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ABSTRACT
Contextual bandits algorithms aim to choose the optimal arm with

the highest reward out of a set of candidates based on the contextual

information. Various bandit algorithms have been applied to real-

world applications due to their ability of tackling the exploitation-

exploration dilemma. Motivated by online recommendation scenar-

ios, in this paper, we propose a framework named Graph Neural
Bandits (GNB) to leverage the collaborative nature among users

empowered by graph neural networks (GNNs). Instead of estimating

rigid user clusters as in existing works, we model the “fine-grained”

collaborative effects through estimated user graphs in terms of

exploitation and exploration respectively. Then, to refine the rec-

ommendation strategy, we utilize separate GNN-based models on

estimated user graphs for exploitation and adaptive exploration.

Theoretical analysis and experimental results on multiple real data

sets in comparison with state-of-the-art baselines are provided to

demonstrate the effectiveness of our proposed framework.

CCS CONCEPTS
• Theory of computation → Online learning algorithms; •
Information systems → Personalization.
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1 INTRODUCTION
Contextual bandits are a specific type of multi-armed bandit prob-

lem where the additional contextual information (contexts) related

to arms are available in each round, and the learner intends to

refine its selection strategy based on the received arm contexts and

rewards. Exemplary applications include online content recommen-

dation, advertising [21, 34], and clinical trials [13, 30]. Meanwhile,

∗
Both authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599371

collaborative effects among users provide researchers the opportu-

nity to design better recommendation strategies, since the target

user’s preference can be inferred based on other similar users. Such

effects have been studied by many bandit works [4, 15, 16, 22, 23].

Different from the conventional collaborative filtering methods

[18, 31], bandit-based approaches focus on more dynamic environ-

ments under the online learning settings without pre-training [35],

especially when the user interactions are insufficient during the

early stage of recommendation (such as dealing with new items

or users under the news, short-video recommendation settings),

which is also referred to as the “cold-start” problem [21]. In such

cases, the exploitation-exploration dilemma [3] inherently exists in

the decisions of recommendation.

Existing works for clustering of bandits [4, 6, 15, 16, 22, 23]

model the user correlations (collaborative effects) by clustering

users into rigid user groups and then assigning each user group

an estimator to learn the underlying reward functions, combined

with an Upper Confidence Bound (UCB) strategy for exploration.

However, these works only consider the “coarse-grained” user cor-

relations. To be specific, they assume that users from the same

group would share identical preferences, i.e., the users from the

same group are compelled to make equal contributions to the final

decision (arm selection) with regard to the target user. Such formu-

lation of user correlations (“coarse-grained”) fails to comply with

many real-world application scenarios, because users within the

same group can have similar but subtly different preferences. For

instance, under the settings of movie recommendation, although

we can allocate two users that “favor” the same movie into a user

group, their “favoring levels” can differ significantly: one user could

be a die hard fan of this movie while the other user just considers

this movie to be average-to-good. In this case, it would not be the

best strategy to vaguely consider they share the same preferences

and treat them identically. Note that similar concerns also exist

even when we switch the binary ranking system to a categorical

one (e.g., the rating system out of 5 stars or 10 points), because as

long as we model with user categories (i.e., rigid user groups), there

will likely be divergence among the users within the same group.

Meanwhile, with more fine-sorted user groups, there will be less

historical user interactions allocated to each single group because

of the decreasing number of associated users. This can lead to the

bottlenecks for the group-specific estimators due to the insufficient

user interactions. Therefore, given a target user, it is more practical

to assume that the rest of the users would impose different levels

of collaborative effects on this user.

Motivated by the limitations of existing works, in this paper, we

propose a novel framework, namedGraph Neural Bandits (GNB),
to formulate “fine-grained” user collaborative effects, where the

correlation of user pairs is preserved by user graphs. Given a target

user, other users are allowed to make different contributions to the

https://doi.org/10.1145/3580305.3599371
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final decision based on the strength of their correlation with the

target user. However, the user correlations are usually unknown,

and the learner is required to estimate them on the fly. Here, the

learner aims to approximate the correlation between two users by

exploiting their past interactions; on the other hand, the learner

can benefit from exploring the potential correlations between users

who do not have sufficient interactions, or the correlations that

might have changed. In this case, we formulate this problem as the

exploitation-exploration dilemma in terms of the user correlations.

To solve this new challenge, GNB separately constructs two kinds of

user graphs, named “user exploitation graphs” and “user exploration

graphs”. Then, we apply two individual graph neural networks

(GNNs) on the user graphs, to incorporate the collaborative effects

in terms of both exploitation and exploration in the decision-making

process. Our main contributions are:

• [Problem Settings] Different from existing works formulating

the “coarse-grained” user correlations by neglecting the diver-

gence within user groups, we introduce a new problem setting

to model the “fine-grained” user collaborative effects via user

graphs. Here, pair-wise user correlations are preserved to con-

tribute differently to the decision-making process. (Section 3)

• [Proposed Framework] We propose a framework named GNB,

which has the novel ways to build two kinds of user graphs in

terms of exploitation and exploration respectively. Then, GNB uti-

lizes GNN-based models for a refined arm selection strategy by

leveraging the user correlations encoded in these two kinds of

user graphs for the arm selection. (Section 4)

• [Theoretical Analysis] With standard assumptions, we pro-

vide the theoretical analysis showing that GNB can achieve the

regret upper bound of complexity O(
√︁
𝑇 log(𝑇𝑛)), where 𝑇 is

the number of rounds and 𝑛 is the number of users. This bound

is sharper than the existing related works. (Section 5)

• [Experiments] Extensive experiments comparing GNB with

nine state-of-the-art algorithms are conducted on various data

sets with different specifications, which demonstrate the effec-

tiveness of our proposed GNB framework. (Section 6)

Due to the page limit, interested readers can refer to the arXiv

version of this paper for supplementary contents.

2 RELATED WORKS
Assuming the reward mapping function to be linear, the linear

upper confidence bound (UCB) algorithms [1, 3, 11, 21] were first

proposed to tackle the exploitation-exploration dilemma. After

kernel-based methods [12, 29] were used to tackle the kernel-based

reward mapping function under the non-linear settings, neural

algorithms [5, 40, 42] have been proposed to utilize neural networks

to estimate the reward function and confidence bound. Meanwhile,

AGG-UCB [25] adopts GNN to model the arm group correlations.

GCN-UCB [28] manages to apply the GNN model to embed arm

contexts for the downstream linear regression, and GNN-PE [20]

utilizes the UCB based on information gains to achieve exploration

for classification tasks on graphs. Instead of using UCB, EE-Net

[7] applies a neural network to estimate prediction uncertainty.

Nonetheless, all of these works fail to consider the collaboration

effects among users under the real-world application scenarios.

To model user correlations, [9, 34] assume the user social graph

is known, and apply an ensemble of linear estimators. Without the

prior knowledge of user correlations, CLUB [16] introduces the

user clustering problem with the graph-connected components,

and SCLUB [22] adopts dynamic user sets and set operations, while

DynUCB [24] assigns users to their nearest estimated clusters. Then,

CAB [15] studies the arm-specific user clustering, and LOCB [4] es-

timates soft-margin user groups with local clustering. COFIBA

[23] utilizes user and arm co-clustering for collaborative filter-

ing. Meta-Ban [6] applies a neural meta-model to adapt to esti-

mated user groups. However, all these algorithms consider rigid

user groups, where users from the same group are treated equally

with no internal differentiation. Alternatively, we leverage GNNs

[10, 14, 17, 27, 32, 33, 38, 39] to learn from the “fine-grained” user

correlations and arm contexts simultaneously.

3 GNB: PROBLEM DEFINITION
Suppose there are a total of𝑛 users with the user setU = {1, · · · , 𝑛}.
At each time step 𝑡 ∈ [𝑇 ], the learner will receive a target user

𝑢𝑡 ∈ U to serve, along with candidate arms X𝑡 = {𝒙𝑖,𝑡 }𝑖∈[𝑎] ,
|X𝑡 | = 𝑎. Each arm is described by a 𝑑-dimensional context vector

𝒙𝑖,𝑡 ∈ R𝑑 with ∥𝒙𝑖,𝑡 ∥2 = 1, and 𝒙𝑖,𝑡 ∈ X𝑡 is also associated with

a reward 𝑟𝑖,𝑡 . As the user correlation is one important factor in

determining the reward, we define the following reward function:

𝑟𝑖,𝑡 = ℎ(𝒙𝑖,𝑡 , 𝑢𝑡 ,G (1),∗
𝑖,𝑡

) + 𝜖𝑖,𝑡 (1)

whereℎ(·) is the unknown rewardmapping function, and 𝜖𝑖,𝑡 stands

for some zero-mean noise such that E[𝑟𝑖,𝑡 ] = ℎ(𝒙𝑖,𝑡 , 𝑢𝑡 ,G (1),∗
𝑖,𝑡

).
Here, we have G (1),∗

𝑖,𝑡
= (U, 𝐸,𝑊

(1),∗
𝑖,𝑡

) being the unknown user

graph induced by arm 𝒙𝑖,𝑡 , which encodes the “fine-grained” user

correlations in terms of the expected rewards. In graph G (1),∗
𝑖,𝑡

,

each user 𝑢 ∈ U will correspond to a node; meanwhile, 𝐸 =

{𝑒 (𝑢,𝑢′)}𝑢,𝑢′∈U refers to the set of edges, and the set𝑊
(1),∗
𝑖,𝑡

=

{𝑤 (1),∗
𝑖,𝑡

(𝑢,𝑢′)}𝑢,𝑢′∈U stores the weights for each edge from 𝐸. Note

that under real-world application scenarios, users sharing the same

preference for certain arms (e.g., sports news) may have distinct

tastes over other arms (e.g., political news). Thus, we allow each

arm 𝒙𝑖,𝑡 ∈ X𝑡 to induce different user collaborations G (1),∗
𝑖,𝑡

.

Then, motivated by various real applications (e.g., online recom-

mendation with normalized ratings), we consider 𝑟𝑖,𝑡 to be bounded

𝑟𝑖,𝑡 ∈ [0, 1], which is standard in existing works (e.g., [4, 6, 15, 16]).

Note that as long as 𝑟𝑖,𝑡 ∈ [0, 1], we do not impose the distribution

assumption (e.g., sub-Gaussian distribution) on noise term 𝜖𝑖,𝑡 .

[Reward Constraint] To bridge user collaborative effects with

user preferences (i.e., rewards), we consider the following constraint

for reward function in Eq. 1. The intuition is that for any two users

with comparable user correlations, they will incline to share similar

tastes for items. For arm 𝒙𝑖,𝑡 , we consider the difference of expected
rewards between any two users 𝑢,𝑢′ ∈ U to be governed by��E[𝑟𝑖,𝑡 |𝑢, 𝒙𝑖,𝑡 ] − E[𝑟𝑖,𝑡 |𝑢′, 𝒙𝑖,𝑡 ]�� ≤ Ψ

(
G (1),∗
𝑖,𝑡

[𝑢 :],G (1),∗
𝑖,𝑡

[𝑢′ :]
)
(2)

where G (1),∗
𝑖,𝑡

[𝑢 :] represents the normalized adjacency matrix row

of G (1),∗
𝑖,𝑡

that corresponds to user (node) 𝑢, and Ψ : R𝑛 × R𝑛 ↦→
R denotes an unknown mapping function. The reward function

definition (Eq. 1) and the constraint (Eq. 2) motivate us to design

the GNB framework, to be introduced in Section 4.
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Then, we proceed to give the formulation ofG (1),∗
𝑖,𝑡

= (U, 𝐸,𝑊
(1),∗
𝑖,𝑡

)
below. Given arm 𝒙𝑖,𝑡 ∈ X𝑡 , users with strong correlations tend to

have similar expected rewards, which will be reflected by𝑊
(1),∗
𝑖,𝑡

.

Definition 1 (User Correlation for Exploitation). In round
𝑡 , for any two users 𝑢,𝑢′ ∈ U, their exploitation correlation score
𝑤

(1),∗
𝑖,𝑡

(𝑢,𝑢′) w.r.t. a candidate arm 𝒙𝑖,𝑡 ∈ X𝑡 is defined as

𝑤
(1),∗
𝑖,𝑡

(𝑢,𝑢′) = Ψ(1) (E[𝑟𝑖,𝑡 |𝑢, 𝒙𝑖,𝑡 ], E[𝑟𝑖,𝑡 |𝑢′, 𝒙𝑖,𝑡 ])
where E[𝑟𝑖,𝑡 |𝑢, 𝒙𝑖,𝑡 ], 𝑖 ∈ [𝑎] is the expected reward in terms of the
user-arm pair (𝑢, 𝒙𝑖,𝑡 ). Given two users 𝑢,𝑢′ ∈ U, the function Ψ(1)

:

R × R ↦→ R maps from their expected rewards E[𝑟𝑖,𝑡 |𝑢, 𝒙𝑖,𝑡 ] to their
user exploitation score𝑤 (1),∗

𝑖,𝑡
(𝑢,𝑢′).

The edge weight𝑤
(1),∗
𝑖,𝑡

(𝑢,𝑢′) measures the correlation between

the two users’ preferences.When𝑤
(1),∗
𝑖,𝑡

(𝑢,𝑢′) is large,𝑢 and𝑢′ tend
to have the same taste; Otherwise, these two users’ preferences will

be different in expectation. In this paper, we consider the mapping

functions Ψ(1)
as the prior knowledge. For example, Ψ(1)

can be the

radial basis function (RBF) kernel or normalized absolute difference.

[Modeling with User Exploration Graph G (2),∗
𝑖,𝑡

] Unfortu-

nately, G (1),∗
𝑖,𝑡

is the unknown prior knowledge in our problem

setting. Thus, the learner has to estimate G (1),∗
𝑖,𝑡

by exploiting

the current knowledge, denoted by G (1)
𝑖,𝑡

= (U, 𝐸,𝑊
(1)
𝑖,𝑡

), where
𝑊

(1)
𝑖,𝑡

= {𝑤 (1)
𝑖,𝑡

(𝑢,𝑢′)}𝑢,𝑢′∈U is the estimation of𝑊
(1),∗
𝑖,𝑡

based on

the function class F = {𝑓 (1)𝑢 }𝑢∈U where 𝑓
(1)
𝑢 is the hypothesis

specified to user 𝑢. However, greedily exploiting G (1)
𝑖,𝑡

may lead

to the sub-optimal solution, or overlook some correlations that

may only be revealed in the future rounds. Thus, we propose to

construct another user exploration graph G (2),∗
𝑖,𝑡

for principled

exploration to measure the estimation gap G (1),∗
𝑖,𝑡

− G (1)
𝑖,𝑡

, which

refers to the uncertainty of the estimation of graph G (1)
𝑖,𝑡

.

For each arm 𝒙𝑖,𝑡 ∈ X𝑡 , we formulate the user exploration graph

G (2),∗
𝑖,𝑡

= (U, 𝐸,𝑊
(2),∗
𝑖,𝑡

), with the set of edge weights 𝑊
(2),∗
𝑖,𝑡

=

{𝑤 (2),∗
𝑖,𝑡

(𝑢,𝑢′)}∀𝑢,𝑢′∈U . Here, G (2),∗
𝑖,𝑡

models the uncertainty of es-

timation G (1)
𝑖,𝑡

in terms of the true exploitation graph G (1),∗
𝑖,𝑡

, and

G (2),∗
𝑖,𝑡

can be thought as the oracle exploration graph, i.e., "perfect

exploration". Then, with the aforementioned hypothesis 𝑓
(1)
𝑢 (𝒙𝑖,𝑡 )

for estimating the expected reward of arm 𝒙𝑖,𝑡 given𝑢, we introduce

the formulation of G (2),∗
𝑖,𝑡

as the user exploration correlation.

Definition 2 (User Correlation for Exploration). In round
𝑡 , given two users 𝑢,𝑢′ ∈ U and an arm 𝒙𝑖,𝑡 ∈ X𝑡 , their underlying
exploration correlation score is defined as

𝑤
(2),∗
𝑖,𝑡

(𝑢,𝑢′)

= Ψ(2)
(
E[𝑟𝑖,𝑡 |𝑢, 𝒙𝑖,𝑡 ] − 𝑓

(1)
𝑢 (𝒙𝑖,𝑡 ),E[𝑟𝑖,𝑡 |𝑢′, 𝒙𝑖,𝑡 ] − 𝑓𝑢′ (𝒙𝑖,𝑡 )

)
with E[𝑟𝑖,𝑡 |𝑢, 𝒙𝑖,𝑡 ]− 𝑓

(1)
𝑢 (𝒙𝑖,𝑡 ), 𝑖 ∈ [𝑎] being the potential gain of the

estimation 𝑓
(1)
𝑢 (𝒙𝑖,𝑡 ) for the user-arm pair (𝑢, 𝒙𝑖,𝑡 ). Here, 𝑓 (1)𝑢 (·) is

the reward estimation function specified to user𝑢, andΨ(2)
: R×R ↦→

R is the mapping from user potential gains E[𝑟𝑖,𝑡 |𝑢, 𝒙𝑖,𝑡 ] − 𝑓
(1)
𝑢 (𝒙𝑖,𝑡 )

to their exploration correlation score.

Here, 𝑤
(2),∗
𝑖,𝑡

(𝑢,𝑢′) is defined based on the potential gain of

𝑓
(1)
𝑢 (·), i.e., E[𝑟𝑖,𝑡 |𝑢, 𝒙𝑖,𝑡 ] − 𝑓

(1)
𝑢 (𝒙𝑖,𝑡 ), to measure the estimation

uncertainty. Note that our formulation is distinct from the formula-

tion in [7], where they only focus on the single-bandit setting with

no user collaborations, and all the users will be treated identically.

As we have discussed, 𝑤
(2),∗
𝑖,𝑡

(𝑢,𝑢′) measures the uncertainty

of estimation 𝑤
(1)
𝑖,𝑡

(𝑢,𝑢′). When 𝑤
(2),∗
𝑖,𝑡

(𝑢,𝑢′) is large, the uncer-
tainty of estimated exploitation correlation, i.e., 𝑤

(1)
𝑖,𝑡

(𝑢,𝑢′), will
also be large, and we should explore them more. Otherwise, we

have enough confidence towards 𝑤
(1)
𝑖,𝑡

(𝑢,𝑢′), and we can exploit

𝑤
(1)
𝑖,𝑡

(𝑢,𝑢′) in a secure way. Analogous to Ψ(1)
in Def. 1, we con-

sider the mapping function Ψ(2)
as the known prior knowledge.

[Learning Objective] With the received user 𝑢𝑡 in each round

𝑡 ∈ [𝑇 ], the learner is expected to recommend an arm 𝑥𝑡 ∈ X𝑡 (with

reward 𝑟𝑡 ) in order to minimize the cumulative pseudo-regret

𝑅(𝑇 ) = E[
𝑇∑︁
𝑡=1

(𝑟∗𝑡 − 𝑟𝑡 )] (3)

where we have 𝑟∗𝑡 being the reward for the optimal arm, such that

E[𝑟∗𝑡 |𝑢𝑡 ,X𝑡 ] = max𝒙𝑖,𝑡 ∈X𝑡
ℎ(𝒙𝑖,𝑡 , 𝑢𝑡 ,G (1),∗

𝑖,𝑡
).

[Comparing with Existing Problem Definitions] The prob-
lem definition of existing user clustering works (e.g., [4, 6, 15, 16,

22]) only formulates "coarse-grained" user correlations. In their set-

tings, for a user group N ⊆ U with the mapping function ℎN , all

the users in N are forced to share the same reward mapping given

an arm 𝒙𝑖,𝑡 , i.e., E[𝑟𝑖,𝑡 | 𝑢, 𝒙𝑖,𝑡 ] = ℎN (𝒙𝑖,𝑡 ),∀𝑢 ∈ N . In contrast,

our definition of the reward function enables us to model the pair-

wise “fine-grained” user correlations by introducing another two

important factors 𝑢 and G (1),∗
𝑖,𝑡

. With our formulation, each user

here is allowed to produce different rewards facing the same arm,

i.e., E[𝑟𝑖,𝑡 | 𝑢, 𝒙𝑖,𝑡 ] = ℎ(𝒙𝑖,𝑡 , 𝑢,G (1),∗
𝑖,𝑡

),∀𝑢 ∈ N . Here, with different

users𝑢, the corresponding expected reward ℎ(𝒙𝑖,𝑡 , 𝑢,G (1),∗
𝑖,𝑡

) can be

different. Therefore, our definition of the reward function is more

generic, and it can also readily generalize to existing user clustering

algorithms (with “coarse-grained” user correlations) by allowing

each single user group to form an isolated sub-graph in G (1),∗
𝑖,𝑡

with

no connections across different sub-graphs (i.e., user groups).

[Notation] Up to round 𝑡 , denoting T𝑢,𝑡 ⊆ [𝑡] as the collec-

tion of time steps at which user 𝑢 ∈ U has been served, we use

P𝑢,𝑡 = {(𝒙𝜏 , 𝑟𝜏 )}𝜏∈T𝑢,𝑡 to represent the collection of received arm-

reward pairs associated with user 𝑢, and 𝑇𝑢,𝑡 = |T𝑢,𝑡 | refers to the

corresponding number of rounds. Here, 𝒙𝜏 ∈ X𝜏 , 𝑟𝜏 ∈ [0, 1] sepa-
rately refer to the chosen arm and actual received reward in round

𝜏 ∈ [𝑡]. Similarly, we use P𝑡 = {(𝒙𝜏 , 𝑟𝜏 )}𝜏∈[𝑡 ] to denote all the past
records (i.e., arm-reward pairs), up to round 𝑡 . For a graph G, we let

𝑨 ∈ R𝑛×𝑛 be its adjacency matrix (with self-loops), and 𝑫 ∈ R𝑛×𝑛
refers to the corresponding degree matrix.

4 GNB: PROPOSED FRAMEWORK
The workflow of our proposed GNB framework (Figure 1) consists

of four major components: First, we derive the estimation for user
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Figure 1: Workflow of the proposed Graph Neural Bandits (GNB) framework.

exploitation graphs G (1),∗
𝑖,𝑡

, 𝑖 ∈ [𝑎] (denoted by G (1)
𝑖,𝑡

), and the ex-

ploration graphs G (2),∗
𝑖,𝑡

, 𝑖 ∈ [𝑎] (denoted by G (2)
𝑖,𝑡

), to model user

correlations in terms of exploitation and exploration respectively;

Second, to estimate the reward and the potential gain by leveraging

the "fine-grained" correlations, we propose the GNN-based models

𝑓
(1)
𝑔𝑛𝑛 (·), 𝑓

(2)
𝑔𝑛𝑛 (·) to aggregate the correlations of the target user-arm

pair on estimated graphs G (1)
𝑖,𝑡

and G (2)
𝑖,𝑡

, respectively; Third, we
select the arm 𝒙𝑡 , based on the estimated arm reward and potential

gain calculated by our GNN-based models; Finally, we train the

parameters of GNB using gradient descent (GD) on past records.

4.1 User Graph Estimation with User Networks
Based on the definition of unknown true user graphs G (1),∗

𝑖,𝑡
, G (2),∗

𝑖,𝑡

w.r.t. arm 𝒙𝑖,𝑡 ∈ X𝑡 (Definition 1 and 2), we proceed to derive their

estimations G (1)
𝑖,𝑡

, G (2)
𝑖,𝑡

, 𝑖 ∈ [𝑎] with individual user networks 𝑓
(1)
𝑢 ,

𝑓
(2)
𝑢 , 𝑢 ∈ U. Afterwards, with these two kinds of estimated user

graphs G (1)
𝑖,𝑡

and G (2)
𝑖,𝑡

, we will be able to apply our GNN-based

models to leverage the user correlations under the exploitation and

the exploration settings. The pseudo-code is presented in Alg. 1.
[User Exploitation Network 𝑓

(1)
𝑢 ] For each user 𝑢 ∈ U, we

use a neural network 𝑓
(1)
𝑢 (·) = 𝑓

(1)
𝑢 (·;𝚯(1)

𝑢 ) to learn user 𝑢’s pref-

erence for arm 𝒙𝑖,𝑡 , i.e., E[𝑟𝑖,𝑡 |𝑢, 𝒙𝑖,𝑡 ]. Following the Def. 1, we
construct the exploitation graph G (1)

𝑖,𝑡
by estimating the user ex-

ploitation correlation based on user preferences. Thus, in G (1)
𝑖,𝑡

, we

consider the edge weight of two user nodes 𝑢,𝑢′ as

𝑤
(1)
𝑖,𝑡

(𝑢,𝑢′) = Ψ(1) (𝑓 (1)𝑢 (𝒙𝑖,𝑡 ), 𝑓 (1)𝑢′ (𝒙𝑖,𝑡 )
)

(4)

where Ψ(1) (·, ·) is the mapping function applied in Def. 1 (line

16, Alg. 1). Here, 𝑓 (1)𝑢 (·) will be trained by GD with chosen arms

{𝒙𝜏 }𝜏∈T𝑢,𝑡 as samples, and received reward {𝑟𝜏 }𝜏∈T𝑢,𝑡 as the la-

bels, where L (1)
𝑢 (Θ(1)

𝑢 ) = ∑
𝜏∈T𝑢,𝑡

��𝑓 (1)𝑢 (𝒙𝜏 ;𝚯(1)
𝑢 ) − 𝑟𝜏

��2
will be the

corresponding quadratic loss. Recall that 𝒙𝜏 and 𝑟𝜏 stand for the

chosen arm and the received reward respectively in round 𝜏 .

[User Exploration Network 𝑓
(2)
𝑢 ] Given user 𝑢 ∈ U, to es-

timate the potential gain (i.e., the uncertainty for the reward es-

timation) E[𝑟 |𝑢, 𝒙𝑖,𝑡 ] − 𝑓
(1)
𝑢 (𝒙𝑖,𝑡 ) for arm 𝒙𝑖,𝑡 , we adopt the user

exploration network 𝑓
(2)
𝑢 (·) = 𝑓

(2)
𝑢 (·;𝚯(2)

𝑢 ) inspired by [7]. As it

has proved that the confidence interval (uncertainty) of reward

estimation can be expressed as a function of network gradients

[25, 42], we apply 𝑓
(2)
𝑢 (·) to directly learn the uncertainty with

the gradient of 𝑓
(1)
𝑢 (·). Thus, the input of 𝑓 (2)𝑢 (·) will be the net-

work gradient of 𝑓
(1)
𝑢 (·) given arm 𝒙𝑖,𝑡 , denoted as ∇𝑓 (1)𝑢 (𝒙𝑖,𝑡 ) =

∇
𝚯
𝑓
(1)
𝑢 (𝒙𝑖,𝑡 ; [𝚯(1)

𝑢 ]𝑡−1), where [𝚯(1)
𝑢 ]𝑡−1 refer to the parameters

of 𝑓
(1)
𝑢 in round 𝑡 (before training [line 11, Alg. 1]). Analogously,

given the estimated user exploration graphG (2)
𝑖,𝑡

and two user nodes

𝑢,𝑢′, we let the edge weight be

𝑤
(2)
𝑖,𝑡

(𝑢,𝑢′) = Ψ(2)
(
𝑓
(2)
𝑢

(
∇𝑓 (1)𝑢 (𝒙𝑖,𝑡 )), 𝑓 (2)𝑢′

(
∇𝑓 (1)

𝑢′ (𝒙𝑖,𝑡 )
) )

(5)

as in line 17, Alg. 1, and Ψ(2) (·, ·) is the mapping function that

has been applied in Def. 2. With GD, 𝑓
(2)
𝑢 (·) will be trained with

the past gradients of 𝑓
(1)
𝑢 , i.e., {∇𝑓 (1)𝑢 (𝒙𝜏 )}𝜏∈T𝑢,𝑡 as samples; and

the potential gain (uncertainty) {𝑟𝜏 − 𝑓
(1)
𝑢 (𝒙𝜏 ; [𝚯(1)

𝑢 ]𝜏−1)}𝜏∈T𝑢,𝑡
as labels. The quadratic loss is defined as L (2)

𝑢 (Θ(2)
𝑢 ) =∑

𝜏∈T𝑢,𝑡
��𝑓 (2)𝑢 (∇𝑓 (1)𝑢 (𝒙𝜏 );𝚯(2)

𝑢 ) −
(
𝑟𝜏 − 𝑓

(1)
𝑢 (𝒙𝜏 ; [𝚯(1)

𝑢 ]𝜏−1)
) ��2 .

[Network Architecture] Here, we can apply various architec-

tures for 𝑓
(1)
𝑢 (·), 𝑓 (2)𝑢 (·) to deal with different application scenarios

(e.g., Convolutional Neural Networks [CNNs] for visual content rec-

ommendation tasks). For the theoretical analysis and experiments,

with user 𝑢 ∈ U, we apply separate 𝐿-layer (𝐿 ≥ 2) fully-connected

(FC) networks as the user exploitation and exploration network

𝑓𝑢 (𝝌 ;𝚯𝑢 ) = 𝚯𝐿𝜎 (𝚯𝐿−1𝜎 (𝚯𝐿−2 . . . 𝜎 (𝚯1𝝌 ))), 𝜎 := ReLU(·) (6)

with 𝚯𝑢 = [vec(𝚯1)⊺, . . . , vec(𝚯𝐿)⊺]⊺ being the vector of train-

able parameters. Here, since 𝑓
(1)
𝑢 (·), 𝑓 (2)𝑢 (·) are both the 𝐿-layer

FC network (Eq. 6), the input 𝝌 can be substituted with either the

arm context 𝒙𝑖,𝑡 or the network gradient ∇𝑓 (1)𝑢 (𝒙𝑖,𝑡 ) accordingly.
[Parameter Initialization] The weight matrices of the first

layer are slightly different for two kinds of user networks, as𝚯
(1)
1

∈
R𝑚×𝑑

, 𝚯
(2)
1

∈ R𝑚×𝑝 (1)
𝑢 where 𝑝

(1)
𝑢 is the dimensionality of 𝚯

(1)
𝑢 .

The weight matrix shape for the rest of the 𝐿 − 1 layers will be

the same for these two kinds of user networks, which are 𝚯𝑙 ∈
R𝑚×𝑚, 𝑙 ∈ [2, · · · , 𝐿 − 1], and 𝚯𝐿 ∈ R1×𝑚 . To initialize 𝑓

(1)
𝑢 , 𝑓

(2)
𝑢 ,

the weight matrix entries for their first 𝐿 − 1 layers {𝚯1, . . .𝚯𝐿−1}
are drawn from the Gaussian distribution𝑁 (0, 2/𝑚), and the entries
of the last layer weight matrix 𝚯𝐿 are sampled from 𝑁 (0, 1/𝑚).
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ALGORITHM 1: Graph Neural Bandits (GNB)

1 Input: Number of rounds 𝑇 , network width𝑚, information

propagation hops 𝑘 . Functions for edge weight estimation

Ψ(1) (·, ·),Ψ(2) (·, ·) : R × R ↦→ R.
2 Output: Arm recommendation 𝒙𝑡 for each time step 𝑡 .

3 Initialization: Initialize trainable parameters for all models.

4 for 𝑡 ∈ {1, 2, . . . ,𝑇 } do
5 Receive a user 𝑢𝑡 and a set of arm contexts

X𝑡 = {𝒙𝑖,𝑡 }𝑖∈[𝑎] .
6 for each candidate arm 𝒙𝑖,𝑡 ∈ X𝑡 do
7 Construct two kinds of user graphs G (1)

𝑖,𝑡
, G (2)

𝑖,𝑡
=

Procedure Estimating Arm-Specific User Graphs
(𝒙𝑖,𝑡 ). [line 13-20]

8 Compute reward estimation [Eq. 10]
𝑟𝑖,𝑡 = 𝑓

(1)
𝑔𝑛𝑛 (𝒙𝑖,𝑡 , G

(1)
𝑖,𝑡

; [𝚯(1)
𝑔𝑛𝑛]𝑡−1), and the

potential gain [Eq. 11]
ˆ𝑏𝑖,𝑡 = 𝑓

(2)
𝑔𝑛𝑛 (∇[𝑓

(1)
𝑔𝑛𝑛 ]𝑖,𝑡 , G

(2)
𝑖,𝑡

; [𝚯(2)
𝑔𝑛𝑛]𝑡−1).

9 end
10 Play arm 𝒙𝑡 = argmax𝒙𝑖,𝑡 ∈X𝑡

(
𝑟𝑖,𝑡 + ˆ𝑏𝑖,𝑡

)
, and observe

its true reward 𝑟𝑡 .

11 Train the user networks 𝑓
(1)
𝑢𝑡 (·;𝚯(1)

𝑢𝑡 ), 𝑓 (2)𝑢𝑡 (·;𝚯(2)
𝑢𝑡 ) and

GNN models 𝑓
(1)
𝑔𝑛𝑛 (·;𝚯

(1)
𝑔𝑛𝑛), 𝑓

(2)
𝑔𝑛𝑛 (·;𝚯

(2)
𝑔𝑛𝑛) with GD.

12 end
13 Procedure Estimating Arm-Specific User Graphs (𝒙𝑖,𝑡 )
14 Initialize arm graphs G (1)

𝑖,𝑡
, G (2)

𝑖,𝑡
.

15 for each user pair (𝑢,𝑢′) ∈ U ×U do
16 For edge weight𝑤

(1)
𝑖,𝑡

(𝑢,𝑢′) ∈𝑊 (1)
𝑖,𝑡

, update

𝑤
(1)
𝑖,𝑡

(𝑢,𝑢′) = Ψ(1) (𝑓 (1)𝑢 (𝒙𝑖,𝑡 ), 𝑓 (1)𝑢′ (𝒙𝑖,𝑡 )
)
. [Eq. 4]

17 For edge weight𝑤
(2)
𝑖,𝑡

(𝑢,𝑢′) ∈𝑊 (2)
𝑖,𝑡

, based on the

[Eq. 5], update𝑤 (2)
𝑖,𝑡

(𝑢,𝑢′) =
Ψ(2) (𝑓 (2)𝑢

(
∇𝑓 (1)𝑢 (𝒙𝑖,𝑡 )), 𝑓 (2)𝑢′

(
∇𝑓 (1)

𝑢′ (𝒙𝑖,𝑡 )
) )
.

18 end
19 Return user graphs G (1)

𝑖,𝑡
, G (2)

𝑖,𝑡
.

20 end

4.2 Achieving Exploitation and Exploration
with GNN Models on Estimated User Graphs

With derived user exploitation graphsG (1)
𝑖,𝑡

, and exploitation graphs

G (2)
𝑖,𝑡

, 𝑖 ∈ [𝑎], we apply two GNN models to separately estimate the

arm reward and potential gain for a refined arm selection strategy,

by utilizing the past interaction records with all the users.

4.2.1 The Exploitation GNN 𝑓
(1)
𝑔𝑛𝑛 (·). In round 𝑡 , with the estimated

user exploitation graph G (1)
𝑖,𝑡

for arm 𝒙𝑖,𝑡 ∈ X𝑡 , we apply the ex-

ploitation GNN model 𝑓
(1)
𝑔𝑛𝑛 (𝒙𝑖,𝑡 ,G

(1)
𝑖,𝑡

;Θ
(1)
𝑔𝑛𝑛) to collaboratively es-

timate the arm reward 𝑟̂𝑖,𝑡 for the received user 𝑢𝑡 ∈ U. We start

from learning the aggregated representation for 𝑘 hops, as

𝑯𝑎𝑔𝑔 = 𝜎
(
(𝑺 (1)

𝑖,𝑡
)𝑘 · (𝑿𝑖,𝑡𝚯

(1)
𝑎𝑔𝑔)

)
∈ R𝑛×𝑚 (7)

where 𝑺 (1)
𝑖,𝑡

= (𝑫 (1)
𝑖,𝑡

)−
1

2𝑨(1)
𝑖,𝑡

(𝑫 (1)
𝑖,𝑡

)−
1

2 is the symmetrically normal-

ized adjacency matrix of G (1)
𝑖,𝑡

, and 𝜎 represents the ReLU activation

function. With𝑚 being the network width, we have𝚯
(1)
𝑎𝑔𝑔 ∈ R𝑛𝑑×𝑚

as the trainable weight matrix. After propagating the information

for 𝑘 hops over the user graph, each row of 𝑯𝑎𝑔𝑔 corresponds to the

aggregated𝑚-dimensional hidden representation for one specific

user-arm pair (𝑢, 𝒙𝑖,𝑡 ), 𝑢 ∈ U. Here, the propagation of multi-hop

information can provide a global perspective over the users, since

it also involves the neighborhood information of users’ neighbors

[33, 41]. To achieve this, we have the embedding matrix 𝑿𝑖,𝑡 (in Eq.
7) for arm 𝒙𝑖,𝑡 ∈ X𝑡 , 𝑖 ∈ [𝑎] being

𝑿𝑖,𝑡 =

©­­­­­«
𝒙
⊺
𝑖,𝑡

0 · · · 0
0 𝒙

⊺
𝑖,𝑡

· · · 0
.
.
.

. . .
.
.
.

0 0 · · · 𝒙
⊺
𝑖,𝑡

ª®®®®®¬
∈ R𝑛×𝑛𝑑 (8)

which partitions the weight matrix 𝚯
(1)
𝑔𝑛𝑛 for different users. In this

way, it is designed to generate individual representations w.r.t. each

user-arm pair (𝑢, 𝒙𝑖,𝑡 ), 𝑢 ∈ U before the 𝑘-hop propagation (i.e.,

multiplying with (𝑺 (1)
𝑖,𝑡

)𝑘 ), which correspond to the rows of the

matrix multiplication (𝑿𝑖,𝑡𝚯
(1)
𝑎𝑔𝑔) ∈ R𝑛×𝑚 .

Afterwards, with 𝑯 0 = 𝑯𝑎𝑔𝑔 , we feed the aggregated represen-

tations into the 𝐿-layer (𝐿 ≥ 2) FC network, represented by

𝑯 𝑙 = 𝜎 (𝑯 𝑙−1 · 𝚯
(1)
𝑙

) ∈ R𝑛×𝑚, 𝑙 ∈ [𝐿 − 1],

𝒓̂𝑎𝑙𝑙 (𝒙𝑖,𝑡 ) = 𝑯𝐿−1 · 𝚯(1)
𝐿

∈ R𝑛
(9)

where 𝒓̂𝑎𝑙𝑙 (𝒙𝑖,𝑡 ) ∈ R𝑛 represents the reward estimation for all the

users in U, given the arm 𝒙𝑖,𝑡 . Given the target user 𝑢𝑡 in round 𝑡 ,

the reward estimation for the user-arm pair (𝑢𝑡 , 𝒙𝑖,𝑡 ) would be the

corresponding element in 𝒓̂𝑎𝑙𝑙 (line 8, Alg. 1), represented by:

𝑟̂𝑖,𝑡 = 𝑓
(1)
𝑔𝑛𝑛 (𝒙𝑖,𝑡 , G

(1)
𝑖,𝑡

; [𝚯(1)
𝑔𝑛𝑛]𝑡−1) = [̂𝒓𝑎𝑙𝑙 (𝒙𝑖,𝑡 )]𝑢𝑡 (10)

where 𝚯
(1)
𝑔𝑛𝑛 = [vec(𝚯(1)

𝑎𝑔𝑔)⊺, vec(𝚯
(1)
1

)⊺, . . . , vec(𝚯(1)
𝐿

)⊺]⊺ ∈ R𝑝
represent the trainable parameters of the exploitation GNN model,

and we have [𝚯(1)
𝑔𝑛𝑛]𝑡−1 being the parameters 𝚯

(1)
𝑔𝑛𝑛 in round 𝑡

(before training [line 11, Alg. 1]). Here, the weight matrix shapes

are 𝚯
(1)
𝑙

∈ R𝑚×𝑚, 𝑙 ∈ [1, · · · , 𝐿 − 1], and the 𝐿-th layer 𝚯
(1)
𝐿

∈ R𝑚 .

[Training 𝑓
(1)
𝑔𝑛𝑛 with GD] The exploitation GNN 𝑓

(1)
𝑔𝑛𝑛 (·) will

be trained with GD based on the received records P𝑡 . Then, we

apply the quadratic loss function based on reward predictions

{𝑓 (1)𝑔𝑛𝑛 (𝒙𝜏 , G
(1)
𝜏 ;𝚯

(1)
𝑔𝑛𝑛)}𝜏∈[𝑡 ] of chosen arms {𝒙𝜏 }𝜏∈[𝑡 ] , the actual

received rewards {𝑟𝜏 }𝜏∈[𝑡 ] , and the user exploitation graph G (1)
𝜏

for chosen arms 𝒙𝜏 , 𝜏 ∈ [𝑡]. The corresponding quadratic loss will

be L (1)
𝑔𝑛𝑛 (Θ

(1)
𝑔𝑛𝑛) =

∑
𝜏∈[𝑡 ]

��𝑓 (1)𝑔𝑛𝑛 (𝒙𝜏 ,G
(1)
𝜏 ;𝚯

(1)
𝑔𝑛𝑛) − 𝑟𝜏

��2 .
[Connection with the Reward Function Definition (Eq. 1)

and Constraint (Eq. 2)] The existing works (e.g.,[2]) show that

the FC network is naturally Lipschitz continuous with respect to

the input when width𝑚 is sufficiently large. Thus, for GNB, with

aggregated hidden representations 𝑯𝑎𝑔𝑔 being the input to the FC

network (Eq. 9), we will have the difference of reward estimations

𝑟̂𝑖,𝑡 bounded by the distance of rows in matrix 𝑯𝑎𝑔𝑔 (i.e., aggregated

hidden representations). Here, given 𝒙𝑖,𝑡 ∈ X𝑡 and users𝑢1, 𝑢2 ∈ U,
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their estimated reward difference | [̂𝒓𝑎𝑙𝑙 (𝒙𝑖,𝑡 )]𝑢1
− [̂𝒓𝑎𝑙𝑙 (𝒙𝑖,𝑡 )]𝑢2

|
can be bounded by the distance of the corresponding rows in 𝑺𝑖,𝑡
(i.e., ∥𝑺 (1)

𝑖,𝑡
[𝑢1 :] − 𝑺 (1)

𝑖,𝑡
[𝑢2 :] ∥) given the exploitation GNN model.

This design matches our definition and the constraint in Eq. 1-2.

4.2.2 The Exploration GNN 𝑓
(2)
𝑔𝑛𝑛 (·). Given a candidate arm 𝒙𝑖,𝑡 ∈

X𝑡 , to achieve adaptive exploration with the user exploration col-

laborations encoded in G (2)
𝑖,𝑡

, we apply a second GNNmodel 𝑓
(2)
𝑔𝑛𝑛 (·)

to evaluate the potential gain 𝑏𝑖,𝑡 for the reward estimation 𝑟̂𝑖,𝑡 =

𝑓
(1)
𝑔𝑛𝑛 (𝒙𝑖,𝑡 , G

(1)
𝑖,𝑡

; [𝚯(1)
𝑔𝑛𝑛]𝑡−1) [Eq. 10], denoted by

𝑏𝑖,𝑡 = 𝑓
(2)
𝑔𝑛𝑛 (∇[𝑓

(1)
𝑔𝑛𝑛 ]𝑖,𝑡 ,G

(2)
𝑖,𝑡

; [𝚯(2)
𝑔𝑛𝑛]𝑡−1) = [𝒃̂𝑎𝑙𝑙 (𝒙𝑖,𝑡 )]𝑢𝑡 . (11)

The architecture of 𝑓
(2)
𝑔𝑛𝑛 (·) can also be represented by Eq. 7-10.

While 𝑓
(1)
𝑔𝑛𝑛 (·), 𝑓

(2)
𝑔𝑛𝑛 (·) have the same network width𝑚 and number

of layers 𝐿, the dimensionality of 𝚯
(1)
𝑎𝑔𝑔 ∈ R𝑛𝑑×𝑚,𝚯

(2)
𝑎𝑔𝑔 ∈ R𝑛𝑝×𝑚

is different. Analogously, 𝒃̂𝑎𝑙𝑙 (𝒙𝑖,𝑡 ) ∈ R𝑛 is the potential gain es-

timation for all the users in U, w.r.t. arm 𝒙𝑖,𝑡 and the exploita-

tion GNN 𝑓
(1)
𝑔𝑛𝑛 (·). Here, the inputs are user exploration graph

G (2)
𝑖,𝑡

, and the gradient of the exploitation GNN, represented by

∇[𝑓 (1)𝑔𝑛𝑛 ]𝑖,𝑡 = ∇
𝚯

(1)
𝑔𝑛𝑛

𝑓
(1)
𝑔𝑛𝑛 (𝒙𝑖,𝑡 ,G

(1)
𝑖,𝑡

; [𝚯(1)
𝑔𝑛𝑛]𝑡−1). The exploration

GNN 𝑓
(2)
𝑔𝑛𝑛 (·) leverages the user exploration graph G (2)

𝑖,𝑡
and the gra-

dients of 𝑓
(1)
𝑔𝑛𝑛 (·) to estimate the uncertainty of reward estimations,

which stands for our adaptive exploration strategy (downward or

upward exploration). More discussions are in Appendix Section B.

[Training 𝑓
(2)
𝑔𝑛𝑛 with GD] Similar to 𝑓

(1)
𝑔𝑛𝑛 , we train 𝑓

(2)
𝑔𝑛𝑛 with GD

byminimizing the quadratic loss, denoted byL (2)
𝑔𝑛𝑛 (Θ

(2)
𝑔𝑛𝑛) =

∑
𝜏∈[𝑡 ]��𝑓 (2)𝑔𝑛𝑛 (∇[𝑓

(1)
𝑔𝑛𝑛 ]𝜏 ,G

(2)
𝜏 ;𝚯

(2)
𝑔𝑛𝑛) −

(
𝑟𝜏 − 𝑓

(1)
𝑔𝑛𝑛 (𝒙𝜏 ,G

(1)
𝜏 ; [𝚯(1)

𝑔𝑛𝑛]𝜏−1)
) ��2 .

This is defined to measure the difference between the estimated

potential gains {𝑓 (2)𝑔𝑛𝑛 (∇[𝑓
(1)
𝑔𝑛𝑛 ]𝜏 ,G

(2)
𝜏 ;𝚯

(2)
𝑔𝑛𝑛)}𝜏∈[𝑡 ] , and the corre-

sponding labels {𝑟𝜏 − 𝑓
(1)
𝑔𝑛𝑛 (𝒙𝜏 , G

(1)
𝜏 ; [𝚯(1)

𝑔𝑛𝑛]𝜏−1)}𝜏∈[𝑡 ] .

Remark 4.1 (Reducing Input Complexity). The input of 𝑓
(2)
𝑔𝑛𝑛 (·)

is the gradient ∇
𝚯
𝑓
(1)
𝑔𝑛𝑛 (𝒙) given the arm 𝒙 , and its dimensionality

is naturally 𝑝 = (𝑛𝑑 × 𝑚) + (𝐿 − 1) × 𝑚2 + 𝑚, which can be a

large number. Inspired by CNNs, e.g., [26], we apply the average
pooling to approximate the original gradient vector in practice. In

this way, we can save the running time and reduce space complexity

simultaneously. Note this approach is also compatible with user

networks in Subsection 4.1. To prove its effectiveness, we will apply

this approach on GNB for all the experiments in Section 6.

Remark 4.2 (Working with Large Systems). When facing a large

number of users, we can apply the “approximated user neighbor-

hood” to reduce the running time in practice. Given user graphs

G (1)
𝑖,𝑡

,G (2)
𝑖,𝑡

in terms of arm 𝒙𝑖,𝑡 , we derive approximated user neigh-

borhoods Ñ (1) (𝑢𝑡 ), Ñ (2) (𝑢𝑡 ) ⊂ U for the target user𝑢𝑡 , with size

|Ñ (1) (𝑢𝑡 ) | = |Ñ (2) (𝑢𝑡 ) | = 𝑛, where 𝑛 << 𝑛. For instance, we can

choose 𝑛 “representative users” (e.g., users posting high-quality re-

views on e-commerce platforms) to form Ñ (1) (𝑢𝑡 ), Ñ (2) (𝑢𝑡 ), and
apply the corresponding approximated user sub-graphs for down-

stream GNN models to reduce the computation cost and space cost

in practice. Related experiments are provided in Subsection 6.3.

[Parameter Initialization] For the parameters of both GNN

models (i.e., 𝚯
(1)
𝑔𝑛𝑛 and 𝚯

(2)
𝑔𝑛𝑛), the matrix entries of the aggregation

weight matrix 𝚯𝑎𝑔𝑔 and the first 𝐿 − 1 FC layers {𝚯1, . . . ,𝚯𝐿−1}
are drawn from the Gaussian distribution 𝑁 (0, 2/𝑚). Then, for the
last layer weight matrix 𝚯𝐿 , we draw its entries from 𝑁 (0, 1/𝑚).

4.2.3 Arm Selection Mechanism and Model Training. In round 𝑡 ,

with the current parameters [Θ(1)
𝑔𝑛𝑛]𝑡−1, [Θ

(2)
𝑔𝑛𝑛]𝑡−1 for GNNmodels

before model training, the selected arm is chosen as

𝒙𝑡 = arg max

𝒙𝑖,𝑡 ∈X𝑡

[
𝑓
(1)
𝑔𝑛𝑛 (𝒙𝑖,𝑡 , G

(1)
𝑖,𝑡

; [Θ(1)
𝑔𝑛𝑛]𝑡−1)

+ 𝑓
(2)
𝑔𝑛𝑛 (∇Θ(1)

𝑔𝑛𝑛
𝑓
(1)
𝑔𝑛𝑛 (𝒙𝑖,𝑡 , G

(1)
𝑖,𝑡

; [Θ(1)
𝑔𝑛𝑛]𝑡−1), G

(2)
𝑖,𝑡

; [Θ(2)
𝑔𝑛𝑛]𝑡−1)

]
based on the estimated reward and potential gain (line 10, Alg. 1).
After receiving reward 𝑟𝑡 , we update user networks 𝑓

(1)
𝑢𝑡 , 𝑓

(2)
𝑢𝑡 of

user 𝑢𝑡 , and GNN models based on GD (line 11, Alg. 1).

5 THEORETICAL ANALYSIS
In this section, we present the theoretical analysis for the proposed

GNB. Here, we consider each user 𝑢 ∈ U to be evenly served 𝑇 /𝑛
rounds up to time step𝑇 , i.e., |T𝑢,𝑡 | = 𝑇𝑢,𝑡 = 𝑇 /𝑛, which is standard

in closely related works (e.g., [4, 16]). To ensure the neural models

are able to efficiently learn the underlying reward mapping, we

have the following assumption regarding the arm separateness.

Assumption 5.1 (𝜌-Separateness of Arms). After a total of 𝑇
rounds, for every pair 𝒙𝑖,𝑡 , 𝒙𝑖′,𝑡 ′ with 𝑡, 𝑡 ′ ∈ [𝑇 ] and 𝑖, 𝑖′ ∈ [𝑎], if
(𝑡, 𝑖) ≠ (𝑡 ′, 𝑖′), we have ∥𝒙𝑖,𝑡 − 𝒙𝑖′,𝑡 ′ ∥2 ≥ 𝜌 where 0 < 𝜌 ≤ O( 1

𝐿
).

Note that the above assumption is mild, and it has been com-

monly applied in existing works on neural bandits [7] and over-

parameterized neural networks [2]. Since 𝐿 can be manually set

(e.g., 𝐿 = 2), we can easily satisfy the condition 0 < 𝜌 ≤ O( 1
𝐿
) as

long as no two arms are identical. Meanwhile, Assumption 4.2 in

[42] and Assumption 3.4 from [40] also imply that no two arms

are the same, and they measure the arm separateness in terms

of the minimum eigenvalue 𝜆0 (with 𝜆0 > 0) of the Neural Tan-

gent Kernel (NTK) [19] matrix, which is comparable with our Eu-

clidean separateness 𝜌 . Based on Def. 1 and Def. 2, given an arm

𝒙𝑖,𝑡 ∈ X𝑡 , we denote the adjacency matrices as 𝑨(1),∗
𝑖,𝑡

and 𝑨(2),∗
𝑖,𝑡

for the true arm graphs G (1),∗
𝑖,𝑡

, G (2),∗
𝑖,𝑡

. For the sake of analysis,

given any adjacency matrix 𝑨, we derive the normalized adjacency

matrix 𝑺 by scaling the elements of 𝑨 with 1/𝑛. We also set the

propagation parameter 𝑘 = 1, and define the mapping functions

Ψ(1) (𝑎, 𝑏),Ψ(2) (𝑎, 𝑏) := exp(−∥𝑎 − 𝑏∥) given the inputs 𝑎, 𝑏. Note

that our results can be readily generalized to other mapping func-

tions with the Lipschitz-continuity properties.

Next, we proceed to show the regret bound 𝑅(𝑇 ) after 𝑇 time

steps [Eq. 3]. Here, the following Theorem 5.2 covers two types

of error: (1) the estimation error of user graphs; and (2) the ap-

proximation error of neural models. Let 𝜂1, 𝐽1 be the learning rate

and GD training iterations for user networks, and 𝜂2, 𝐽2 denote the

learning rate and iterations for GNN models. The proof sketch of

Theorem 5.2 is presented in Appendix Section C.

Theorem 5.2 (Regret Bound). Define 𝛿 ∈ (0, 1), 0 < 𝜉1, 𝜉2 ≤
O(1/𝑇 ) and 0 < 𝜌 ≤ O(1/𝐿), 𝑐𝜉 > 0, 𝜉𝐿 = (𝑐𝜉 )𝐿 . With the user
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networks defined in Eq. 6 and the GNN models defined in Eq. 7−9
with 𝐿 FC-layers, let 𝑚 ≥ Ω

(
Poly(𝑇, 𝐿, 𝑎, 1𝜌 ) · 𝜉𝐿 log(1/𝛿)

)
, 𝑛 ≥

Ω̃
(
Poly(𝐿)

)
. Set the learning rates and GD iterations

𝜂1 = Θ
( 𝜌

𝑚 · Poly(𝑇, 𝑛, 𝑎, 𝐿)
)
, 𝜂2 = Θ

( 𝜌

𝑚 · Poly(𝑇, 𝑎, 𝐿)
)
,

𝐽1 = Θ
( Poly(𝑇, 𝑛, 𝑎, 𝐿)

𝜌 · 𝛿2
· log( 1

𝜉1
)
)
, 𝐽2 = Θ

( Poly(𝑇, 𝑎, 𝐿)
𝜌 · 𝛿2

· log( 1
𝜉2

)
)
.

Then, following Algorithm 1, with probability at least 1 − 𝛿 , the
𝑇 -round pseudo-regret 𝑅(𝑇 ) of GNB can be bounded by

𝑅(𝑇 ) ≤
√
𝑇 ·

(
O(𝐿𝜉𝐿) ·

√︂
2 log(𝑇𝑛 · 𝑎

𝛿
)
)
+
√
𝑇 · O(𝐿) + O(𝜉𝐿) + O(1) .

Recall that 𝐿 is generally a small integer (e.g., we set 𝐿 = 2 for

experiments in Section 6), which makes the condition on number

of users reasonable as 𝑛 is usually a gigantic number in real-world

recommender systems.We also have𝑚 to be sufficiently large under

the over-parameterization regime, which makes the regret bound

hold. Here, we have the following remarks.

Remark 5.3 (Dimension terms 𝑑, ˜𝑑). Existing neural single-bandit

(i.e., with no user collaborations) algorithms [25, 40, 42] keep the

bound of O( ˜𝑑
√
𝑇 log(𝑇 )) based on gradient mappings and ridge

regression.
˜𝑑 is the effective dimension of the NTK matrix, which

can grow along with the number of parameters 𝑝 and rounds𝑇 . The

linear user clustering algorithms (e.g., [4, 15, 22]) have the bound

O(𝑑
√
𝑇 log(𝑇 )) with context dimension 𝑑 , which can be large with

a high-dimensional context space. Alternatively, the regret bound in

Theorem 5.2 is free of terms𝑑 and
˜𝑑 , as we apply the generalization

bounds of over-parameterized networks instead [2, 8], which are

unrelated to dimension terms 𝑑 or
˜𝑑 .

Remark 5.4 (From

√
𝑛 to

√︁
log(𝑛)). With 𝑛 being the number of

users, existing user clustering works (e.g., [4, 6, 16, 22]) involve a

√
𝑛

factor in the regret bound as the cost of leveraging user collaborative

effects. Instead of applying separate estimators for each user group,

our proposed GNB only ends up with a

√︁
log(𝑛) term to incorporate

user collaborations by utilizing dual GNN models for estimating

the arm rewards and potential gains correspondingly.

Remark 5.5 (Arm i.i.d. Assumption). Existing clustering of bandits
algorithms (e.g., [6, 15, 16, 22]) and the single-bandit algorithm EE-

Net [7] typically require the arm i.i.d. assumption for the theoretical

analysis, which can be strong since the candidate arm pool X𝑡 , 𝑡 ∈
[𝑇 ] is usually conditioned on the past records. Here, instead of

using the regression-based analysis as in existing works, our proof

of Theorem 5.2 applies the martingale-based analysis instead to

help alleviate this concern.

6 EXPERIMENTS
In this section, we evaluate the proposed GNB framework on multi-

ple real data sets against nine state-of-the-art algorithms, including

the linear user clustering algorithms: (1) CLUB [16], (2) SCLUB
[22], (3) LOCB [4], (4) DynUCB [24], (5) COFIBA [23]; the neu-

ral single-bandit algorithms: (6) Neural-Pool adopts one single
Neural-UCB [42] model for all the users with the UCB-type ex-

ploration strategy; (7) Neural-Ind assigns each user with their

own separate Neural-UCB [42] model; (8) EE-Net [7]; and, the
neural user clustering algorithm: (9)Meta-Ban [6]. We leave the

implementation details and data set URLs to Appendix Section A.

6.1 Real Data Sets
In this section, we compare the proposed GNB with baselines on

six data sets with different specifications.

[Recommendation Data Sets] “MovieLens rating dataset” in-

cludes reviews from 1.6 × 10
5
users towards 6 × 10

4
movies. Here,

we select 10 genome-scores with the highest variance across movies

to generate the movie features 𝒗𝑖 ∈ R𝑑 , 𝑑 = 10. The user features

𝒗𝑢 ∈ R𝑑 , 𝑢 ∈ U are obtained through singular value decomposition

(SVD) on the rating matrix. We use K-means to divide users into

𝑛 = 50 groups based on 𝒗𝑢 , and consider each group as a node in

user graphs. In each round 𝑡 , a user 𝑢𝑡 will be drawn from a ran-

domly sampled group. For the candidate poolX𝑡 with |X𝑡 | = 𝑎 = 10

arms, we choose one bad movie (≤ two stars, out of five) rated

by 𝑢𝑡 with reward 1, and randomly pick the other 9 good movies

with reward 0. The target here is to help users avoid bad movies.

For “Yelp” data set, we build the rating matrix w.r.t. the top 2, 000

users and top 10, 000 arms with the most reviews. Then, we use

SVD to extract the 10-dimensional representation for each user and

restaurant. For an arm, if the user’s rating ≥ three stars (out of five

stars), the reward is set to 1; otherwise, the reward is 0. Similarly,

we apply K-means to obtain 𝑛 = 50 groups based on user features.

In round 𝑡 , a target 𝑢𝑡 , is sampled from a randomly selected group.

For X𝑡 , we choose one good restaurant rated by 𝑢𝑡 with reward 1,

and randomly pick the other 9 bad restaurants with reward 0.

[Classification Data Sets] We also perform experiments on

four real classification data sets under the recommendation settings,

which are “MNIST” (with the number of classes C = 10), “Shut-

tle” (C = 7), the “Letter” (C = 26), and the “Pendigits” (C = 10)

data sets. Each class will correspond to one node in user graphs.

Similar to previous works [6, 42], given a sample 𝒙 ∈ R𝑑 , we trans-
form it into C different arms, denoted by 𝒙1 = (𝒙, 0, . . . , 0), 𝒙2 =

(0, 𝒙, . . . , 0), . . . , 𝒙C = (0, 0, . . . , 𝒙) ∈ R𝑑+C−1 where we add C − 1

zero digits as the padding. The received reward 𝑟𝑡 = 1 if we select

the arm of the correct class, otherwise 𝑟𝑡 = 0.

6.1.1 Experiment Results. Figure 2 illustrates the cumulative regret

results on the six data sets, and the red shade represents the stan-

dard deviation of GNB. Here, our proposed GNBmanages to achieve

the best performance against all these strong baselines. Since the

MovieLens data set involves real arm features (i.e., genome-scores),

the performance of different algorithms on the MovieLens data

set tends to have larger divergence. Note that due to the inherent

noise within these two recommendation data sets, we can observe

the “linear-like” regret curves, which are common as in existing

works (e.g., [6]). In this case, to show the model convergence, we

will present the convergence results for the recommendation data

sets in Appendix Subsec. A.3. Among the baselines, the neural al-

gorithms (Neural-Pool, EE-Net, Meta-Ban) generally perform better

than linear algorithms due to the representation power of neural

networks. However, as Neural-Ind considers no correlations among

users, it tends to perform the worst among all baselines on these

two data sets. For classification data sets, Meta-Ban performs bet-

ter than the other baselines by modeling user (class) correlations

with the neural network. Since the classification data sets generally

involve complex reward mapping functions, it can lead to the poor

performances of linear algorithms. Our proposed GNB outperforms

the baselines by modeling fine-grained correlations and utilizing
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Figure 2: Cumulative regrets on the recommendation and
classification data sets.

the adaptive exploration strategy simultaneously. In addition, GNB

only takes at most 75% of Meta-Ban’s running time for experiments,

since Meta-Ban needs to train the framework individually for each

arm before making predictions. We will discuss more about the

running time in Subsec. 6.5.

6.2 Effects of Propagation Hops 𝑘
We also include the experiments on the MovieLens data set with

100 users to further investigate the effects of the propagation hyper-

parameter 𝑘 . Recall that given two input vectors𝑤, 𝑣 , we apply the

RBF kernel as the mapping functions Ψ(1) (𝑤, 𝑣) = Ψ(2) (𝑤, 𝑣) =

exp(−𝛾 · ∥𝑤−𝑣 ∥2) where𝛾 is the kernel bandwidth. The experiment

results are shown in theTable 1 below, and the value in the brackets
"[]" is the element standard deviation of the normalized adjacency

matrix of user exploitation graphs.

Bandwidth 𝛾

𝑘 0.1 1 2 5

1 7276

[1.6 × 10
−4
]

7073

[1.4 × 10
−3
]

7151

[2.2 × 10
−3
]

7490

[3.9 × 10
−3
]

2 6968

[1.0 × 10
−4
]

6966

[7.7 × 10
−4
]

7074

[1.3 × 10
−3
]

7087

[2.5 × 10
−3
]

3 7006

[7.1 × 10
−5
]

7018

[7.0 × 10
−4
]

6940

[1.2 × 10
−3
]

7167

[1.9 × 10
−3
]

Table 1: Cumulative regrets on MovieLens dataset with 100
users (different k / kernel bandwidth). The value in the brack-
ets "[]" is the element standard deviation of the correspond-
ing normalized adjacency matrix.

Here, increasing the value of parameter 𝑘 will generally make

the normalized adjacency matrix elements "smoother", as we can

see from the decreasing standard deviation values. This matches

the low-pass nature of graph multi-hop feature propagation [33].

With larger 𝑘 values, GNB will be able to propagate the information

for mores hops. In contrast, with a smaller 𝑘 value, it is possible

that the target user will be "heavily influenced" by only several

specific users. However, overly large 𝑘 values can also lead to the

“over-smoothing” problem [36, 37], which can impair the model

performance. Therefore, the practitioner may need to choose 𝑘

value properly under different application scenarios.

6.3 Effects of the Approximated Neighborhood
In this subsection, we conduct experiments to support our claim that

applying approximated user neighborhoods is a feasible solution to

reduce the computational cost, when facing the increasing number

of users (Remark 4.2). We consider three scenarios where the

number of users 𝑛 ∈ {200, 300, 500}. Meanwhile, we let the size

of the approximated user neighborhood
˜N (1) (𝑢𝑡 ), ˜N (2) (𝑢𝑡 ) fix to

𝑛̃ = | ˜N (1) (𝑢𝑡 ) | = | ˜N (2) (𝑢𝑡 ) | = 50 for all these three experiment

settings, and the neighborhood users are sampled from the user

pool U in the experiments.
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Figure 3: Cumulative regrets for different number of users
with approximated user neighborhood (MovieLens data set).

Avg. regret per round at different 𝑡

Algorithm 2000 4000 6000 8000 10000

CLUB 0.7691 0.7513 0.7464 0.7468 0.7496

Neural-Ind 0.8901 0.8808 0.8790 0.8754 0.8741

Neural-Pool 0.7681 0.7526 0.7405 0.7362 0.7334

EE-Net 0.7886 0.7723 0.7642 0.7618 0.7582

Meta-Ban 0.7811 0.7761 0.7754 0.7729 0.7708

GNB (𝑛 = 50) 0.7760 0.7245 0.7190 0.7265 0.7140

GNB (𝑛 = 100) 0.7406 0.7178 0.7172 0.7110 0.7104

GNB (𝑛 = 150) 0.7291 0.7228 0.7129 0.7105 0.7085

Table 2: Running for 10000 rounds and with the number of
users 𝑛 = 500 for the MovieLens data set, the comparison
between GNB and baselines on average regret per round.

Here, we see that the proposed GNB still outperforms the base-

lines with increasing number of users. In particular, given a total

of 500 users, the approximated neighborhood is only 10% (50 users)

of the overall user pool. These results can show that applying ap-

proximated user neighborhoods (Remark 4.2) is a practical way

to scale-up GNB in real-world application scenarios. In addition,

in Table 2, we also include the average regret per round across

different time steps. With the number of users 𝑛 = 500 on the

MovieLens data set, we include the experiments given different

numbers of “representative users” 𝑛 ∈ {50, 100, 150} to better show

the model performance when applying the approximated neigh-

borhood. Here, increasing the number of “representative users” 𝑛

can lead to better performances of GNB, while it also shows that a
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small number of “representative users” will be enough for GNB to

achieve satisfactory performances.

6.4 Effects of the Adaptive Exploration
To show the necessity of the adaptive exploration strategy, we

consider an alternative arm selectionmechanism (different from line

10, Alg. 1) in round 𝑡 ∈ [𝑇 ], as 𝒙𝑡 = argmax𝒙𝑖,𝑡 ∈X𝑡

(
𝑟𝑖,𝑡 + 𝛼 · ˆ𝑏𝑖,𝑡

)
,

given the estimated reward and potential gain. Here, we introduce

an additional parameter 𝛼 ∈ [0, 1] as the exploration coefficient

to control the exploration levels (i.e., larger 𝛼 values will lead to

higher levels of exploration). Here, we show the experiment results

with 𝛼 ∈ {0, 0.1, 0.3, 0.7, 1.0} on the “MNIST” and “Yelp” data sets.

Regret results with different 𝛼 values

Dataset 𝛼 = 0 𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.7 𝛼 = 1

Yelp 7612 7444 7546 7509 7457

MNIST 2323 2110 2170 2151 2141

Table 3: Results with different exploration coefficients 𝛼 .

In Table 3, regarding the results of the “Yelp” data set, although

the performances of GNB do not differ significantly with different 𝛼

values, our adaptive exploration strategy based on user exploration

graphs is still helpful to improve GNB’s performances, which is

validated by the fact that setting 𝛼 ∈ (0, 1] will lead to better results
compared with the situation where no exploration strategies are

involved (setting 𝛼 = 0). On the other hand, as for the results of the

“MNIST” data set, different 𝛼 values will lead to relatively divergent

results. One reason can be that with larger context dimension 𝑑

in the “MNIST” data set, the underlying reward mapping inclines

to be more complicated compared with that of the “Yelp” data set.

In this case, leveraging the exploration correlations will be more

beneficial. Thus, the adaptive exploration strategy is necessary to

improve the performance of GNB by estimating the potential gains

based on “fine-grained” user (class) correlations.

6.5 Running Time vs. Performance
In Figure 4, we show the results in terms of cumulative regret [y-

axis, smaller = better] and running time [x-axis, smaller = better].

Additional results are in Appendix Subsec. A.2. Each colored point

here refers to one single method. The point labeled as “GNB_Run”

refers to the time consumption of GNB on the arm recommendation

process only, and the point “GNB” denotes the overall running time

of GNB, including the recommendation and model training process.

Although the linear baselines tend to run faster compared with

our proposed GNB, their experiment performances (Subsec. 6.1.1)

are not comparable with GNB, as their linear assumption can be

too strong for many application scenarios. In particular, for the

data set with high context dimension 𝑑 , the mapping from the arm

context to the reward will be much more complicated and more

difficult to learn. For instance, as shown by the experiments on

the MNIST data set (𝑑 = 784), the neural algorithms manage to

achieve a significant improvement over the linear algorithms (and

the other baselines) while enjoying the reasonable running time.

Meanwhile, we also have the following remarks: (1) We see that for

the two recommendation tasks, GNB takes approximately 0.4 sec-

ond per round to make the arm recommendation with satisfactory

performances for the received user; (2) In all the experiments, we

train the GNB framework per 100 rounds after 𝑡 > 1000 and still

Figure 4: Running time vs. performance with baselines.

manage to achieve the good performance. In this case, the running

time of GNB in a long run can be further improved considerably by

reducing the training frequency when we already have sufficient

user interaction data and a well-trained framework; (3) Moreover,

since we are actually predicting the rewards and potential gains for

all the nodes within the user graph (or the approximated user graph

as in Remark 4.2), GNB is able to serve multiple users in each round

simultaneously without running the recommendation procedure

for multiple times, which is efficient in real-world cases.

6.6 Supplementary Experiments
Due to page limit, we present supplementary experiments in Ap-

pendix Section A, including: (1) [Subsec.A.1] experiments showing

the potential impact on GNB when there exist underlying user clus-

ters; (2) [Subsec. A.2] complementary contents for Subsec. 6.5
regarding the “Letter" and “Pendigits” data sets; (3) [Subsec. A.3]
the convergence results of GNB on recommendation data sets.

7 CONCLUSION
In this paper, we propose a novel framework named GNB to model

the fine-grained user collaborative effects. Instead of modeling user

correlations through the estimation of rigid user groups, we esti-

mate the user graphs to preserve the pair-wise user correlations

for exploitation and exploration respectively, and utilize individ-

ual GNN-based models to achieve the adaptive exploration with

respect to the arm selection. Under standard assumptions, we also

demonstrate the improvement of the regret bound over existing

methods from new perspectives of “fine-grained” user collaborative

effects and GNNs. Extensive experiments are conducted to show the

effectiveness of our proposed framework against strong baselines.
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A EXPERIMENTS (CONT.)
Here, for all the UCB-based baselines, we choose their exploration

parameter from the range {0.01, 0.1, 1} with grid search. We set

the 𝐿 = 2 for all the deep learning models including our proposed

GNB, and set the network width 𝑚 = 100. The learning rate of

all neural algorithms are selected by grid search from the range

{0.0001, 0.001, 0.01}. For EE-Net [7], we follow the default settings

in their paper by using a hybrid decision maker, where the esti-

mation is 𝑓1 + 𝑓2 for the first 500 time steps, and then we apply

an additional neural network for decision making afterwards. For

Meta-Ban, we follow the settings in their paper by tuning the clus-

tering parameter 𝛾 through the grid search on {0.1, 0.2, 0.3, 0.4}. For
GNB, we choose the 𝑘-hop user neighborhood 𝑘 ∈ {1, 2, 3} with
grid search. Reported results are the average of 3 runs. The URLs for

the data sets are: MovieLens: https://www.grouplens.org/datasets/

movielens/20m/. Yelp: https://www.yelp.com/dataset. MNIST/Shut-

tle/Letter/Pendigits: https://archive.ics.uci.edu/ml/datasets.

A.1 Experiments with Underlying User Groups
To understand the influence of potential underlying user clusters,

we conduct the experiments on the MovieLens and the Yelp data

sets, with controlled number of underlying user groups. The un-

derlying user groups are derived by using hierarchical clustering

on the user features, with a total of 50 users approximately. Here,

we compare GNB with four representative baselines with relatively

good performances, including DynUCB [24] [fixed number of user

clusters], LOCB [4] [fixed number of user clusters with local cluster-

ing], CLUB [16] [distance-based user clustering], Neural-UCB-Pool

[42] [neural single-bandit algorithm], and Meta-Ban [6] [neural

user clustering bandits]. DynUCB and LOCB are given the true
cluster number as the prior knowledge to determine the quantity

of user clusters or random seeds. Results are shown in Fig. 5.
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Figure 5: Cumulative regrets for different number of under-
lying user groups (on MovieLens and Yelp data sets)

As we can see from the results, our proposed GNB outperforms

other baselines across different data sets and number of user groups.

In particular, with more underlying user groups, the performance

improvement of GNB over the baselines will slightly increase, which

can be the result of the increasingly complicated user correlations.

The modeling of fine-grained user correlations, the adaptive explo-

ration strategy with the user exploration graph, and the represen-

tation power of our GNN-based architecture can be the reasons for

GNB’s good performances.

A.2 Running Time vs. Performance (Cont.)
In Figure 6, we include the comparison with baselines in terms of

the running performance and running time on the last two classifi-

cation data sets (“Letter” and “Pendigits” data sets). Analogously,

the results match our conclusions that by applying the GNN mod-

els and the “fine-grained" user correlations, GNB can find a good

balance between the computational cost and recommendation per-

formance.

Figure 6: Running time & performance comparison.

A.3 Convergence of GNN Models
Here, for each separate time step interval of 2000 rounds, we show

the average cumulative regrets results on MovieLens and Yelp data

sets within this interval. We also include the baselines (EE-Net [7],

Neural-UCB-Pool [42] and Meta-Ban [6]) for comparison.

Time step intervals

Data (Algo.) 0-2k 2k-4k 4k-6k 6k-8k 8k-10k

M (GNB) 0.7050 0.6895 0.6795 0.6770 0.6685

Y (GNB) 0.7705 0.7685 0.7485 0.7450 0.7330

M (EE-Net) 0.7320 0.7120 0.7072 0.6945 0.7070

Y (EE-Net) 0.8480 0.8420 0.7965 0.7950 0.7865

M (Neural-UCB) 0.8090 0.7115 0.7165 0.6945 0.6865

Y (Neural-UCB) 0.8380 0.8115 0.8185 0.7940 0.8025

M (Meta-Ban) 0.7760 0.7245 0.7190 0.7265 0.7140

Y (Meta-Ban) 0.8525 0.8035 0.7930 0.7600 0.7620

Table 4: In different time step intervals, the average regrets
per round on MovieLens (M) and Yelp (Y) data sets.

As in Table 4, the average regret per round of GNB is decreas-

ing, along with more time steps. Compared with baselines, GNB

manages to achieve the best prediction accuracy across different

time step intervals by modeling the fine-grained user correlations

and applying the adaptive exploration strategy. Here, one possible

reason for the “linear-like” curves of the cumulative regrets is that

these two recommendation data sets contain considerable inherent

noise, which makes it hard for algorithms to learn the underly-

ing reward mapping function. In this case, achieving experimental

improvements on these two data sets is non-trivial.

B INTUITION OF ADAPTIVE EXPLORATION
Recall that GNB adopts a second GNN model (𝑓

(2)
𝑔𝑛𝑛 ) to adaptively

learn the potential gain, which can be either positive or negative.

The intuition is that the exploitation model (i.e., 𝑓
(1)
𝑔𝑛𝑛 (·)) can "pro-

vide the excessively high estimation of the reward", and applying

the UCB based exploration (e.g., [42]) can amplify the mistake as

the UCB is non-negative. For the simplicity of notation, let us de-

note the expected reward of an arm 𝑥 as E[𝑟 ] = ℎ(𝑥), where ℎ is

the unknown reward mapping function. The reward estimation

https://www.grouplens.org/datasets/movielens/20m/
https://www.grouplens.org/datasets/movielens/20m/
https://www.yelp.com/dataset
https://archive.ics.uci.edu/ml/datasets


KDD ’23, August 6–10, 2023, Long Beach, CA, USA Yunzhe Qi, Yikun Ban, and Jingrui He

is denoted as 𝑟 = 𝑓1 (𝑥) where 𝑓1 (·) is the exploitation model. For

GNB, when the estimated reward is lower than the expected reward

(𝑓1 (𝑥) < ℎ(𝑥)), we will apply the "upward" exploration (i.e., positive
exploration score) to increase the chance of arm 𝑥 being explored.

Otherwise, if the estimated reward is higher than the expected

reward (𝑓1 (𝑥) > ℎ(𝑥)), we will apply the "downward" exploration

(i.e., negative exploration score) instead to tackle the excessively

high reward estimation. Here, we apply the exploration GNN 𝑓
(2)
𝑔𝑛𝑛

to adaptively learn the relationship between the gradients of 𝑓1 and

the reward estimation residual ℎ(𝑥) − 𝑓1 (𝑥), based on the user ex-

ploration graph for a refined exploration strategy. Readers can also

refer to [7] for additional insights of neural adaptive exploration.

C PROOF SKETCH OF THEOREM 5.2
For the full proof of the regret bound, please refer to our arXiv

version of the paper. Apart from two kinds of estimated user graphs

{G (1)
𝑖,𝑡

}𝑖∈[𝑎] , {G
(2)
𝑖,𝑡

}𝑖∈[𝑎] at each time step 𝑡 , we can also define

true user exploitation graph {G (1),∗
𝑖,𝑡

}𝑖∈[𝑎] and true user explo-

ration graph {G (2),∗
𝑖,𝑡

}𝑖∈[𝑎] based on Def. 1 and Def. 2 respec-

tively. Comparably, the true normalized adjacency matrices of

G (1),∗
𝑖,𝑡

, 𝑖 ∈ [𝑎] are represented as 𝑺 (1),∗
𝑖,𝑡

. With 𝑟𝑡 , 𝑟
∗
𝑡 separately be-

ing the rewards for the selected arm 𝒙𝑡 ∈ X𝑡 and the optimal

arm 𝒙∗𝑡 ∈ X𝑡 , we formulate the pseudo-regret for a single round

𝑡 , as 𝑅𝑡 = E[𝑟∗𝑡 |𝑢𝑡 ,X𝑡 ] − E[𝑟𝑡 |𝑢𝑡 ,X𝑡 ] w.r.t. the candidate arms X𝑡

and served user 𝑢𝑡 . Here, with Algorithm 1, we denote 𝑓𝑔𝑛𝑛 (𝒙𝑡 ) =
𝑓
(1)
𝑔𝑛𝑛 (𝒙𝑡 , G

(1)
𝑡 ; [𝚯(1)

𝑔𝑛𝑛]𝑡−1)+𝑓
(2)
𝑔𝑛𝑛 (∇𝑓

(1)
𝑡 (𝒙𝑡 ), G (2)

𝑡 ; [𝚯(2)
𝑔𝑛𝑛]𝑡−1),with

the arm 𝒙𝑡 , gradients ∇𝑓 (1)𝑡 (𝒙𝑡 ) =

∇
𝚯
(1)
𝑔𝑛𝑛

𝑓
(1)
𝑔𝑛𝑛 (𝒙𝑡 , G (1)

𝑡 ;[𝚯(1)
𝑔𝑛𝑛 ]𝑡−1 )

𝑐𝑔𝐿

(𝑐𝑔 > 0 is the normalization factor, such that ∥∇𝑓 (1)𝑡 (𝒙𝑡 )∥2 ≤ 1), as

well as the estimated user graphs G (1)
𝑡 , G (2)

𝑡 related to chosen arm

𝒙𝑡 . On the other hand, with the true graph G (1),∗
𝑡 of arm 𝒙𝑡 , the

corresponding gradients will be ∇𝑓 (1),∗𝑡 (𝒙). Analogously, we also
have the estimated user graphs G (1)

𝑡,∗ ,G
(2)
𝑡,∗ for the optimal arm 𝒙∗𝑡 .

Afterwards, in round 𝑡 ∈ [𝑇 ], the single-round regret 𝑅𝑡 will be

𝑅𝑡 = E[𝑟∗𝑡 |𝑢𝑡 ,X𝑡 ] − E[𝑟𝑡 |𝑢𝑡 ,X𝑡 ]
= E[𝑟∗𝑡 |𝑢𝑡 ,X𝑡 ] − 𝑓𝑔𝑛𝑛 (𝒙𝑡 ) + 𝑓𝑔𝑛𝑛 (𝒙𝑡 ) − E[𝑟𝑡 |𝑢𝑡 ,X𝑡 ]
≤
(i)
E[𝑟∗𝑡 |𝑢𝑡 ,X𝑡 ] − 𝑓𝑔𝑛𝑛 (𝒙∗𝑡 ) + 𝑓𝑔𝑛𝑛 (𝒙𝑡 ) − E[𝑟𝑡 |𝑢𝑡 ,X𝑡 ]

≤ E
[
|𝑟∗𝑡 − 𝑓𝑔𝑛𝑛 (𝒙∗𝑡 ) |

��𝑢𝑡 ,X𝑡

]
+ E

[
|𝑟𝑡 − 𝑓𝑔𝑛𝑛 (𝒙𝑡 ) |

��𝑢𝑡 ,X𝑡

]
= E

[
|𝑓 (2)𝑔𝑛𝑛 (∇𝑓

(1)
𝑡 (𝒙∗𝑡 ), G

(2)
𝑡,∗ ; [𝚯(2)

𝑔𝑛𝑛]𝑡−1)

− (𝑟∗𝑡 − 𝑓
(1)
𝑔𝑛𝑛 (𝒙∗𝑡 , G

(1)
𝑡,∗ ; [𝚯(1)

𝑔𝑛𝑛]𝑡−1)) |
����𝑢𝑡 ,X𝑡

]
+

E

[
|𝑓 (2)𝑔𝑛𝑛 (∇𝑓

(1)
𝑡 (𝒙𝑡 ), G (2)

𝑡 ; [𝚯(2)
𝑔𝑛𝑛]𝑡−1)

− (𝑟𝑡 − 𝑓
(1)
𝑔𝑛𝑛 (𝒙𝑡 , G

(1)
𝑡 ; [𝚯(1)

𝑔𝑛𝑛]𝑡−1)) |
����𝑢𝑡 ,X𝑡

]
= CB𝑡 (𝒙𝑡 ) + CB𝑡 (𝒙∗𝑡 )

where inequality (i) is due to the arm pulling mechanism, i.e.,

𝑓𝑔𝑛𝑛 (𝒙𝑡 ) ≥ 𝑓𝑔𝑛𝑛 (𝒙∗𝑡 ), and CB𝑡 (·) is the regret bound function in

round 𝑡 , formulated by the last equation. Then, given arm 𝒙 ∈ X𝑡

and its reward 𝑟 , with the aforementioned notation, we have

CB𝑡 (𝒙) = E
[
|𝑓 (2)𝑔𝑛𝑛 (∇𝑓

(1)
𝑡 (𝒙), G (2)

; [𝚯(2)
𝑔𝑛𝑛]𝑡−1)

− (𝑟 − 𝑓
(1)
𝑔𝑛𝑛 (𝒙, G (1)

; [𝚯(1)
𝑔𝑛𝑛]𝑡−1)) |

����𝑢𝑡 ,X𝑡

]

≤
E

[
|𝑓 (2)𝑔𝑛𝑛 (∇𝑓

(1),∗
𝑡 (𝒙), G (2),∗

; [𝚯(2)
𝑔𝑛𝑛]𝑡−1)

− (𝑟 − 𝑓
(1)
𝑔𝑛𝑛 (𝒙, G (1),∗

; [𝚯(1)
𝑔𝑛𝑛]𝑡−1)) |

����𝑢𝑡 ,X𝑡

]
︸                                                                                     ︷︷                                                                                     ︸

𝐼1

+ E
[
|𝑓 (1)𝑔𝑛𝑛 (𝒙, G (1),∗

; [𝚯(1)
𝑔𝑛𝑛]𝑡−1) − 𝑓

(1)
𝑔𝑛𝑛 (𝒙, G (1)

; [𝚯(1)
𝑔𝑛𝑛]𝑡−1) |

����𝑢𝑡 ,X𝑡

]
︸                                                                                     ︷︷                                                                                     ︸

𝐼2

+
E

[
|𝑓 (2)𝑔𝑛𝑛 (∇𝑓

(1),∗
𝑡 (𝒙), G (2),∗

; [𝚯(2)
𝑔𝑛𝑛]𝑡−1)−

𝑓
(2)
𝑔𝑛𝑛 (∇𝑓

(1),∗
𝑡 (𝒙), G (2)

; [𝚯(2)
𝑔𝑛𝑛]𝑡−1) |

����𝑢𝑡 ,X𝑡

]
︸                                                                                     ︷︷                                                                                     ︸

𝐼3

+
E

[
|𝑓 (2)𝑔𝑛𝑛 (∇𝑓

(1),∗
𝑡 (𝒙), G (2)

; [𝚯(2)
𝑔𝑛𝑛]𝑡−1)

− 𝑓
(2)
𝑔𝑛𝑛 (∇𝑓

(1)
𝑡 (𝒙), G (2)

; [𝚯(2)
𝑔𝑛𝑛]𝑡−1) |

����𝑢𝑡 ,X𝑡

]
︸                                                                                      ︷︷                                                                                      ︸

𝐼4

.

Here, we have the term 𝐼1 representing the estimation error

induced by the GNN model parameters {[𝚯(1)
𝑔𝑛𝑛]𝑡−1, [𝚯

(2)
𝑔𝑛𝑛]𝑡−1},

the term 𝐼2 denoting the error caused by the estimation of user

exploitation graph. Then, error term 𝐼3 is caused by the estimation

of user exploration graph, and term 𝐼4 is the output difference given

input gradients ∇𝑓 (1),∗𝑡 (𝒙) and ∇𝑓 (1)𝑡 (𝒙), which are individually

associated with the true user exploitation graph G (1),∗
and the

estimation G (1)
. These four terms 𝐼1, 𝐼2, 𝐼3, 𝐼4 can be bounded re-

spectively. Afterwards, with the notation from Theorem 5.2, we

have the pseudo regret after 𝑇 rounds, i.e., 𝑅(𝑇 ), as

𝑅(𝑇 ) =
∑︁

𝑡 ∈[𝑇 ]
𝑅𝑡 ≤ 2 ·

√
𝑇
(√︁

2𝜉2 +
3𝐿
√
2

+ (1 + 𝛾2)
√︂
2 log(𝑇𝑛 · 𝑎

𝛿
)
)
+

√
𝑇 · O(𝜉𝐿) ·

(√︁
2𝜉1 +

3𝐿
√
2

+ (1 + 𝛾1)
√︂
2 log(𝑇𝑛 · 𝑎

𝛿
)
)
+ O(1)

where the inequality is because we have sufficient large network

width𝑚 ≥ Ω(Poly(𝑇, 𝐿, 𝑎, 1/𝜌) ·log(1/𝛿)) as indicated inTheorem
5.2. Meanwhile, with sufficient 𝑚 ≥ Ω(Poly(𝑇, 𝜌−1)), the terms

𝛾1, 𝛾2 can also be upper bounded by O(1), which leads to

𝑅(𝑇 ) ≤
√
𝑇 ·

(
O(

√︁
𝜉2 + 𝜉𝐿

√︁
𝜉1) + O(𝐿𝜉𝐿) + O(𝜉𝐿) ·

√︂
2 log(𝑇𝑛 · 𝑎

𝛿
)
)
+

√
𝑇 · O(𝐿) + O(𝜉𝐿) + O(1)

≤
√
𝑇 ·

(
O(𝐿𝜉𝐿) + O(𝜉𝐿) ·

√︂
2 log(𝑇𝑛 · 𝑎

𝛿
)
)
+
√
𝑇O(𝐿) + O(𝜉𝐿) + O(1)

since we have 𝜉1, 𝜉2 ≤ O( 1
𝑇
). This will complete the proof sketch.


	Abstract
	1 Introduction
	2 Related Works
	3 GNB: Problem Definition
	4 GNB: Proposed Framework
	4.1 User Graph Estimation with User Networks
	4.2 Achieving Exploitation and Exploration with GNN Models on Estimated User Graphs

	5 Theoretical Analysis
	6 Experiments
	6.1 Real Data Sets
	6.2 Effects of Propagation Hops k
	6.3 Effects of the Approximated Neighborhood
	6.4 Effects of the Adaptive Exploration
	6.5 Running Time vs. Performance
	6.6 Supplementary Experiments

	7 Conclusion
	Acknowledgments
	References
	A Experiments (Cont.)
	A.1 Experiments with Underlying User Groups
	A.2 Running Time vs. Performance (Cont.)
	A.3 Convergence of GNN Models

	B Intuition of Adaptive Exploration
	C  Proof Sketch of Theorem 5.2 

