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ABSTRACT

Contextual bandits algorithms aim to choose the optimal arm with
the highest reward out of a set of candidates based on the contextual
information. Various bandit algorithms have been applied to real-
world applications due to their ability of tackling the exploitation-
exploration dilemma. Motivated by online recommendation scenar-
ios, in this paper, we propose a framework named Graph Neural
Bandits (GNB) to leverage the collaborative nature among users
empowered by graph neural networks (GNNs). Instead of estimating
rigid user clusters as in existing works, we model the “fine-grained”
collaborative effects through estimated user graphs in terms of
exploitation and exploration respectively. Then, to refine the rec-
ommendation strategy, we utilize separate GNN-based models on
estimated user graphs for exploitation and adaptive exploration.
Theoretical analysis and experimental results on multiple real data
sets in comparison with state-of-the-art baselines are provided to
demonstrate the effectiveness of our proposed framework.
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1 INTRODUCTION

Contextual bandits are a specific type of multi-armed bandit prob-
lem where the additional contextual information (contexts) related
to arms are available in each round, and the learner intends to
refine its selection strategy based on the received arm contexts and
rewards. Exemplary applications include online content recommen-
dation, advertising [21, 34], and clinical trials [13, 30]. Meanwhile,
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collaborative effects among users provide researchers the opportu-
nity to design better recommendation strategies, since the target
user’s preference can be inferred based on other similar users. Such
effects have been studied by many bandit works [4, 15, 16, 22, 23].
Different from the conventional collaborative filtering methods
[18, 31], bandit-based approaches focus on more dynamic environ-
ments under the online learning settings without pre-training [35],
especially when the user interactions are insufficient during the
early stage of recommendation (such as dealing with new items
or users under the news, short-video recommendation settings),
which is also referred to as the “cold-start” problem [21]. In such
cases, the exploitation-exploration dilemma [3] inherently exists in
the decisions of recommendation.

Existing works for clustering of bandits [4, 6, 15, 16, 22, 23]
model the user correlations (collaborative effects) by clustering
users into rigid user groups and then assigning each user group
an estimator to learn the underlying reward functions, combined
with an Upper Confidence Bound (UCB) strategy for exploration.
However, these works only consider the “coarse-grained” user cor-
relations. To be specific, they assume that users from the same
group would share identical preferences, i.e., the users from the
same group are compelled to make equal contributions to the final
decision (arm selection) with regard to the target user. Such formu-
lation of user correlations (“coarse-grained”) fails to comply with
many real-world application scenarios, because users within the
same group can have similar but subtly different preferences. For
instance, under the settings of movie recommendation, although
we can allocate two users that “favor” the same movie into a user
group, their “favoring levels” can differ significantly: one user could
be a die hard fan of this movie while the other user just considers
this movie to be average-to-good. In this case, it would not be the
best strategy to vaguely consider they share the same preferences
and treat them identically. Note that similar concerns also exist
even when we switch the binary ranking system to a categorical
one (e.g., the rating system out of 5 stars or 10 points), because as
long as we model with user categories (i.e., rigid user groups), there
will likely be divergence among the users within the same group.
Meanwhile, with more fine-sorted user groups, there will be less
historical user interactions allocated to each single group because
of the decreasing number of associated users. This can lead to the
bottlenecks for the group-specific estimators due to the insufficient
user interactions. Therefore, given a target user, it is more practical
to assume that the rest of the users would impose different levels
of collaborative effects on this user.

Motivated by the limitations of existing works, in this paper, we
propose a novel framework, named Graph Neural Bandits (GNB),
to formulate “fine-grained” user collaborative effects, where the
correlation of user pairs is preserved by user graphs. Given a target
user, other users are allowed to make different contributions to the
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final decision based on the strength of their correlation with the
target user. However, the user correlations are usually unknown,
and the learner is required to estimate them on the fly. Here, the
learner aims to approximate the correlation between two users by
exploiting their past interactions; on the other hand, the learner
can benefit from exploring the potential correlations between users
who do not have sufficient interactions, or the correlations that
might have changed. In this case, we formulate this problem as the
exploitation-exploration dilemma in terms of the user correlations.

To solve this new challenge, GNB separately constructs two kinds of

user graphs, named “user exploitation graphs” and “user exploration

graphs”. Then, we apply two individual graph neural networks

(GNNis) on the user graphs, to incorporate the collaborative effects

in terms of both exploitation and exploration in the decision-making

process. Our main contributions are:

o [Problem Settings] Different from existing works formulating
the “coarse-grained” user correlations by neglecting the diver-
gence within user groups, we introduce a new problem setting
to model the “fine-grained” user collaborative effects via user
graphs. Here, pair-wise user correlations are preserved to con-
tribute differently to the decision-making process. (Section 3)

o [Proposed Framework] We propose a framework named GNB,
which has the novel ways to build two kinds of user graphs in
terms of exploitation and exploration respectively. Then, GNB uti-
lizes GNN-based models for a refined arm selection strategy by
leveraging the user correlations encoded in these two kinds of
user graphs for the arm selection. (Section 4)

o [Theoretical Analysis] With standard assumptions, we pro-
vide the theoretical analysis showing that GNB can achieve the
regret upper bound of complexity O(+/T log(Tn)), where T is
the number of rounds and n is the number of users. This bound
is sharper than the existing related works. (Section 5)

o [Experiments] Extensive experiments comparing GNB with
nine state-of-the-art algorithms are conducted on various data
sets with different specifications, which demonstrate the effec-
tiveness of our proposed GNB framework. (Section 6)

Due to the page limit, interested readers can refer to the arXiv
version of this paper for supplementary contents.

2 RELATED WORKS

Assuming the reward mapping function to be linear, the linear
upper confidence bound (UCB) algorithms [1, 3, 11, 21] were first
proposed to tackle the exploitation-exploration dilemma. After
kernel-based methods [12, 29] were used to tackle the kernel-based
reward mapping function under the non-linear settings, neural
algorithms [5, 40, 42] have been proposed to utilize neural networks
to estimate the reward function and confidence bound. Meanwhile,
AGG-UCB [25] adopts GNN to model the arm group correlations.
GCN-UCB [28] manages to apply the GNN model to embed arm
contexts for the downstream linear regression, and GNN-PE [20]
utilizes the UCB based on information gains to achieve exploration
for classification tasks on graphs. Instead of using UCB, EE-Net
[7] applies a neural network to estimate prediction uncertainty.
Nonetheless, all of these works fail to consider the collaboration
effects among users under the real-world application scenarios.
To model user correlations, [9, 34] assume the user social graph
is known, and apply an ensemble of linear estimators. Without the
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prior knowledge of user correlations, CLUB [16] introduces the
user clustering problem with the graph-connected components,
and SCLUB [22] adopts dynamic user sets and set operations, while
DynUCB [24] assigns users to their nearest estimated clusters. Then,
CAB [15] studies the arm-specific user clustering, and LOCB [4] es-
timates soft-margin user groups with local clustering. COFIBA
[23] utilizes user and arm co-clustering for collaborative filter-
ing. Meta-Ban [6] applies a neural meta-model to adapt to esti-
mated user groups. However, all these algorithms consider rigid
user groups, where users from the same group are treated equally
with no internal differentiation. Alternatively, we leverage GNNs
[10, 14, 17, 27, 32, 33, 38, 39] to learn from the “fine-grained” user
correlations and arm contexts simultaneously.

3 GNB: PROBLEM DEFINITION

Suppose there are a total of n users with the user set U = {1, - - - , n}.
At each time step t € [T], the learner will receive a target user
ur € U to serve, along with candidate arms X; = {xit}ie[q],
|Xt| = a. Each arm is described by a d-dimensional context vector
Xis € R4 with llxicllz = 1, and x;, € X; is also associated with
a reward r; ;. As the user correlation is one important factor in
determining the reward, we define the following reward function:

rip = h(xit, “t,gi(})’*) +€ir (1

where h(-) is the unknown reward mapping function, and €; ; stands
for some zero-mean noise such that E[r;;] = h(x;s, us, gi(i)’*).

Here, we have Ql.(,;)’* = (U,E, Wl(tl)*) being the unknown user
graph induced by arm x; ¢, which encodes the “fine-grained” user
correlations in terms of the expected rewards. In graph gi(j)’*,
each user u € U will correspond to a node; meanwhile, E =

{e(u,u")}y e qq refers to the set of edges, and the set Wl(tl)* =

{wl.(i)’* (u,u”) }, 1 eqs stores the weights for each edge from E. Note

that under real-world application scenarios, users sharing the same
preference for certain arms (e.g., sports news) may have distinct
tastes over other arms (e.g., political news). Thus, we allow each
arm x; ; € X; to induce different user collaborations Qi(j)’*.

Then, motivated by various real applications (e.g., online recom-
mendation with normalized ratings), we consider r; ; to be bounded
rit € [0, 1], which is standard in existing works (e.g., [4, 6, 15, 16]).
Note that as long as r; s € [0, 1], we do not impose the distribution
assumption (e.g., sub-Gaussian distribution) on noise term €; ;.

[Reward Constraint] To bridge user collaborative effects with
user preferences (i.e., rewards), we consider the following constraint
for reward function in Eq. 1. The intuition is that for any two users
with comparable user correlations, they will incline to share similar
tastes for items. For arm x; ;, we consider the difference of expected
rewards between any two users u, u’ € U to be governed by

[Blrieluxie] = Elrielu’ xif]| < ¥(G) [u1.65)" (v 1) @)

where Q;i)’* [u :] represents the normalized adjacency matrix row

of gfj)’* that corresponds to user (node) u, and ¥ : R? X R" —
R denotes an unknown mapping function. The reward function
definition (Eq. 1) and the constraint (Eq. 2) motivate us to design
the GNB framework, to be introduced in Section 4.
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Then, we proceed to give the formulation of Qi(;)’* = (U,E, Wl(t1 )’*)
below. Given arm x;; € X}, users with strong correlations tend to
have similar expected rewards, which will be reflected by Wl(t1 ) o,

DEFINITION 1 (USER CORRELATION FOR EXPLOITATION). In round

t, for any two users u,u’ € U, their exploitation correlation score

(1) *(u,u’) wrt. a candidate arm xis € Xy is defined as

wi " ') = ¥ Blrielu, xi0l, Elrielu’s xi4])

where E[rit|u, xi;],i € [a] is the expected reward in terms of the
user-arm pair (u, x; ;). Given two usersu,u’ € U, the function gy
R X R = R maps from their expected rewards E[r; s |u, x;i;] to their

- 1),
user exploitation score wi(t>’* (u,u”).

The edge weight wi(i)’* (u,u”) measures the correlation between

the two users’ preferences. When w l.(})’* (u,u’) islarge, u and u’ tend
to have the same taste; Otherwise, these two users’ preferences will
be different in expectation. In this paper, we consider the mapping
functions ¥(1) as the prior knowledge. For example, ¥ (1) can be the
radial basis function (RBF) kernel or normalized absolute difference.

[Modeling with User Exploration Graph Q(z) *] Unfortu-

nately, gi( t) * is the unknown prior knowledge in our problem
setting. Thus, the learner has to estimate Qi(i)’* by exploiting
the current knowledge, denoted by Qi(;) = (U,E, Wl(tl )), where
Wl(tl) = {wl.(}) (4, u”) }yy 10 eqq is the estimation of Wl(tl)* based on
the function class ¥ = {fu(l)}uew where fu(l)

specified to user u. However, greedily exploiting gl.(}) may lead
to the sub-optimal solution, or overlook some correlations that
may only be revealed in the future rounds. Thus, we propose to

is the hypothesis

construct another user exploration graph g(z) for principled

exploration to measure the estimation gap 6(1) - Ql(i) , which

refers to the uncertainty of the estimation of graph Qi e
For each arm x; ; € X;, we formulate the user exploration graph

g(z) Y = (U,E, W(z)’*) with the set of edge weights W(z)’* =
{w; <2> *(u, ') }yyueqq- Here, g( )* models the uncertainty of es-
timation Qi(, t) in terms of the true exploitation graph Qi(}) *, and
Ql.(?)’* can be thought as the oracle exploration graph, i.e., "perfect
exploration”. Then, with the aforementioned hypothesis fu(l) (xit)
for estimating the expected reward of arm x; ; given u, we introduce
the formulation of gl.(f)’* as the user exploration correlation.
DEFINITION 2 (USER CORRELATION FOR EXPLORATION). In round

t, given two usersu,u’ € U and an arm x;; € Xy, their underlying
exploration correlation score is defined as

wid" ()

= YO (E[rilu, xi,] _fu(l)

(i) Elrielu’, xie] — fur (xi2)
withE[r¢lu, xi¢] —f,fl)(xi,t),i € [a] being the potential gain of the
estimation fu1 (x;t) for the user-arm pair (u, x;). Here,ﬁl(l) (+) is

the reward estimation function specified to useru, and ¥ : RxR —
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R is the mapping from user potential gains B[r; ¢|u, x;i ;] —fu(l) (xit)

to their exploration correlation score.

Here, w (u u') is deﬁned based on the potential gain of

fu(l)(-), ie., ]E[ri,[lu, xit] —ﬁl (xi,t), to measure the estimation
uncertainty. Note that our formulation is distinct from the formula-
tion in [7], where they only focus on the single-bandit setting with
no user collaborations, and all the users will be treated identically.

As we have discussed, wl.(?)’*(u, u”) measures the uncertainty
of estimation wl.(i)(u, u’). When wi(?)’*(u, u’) is large, the uncer-

tainty of estimated exploitation correlation, i.e., wl.(i) (u,u’), will
also be large, and we should explore them more. Otherwise, we

have enough confidence towards w (u "), and we can exploit

w! ' (u, u’) in a secure way. Analogous to ¥(1) in Def. 1, we con-

sider the mapping function ¥(2) a5 the known prior knowledge.
[Learning Objective] With the received user u; in each round

t € [T], the learner is expected to recommend an arm x; € X; (with

reward r;) in order to minimize the cumulative pseudo-regret

T
=E[Y(r; =] 3)
t=1

where we have r} being the reward for the optimal arm, such that

E[r}lur, X;] = max, e x, h(xie ur, G} ).

[Comparing with Existing Problem Definitions] The prob-
lem definition of existing user clustering works (e.g., [4, 6, 15, 16,
22]) only formulates "coarse-grained" user correlations. In their set-
tings, for a user group N C U with the mapping function h , all
the users in AV are forced to share the same reward mapping given
an arm xj;, i.e, E[ris | u,x;:] = hy(xit),Yu € N.In contrast,
our definition of the reward function enables us to model the pair-
wise “fine-grained” user correlations by introducing another two

R(T)

important factors u and Q(l) . With our formulation, each user
here is allowed to produce dlfferent rewards facing the same arm,
=h(xisu ( ), *),Yu € N.Here, with different

users u, the corresponding expected reward h(x;;, u, Q(l) ) can be
different. Therefore, our definition of the reward functlon is more
generic, and it can also readily generalize to existing user clustering
algorithms (with “coarse-grained” user correlations) by allowing

l.e.,E[Vit | U,xit]

each single user group to form an isolated sub-graph in Qi(;) * with
no connections across different sub-graphs (i.e., user gro{lps).

[Notation] Up to round ¢, denoting 7;,; C [t] as the collec-
tion of time steps at which user u € U has been served, we use
Put = {(xr,77) }re7;,, to represent the collection of received arm-
reward pairs associated with user u, and T, ; = |7y, ¢| refers to the
corresponding number of rounds. Here, x; € X;,r; € [0, 1] sepa-
rately refer to the chosen arm and actual received reward in round
7 € [t]. Similarly, we use Py = {(x,77)};¢[,] to denote all the past
records (i.e., arm-reward pairs), up to round t. For a graph G, we let
A € R™" be its adjacency matrix (with self-loops), and D € R™*"
refers to the corresponding degree matrix.

4 GNB: PROPOSED FRAMEWORK

The workflow of our proposed GNB framework (Figure 1) consists
of four major components: First, we derive the estimation for user
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wiy” 7 YO (E[rye | wg, ) E[rie| w2, x1,])

4. Parameter Update via GD
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WE?": y@ (]E[ri,tl Uy, Xie] - f:(411>(xi,t)’ E[rye| uz, x;¢] ;f’f}z) (xi,t))
v

~
1. User Graph Estimation 2. Reward & Potential Gain Estimation 3. Arm Selection
Figure 1: Workflow of the proposed Graph Neural Bandits (GNB) framework.

exploitation graphs gi(})’*, i € [a] (denoted by QS)), and the ex-

ploration graphs Qi(j)’*, i € [a] (denoted by Qi(j)), to model user
correlations in terms of exploitation and exploration respectively;
Second, to estimate the reward and the potential gain by leveraging
the "fine-grained" correlations, we propose the GNN-based models

]?](nl,z( ), fg(,f,)l( -) to aggregate the correlations of the target user-arm

pair on estimated graphs g< ) and gl P respectively; Third, we
select the arm x;, based on the estimated arm reward and potential
gain calculated by our GNN-based models; Finally, we train the
parameters of GNB using gradient descent (GD) on past records.

4.1 User Graph Estimation with User Networks

Based on the definition of unknown true user graphs Q(1> * Q(Z) *

w.rt.arm x;; € X; (Definition 1 and 2), we proceed to derive their

estimations g( ) R Q(z) € [a] with individual user networks fu(l),
(2)

. u € U. Afterwards, with these two kinds of estimated user
graphs g( ) and Q(Z) we will be able to apply our GNN-based
models to leverage the user correlations under the exploitation and
the exploration settings. The pseudo-code is presented in Alg. 1.

[User Exploitation Network fu(l) ] For each user u € U, we
use a neural network fu(l) ()= fu(l) (5 91(11)) to learn user u’s pref-
erence for arm x; 4, i.e., E[r;¢|u, x;]. Following the Def. 1, we
construct the exploitation graph Q( b by estimating the user ex-

(1)

ploitation correlation based on user preferences. Thus, in Gi,

consider the edge weight of two user nodes u, u” as
wiy (') = YO (£ Gei), £ (x00) (@)

where ¥(D (., is the mapping function applied in Def. 1 (line
16, Alg. 1). Here, f;f ) (-) will be trained by GD with chosen arms
{xr}ze7,, as samples, and received reward {r;}.c7,, as the la-
bels, where £V (04) = Se - [ (xr:01) = 1| will be the
corresponding quadratic loss. Recall that x; and r; stand for the
chosen arm and the received reward respectively in round 7.

we

[User Exploration Network fu(z)] Given user u € U, to es-
timate the potential gain (i.e., the uncertainty for the reward es-
timation) E[r|u, x; ] — fu(l) (xi;) for arm x;;, we adopt the user
exploration network fu(z) () = fu(z)(_;@l(lz)) inspired by [7]. As it
has proved that the confidence interval (uncertainty) of reward

estimation can be expressed as a function of network gradients
[25, 42], we apply ﬁl(z) () to directly learn the uncertainty with
the gradient of f;, 1)( -). Thus, the input of f, 2)( -) will be the net-
work gradient offu )( -) given arm x; ;, denoted as Vfu )(xl 1) =
ngu(l) (x5 13 [6,(4 )]t_l), where [@,S )]t_l refer to the parameters
of fu(l) in round ¢ (before training [line 11, Alg. 1]). Analogously,
given the estimated user exploration graph giff) and two user nodes
u,u’, we let the edge weight be

wid i) =¥ £ (VD @i £ (VD i) | 6)

as in line 17, Alg. 1, and ¥(2)(..) is the mapping function that

has been applied in Def. 2. With GD, fu(z) (-) will be trained with

the past gradients off(l) ie., {Vfu(l) (x7)}req,, as samples; and

the potential gain (uncertainty) {r; — fu(l) (%3 [91(11)]171)}167%

as labels. The quadratic loss is defined as Ll(lz) (@,(42) ) =

Seern, 2 (VD (x0):02) = (re = £ (xe: [0 ]2-1) [
[Network Architecture] Here, we can apply various architec-

tures for f;(l) (), ﬁl(z) (+) to deal with different application scenarios
(e.g., Convolutional Neural Networks [CNNs] for visual content rec-
ommendation tasks). For the theoretical analysis and experiments,
with user u € U, we apply separate L-layer (L > 2) fully-connected
(FC) networks as the user exploitation and exploration network

fu(x;04) =010(01_10(Or_3...0(O1)))), 0 :=ReLU(:) (6)

with ©, = [vec(©1)T,...,vec(OL)T]T being the vector of train-
able parameters. Here, since ﬁfl) (), fu(z) (-) are both the L-layer
FC network (Eq. 6), the input y can be substituted with either the
arm context x; ; or the network gradient V fu(l) (xi¢) accordingly.

[Parameter Initialization] The weight matrices of the first

layer are slightly ditferent for two kinds of user networks, as 6(1)

R™*d G)(z) e R0 where p( ) is the dimensionality of G)(l)
The welght matrix shape for the rest of the L — 1 layers will be
the same for these two kinds of user networks, which are ©; €
R™XM | € [2,---,L—1],and O] € R*™_ To initialize f(l) u(z),
the weight matrix entries for their first L — 1 layers {®1,...01_1}
are drawn from the Gaussian distribution N (0, 2/m), and the entries
of the last layer weight matrix ©y are sampled from N (0, 1/m).
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ALGORITHM 1: Graph Neural Bandits (GNB)

1 Input: Number of rounds T, network width m, information
propagation hops k. Functions for edge weight estimation
D), @ () RxR - R.

Output: Arm recommendation x; for each time step t.

N

3 Initialization: Initialize trainable parameters for all models.
fort € {1,2,...,T} do

'S

5 Receive a user u; and a set of arm contexts
X ={xit}ic[a]
6 for each candidate arm x;; € X; do
7 Construct two kinds of user graphs Ql(i) , Q(2>

Procedure Estimating Arm-Specific User Graphs
(x;¢). [line 13-20]
8 Compute reward estimation [Eq. 10]

1
Fip = fgm)l (xiz, QS), [G;n)n]t—l), and the
potentlal gain [Eq. 11]

bis = fy (Vi G2 10501 -0).

9 end

10 Play arm x; = arg maxy, ¢ x, (Fir + I;i,t), and observe
its true reward r;.
11 Train the user networks f, 1)( 9(1)) fu 2)( 6(2)) and

GNN models fgnl,),( G)_((]:,)n) f(z) ol ) with GD.

gnn gnn
12 end
13 Procedure Estimating Arm-Specific User Graphs (x; ;)
14 Initialize arm graphs gfi), gi(f).

15 for each user pair (u,u’) € U X U do

16 For edge weight wl.(? (w,u') € W;p, update

wi (wu') = W (f<”(xl- 0 £ (xi0). [Eq. 4]
(u u') € W( ) , based on the
[Eq. 5], update w (u u') =

¥ (12 (70 (1), £ xi)).

17 For edge weight w

18 end

19 Return user graphs ng), Qi(?) .

20 end

4.2 Achieving Exploitation and Exploration
with GNN Models on Estimated User Graphs

With derived user exploitation graphs Qi(l) ,and exploitation graphs

gl(f), € [a], we apply two GNN models to separately estimate the
arm reward and potential gain for a refined arm selection strategy,

by utilizing the past interaction records with all the users.

4.2.1 The Exploitation GNN ]}(,11,2( -). In round ¢, with the estimated
user exploitation graph Q( ) for arm xit € Xi, we apply the ex-

ploitation GNN model fgnn (xit Ql(;) ; @;,11),,) to collaboratively es-

timate the arm reward 7;; for the received user u; € U. We start
from learning the aggregated representation for k hops, as

Hagg = o((S))F - (X1,0%)) € R™*M™ %)
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where S(l) (D(l))_7A<1) (D(l)) 2 is the symmetrically normal-

ized adjacency matrix of Q ) and & represents the ReLU activation

it
function. With m being the network width, we have @)g}])g Rrdxm
as the trainable weight matrix. After propagating the information
for k hops over the user graph, each row of H g4 corresponds to the
aggregated m-dimensional hidden representation for one specific
user-arm pair (u, x;;), u € U. Here, the propagation of multi-hop
information can provide a global perspective over the users, since
it also involves the neighborhood information of users’ neighbors
[33, 41]. To achieve this, we have the embedding matrix X;; (in Eq.

7) for arm x;; € Xy, i € [a] being

.
x{; 0 - 0
xiT,t . 0 J
Xit=| . , . |eR™” ®)
0 0 - xiTt

which partitions the weight matrix @;n),, for different users. In this
way, it is designed to generate individual representations w.r.t. each
user-arm pair (u, x;;),u € U before the k-hop propagation (i.e.,

multiplying with (S (1))k ), which correspond to the rows of the

matrix multiplication (X; tG)agg) € R™M,
Afterwards, with Ho = Hggq, we feed the aggregated represen-
tations into the L-layer (L > 2) FC network, represented by

Hi=o(H;_,-0") e R™™ | e [L-1],

- 1) _on ©)
Ta(xit) =Hp_1-0;7 €R

where ;7 (x;¢) € R represents the reward estimation for all the
users in U, given the arm x; ;. Given the target user u; in round ¢,
the reward estimation for the user-arm pair (us, x;;) would be the
corresponding element in 7, (line 8, Alg. 1), represented by:

Fir = fyun (i, G [OGnlio1) = [Fan(xin)lu,  (10)

where @;il)n = [Vec(@tg;;)T,vec(le))T,...,Vec(@I(dl))T]T € RP

represent the trainable parameters of the exploitation GNN model,
(1)

and we have [@;n)n] t-1 being the parameters @y, in round ¢
(before training [line 11, Alg. 1]). Here, the weight matrix shapes

are @)(l) R™*™ [ € [1,---,L—1], and the L-th layer @)(1) € R™,

[Training fgnn with GD] The exploitation GNN fg(nl,z( -) will
be trained with GD based on the received records #;. Then, we
apply the quadratic loss function based on reward predictions
g (xrs 683000 e
received rewards {rr},c[,], and the user exploitation graph Q(l)
for chosen arms x, 7 € [t]. The correspondmg quadratic loss will

£ @) (1) (1), o1 2
gnn(®gnn = Zre[t] |fgnn (xr,G:7;© nn) | .

[Connectlon with the Reward Functlon Definition (Eq. 1)
and Constraint (Eq. 2)] The existing works (e.g.,[2]) show that
the FC network is naturally Lipschitz continuous with respect to
the input when width m is sufficiently large. Thus, for GNB, with
aggregated hidden representations Hgg4g being the input to the FC
network (Eq. 9), we will have the difference of reward estimations
7t bounded by the distance of rows in matrix Hggq (i.e., aggregated
hidden representations). Here, given x; ; € X; and users uy, uz € U,

of chosen arms {xr}¢[;], the actual
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their estimated reward difference |[Fg5(xi)]u, — [Farr(%i )],
can be bounded by the distance of the corresponding rows in S; ;
(ie., ||S§1t) [ug <] - Sl(lt) [uz :]]]) given the exploitation GNN model.
This design matches our definition and the constraint in Eq. 1-2.

4.2.2 The Exploration GNNfg(nz,), (). Given a candidate arm x;; €
X}, to achieve adaptive exploration with the user exploration col-

(2) (2)

laborations encoded in G, ;”, we apply a second GNN model fg; (-)

to evaluate the potential gain E,;t for the reward estimation 7j; =
fomn ez, Gy:[O4zn1-1) [Eq. 10], denoted by

it

= 2 1 2 2 -

bis = (VUi G125 [0 le-1) = [ban (ki) L. (11)
The architecture of fg(,?,z() can also be represented by Eq. 7-10.
While fg(,g,)l (), ﬁ](,f,), () have the same network width m and number
of layers L, the dimensionality of G)‘(z;)g € Rrdxm 9,(12; € RMPxm
is different. Analogously, Ea” (xi,r) € R™ is the potential gain es-
timation for all the users in U, w.rt. arm x;; and the exploita-
tion GNN fg(,:,)l() Here, the inputs are user exploration graph
Ql.(z), and the gradient of the exploitation GNN, represented by

Vialie = Vog fym(xieGyr's [0fmle). The exploration
GNN ﬁ](,f,)l () leverages the user exploration graph gi(f) and the gra-

dients of fg(nl,z (+) to estimate the uncertainty of reward estimations,
which stands for our adaptive exploration strategy (downward or
upward exploration). More discussions are in Appendix Section B.
[Training ]?](nz,)l with GD] Similar to fg(nl,)l, we train fg(nz,), with GD
by minimizing the quadratic loss, denoted by L;,lel ((9!(],21),1) = Yrele]
2 1 2 2 1 1 1 2
yn (V) G175 0(0) = (re = fmn (2. G2 [©fzh 1)) -
This is defined to measure the difference between the estimated

potential gains {fg(nz,)l (V[fgnln]r, T(Z) ; Géin)}re[t], and the corre-

sponding labels {rr — fyu) (xr. G [Ounle—) e,
Remark 4.1 (Reducing Input Complexity). The input of fg(,,z,l )

is the gradient Vg fg(nlr), (x) given the arm x, and its dimensionality
is naturally p = (nd x m) + (L — 1) X m? + m, which can be a
large number. Inspired by CNNs, e.g., [26], we apply the average
pooling to approximate the original gradient vector in practice. In
this way, we can save the running time and reduce space complexity
simultaneously. Note this approach is also compatible with user
networks in Subsection 4.1. To prove its effectiveness, we will apply
this approach on GNB for all the experiments in Section 6.

Remark 4.2 (Working with Large Systems). When facing a large
number of users, we can apply the “approximated user neighbor-
hood” to reduce the running time in practice. Given user graphs

Qi(}), Qi(’f) in terms of arm x; ;, we derive approximated user neigh-
borhoods NV (u;), N (u;) c U for the target user u;, with size
IND (u)| = IN@ (uz)| = n, where n << n. For instance, we can
choose 1 “representative users” (e.g., users posting high-quality re-
views on e-commerce platforms) to form N (uz), N@ (ut), and
apply the corresponding approximated user sub-graphs for down-
stream GNN models to reduce the computation cost and space cost
in practice. Related experiments are provided in Subsection 6.3.

Yunzhe Qj, Yikun Ban, and Jingrui He

[Parameter Initialization] For the parameters of both GNN
models (i.e., @;}1),1 and G)!(]f,),l), the matrix entries of the aggregation
weight matrix @449 and the first L — 1 FC layers {©1,...,01_1}
are drawn from the Gaussian distribution N (0, 2/m). Then, for the
last layer weight matrix @y, we draw its entries from N (0, 1/m).

4.2.3  Arm Selection Mechanism and Model Training. In round t,

with the current parameters [@;;)n] 1, [@;i)n] ¢—1 for GNN models
before model training, the selected arm is chosen as

xe =arg max | fiun(xie 613 [Ofnli-1)
it t

+fyn (Vo fom (<ie Gy (Ofmlen). G175 105in]i-1)
based on the estimated reward and potential gain (line 10, Alg. 1).
After receiving reward r;, we update user networks fu(tl), fu(tz) of

user u;, and GNN models based on GD (line 11, Alg,. 1).
5 THEORETICAL ANALYSIS

In this section, we present the theoretical analysis for the proposed
GNB. Here, we consider each user u € U to be evenly served T/n
rounds up to time step T, i.e., |7y¢| = To,r = T/n, which is standard
in closely related works (e.g., [4, 16]). To ensure the neural models
are able to efficiently learn the underlying reward mapping, we
have the following assumption regarding the arm separateness.

ASSUMPTION 5.1 (p-SEPARATENESS OF ARMS). After a total of T
rounds, for every pair xj;,xy p+ with t,t’ € [T] and i,i’ € [a], if
(t,1) # (t',i"), we have ||xi; — xi p||2 > p where0 < p < O(%).

Note that the above assumption is mild, and it has been com-
monly applied in existing works on neural bandits [7] and over-
parameterized neural networks [2]. Since L can be manually set
(e.g., L = 2), we can easily satisfy the condition 0 < p < 0(%) as
long as no two arms are identical. Meanwhile, Assumption 4.2 in
[42] and Assumption 3.4 from [40] also imply that no two arms
are the same, and they measure the arm separateness in terms
of the minimum eigenvalue Ay (with A9 > 0) of the Neural Tan-
gent Kernel (NTK) [19] matrix, which is comparable with our Eu-
clidean separateness p. Based on Def. 1 and Def. 2, given an arm

xi; € Xz, we denote the adjacency matrices as Al(lt)’* and Al.(Zt)’*

for the true arm graphs Qi(})’*, Ql(?)* For the sake of analysis,
given any adjacency matrix A, we derive the normalized adjacency
matrix S by scaling the elements of A with 1/n. We also set the
propagation parameter k = 1, and define the mapping functions
p(1) (a,b), (2) (a,b) := exp(—|la — b||) given the inputs a, b. Note
that our results can be readily generalized to other mapping func-
tions with the Lipschitz-continuity properties.

Next, we proceed to show the regret bound R(T) after T time
steps [Eq. 3]. Here, the following Theorem 5.2 covers two types
of error: (1) the estimation error of user graphs; and (2) the ap-
proximation error of neural models. Let 71, J1 be the learning rate
and GD training iterations for user networks, and 12, J> denote the
learning rate and iterations for GNN models. The proof sketch of
Theorem 5.2 is presented in Appendix Section C.

THEOREM 5.2 (REGRET BOUND). Define § € (0,1),0 < &1,& <
O(1/T) and 0 < p < O(1/L), cg > 0, & = (cp)-. With the user
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networks defined in Eq. 6 and the GNN models defined in Eq. 7-9
with L FC-layers, let m > Q(Poly(T,L,a, I%) & log(1/68)), n =

ﬁ(Poly(L)). Set zZLe learning rates and GD iterations

"= ®(m - Poly(T, n, a, L))’ 72 = ®(m - Poly(T, a, L))’
_ Poly(T,n,a, L) ) i _ Poly(T,a, L) ‘ i
h= @(—p 5 log(§1 ). 2= G)(—p 52 log( 5 )).

Then, following Algorithm 1, with probability at least 1 — 8, the
T-round pseudo-regret R(T) of GNB can be bounded by

Tn-a

R(T) < VT - (O(LEL) - 4/21og(

Recall that L is generally a small integer (e.g., we set L = 2 for

experiments in Section 6), which makes the condition on number
of users reasonable as n is usually a gigantic number in real-world
recommender systems. We also have m to be sufficiently large under
the over-parameterization regime, which makes the regret bound
hold. Here, we have the following remarks.
Remark 5.3 (Dimension terms d, d). Existing neural single-bandit
(i.e., with no user collaborations) algorithms [25, 40, 42] keep the
bound of O(dVT log(T)) based on gradient mappings and ridge
regression. d is the effective dimension of the NTK matrix, which
can grow along with the number of parameters p and rounds T. The
linear user clustering algorithms (e.g., [4, 15, 22]) have the bound
O(dVT log(T)) with context dimension d, which can be large with
a high-dimensional context space. Alternatively, the regret bound in
Theorem 5.2 is free of terms d and d, as we apply the generalization
bounds of over-parameterized networks instead [2, 8], which are
unrelated to dimension terms d or d.

Remark 5.4 (From +/n to 4/log(n)). With n being the number of
users, existing user clustering works (e.g., [4, 6, 16, 22]) involve a y/n
factor in the regret bound as the cost of leveraging user collaborative
effects. Instead of applying separate estimators for each user group,
our proposed GNB only ends up with a 4/log(n) term to incorporate
user collaborations by utilizing dual GNN models for estimating
the arm rewards and potential gains correspondingly.

Remark 5.5 (Arm i.i.d. Assumption). Existing clustering of bandits
algorithms (e.g., [6, 15, 16, 22]) and the single-bandit algorithm EE-
Net [7] typically require the arm i.i.d. assumption for the theoretical
analysis, which can be strong since the candidate arm pool X;, t €
[T] is usually conditioned on the past records. Here, instead of
using the regression-based analysis as in existing works, our proof
of Theorem 5.2 applies the martingale-based analysis instead to
help alleviate this concern.

6 EXPERIMENTS

In this section, we evaluate the proposed GNB framework on multi-
ple real data sets against nine state-of-the-art algorithms, including
the linear user clustering algorithms: (1) CLUB [16], (2) SCLUB
[22], (3) LOCB [4], (4) DynUCB [24], (5) COFIBA [23]; the neu-
ral single-bandit algorithms: (6) Neural-Pool adopts one single
Neural-UCB [42] model for all the users with the UCB-type ex-
ploration strategy; (7) Neural-Ind assigns each user with their
own separate Neural-UCB [42] model; (8) EE-Net [7]; and, the
neural user clustering algorithm: (9) Meta-Ban [6]. We leave the
implementation details and data set URLs to Appendix Section A.

)) + VT - O(L) + O(&1) + O(1).
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6.1 Real Data Sets

In this section, we compare the proposed GNB with baselines on
six data sets with different specifications.

[Recommendation Data Sets] “MovieLens rating dataset” in-
cludes reviews from 1.6 x 10° users towards 6 x 104 movies. Here,
we select 10 genome-scores with the highest variance across movies
to generate the movie features v; € R4, d = 10. The user features
vy € RY u € U are obtained through singular value decomposition
(SVD) on the rating matrix. We use K-means to divide users into
n = 50 groups based on vy, and consider each group as a node in
user graphs. In each round ¢, a user u; will be drawn from a ran-
domly sampled group. For the candidate pool X; with |X;| = a =10
arms, we choose one bad movie (< two stars, out of five) rated
by u; with reward 1, and randomly pick the other 9 good movies
with reward 0. The target here is to help users avoid bad movies.
For “Yelp” data set, we build the rating matrix w.r.t. the top 2,000
users and top 10,000 arms with the most reviews. Then, we use
SVD to extract the 10-dimensional representation for each user and
restaurant. For an arm, if the user’s rating > three stars (out of five
stars), the reward is set to 1; otherwise, the reward is 0. Similarly,
we apply K-means to obtain n = 50 groups based on user features.
In round t, a target u;, is sampled from a randomly selected group.
For X}, we choose one good restaurant rated by u; with reward 1,
and randomly pick the other 9 bad restaurants with reward 0.

[Classification Data Sets] We also perform experiments on
four real classification data sets under the recommendation settings,
which are “MNIST” (with the number of classes C = 10), “Shut-
tle” (C = 7), the “Letter” (C = 26), and the “Pendigits” (C = 10)
data sets. Each class will correspond to one node in user graphs.
Similar to previous works [6, 42], given a sample x € Rd, we trans-
form it into C different arms, denoted by x1 = (x,0,...,0),x2 =
(0,x,...,0),...,xc =(0,0,...,x) € RY4C~1 where we add C — 1
zero digits as the padding. The received reward r; = 1 if we select
the arm of the correct class, otherwise r; = 0.

6.1.1  Experiment Results. Figure 2 illustrates the cumulative regret
results on the six data sets, and the red shade represents the stan-
dard deviation of GNB. Here, our proposed GNB manages to achieve
the best performance against all these strong baselines. Since the
MovieLens data set involves real arm features (i.e., genome-scores),
the performance of different algorithms on the MovieLens data
set tends to have larger divergence. Note that due to the inherent
noise within these two recommendation data sets, we can observe
the “linear-like” regret curves, which are common as in existing
works (e.g., [6]). In this case, to show the model convergence, we
will present the convergence results for the recommendation data
sets in Appendix Subsec. A.3. Among the baselines, the neural al-
gorithms (Neural-Pool, EE-Net, Meta-Ban) generally perform better
than linear algorithms due to the representation power of neural
networks. However, as Neural-Ind considers no correlations among
users, it tends to perform the worst among all baselines on these
two data sets. For classification data sets, Meta-Ban performs bet-
ter than the other baselines by modeling user (class) correlations
with the neural network. Since the classification data sets generally
involve complex reward mapping functions, it can lead to the poor
performances of linear algorithms. Our proposed GNB outperforms
the baselines by modeling fine-grained correlations and utilizing
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Figure 2: Cumulative regrets on the recommendation and
classification data sets.

the adaptive exploration strategy simultaneously. In addition, GNB
only takes at most 75% of Meta-Ban’s running time for experiments,
since Meta-Ban needs to train the framework individually for each
arm before making predictions. We will discuss more about the
running time in Subsec. 6.5.

6.2 Effects of Propagation Hops k

Yunzhe Qj, Yikun Ban, and Jingrui He

for mores hops. In contrast, with a smaller k value, it is possible
that the target user will be "heavily influenced" by only several
specific users. However, overly large k values can also lead to the
“over-smoothing” problem [36, 37], which can impair the model
performance. Therefore, the practitioner may need to choose k
value properly under different application scenarios.

6.3 Effects of the Approximated Neighborhood

In this subsection, we conduct experiments to support our claim that
applying approximated user neighborhoods is a feasible solution to
reduce the computational cost, when facing the increasing number
of users (Remark 4.2). We consider three scenarios where the
number of users n € {200,300,500}. Meanwhile, we let the size
of the approximated user neighborhood N (uy), NP () fix to
A= INW )| = IN® (4;)| = 50 for all these three experiment
settings, and the neighborhood users are sampled from the user
pool U in the experiments.

MovielLens (200 users)

MovieLens (300 users) MovieLens (500 users)

~8 8 8
S %
2
X
=6 6 6
o
=
e
0 4 4
>
2
o
32 —— EE-Net — scLUB 2 2
g — Neural-pool COFiBA
3 — Dynuce —— Meta-Ban

Loce Neural-ind

/— cws — anB

0 5000 10000 0 5000 10000 0 5000 10000
Time step Time step Time step

Figure 3: Cumulative regrets for different number of users
with approximated user neighborhood (MovieLens data set).

Avg. regret per round at different ¢
We also include the experiments on the MovieLens data set with Algorithm 2000 4000 6000 8000 10000
100 users to further investigate the effects of the propagation hyper- CLUB 07691 07513 07464 07468 0.7496
parameter k. Recall that given two input vectors w, v, we apply the Neural-Ind 0.8901 0.8808 0.8790 0.8754 0.8741
RBF kernel as the mapping functions ¥V (w,0) = () (w,0) = Neural-Pool | 07681 07526 0.7405 0.7362 0.7334
exp(—y-||lw—0||?) where y is the kernel bandwidth. The experiment EE-Net 0.7886 07723 07642 0.7618 0.7582
results are shown in the Table 1 below, and the value in the brackets Meta-Ban 0.7811 07761 0.7754 0.7729 0.7708
"[]1" is the element standard deviation of the normalized adjacency GNB (7 = 50) 07760 07245 07190 07265 0.7140
matrix of user exploitation graphs. GNB (7= 100) | 0.7406 0.7178 07172 07110 0.7104
Bandwidth y GNB (n = 150) 0.7291 0.7228 0.7129 0.7105 0.7085
0.1 1 2 5 Table 2: Running for 10000 rounds and with the number of
117276 7073 7151 7490 users n = 500 for the MovieLens data set, the comparison
[1.6 x 1074] [1.4x1073] [2.2x 1073] [3.9 x 1073] between GNB and baselines on average regret per round.
2| 6968 6966 7074 7087
[1.0 x 1074] [7.7x 1074] [1.3x1073] [2.5 % 1073] Here, we see that the proposed GNB still outperforms the base-
3| 7006 7018 6940 7167 lines with increasing number of users. In particular, given a total
[71x107%]  [7.0x107%] [1.2x1073]  [1.9%x1073] of 500 users, the approximated neighborhood is only 10% (50 users)

Table 1: Cumulative regrets on MovieLens dataset with 100
users (different k / kernel bandwidth). The value in the brack-
ets "[]" is the element standard deviation of the correspond-
ing normalized adjacency matrix.

Here, increasing the value of parameter k will generally make
the normalized adjacency matrix elements "smoother”, as we can
see from the decreasing standard deviation values. This matches
the low-pass nature of graph multi-hop feature propagation [33].
With larger k values, GNB will be able to propagate the information

of the overall user pool. These results can show that applying ap-
proximated user neighborhoods (Remark 4.2) is a practical way
to scale-up GNB in real-world application scenarios. In addition,
in Table 2, we also include the average regret per round across
different time steps. With the number of users n = 500 on the
MovieLens data set, we include the experiments given different
numbers of “representative users” n € {50, 100, 150} to better show
the model performance when applying the approximated neigh-
borhood. Here, increasing the number of “representative users” n’
can lead to better performances of GNB, while it also shows that a
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small number of “representative users” will be enough for GNB to
achieve satisfactory performances.

6.4 Effects of the Adaptive Exploration

To show the necessity of the adaptive exploration strategy, we
consider an alternative arm selection mechanism (different from line
10, Alg. 1) in round ¢t € [T], as x; = arg maxy, e X, (fi,t +oa- I;i,t),
given the estimated reward and potential gain. Here, we introduce
an additional parameter a € [0, 1] as the exploration coefficient
to control the exploration levels (i.e., larger « values will lead to
higher levels of exploration). Here, we show the experiment results
with & € {0,0.1,0.3,0.7,1.0} on the “MNIST” and “Yelp” data sets.

Regret results with different « values
Dataset | a =0 «a=0.1 a=03 a=0.7 a=1
Yelp 7612 7444 7546 7509 7457
MNIST | 2323 2110 2170 2151 2141

Table 3: Results with different exploration coefficients .

In Table 3, regarding the results of the “Yelp” data set, although
the performances of GNB do not differ significantly with different o
values, our adaptive exploration strategy based on user exploration
graphs is still helpful to improve GNB’s performances, which is
validated by the fact that setting @ € (0, 1] will lead to better results
compared with the situation where no exploration strategies are
involved (setting @ = 0). On the other hand, as for the results of the
“MNIST” data set, different « values will lead to relatively divergent
results. One reason can be that with larger context dimension d
in the “MNIST” data set, the underlying reward mapping inclines
to be more complicated compared with that of the “Yelp” data set.
In this case, leveraging the exploration correlations will be more
beneficial. Thus, the adaptive exploration strategy is necessary to
improve the performance of GNB by estimating the potential gains
based on “fine-grained” user (class) correlations.

6.5 Running Time vs. Performance

In Figure 4, we show the results in terms of cumulative regret [y-
axis, smaller = better] and running time [x-axis, smaller = better].
Additional results are in Appendix Subsec. A.2. Each colored point
here refers to one single method. The point labeled as “GNB_Run”
refers to the time consumption of GNB on the arm recommendation
process only, and the point “GNB” denotes the overall running time
of GNB, including the recommendation and model training process.

Although the linear baselines tend to run faster compared with
our proposed GNB, their experiment performances (Subsec. 6.1.1)
are not comparable with GNB, as their linear assumption can be
too strong for many application scenarios. In particular, for the
data set with high context dimension d, the mapping from the arm
context to the reward will be much more complicated and more
difficult to learn. For instance, as shown by the experiments on
the MNIST data set (d = 784), the neural algorithms manage to
achieve a significant improvement over the linear algorithms (and
the other baselines) while enjoying the reasonable running time.
Meanwhile, we also have the following remarks: (1) We see that for
the two recommendation tasks, GNB takes approximately 0.4 sec-
ond per round to make the arm recommendation with satisfactory
performances for the received user; (2) In all the experiments, we
train the GNB framework per 100 rounds after ¢ > 1000 and still
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Figure 4: Running time vs. performance with baselines.

manage to achieve the good performance. In this case, the running
time of GNB in a long run can be further improved considerably by
reducing the training frequency when we already have sufficient
user interaction data and a well-trained framework; (3) Moreover,
since we are actually predicting the rewards and potential gains for
all the nodes within the user graph (or the approximated user graph
as in Remark 4.2), GNB is able to serve multiple users in each round
simultaneously without running the recommendation procedure
for multiple times, which is efficient in real-world cases.

6.6 Supplementary Experiments

Due to page limit, we present supplementary experiments in Ap-
pendix Section A, including: (1) [Subsec. A.1] experiments showing
the potential impact on GNB when there exist underlying user clus-
ters; (2) [Subsec. A.2] complementary contents for Subsec. 6.5
regarding the “Letter” and “Pendigits” data sets; (3) [Subsec. A.3]
the convergence results of GNB on recommendation data sets.

7 CONCLUSION

In this paper, we propose a novel framework named GNB to model
the fine-grained user collaborative effects. Instead of modeling user
correlations through the estimation of rigid user groups, we esti-
mate the user graphs to preserve the pair-wise user correlations
for exploitation and exploration respectively, and utilize individ-
ual GNN-based models to achieve the adaptive exploration with
respect to the arm selection. Under standard assumptions, we also
demonstrate the improvement of the regret bound over existing
methods from new perspectives of “fine-grained” user collaborative
effects and GNNs. Extensive experiments are conducted to show the
effectiveness of our proposed framework against strong baselines.
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A EXPERIMENTS (CONT.)

Here, for all the UCB-based baselines, we choose their exploration
parameter from the range {0.01,0.1, 1} with grid search. We set
the L = 2 for all the deep learning models including our proposed
GNB, and set the network width m = 100. The learning rate of
all neural algorithms are selected by grid search from the range
{0.0001,0.001, 0.01}. For EE-Net [7], we follow the default settings
in their paper by using a hybrid decision maker, where the esti-
mation is fi + f for the first 500 time steps, and then we apply
an additional neural network for decision making afterwards. For
Meta-Ban, we follow the settings in their paper by tuning the clus-
tering parameter y through the grid search on {0.1,0.2, 0.3, 0.4}. For
GNB, we choose the k-hop user neighborhood k € {1, 2,3} with
grid search. Reported results are the average of 3 runs. The URLs for
the data sets are: MovieLens: https://www.grouplens.org/datasets/
movielens/20m/. Yelp: https://www.yelp.com/dataset. MNIST/Shut-
tle/Letter/Pendigits: https://archive.ics.uci.edu/ml/datasets.

A.1 Experiments with Underlying User Groups

To understand the influence of potential underlying user clusters,
we conduct the experiments on the MovieLens and the Yelp data
sets, with controlled number of underlying user groups. The un-
derlying user groups are derived by using hierarchical clustering
on the user features, with a total of 50 users approximately. Here,
we compare GNB with four representative baselines with relatively
good performances, including DynUCB [24] [fixed number of user
clusters], LOCB [4] [fixed number of user clusters with local cluster-
ing], CLUB [16] [distance-based user clustering], Neural-UCB-Pool
[42] [neural single-bandit algorithm], and Meta-Ban [6] [neural
user clustering bandits]. DynUCB and LOCB are given the true
cluster number as the prior knowledge to determine the quantity
of user clusters or random seeds. Results are shown in Fig. 5.

MovieLens dataset (5 users groups) MovieLens dataset (10 users groups)
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A.2 Running Time vs. Performance (Cont.)

In Figure 6, we include the comparison with baselines in terms of
the running performance and running time on the last two classifi-
cation data sets (“Letter” and “Pendigits” data sets). Analogously,
the results match our conclusions that by applying the GNN mod-
els and the “fine-grained" user correlations, GNB can find a good
balance between the computational cost and recommendation per-
formance.

Running Time on Letter dataset
Jeurslind 7000

Running Time on Pendigits dataset

8000 {ipraa Neural-Pool COFIEA
6000
EE-Net
7000 goce
5000
000 OCB
] 4000
v
g0 Mpta-Ban teuraiind
H 3000 1" ®eural-Pool
5 a000 | gpyn-ucs L el
'S 2000
3000 {--t48 Pymucs
scLB 1000 | gfLUB
2000 &NE [SCLUB GNE Meta-Ban
®GNB_Run BNE_Ran

[] 5000 10000 15000
Running Time ()

0 2500 5000 7500 10000125001500017500
Running Time (s)

Figure 6: Running time & performance comparison.

A.3 Convergence of GNN Models

Here, for each separate time step interval of 2000 rounds, we show
the average cumulative regrets results on MovieLens and Yelp data
sets within this interval. We also include the baselines (EE-Net [7],
Neural-UCB-Pool [42] and Meta-Ban [6]) for comparison.

MovieLens dataset (15 users groups)
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Y (GNB) 0.7705 0.7685 0.7485 0.7450 0.7330
M (EE-Net) 0.7320 0.7120 0.7072 0.6945 0.7070
Y (EE-Net) 0.8480 0.8420 0.7965 0.7950 0.7865
M (Neural-UCB) | 0.8090 0.7115 0.7165 0.6945 0.6865
Y (Neural-UCB) | 0.8380 0.8115 0.8185 0.7940 0.8025
M (Meta-Ban) 0.7760 0.7245 0.7190 0.7265 0.7140
Y (Meta-Ban) 0.8525 0.8035 0.7930 0.7600 0.7620
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Figure 5: Cumulative regrets for different number of under-
lying user groups (on MovieLens and Yelp data sets)

As we can see from the results, our proposed GNB outperforms
other baselines across different data sets and number of user groups.
In particular, with more underlying user groups, the performance
improvement of GNB over the baselines will slightly increase, which
can be the result of the increasingly complicated user correlations.
The modeling of fine-grained user correlations, the adaptive explo-
ration strategy with the user exploration graph, and the represen-
tation power of our GNN-based architecture can be the reasons for
GNB’s good performances.

2000 4000 6000 8000 1000

Table 4: In different time step intervals, the average regrets
per round on MovieLens (M) and Yelp (Y) data sets.

As in Table 4, the average regret per round of GNB is decreas-
ing, along with more time steps. Compared with baselines, GNB
manages to achieve the best prediction accuracy across different
time step intervals by modeling the fine-grained user correlations
and applying the adaptive exploration strategy. Here, one possible
reason for the “linear-like” curves of the cumulative regrets is that
these two recommendation data sets contain considerable inherent
noise, which makes it hard for algorithms to learn the underly-
ing reward mapping function. In this case, achieving experimental
improvements on these two data sets is non-trivial.

B INTUITION OF ADAPTIVE EXPLORATION

Recall that GNB adopts a second GNN model (fg(nz,?l) to adaptively
learn the potential gain, which can be either positive or negative.
The intuition is that the exploitation model (i.e., fg(nl,z (+)) can "pro-
vide the excessively high estimation of the reward", and applying
the UCB based exploration (e.g., [42]) can amplify the mistake as
the UCB is non-negative. For the simplicity of notation, let us de-
note the expected reward of an arm x as E[r]| = h(x), where h is
the unknown reward mapping function. The reward estimation
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is denoted as 7 = fi(x) where fi(-) is the exploitation model. For
GNB, when the estimated reward is lower than the expected reward
(fi(x) < h(x)), we will apply the "upward" exploration (i.e., positive
exploration score) to increase the chance of arm x being explored.
Otherwise, if the estimated reward is higher than the expected
reward (fi (x) > h(x)), we will apply the "downward" exploration
(i.e., negative exploration score) instead to tackle the excessively
high reward estimation. Here, we apply the exploration GNN fg(nz,)l
to adaptively learn the relationship between the gradients of f; and
the reward estimation residual h(x) — fi(x), based on the user ex-
ploration graph for a refined exploration strategy. Readers can also
refer to [7] for additional insights of neural adaptive exploration.

C PROOF SKETCH OF THEOREM 5.2

For the full proof of the regret bound, please refer to our arXiv
version of the paper Apart from two kinds of estimated user graphs

{ (1)}z€[a {gl t)}lE

true user exploitation graph {gi(}

at each time step ¢, we can also define
)’*}ie[a] and true user explo-

ration graph {giff)’*}ie[a] based on Def. 1 and Def. 2 respec-
tively. Comparably, the true normalized adjacency matrices of
Q(l) € [a] are represented as S(t) . With ry, rt separately be-
ing the rewards for the selected arm x; € X; and the optimal
arm x} € X;, we formulate the pseudo-regret for a single round
t, as Ry = E[r}|us, X¢] — B[r¢|us, X¢] wort. the candidate arms X;
and served user u;. Here, with Algorithm 1, we denote fgnn(x;) =

fonGees G5 1OG =D+ (VA (x0), G (0501 1), with
Vo) famn (e, 611000 1e-1)

gnn

the arm x;, gradients Vft(l)(xt) = oL

(¢g > 0 is the normalization factor, such that ||Vft(1) (xp)]l2 < 1), as
well as the estimated user graphs Q(l), )

x¢. On the other hand, with the true graph Q(l) of arm x;, the

related to chosen arm

corresponding gradients will be V ft(l) *(x). Analogously, we also

have the estimated user graphs Qt(i) Qt@) for the optimal arm x7.

Afterwards, in round ¢ € [T], the single-round regret R; will be

Ry = E[rylus, Xe] — Elrelug, X¢]
= E[rﬂuta X] - fgnn(xt) +fénn(xt) = E[relus, Xe]
< E[rflus, X¢] = fynn(X3) + fynn (x1) — Elrelus, Xi]

E[Ir} = fynn e ur, X¢ | + B[Ire = fynn (o) ||ur, Xi ]

=5l . 61250

- (rf (nlrl xi, t(l*)’[@;:;)n]t—l))Wt,Xt +
[|f<fn<Vf<1)< s 651080 i-1)
e D e 6V: 0 ;}Jl]t_onut,xt]

= CB;(x;) + CB;(x})

where inequality (i) is due to the arm pulling mechanism, i.e.,
fonn(xt) = fgnn(x}), and CB(-) is the regret bound function in
round ¢, formulated by the last equation. Then, given arm x € X;

Yunzhe Qj, Yikun Ban, and Jingrui He

and its reward r, with the aforementioned notation, we have

CBy(x) = E|[fan (V) (x), 6@ (050 ]1-1)
= 0 ¢V [0 ) ut,xt]
E|lfa (VA (), 6P (052 1-1)
<
= £ e 6D [0 ut,x,]
I
B fpn (. 6D [O50]1-1) = fyum (x, “);[e;kl]t_mut,xt]
)
E|lfa (VA (), 6P [0 1-1)-
+
A E ), 6@ (0501 -1)] ut,xt]
L
E|lfm (VA (), 6P [0 1:-1)
+ .
DD ), 6210 Bl ut,xt]

I

Here, we have the term I; representing the estimation error
induced by the GNN model parameters {[G)é}l)n]t_l, [G);i)n]t_l},
the term I, denoting the error caused by the estimation of user
exploitation graph. Then, error term I3 is caused by the estimation
of user exploration graph, and term I4 is the output difference given
input gradients V ft(l)’* (x) and V ft(l) (x), which are individually
associated with the true user exploitation graph G(1)* and the
estimation g<1). These four terms Iy, I, I3, I can be bounded re-
spectively. Afterwards, with the notation from Theorem 5.2, we
have the pseudo regret after T rounds, i.e., R(T), as

RT)= ) Re <2 VT(V2E + % + (147) zlog(T"5
te[T] \/E

VI-0(8) - (VE& + 2 + (14 )y 21og(5) +0(1)

where the inequality is because we have sufficient large network
widthm > Q(Poly(T, L, a,1/p)-log(1/9)) as indicated in Theorem
5.2. Meanwhile, with sufficient m > Q(Poly(T, p~!)), the terms
Y1, Y2 can also be upper bounded by O(1), which leads to

a))+

Tna

R(T) < VT - (O(W& + &\E) + O(LE) + O(£y) -
VT -O(L) + O(&) + O(1)

< VT - (O(LéL) +O(&L) - 4 /zbg%)) +VTO(L) + O(£) + O(1)

since we have &1, & < O( %) This will complete the proof sketch.

2log(

)+
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