0.7228 0.0217 0.8194
FEDORA ‘ 0.8366 0.0828 1.0000 0.7466 0.0562 0.9444

Table 3: Impact of imbalanced samples among clients

comparable average accuracy (MAE) but much better positive trans-
ferability ratio than state-of-the-art baselines.

As discussed in Subsection 3.3, the number of training samples
in one client might affect whether it can benefit from federated
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Model | AccT R-Acc? PIRT

FEDORA with random similarity 0.7657  0.0020  0.7222
FEDORA with parameter similarity | 0.8003  0.0477  0.9444
FEDORA with gradient similarity 0.8125  0.0637  0.9722
FEDORA 0.8251 0.0806 1.0000

Table 4: Impact of client similarity measure on FEDORA

Model ‘ AccT R-AccT PTIRT

FEDORA with A =0.01 | 0.7752  0.0021 0.8611
FEDORA with Ax = 0.1 0.8116  0.0498  0.9722
FEDORA with A =1 0.8256  0.0688  0.9722
FEDORA with A = 10 0.8038  0.0408  0.8333
FEDORA 0.8366  0.0828 1.0000

Table 5: Impact of A, on FEDORA

collaborations. As a result, we empirically investigate the impact of
the number of training samples in personalized federated learning.
Table 3 reports the image classification results on Rotated MNIST
and Fashion-MNIST when one client (e.g., client 18 in Rotated
MNIST) has much more training samples than others. It shows
that when using the average model parameters (e.g., learned by
FedAvg [25]) to regularize the local model, personalized federated
learning approaches (e.g., Ditto [20], FedPer [1]) has lower posi-
tive transferability ratio. This is because the shared average model
parameters would significantly bias toward the client with a large
number of training samples. We visualize the relative performance
improvement of local clients in Figure 3. It confirms that Ditto and
FedPer can only achieve satisfactory performance on clients when
they have similar distributions as client 18. In contrast, FEDORA
can mitigate the negative transfer for all the clients.

5.3 Analysis

5.3.1 Generalization to New Clients. We show in Subsection 4.3
that FEDORA can be adapted to new clients associated with either
labeled or unlabeled training samples. Figure 4 provides the results
on Rotated MNIST by adapting the federated learning models to
new clients, where the classification accuracy on new clients is re-
ported. We observe from the results that FEDORA achieves better
prediction performance when the new client has labeled training
samples for fine-tuning (Figure 4(a)). When the new client only has
unlabeled training samples, most existing approaches [9, 33] fail
to adapt the trained federated learning system to the new client.
FedAvg [25] can simply share the global model with the new client,
but it does not consider the data heterogeneity between the new
client and the old ones. In contrast, FEDORA learns the personal-
ized auxiliary parameters based on the client similarity. Figure 4(b)
confirms the superior performance of FEDORA over FedAvg.

5.3.2  Impact of Client Similarity Measure. We study the impact of
client similarity measurements on the proposed FEDORA frame-
work. More specifically, we consider several methods to estimate
client similarity, including random client similarity [7], parame-
ter similarity [13], and gradient similarity [31]. Table 4 shows the
personalized federated learning results. It can be seen that when es-
timating the client similarity based on data distribution, FEDORA
achieves better prediction performance and positive transferability
ratio. The coordinate-wise parameter/gradient similarity cannot
accurately measure the client similarity due to the permutation
invariance of neural network parameters [38].
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5.3.3 Hyper-parameter Sensitivity. Figure 5 shows the impact of
hyper-parameter a on the proposed FEDORA framework. FE-
DORA can achieve better performance when € [0.1, 1]. Moreover,
we investigate the impact of A in Eq. (8). Table 5 shows the results
by instantiating all A; with a constant value on Roated MNIST. It
indicates that a single constant value cannot identify whether all
the clients would benefit from federated collaboration, especially
when some clients have a large number of training samples.

5.3.4 Computational Efficiency. We compare the computational ef-
ficiency of FEDORA with baselines. Figure 6 shows that FEDORA
is computationally efficient compared to other multi-task learning
baselines, e.g., FedFOMO [45], FedAMP [13], which estimate the
client relationship in every training round.

6 CONCLUSION

In this paper, we study personalized federated learning from the
perspective of transfer learning. To mitigate the negative trans-
fer issue for each client, we propose a novel federated parameter
propagation (FEDORA) framework with an adaptive parameter
propagation mechanism and a simple selective regularization. The
efficacy of FEDORA is analyzed theoretically and empirically.
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A APPENDIX

A.1 Proof of Lemma 4.1

PrOOF. In the first case, if wipr = 1 for k = k” and wyy = 0 for
k # k', our objective function Eq. (1) becomes

min Z Z (k. y,,9k)+Ak(Z||9k—9kllz)

{0k} 0 1o T S

We see that the optimal solution is achieved at Gk = 0 for all
client k. Each client updates its own personalized parameters 6
locally without communication with others. In the second case, if
Wik = g for k,k” € {1,--- ,K} and @ — oo, using Lemma 4.2,

K . 1 K
Wkkfelgn_l) + —0. — Z

om _ @
K k’
1+a ) Z} 1 nJ

k7 (1+a)Dyy P

ny’
ZK
co. That is, all clients share the same auxlhary parameters w =

nys
Zk’ 1 ZKk Gk, O

Since 9 = 0/, we have Q(m) — Zk' .

A.2 Proof of Lemma 4.2
ProorF. The problem Eq. (3) can be re-written as:
min'Tr ((@ ~6)7(@-6))+a-Tr (67 (1 - D—lw) é))
Setting the derivative of Eq. (1) with respect to ék (k=1,---,K)
to zero gives the result 2 (é) - ®) +2a- (I-Dw) © = 0. Thus,
the following holds ©* = (1) (I —xD~'w)~
For the iterative solution, we have

1 a
© where x = 1.

6™ = (xn~1w)" 6 + Wil (KD_IW)i (1-x)0
i=0

It is easy to show that for the spectral radius of kD~!W, we have:
a
D'W) < a|[kDT' Wl =k = —— <1
P(D™W) < allkD Wl = = T

m
Therefore, when m — oo, (KD_ 2 WD~ %) converges, and.

17,7\ (S 17,/)} 17\ 7!
lim (KD_ w) =0 lim (KD_ W) - (I—KD_ W)
m—oo m—oo £

i=!

which completes the proof. O

A.3 Proof of Theorem 4.3
The objective function of FEDORA can be rewritten as follows.

70.6)=3" (500 + o - ) + 5 (1005
k=1

(Z —Fe(0c)

= Bk ykypy [L(XF, 455 61)] and G(6) =

ISR AR
k’'=1 Dkk k k'

We aim to prove that FEDORA guarantees the convergence of

the above objective. With ©*, ©* = arg ming, . J(©,0), we show

that [|©(r) — ©*|| and ||6(r) — ©*|| linearly converge with bounded
error. We first explore some properties of the objective function.

+|@-0|?+ G(@)

where Fi. (0y)

G ({60, ) =
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LeEmMMA A.1 (CONVEXITY OF G). G({Gk} ) is convex w.r.t. {Gk }

PROOF. ||x||g = x"x is a convex function w.r.t. x. Therefore,

||ék - ék/ ||2 is convex w.r.t. (ék - ékr) Composition with an affine
mapping preserves convexity. Since (Qk - Gk/) is an affine com-
position of {Gk, Qk/} ||9k - sz ||2 is convex w.r.t. {Hk, Gk/} A non-
negative weighted sum preserves convexity. Since each 7 is

non-negative, G({Gk} ) is convex w.r.t. {9k} o

We study how the estimations of ® and © improve in client
update and server update in each round. Denote A = maxgey,... }-

LEmMMA A.2 (CONTRACTION). Given a pi-strongly convex function
F(y), wedefiney; = arg min,, [F(y)+A||x1—y||%], Y2 = argmin,, [F(y)+
Allxz = yli3], we have llys = y2ll < ;257 llx1 — xel.

Proor. Wlo.g, y1 # y2. By definition of y1, y2, we have

VF(y1) +2A(y1 —x1) =0 and VF(y2) +2A(y2 —x2) =0
= VF(y1) - VF(y2) = 2A(x1 — x2) — 2A(y1 — y2)
Since F is p-strongly convex, we have
u
F(y1) > F(y2) + VF(y2) T (91 = ) + Z llys = w23

F(y2) > Fy) + V() (g2 = y1) + Sllvz = w1

Add them together
~[VF(y1) = VF(y2)] " (y1 -
2A(x1 = x2) T (y1 -

y2) + pllyr — v2ll3
y2) > (2A+p)llyr — yall3

2y -2l = lys - e
A+ 1—x2ll 2 lly1 —y2
which completes the proof. O

PrROPOSITION A.3 (IMPROVEMENT OF CLIENT UPDATE) In each
round of client update, it holds that ||©(r) — ©*||F < /1+21 16(r) -

O*||r + VK&.

() =

~_ 1|2
ProoF. Notice that 9;: = argming, Fr(0k)+Ax ”Hk - 9;: )

N 2
argming, F(6k) + A “9k — Ok (r) . By Lemma A.2, for all k €

{1,---,K} we have

* * 2)']( A As A A
16, (r) = Oll2 < 2k 19k (r) = B llz = ———~ 110k () = O ll2
In matrix form, it holds that ||©@*(r) — ©*||F < 16(r) — 6%

p+2/1
Then, we have

K
o) -e*(Mlr= JZ 16k (r) = 0; (M1I3 < VK% = VK&
k=1

which completes the proof. O

PRrOPOSITION A.4 (IMPROVEMENT OF SERVER UPDATE). In each
round of server update, it holds that ||©(r+1)—0*||F < ||©(r)—0*||F.

Ol + £G(0),6(r +
1) = argming ||©(r) - @lec + %G(C:)). Since G is convex, by Lemma
A.2 with 1 = 0, we have |O(r +1) — ©*||f < |©(r) —©*||p. O

Proor. Notice that ©* = arg ming @ -

Finally, the convergence analysis of FEDORA is given below.
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Proor.
loR) - |F Sy 16(R) - 6"|Ir + VK&

R R-1 r

( ) \e(o>f®||p+r:0( m)
( ) 16(0) - €|l + ——— VK8

T g2l

" L+ 22
(2] 1o o1+ 22 R

which completes the proof.

A.4 Proof of Theorem 4.4

Proor. Using assumption 3, the following holds

By [L (% 4:05)] - Brp [L (% 43 00)]

< Ep, [L (£ y;GZ)] - Ep, [L (x5 ékr)] +Ep, [L (s ék/)] - Ep, [L (2, s 9k/)]

< V”@]t - ék’”; +dy (P, Prr)

We let agrr = wipr /Dik, then
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where
ng
i ;L (xl Lk 9*) +v|o; - 9,<||2 +v Z;lakk, [16x — gk,”Z
1 &
s ZL (Xf, yf;@k) +v Z e |0k = G ||
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and following [2], we have
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As a result, the following holds
Epy [L (x. y:67)]

&* . , (2dlog2(n+1) +1
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which completes the proof. O

B ADDITIONAL EXPERIMENTAL SETUP

In this paper, we consider the following client generation and
train/validation/test split methods. Take Rotated MNIST as an ex-
ample, we generate balanced and imbalanced clients respectively.

e For the balanced setting, we randomly choose 128 samples
from MNIST without replacement to formulate the training
set for each client, and 64 samples as the validation set. The
test data of the original MNIST are partitioned into K clients
each receiving 10000/K samples (K is the number of clients),
in order to formulate the test set of each client.

e In contrast, for the imbalanced setting, each of the K — 1
clients also has 128 training samples and 64 validation sam-
ples, while the remaining client has (60000 — (K —1) X 192)
2/3 training samples and (60000 — (K — 1) X 192)/3 valida-
tion samples. In this case, the remaining client will have a
significantly large number of training and validation sam-
ples. This helps us evaluate the impact of the number of
training/validation samples on the personalized federated
learning approaches.

After partitioning MNIST to local clients, we then rotate the train-
ing/validation/test images in each client according to a specific an-
glea=360*i/K (i € {0,1,---,K —1} is the client index). For other
real-world data sets (e.g., Yearbook and agriculture), the clients are
naturally partitioned based on the data collection time (as described
in Subsection 5.1.1). Then we simply set the train/validation/test
ratio as 0.4/0.2/0.4.
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