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It has been proved that in gapped ground states of locally interacting lattice quantum systems with a
finite local Hilbert space, the effect of local perturbations decays exponentially with distance. However, in
systems with power-law- (1,/#*) decaying interactions, no analogous statement has been shown and there

are serious mathematical obstacles to proving it with existing methods. In this paper, we prove that when

o exceeds the spatial dimension D, the effect of local perturbations on local properties a distance r away is
upper bounded by a power law 1/#*! in gapped ground states, provided that the perturbations do not close
the spectral gap. The power-law exponent « is tight if @ > 2D and interactions are two-body, where
we have ) = a. The proof is enabled by a method that avoids the use of quasiadiabatic continuation
and incorporates techniques of complex analysis. This method also improves bounds on ground-state
correlation decay, even in short-range interacting systems. Our work generalizes the fundamental notion

that local perturbations have local effects to power-law interacting systems, with broad implications for

numerical simulations and experiments.
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L. INTRODUCTION AND OVERVIEW OF
RESULTS

Locality is a fundamental principle that underlies many
theories of nature. Loosely speaking, locality means that
an object is influenced directly only by its immediate
surroundings and, in particular, should be insensitive to
actions taken far away. The precise quantitative statement
of this principle takes different forms in different contexts.
In quantum many-body dynamics, locality manifests itself
in the form of a causality light cone: roughly, if a local per-
turbation takes place at time ¢ = 0, then at time ¢ its effect
must be within a ball region r < vt, where r is the distance
and v is the maximal allowed speed of propagation of any
physical particles or signals in the system. In relativistic
quantum field theories, such a causality light cone is guar-
anteed by Lorentz invariance, where v is the speed of light,
and effects exactly vanish outside the light cone. In non-
relativistic quantum many-body systems with short-range
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interactions, the Lieb-Robinson bound (LRB) [1] guaran-
tees an effective causality light cone: the effect of local
perturbations decays exponentially in (r — vt), where the
speed v depends on the microscopic details of the system
[2—4].

The consequences of locality take a slightly different
form for equilibrium properties of the quantum many-
body system. An important case is on the effect of a local
perturbation on ground states. Specifically, let A be the
Hamiltonian and consider the effect of a local perturbation
¥y (supported on region ¥) on a local observable Sy, sup-
ported on a region X far from Y. Intuitively, we expect
that the expectation value of (Sx) measured in the per-
turbed ground state should not deviate significantly from
its unperturbed value when the distance dyy is large, i.e.,
the deviation

-~

85x)p, = S)rary, — Sidg (1

should be small in magnitude. This intuition is rigorously
formulated as the principle that local perturbations perturb
locally (LPPL) [5], which states that for gapped ground
states of a locally interacting Hamiltonian, |3<§X)ﬁ'r| is
upper bounded by a subexponentially decaying function
in dyy [6], provided that the perturbation does not close
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the spectral gap. The proof is based on the idea of quasia-
diabatic continuation (QAC) [7-9], which relates the per-
turbed ground state |G)y, j, to the unperturbed one by a
quasilocal unitary evolution

. el
1G) g4y = Te' o Bea®1G) @)

where 7 is the time-ordering operation and the effec-
tive Hamiltonian ﬁ[eﬁ(t) only contains interactions that are
subexponentially localized near Y. This immediately trans-
forms the problem back to the dynamical case, where a
Lieb-Robinson bound implies that |8 (S‘X) 3,1,| decays subex-
ponentially in dyy. This bound has later been strengthened
to an exponential decay |6(3'X)pr| < Ce Mm%y [10,11],
where C is a constant and j¢; is given in Table I.

In recent years, there has been increasing interest in
understanding the analogous consequences of locality
from long-range power-law- (1//*) decaying interactions,
driven in part by the ubiquity of these interactions in many
cold-atom and molecule [12—16], Rydberg atom [17-23],
and trapped-ion [24—28] experiments, typically with 0 <
a < 6, as well as the Coulomb interaction. The impor-
tant question then arises: when long-range interactions
are present, to what extent can we still expect locality in
the senses described above to hold? The answer to this
question is far from obvious, since long-range interac-
tions can give rise to nonlocal behaviors of correlation
functions for sufficiently small & [29,30]. For the dynam-
ical part, the LRB has been successfully generalized to
power-law-interacting systems [31-37], implying general-
ized causality light cones (r o €' forD < a < 2D [2],r =
vt for2D < a < 2D + 1[31],and r = vt fora > 2D + 1
[33,35]).

However, the implications of locality for equilibrium
systems are far less understood when power-law interac-
tions are present, even in the important case of gapped
ground states. This is partly due to the difficulties caused
by the appearance of long-range interactions in H.g(f) in
Eq. (2): QAC only leads to an LPPL bound for o > 2D
[38], an extremely restrictive condition and one rarely
satisfied in the experimental systems of interest. Further-
more, even for @ > 2D, the LPPL principle has never been
proved and the above method with QAC in Ref. [38] would
lead to power-law exponents in the resulting bounds that
are not tight (for details, see Appendix A).

In this paper, we prove the LPPL principle for gapped
ground states of lattice quantum systems where interac-
tions are bounded by a power law 1//* in distance r,
with o > D. To achieve this goal, we devise an alterna-
tive method that avoids the use of QAC [Eq. (2)] (thereby
circumventing the aforementioned difficulty) and incorpo-
rates techniques of complex analysis. This method also
improves the LPPL bounds for short-range interacting
systems and applies to degenerate (either exact or approx-
imate) ground states as well. Our main result is roughly as

follows: for perturbations ¥y that do not close the spectral
gap,

P(Indyy)/dyy.
P(dyy)e 1,

18(Sx) 5, | < { 3)

where (...) is a uniform average over the (possibly degen-
erate) ground-state subspace; the first line is for power-law
systems and the second line is for short-range interacting
systems; the exponents a; and p; are given in Table I; and
throughout this paper, we use P(x) to denote a polynomial
in x with non-negative coefficients [but P(x) in different
equations or in different parts of the same equation need
not be the same] [39]. We see that a; is equal to « if
a > 2D and interactions are two-body, in which case our
bound is qualitatively tight [up to the subleading prefactor
P(Indyy)] since it agrees with perturbation theory.

As one notable by-product, the method we use to obtain
these bounds also improves bounds on correlation decay
[2,40] of gapped (possibly degenerate) ground states: for
arbitrary local operators A ¥ and B y. their connected corre-
lation function is bounded by

P(Indyy)/d
P(dyy)e 2%,

[(AxBy) — (Ax)(By)| < { (4)

where the exponents a7 and p; are given in Table I. We see
that our method improves earlier exponents, even in the
case of short-range interacting systems, where our bound
improves that of Ref. [2] by approximately a factor of 2 for
A K.

Our results have profound implications on numerical
simulations and experiments. For example, it has been
pointed out [41] that the LPPL principle straightforwardly
implies an upper bound on the finite-size error (FSE) of
several numerical ground-state algorithms, such as exact
diagonalization [42,43] and the density matrix renormal-
ization group [44,45], that is, the error in approximating an
infinite system with a finite one. Our results [Eq. (3)] imply
that the FSE of a local observable S in gapped ground-
state simulations decays in the linear dimension of the
system L as

P(InL)/L*,

P(L)e*L, )

8(8). = 148) — (S)ool < {

provided that the finite system is connected to the ther-
modynamic limit by a uniformly gapped path [41]. As in
Egs. (3) and (4), the first line is for power-law systems
while the second line is for short-range interacting systems
and the constants a3 and 3 are given in Table 1.

The paper is organized as follows. Table I summarizes
the exponents oy, ay, a3, @1, M2, and p3 in Egs. (3), (4),
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TABLEI. A summary of the constants oy and p; (LPPL bounds), &z and w5 (correlation decay bounds), and «3 and p3 (FSE bounds)
for previous results compared with ours, for both power-law- and short-range-interacting systems. Our main result is the proof of the
LPPL principle [Eq. (3)] for ground states of power-law-interacting systems with spectral gap A but we also significantly improve the
bound for systems with exponentially decaying interactions, as well as the constants «; and p; that appear in the correlation decay
bounds [Eq. (4)]. The FSE bound [Eq. (5)] with exponents a3 and g3 is a primary application of our main result [previously, there has
been only a FSE bound for short-range systems [41], in which p3 = py = p/(1 4+ 2uv/A)]. v is a constant that appears in the LRB

and can be straightforwardly calculated (for short-range-interacting systems, v is the Lieb-Robinson speed).

Prior bound

Our bound (LPPL and

correlation decay have the

same exponents :

Interaction LPPL Correlation decay ap =dg, ] = [42) FSE bound
1/, a = 2D, — ay =« [36] o = ay=a—-D
two-body
Ifa>D+1:
a3 =min(e — D,y +1—=D)
1/, a =D — a;:ﬁ[ﬂ o::l=%arcsirl(tanh‘?z—;I IfD<a<D4+1:
a—D, ay > D
oy =
a1 +a—-2D, ay<D
e m = b7z (101 p2 = b7z [246] pt1 = 2 arcsin(tanh % M3 = [

and (5) for various interaction ranges. In Sec. II, we intro-
duce our improved method: we use this method to bound
the response of local observables in gapped nondegener-
ate ground states and to obtain the main result, Eq. (3). In
Sec. III, we generalize the bounds to gapped degenerate
ground states. In Sec. IV, we discuss the implications of
our bounds in finite-size numerical simulations and prove
Eq. (5). In Sec. V, we use our improved method to obtain
tighter bounds on ground-state correlation decay, given in
Eq. (4). We conclude in Sec. VI.

II. LOCALITY OF PERTURBATIONS TO GAPPED
NONDEGENERATE GROUND STATES

Our setup is as follows. Let Ay be an infinite sequence
of D-dimensional finite lattices, labeled by the linear sys-
tem size L € Z, and N o< L? is the number of lattice sites
in total. On each site i € Ay sits a quantum degree of free-
dom with local Hilbert space H;. In this paper, we focus
on fermionic systems or quantum spin systems where H; is
finite dimensional, although our formalism can be straight-
forwardly generalized to bosonic systems where dim(H;)
is infinite. The Hamiltonian H} acts on the global Hilbert
space Hi = @), Hi and can be written in the generic
form

=Y b (6)

XcAp

where the summation is over all subsets of A; and ,@X
is the local Hamiltonian supported on X [47] (we later
specify some locality condition on ?tX that requires ||f1X I
to be small for large X'). Throughout this section, we
assume that A7 has a nondegenerate ground state |GL) with

spectral gap A; (the energy difference between the first
excited state and the ground state) that is uniformly
bounded from below, i.e., there exists A® > 0 such that
A; > A® for all A;. At this point, we do not make
assumptions on the range of interaction; nor do we assume
that the local Hilbert space is finite dimensional.

Let 7y be a local perturbation supported on region Y.
Suppose that for all A € [0, 1], ﬁ[;_(l) = H; + AVy has
a nondegenerate ground state |G (1)) with spectral gap
Ay (1) that is uniformly bounded from below, i.e., 3A > 0
such that VA € [0, 1], Az(A) = A > 0, for all A;. This
condition will always be satisfied for sufficiently small per-
turbations satisfying ||7y|| < A®/2 (]| ---]| is the oper-
ator norm), since Weyl’s inequality [48] gives Ap(A) =
Ap = 2|[Fyl| = AQ = 2||Fy]|,

Let Sy be a local observable supported on region X
such that X N Y = @. Our goal is to bound the response
of Sy to the local perturbation 7y, as defined in Eq. (1).
We achieve this goal in two steps: in Sec. ITA, we
present a general method to bound S(S‘X}gff using a
Lieb-Robinson-type bound on the unequal time correlator
(GLWI8x (1), PY1IGL (), where 8y (1) = &Sy
and then, in Secs. IIB-II D, we specialize to systems with
different interaction ranges and apply the corresponding
Lieb-Robinson bounds to obtain our main results in Eq. (3)
and Table I. The resulting bounds are independent of the
system size L, so they hold in the thermodynamic limit
L — oo

A. The improved method

In the following, we present an improved method to
bound S(S‘X}g,f using a Lieb-Robinson-type bound on
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(GL(A)|[3'X(I), f’y]|G;_()L)). There are two main improve-
ments compared to previous approaches: the first part
generalizes the method in Ref. [41], which avoids QAC
and directly relates S(S‘X)gff to a specially constructed
correlation function, while the second part obtains a
bound on this correlation function from a LRB on
|(GL(A)|[S'X(I), ﬁ'y]|G;_(l))| using complex-analysis tech-
niques, which significantly improves the previous method
in Ref. [41].

Since we have a gapped path for A € [0, 1], we can
use perturbation theory to relate the rate of change of
(SX)L,;L = (GL()L)|3'X|GL()L)) at each A to a special corre-
lation function, from which we obtain an exact expression
for S(S‘X}g,f as an integral over the correlation func-
tion. We choose the normalization and phase of |Gr()))
such that (Gr(1)|Gr(A)) =1 and (GL(A)|d/dL|GL(A)) =
0,VA € [0,1]. For any finite L, first-order nondegenerate
perturbation theory gives the exact identity

PGL ()")

mVY|GL(A-)}a (?)

d
—1GL(0) =

where Ej(1) is the ground-state energy of ﬁIL (L) and
Pg, (X)) =1 — |G (X))(GL(A)] is the projection operator to
the subspace of excited states. Then,

d - . P
4 Sis = (GLO IS L)

o A0 VvlGL)) +c.c.,  (8)

where AL(A) = ﬁIL (1) — Ez(%), the spectrum of which is
lower bounded by A (in the subspace of excited states).
In the following, we prove a uniform bound (indepen-
dent of L and A) on the rhs of Eq. (8), so that a

bound on S(S‘X)g,f immediately follows from |5(‘§X)?’r| <

Jo dnld(Sx)La/di.
From now on, we omit the labels L, .. We define

. iPg . .~ iPc -
Qur(@) = (GISy—=1¥|G) — (G|Vy—2-3x|G)
w— A w+ A
©)

in the region w € C\K,, where K, ={w e Rlw >
Aorw < —A}. Note that for any finite system size L,
Qyy(w) is a complex analytic function in its domain.
Furthermore, the rhs of Eq. (8) is exactly i€Qxy(0).
For |Im(w)| > 0, we have an integral representation for
QXY(w)a

N ©O n n .
Qyy (@) =.£ (GIISx (1), FylIG)e“dt,  (10)

where 1, = sgn[Im(w)]. Taking the absolute value of
Eq. (10) and using the triangle inequality, we have

|Qxr(@)] = f (GI[Sx (8), P11 G) e =@ ligy
0

o0
< [ clmne v
0

= Q(dyy.y), (11)

where y = |Im[w]| > 0. In the second line of Eq. (11), we
assume a Lieb-Robinson-type bound |(G|[Sy (1), V¥]|G)| <
C(dxy,t), the expression for which is given in
Secs. IIB-IID when we consider systems with different
ranges of interaction. At large ¢, C(dxy, f) equals the con-
stant trivial bound 2||Sx ||| 7¥|l, so Q(dyy,y) is finite for
any @ with Im(w) # 0 but diverges as Q(dxy,y) ~ 1/y
when y — 0, so gives no bound on the desired |€2yy(0)].

Nevertheless, we can obtain a bound on |2yy(0)| from
the above by using a powerful technique from complex
analysis. The analyticity of Qyy(w) allows us to improve
the bound on |Qyy(ew)| over the initial bound in Eq. (11),
by applying the following lemma [49, Theorem 2.12].

Lemma 1—If g(z) is complex analytic in a domain (a
simply connected open region) S, then #(z) = In|g(z)| is a
subharmonic function in S, i.e., for any zg € S and p > 0,
if the circular region defined by |z — zp| < p is contained
in S, then

1 2 )
u(zg) < — f u(zo + pe'®)do. (12)
2 0

Since Qyy(w) is complex analytic in the open disk
region defined by |w| < A, Lemma 1 implies that

1 2w )
In [Q2xy(0)] = 2—[ In |Qxy[pe”]|d6
T Jo

1 2n _
s—f In Q[dyy, |psind|1do,  (13)
2 0

for any p € (0, A). We will see that the integration over 8
in the last line is convergent despite Q(dyy,y) diverging
when y — 0 [50].

The rest of our task is to insert the LRB of specific sys-
tems into Eq. (11) to obtain Q(dxy,y) and then compute
the second line of Eq. (13) to obtain an upper bound for
|€2x¥(0)|, which we do in Secs. [ B-II D. In Appendix B 2,
we introduce a technique to further improve the bound in
Eq. (13) using a conformal mapping.

B. Power-law interactions with e > 2D
We start with the simplest case: « > 2D and all interac-
tions being two-body, i.e., all the hy in Eq. (6) are of the
form hy = hy; ViW; where ¥; and W; are local operators
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with unit norm and finite support separated by a distance
dij and the hj; are real parameters satisfying h; < Cd;*
[51]. Similar to the P(x) notation, throughout this paper we
use C to denote a positive constant independent of » and
t, and C in different equations, or in different parts of the
same equation, need not be the same. In this case, we use
the Hastings-Koma bound [2] for short times, the algebraic
light-cone [52] Lieb-Robinson bound [3 1] for intermediate
times, and the trivial bound for long times:

Ce't/dy, 0<t<t,
~ ~ Y (1+y)
S f V < vt C—?— (o ¥
I8x@. Pl < Y€ + 2 <1<,
C, t > fyp,
(14)

where ¢ =alna/v, fh = Cd/],f’;gﬁl), v is a constant,
and y = (1 +D)/(e —2D). Using [{G|[Sx @), '¥]IG)| =
ILSx (), ¥¥]ll, and substituting C(dxy, t) in Eq. (11) by the
ths of Eq. (14) gives

B 24 fo
Qr,y) = f C dt + f C(r,t)e™dt
0 r #

[+ ]
+ f Ce Mdt
iy

< %[e—(} +e(v—y}fg—Cr/%]
+ : C+C
7o

Tla(y + 1) + 1] e
a(y+1)+1 C ’
y y
(15)

where for the second term in the rhs of the first line we
use Jensen’s inequality, since the integrand is convex when
! <t <ty (this convexity relies on a relation between the
different constants here, which can always be satisfied; see
Appendix B 1). The third line in Eq. (15) decays subexpo-
nentially in r, while the last line decays algebraically, so
the term proportional to ¥~* dominates the long-distance
behavior of €2(r,y). Inserting Q(r,y) into Eq. (13), we
obtain Eq. (3), where the subleading factor P(Inr) is a
constant in this case (for details, see Appendix B 1).

C. Power-law interactions with a« > D

The bound in the previous section does not apply to the
case D < a < 2D and is limited to two-body (two-cluster)
interactions. In this section, we consider the more general
case where the Ay in Eq. (6) satisfies [2]

~ ho
> Ml ==, (16)
X:Xolij) i

foralliandj, with @ > D. In this case, the Hastings-Koma
bound [2] is the tightest general LRB:

v.r_l
C(r,f) < min lce = ,c], (17)

where v is a positive constant. Inserting Eq. (17) into
Eq. (11) gives

o0
Qry) = f C(r,He™dt
0

to etu_y)f o0 ‘
< f C dt+ f Ce™dt
0 re ty

1 4+ e

e Yo
y

Cty fo 1 o
—— 4+ Cl=4+= Yo
o T (2 +y)e

- Choe™/y, y <v,
— | Ctore, y > .

< Chy

(18)

where we define fj = (In C + « In#)/v and in the third line
we use Jensen’s inequality (due to the convexity of the
integrand) to simplify the integral, rather than evaluating
it exactly, in order to facilitate later computations.

We now insert Eq. (18) into Eq. (13), to upper bound
|€2x¥(0)|. Equation (13) becomes

2 w/2
In|R2yy(0)| < InCty — — o In rdf
T B
Y
- — [fop sin@ + In(p sin8)]d6, (19)
T Jo

where 6y = arcsin(v/p) if v < p and 8y = /2 if v > p.
Finishing this integral, and then taking the limit p — A,
we obtain Eq. (3), with

2 A 26
o =a—(1—c0590)+a'(1——0). (20)
TV T

In Appendix B 3, we improve this result using the tech-
nique of conformal mapping and obtain the result in
Table I. We use the improved result [Eq. (B11)] for the
rest of the paper.

D. Short-range interacting systems

The method in Sec. IT A also significantly improves the
LPPL bounds for systems with short-range interactions,
either exponentially decaying or strictly finite ranged.
Specifically, we consider systems the Hamiltonians of
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which [Eq. (6)] satisfy [2]

D kx| < hoe %, 21)
X:Xofij}

foralliandj, where i is some positive constant. The Lieb-
Robinson bound is [2]

C(r,t) < Ce HU—v), (22)

Note that the rhs of Eq. (22) can be obtained from the rhs
of Eq. (17) with the substitutions ¥ — €', a0 — p,and v —
pnv. We can therefore directly make this substitution in the
results of Sec. II C and Appendix B 3 and obtain the bound

12xr(0)] < P(r)e ™, (23)
with p1 given in Table I. We see that for A <« v, our bound
gives jt1 & A /v, which improves the previous best bound
= p/(1+2pv/A) = A/(2v) by approximately a fac-
tor of 2. Furthermore, if we want a tighter bound for a
specific model, we can use the LRB in Eq. (32) of Ref. [4]:
C(r, 1) < Ceom)i—xr N > 0, where w,,(ik) is some (effi-
ciently computable) function of « (Ref. [4] mainly deals
with systems with finite-range interactions but the method
can be directly generalized to systems with exponentially
decaying interactions). This leads to a bound of the same
form as Eq. (23) in which p is a function of k. We can then
maximize (k) over k > 0. This method gives further
quantitative improvement for a specific model, especially
at large A /v.

III. GENERALIZATION TO GAPPED
DEGENERATE GROUND STATES

In this section, we generalize our bounds to gapped
systems with degenerate ground states. We begin with a
straightforward extension. Note that if the system has a
subspace H; € H such that both the Hamiltonian H and
the perturbation Vy leave H; invariant (this is not required
for S‘X) and the ground state |G) of H; is nondegenerate
and gapped (within ), then all our proofs in the previ-
ous section apply to this subspace H,, provided that Pg
in Eq. (7) is understood as the projector to all the excited
states within H;. In particular, if the system has a set of
conserved quantum numbers that commute with both &
and Vy and distinguish all the gapped degenerate ground
states, then our bounds apply to all the ground states.

Nevertheless, this simple extension does not apply if
the perturbation Vy breaks the conserved quantities. It also
fails if the degeneracy is not due to any symmetry at all,
which includes the important class of topological degen-
eracy, where the (approximately) degenerate ground states
cannot be distinguished by local conserved quantum num-
bers. In the following, we present a more general treatment

for degenerate ground states (motivated by the method in
Ref. [53]), which shows that all our results in Table I still
hold provided that (Sy) is averaged over all the (nearly)
degenerate ground states with equal weights. This can be
thought of as the temperature 7 — 0 limit of the statisti-
cal mechanical average, as long as this limit is taken after
the thermodynamic limit L — 00, in which the splitting of
ground-state degeneracy vanishes.

Let us denote the degenerate ground states of A (L) =
H+AVy as |G°(r)), with energy ES(r), for a=
1,2,...,d, respectively. Note that we do not require the
degeneracy to be exact (which is important for treating
topological degeneracy) but only that at each A, all the
ground-state energies Ejj(A) are separated from the rest of
the spectrum (the excited states) by at least an amount
A(X) > 0 and A(A) is uniformly bounded from below,
ie., A =inficp,1; A(L) > 0. [Similar to the nondegener-
ate case, as long as A(0) > 0, the uniform-gap condition is
always satisfied for sufficiently small || ﬁ}r”, as guaranteed
by Weyl’s inequality. ]

The method follows Sec. II A but now using degener-
ate perturbation theory. If some of the ground states are
exactly degenerate at some A, then we have some free-
dom to choose a basis for the exactly degenerate subspace
and it can be shown that [53] it is always possible to
choose a suitable basis for this subspace such that ¥y is
diagonal within this subspace and (G°(V)8,]GP(L) =0
whenever Ej(A) = Eg (1). Then, degenerate perturbation
theory generalizes Eq. (7) to

P())

9,1G*(V)) = ———m
11 G (V) 0y B2y

Gt), (24

where

POy=1- )

BED(M=EZ (1)

=P+ Y,

B:EE()AES (M)

IGPQINGE ()]

IGPFOONGE )], (25)

where Pe(h) =1 — Y0, |GP(W))(GP(V)]| is the projec-
tion operator to the space of all excited states. Inserting
the second line of Eq. (25) into Eq. (24), we obtain

Pc(n)

9,|1G* =0
MO0 = g

d
7YIGU ) + Y 071GP M),
b=1
(26)
where

Eqn-E§G) (27)

i) . 4 .
. OGO 5 b(n) £ E4(L),
0, if EX() = E§(0),
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is an anti-Hermitian matrix (Q"b)* = —0". We now con-

sider the expectation value (SX);L of a local observable SX
averaged over all degenerate ground states {!Gb()\.))}b=l,

ie., we define (0), = 1/dY"¢_ (G*(3)|0|G (1)) for any
operator O. Then, Eq. (8) becomes

Pg(x)

o T
h{Sx )a < XH(M T

?y> +c.c., (28)
A

where, importantly, the contribution of the second term
in Eq. (26) cancels due to anti-Hermiticity of Q°°. The
rest of Sec. Il A generalizes in a straightforward way, with
the only difference being that the ground-state expecta-
tion value (G(A)|...|G(A)) is replaced by the average
(...)5. Lieb-Robinson bounds can still be used as we
have ([Sx (t), Py])x < IIISx (8, P71l < C(r,1). All resulting
bounds remain the same as those listed in Table L.

IV. IMPLICATIONS FOR FINITE-SIZE
NUMERICAL SIMULATIONS

In this section, we present a straightforward applica-
tion of our results, bounding the FSEs of local observ-
ables in gapped ground states of power-law systems and
generalizing the bounds for locally interacting systems
proved in Ref. [41]. The basic configuration for the one-
dimensional (1D) case is illustrated in Fig. 1. The FSE
for a local observable S'X measured in a L-site calcula-
tion is defined as 8(Sx)r = |(Sx)z — (Sx)sol, Which can
be considered as the effect of the boundary interaction
AVY on S'X, since removing i’y from the thermodynamic
Hamiltonian A decouples the finite system and the outside,
leading to (S'X) I = (S'X) Ay We assume that the spec-

tral gap Ar(A) of the interpolated Hamiltonian H—yis
uniformly bounded from below min; o1y AL(A) = A > 0
[54]. Under this assumption, we can apply our main result,
given in Eq. (3), to upper bound 8(Sx)L. A complication
here is that ¥y contains infinitely many terms, including
those that are very close to S'X, so r = dyy is zero. To solve
this issue, we can write

=3 ¥, (29)

ieLj ¢l

where the summation is over all the interaction terms ¥
with i in the L-site system and j outside (here we over-
load the notation L to also denote the set of sites of the
L-site system). Inserting Eq. (29) into Eq. (8) and using
Egs. (9)13) to upper bound the contribution of each
individual V term independently, we obtain

188x)cl < D WVylIPAnryg)/r.  (30)

ieLj¢L

FIG. 1. Upper bounding the FSE with the LPPL, illustrated
for a 1D chain. The LPPL principle immediately gives an upper
bound on the FSE of local observables in numerical simulations
of gapped ground states, by recognizing Vv as the interactions
between the sites of the finite system and sites lying outside.

In the following, we treat the 1D case for simplicity and
present the derivation in arbitrary dimension in Appendix
C2. Letting R = L/2 and §(r) = P(Inr)/r*!, we have

BSxl < Y
—R<i<R,|j|=R

< > G+ D/R+1 -

—R<i<R

8(lil +1)/G —D*

R+1

<) PnditR+2-i)' (31

i=1

The following lemma gives a bound for the convolutional
sum (for a proof, see Appendix C ).

Lemma 2.—Let n and ¢ be real constants satisfying 0 <
n < ¢. Then,

R-1 i
P(lnr) R, it = 1,
E nPl R 32
r: Ca )X{R'—H, if¢ <1, 2

where the notation f (R) < g(R) means that there exist
positive constants cj,c; independent of R such that
c1gR) <f(R) <crg(R) forall R € Zss.

Applying Lemma 2 to Eq. (31), we obtain Eq. (5) with

{al+a—2,
0y =
o—1,

ifa; =1,

ifa; > 1,

for ]l <a <2 and a3 =a — 1 for a > 2, which is the
result in Table I for D = 1.

V. IMPROVED BOUNDS ON GROUND-STATE
CORRELATION DECAY

In this section, we show that the method in Sec. IT A also
significantly improves bounds on the correlation decay of
gapped (possibly degenerate) ground states, compared to
previous results [2,40]. We first obtain an integral formula
that relates Qyy(w) in Eq. (9) and the connected correla-
tion function (S'X f’}r}c = (S'X AVy) — (S'X)(i’y) in the gapped
ground state |G). Integrating Eq. (9) along the imaginary
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axis, we have

+00i +o0i . fPG .
f Qyy(w)dw = f dw{G|Sy 3 Vy|G)

—00f —001 w —

+ooi . iPg 4
—f dw(G|Vy——Sx|G)
—ooi w+ A

= 7 (G|Sx P Vy|G) + c.c.

=27 (Sx Vy)e, (33)

where we use the following equality:

~ooi 1
f dw = —misgn(je). (34)
ool W — [

o0i

With Eq. (33), we can obtain an upper bound on 1(Sx Vy)el
by integrating |S2yy(ew)| along the imaginary axis. Further-
more, it can be proved that (see Appendix D) |Qxy(w)| on
the imaginary axis can always be upper bounded by the
upper bound of |€2xy(0)| obtained by Eq. (13) (we denote
this upper bound by |Qxy(0)|). Therefore, we can use the
upper bound |Qxy(iy)| < min[|Qxr(0)], 2(dxr, »)]. Note
that the integration on this bound on iy is guaranteed
to converge provided that we use the best LRB, since
C(dyy,t) oct¥ at small ¢+ with v > 1 and so S_Z(de,y) in
Eq. (11) decays at least as y~"~! at large y. This upper
bound yields

+0o0

2718y Vel < f Qr()ldy

—00
o0

< 200/Qxr(0)] + 2 f Q(dyr,y)dy, (35)

Yo

for any yo > O [for the optimal result, yo should satisfy
Q(dxy, yo) = |Qxy(0)]].
For example, for D < a < 2D, we have

e—J"fD —_ ] e_yfﬂ
¥ J+e=.
v—y y y
(36)

Qry) < —
(ry)_rc,

C |:e(v—y)fo —1

which is obtained by computing the first line of
Eq. (18) exactly without using any simplifications. Insert-
ing Eq. (36) into Eq. (35) and taking yp = v, we see that
the integral of the term in square brackets converges to a
constant independent of r and therefore the second term in
the last line of Eq. (35) is bounded by C/d%y. For | Qxr(0)],
we use the results of Appendix B 3 [Eqs. (B10)and (B11)].
Eventually, we obtain

1(Sx Vv)e| < P(Indyy)/dyy, (37)

where P(x) is a quadratic polynomial in x. Other cases in
Table I can be treated in an identical manner, by inserting

the results of Sec. II into Eq. (35). In all cases, we obtain
Eq. (4) with ap = a; for the power-law cases or 2 =
for short-range interacting cases.

VI. CONCLUSIONS

We prove a locality principle for gapped ground states
in systems with power-law- (1/7) decaying interactions:
when a > D, the response of a local observable S'X toa
spatially separated local perturbation 7y decays as a power
law (1/r%1) in distance, provided that ¥y does not close
the spectral gap. When @ > 2D, the bound on the expo-
nent «; that we obtain, o) = «, is tight. We prove this
using a method that avoids the use of QAC and incor-
porates techniques of complex analysis. Our method also
improves bounds on ground-state correlation decay, even
in short-range interacting systems.

Our results have profound significance in studying the
ground-state properties of power-law-interacting systems.
At a fundamental level, the LPPL bounds generalize the
notion of locality to gapped ground states of power-law
systems, implying that the local properties of such ground
states are stable against distant local perturbations. At a
more practical level, we show how our results immedi-
ately lead to an upper bound on the FSE in numerical
simulations of gapped ground states, which reveals that
FSEs generally decay as a power law (1/L*3) in sys-
tem size (provided that o or the spectral gap A is not
too small). A corollary of this is the existence of ther-
modynamic limit for local observables in ground states
of power-law systems, under the spectral gap assumption
stated in Sec. IV.

We now discuss some open questions and future direc-
tions. One open question concerns whether the power-law
exponents oy and az given in Table I are tight when D <
a < 2D: we see that in this case both of them are strictly
smaller than «, yet for all gapped power-law systems that
we know, no correlations decay slower than 1/, which
strongly suggests that our bounds can further be improved
in this case. An interesting future direction is to general-
ize our results to systems of interacting bosons, such as
the Bose-Hubbard model, where our current bounds do not
apply due to the interaction hy in Eq. (6) having infinite
norm, thereby violating Eq. (16) and the corresponding
LRBs. However, our method in Sec. ITA still works if
we incorporate Eq. (11) with recent LR-type bounds for
interacting bosons [3,55-57]. It will then be interesting to
see how the exponents in Table I get modified. Another
future direction is to prove the stability of the spectral gap
against extensive local perturbations in gapped frustration-
free ground states of power-law Hamiltonians. For locally
interacting systems, this has been proved under the local
topological quantum order condition [58—60], where an
essential tool in the proof is Hastings’ QAC [Eq. (2)]. It
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is interesting to investigate if our new method can improve
these results and extend them to power-law systems.
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APPENDIX A: LPPL BOUND FROM QAC

In this appendix, we briefly show how to obtain an LPPL
bound by directly generalizing the previous method based
on QAC. We will see that QAC only leads to an LPPL
bound for @ > 2D, where it gives a1 =« — D — 1, much
looser than our bound «; = o (which we know to be tight).

We use the same setup as in Sec. II. QAC constructs
a unitary evolution process relating the ground states of
different A,

i3,|G(1)) = DW)IG()), (A1)

where D()L) is a Hermitian operator that depends on ﬁ{ (r).
Following the derivations in Ref. [38, Eqgs. (5)+9)], D(X)
can be expanded as

by =) (R, (A2)
R=1

where ﬁ'y(l,R) is an operator that acts only on sites
within a distance R from Y. For o > 2D, ||ﬁ'y()u,R)|| <
C||7y|l/R*~P, while for & < 2D, || Vy(x,R)| decays more
slowly than any power in R [38]. We now use the previous
method [5,9] to bound |5(‘§X)3’r|:

1868 )51 = 18 )a=1 — (Sx )=l
1
< j; 19, (8 a2
1
- ﬁ (I8, DO ldn

1
< j; 18, DO (A3)

For @ > 2D, the integrand is bounded as

ISx, DI = D Sy, 7y, R

R=dyy

1
=) ¢
— -D
R=dxy R

1
d};n_l '

=C

(A4)

This leads to the bound |8(Sx)j, | < C/d3y"~" for a >
2D, while fora < 2D, the bound obtained this way decays
more slowly than any power in dyy, verifying our earlier
claims.

APPENDIX B: SOME DETAILS FOR SEC. 11

In this appendix, we provide some technical details for
Sec. II.

1. Details for Sec. IIB

We first briefly explain how Eq. (14) is obtained from
Ref. [31]. The main result of Ref. [31] is stated in their
Eq. (18):

Uyt

r
C(r,t) < Cexp (vt— ;) +C—[r/R(t)]“’

valid when v# > a Ina and r > 6R(t), where R(f) = xvt,
vy = CR(®)PAy, and Ay = sup;c, Zj dyj >y A4 1l For x >
C, we have 1, < CXD_“. We now take x = Cyf¥ where
Cp > 0 is a constant, so R(f) = Covt’t! and r > 6R(?) is
equivalent to t < (/6vCo)"/V*+) = t5. Fort > (¢ Ina)/v,
we have x > C, leading to v,¢ < C. Inserting R(f) and x
into Eq. (B1), we obtain Eq. (14). By taking the second
derivative (with respect to #) of the first term in the rhs of
Eq. (B1), we see that this term is indeed convex provided
that the constant Cy is chosen to be large enough, verifying
our claim below Eq. (15).

We now insert Eq. (15) into Eq. (13) to prove
Eq. (3). We first simplify the last line of Eq. (15):
note that for y = |Im[w]| = p|sinf| < p, we have
e(l‘—y)f{}—r/(cofg) < Ce_yfﬂ/y, < Cr—ay—fx(y—i-])—l and

toe=C" < Cr—ay—or(y-i-l)_l (for r = 1). Therefore,

(B1)

Q(r,y) < (Cty + Cy~hHe? 4 Cry—e+D-1 (B)

The second term in Eq. (B2) dominates at small and large
v, while the first term is only important in an intermediate
region (y1,y2), where y; 2 = x1¢~/"+D and xy, x, are the
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two solutions to the equation (and are independent of r):

(x + Qe = xor+D), (B3)

In summary,

Sr.y) < | C+ Cy e, yi<y=p,
Iyl 0 <y <yrory > .
(B4)

[In the event that Eq. (B3) has no solution, then Q(r,y)
is always bounded by the second line of Eq. (B4) and our
following derivations still work with minor modifications.]
Inserting Eq. (B4) into Eq. (13), we have

2
In |Qyy(0)] <InC — —a(n/Z —6+6)Inr
b/ 4

2 (& C :
+ — In ({Cty + — | — fpposinB |db,
7 Jo, sin 6@
(B5)
where  yip = psinf, =x o /¥+D. Using 6,

= O~ V/+D], we see that all but the InC — « Inr term
are of order p~V/+D =V w+D |ny or p=2/r+D_ gl of
which are upper bounded by a constant for » > 1. This
proves Eq. (3), with the subleading factor P(Inr) being a
constant.

2. Improving the bound on |2yxy(0)| with conformal
mapping

We now introduce a technique to further improve the
bound in Eq. (13), which leads to an improvement of the
bound on @; in Sec. I[IC. The basic idea is to apply a
suitable conformal mapping to Qyy(¢) before applying the
bound Eq. (13). To be specific, let f(£) be a complex ana-
lytic function in the open unit disk D, such that f(0) =0
and f(D) N Kx = 0. Then Qyy[f(§)] is complex analytic
for £ € D, so according to Lemma 1, In |Qxy[f(§)]] is
subharmonic in D and therefore for any p € (0, 1),

1 2m )
In QO] < 5— f In [Qurl f (0e)]|d6
T Jo
2
<L f In Qldyy, [Imf (pe®)[1d0. (B6)
2 0

Note that Eq. (13) in Sec. ITA corresponds to the special
case f(§) = A&. Since the inequality given in Eq. (B6)
holds for all such functions f(£) (satisfying the conditions
mentioned above), we can choose a f(§) to optimize this
bound. We show in the next section how this additional
conformal mapping improves the bound in Sec. II C.

Almw]

RURTTE

FIG. 2. For any finite system size L, K (dashed region on the
real axis of the right panel) contains all possible pole positions of
the rhs of Eq. (9), so Qyy(ew) is complex analytic in the region
C\Ka. The conformal mapping w = f(z) defined in Eq. (B7)
maps the unit disk (left) to the shaded region of the infinite strip
with the pole regions excluded (right).

3. Improving the bound in Sec. I1 C

We begin by inserting Eq. (18) into Eq. (B6), with the
conformal mapping [61]

(B7)

f@= 2—U arctanh ( tanh E) :
b4

722 41 2v

The image of the unit disk under the mapping @ = f(z)
is shown in Fig. 2. Note that y(9) = lIm[f‘(peig)]l < v for
p € (0,1),0 €[0,27], so Eq. (B6) becomes

) mf2
In |Qxy(0)| < ;ﬁ [In(Cto) — Iny(6) — y(6)t0]do

mwf2
= In(Ctp) = f [Iny ©) +y ©)1o]db.
0
(B8)

Before going into more technical calculations, we first give
some heuristic arguments about the asymptotic behavior of
the |2yy(0)| at large r and guess the exponent «. We will
see later that the asymptotic behavior of the last line of
Eq. (B8) at large r is dominated by the third term, since the
first two terms have much weaker dependence on r. The
third term in the last line of Eq. (BR) decreases as p gets
closer to 1 and in the limit p — 1, y(@) becomes a step
function: y(@) = 0 for 8 < 6y while y(0) = v for 8 > 6,
where 6 satisfies cos 8y = tanh(Amr/2v) and is marked in
Fig. 2. Therefore, in the limit p — 1, the third term in the
last line of Eq. (B8) is

2 wf2
_to_f ydé = —2tpv(w /2 — 6y) /7
T Jo

2tpv . tnhAx B9
= _—renn| Tl = ] (B9)

The subtlety here is that the first two terms in the last line of
Eq. (B8) diverge as p — 1. In the following, we show that
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by choosing p suitably close to 1, we can obtain a bound

1Qxy(0)| < P(Inr)r™, (B10)
where P(x) is a quadratic polynomial in x and
29 oresin (tanh 22 Bl
) = — arcsin | tanh —— J . (B11)

We begin by upper bounding the first term in the
integrand in Eq. (B8). Due to the symmetry y(0) =
y(mr —68) =y(m +0), we only need to treat the integrand
in the interval @ € [0, /2]. To this end, we obtain a simple
lower bound for y () as follows:

9 2UI tanh 2z tanh Am
Y()—nmarcan 7o anh =
2v 2z Am
> — arctan | Im tanh —
T 2241 2v
(1 — p?)psind
p* 4+ 2p2cos20 41
> C(1 — p)sin®,

= Carctan [C

(B12)

for p = 0.9 and 6 € [0, /2], where in the second line we
use Im[arctanh(z)] > arctan Im[z] for z in the upper half
plane (which follows from the fact that Im[arctanh(x +
i€)] is monotonically increasing in x for € > 0,x > 0) and
the proof for the last line is elementary. Therefore, the sec-
ond term in the last line of Eq. (B8) can be upper bounded

by
2 mf2
——f Iny(@)d8 <InC —In(1 — p). (B13)
T Jo
This may be a crude bound but it captures the leading sin-

gularity of this term as p — 1. We now study the second
term in the integrand in Eq. (B8) near p — 1. We have

3py(0) = Im[3,f (2)]

1
=Im [Eagf(z)]
= —%Re[aﬂf(z)] (B14)
and therefore
w/2 1 w/2
Bpf y(6)do = ——f dfdgRe[f(2)]
0 P Jo
1
= —;Re[f(i,o) —f(p)]
1

= ~/(o), (B15)

the limit of which at p — 1 is A. Since this derivative
exists for p € [pp, 1] for any pg > 0, along with Eq. (B9),

we obtain

mf2
[weza-ca-p. @
0

where Cy = v arcsin[tanh(Am /2v)]. Inserting Eqs. (B13)
and (B16) into Eq. (B8), we obtain

Cty
—p

In|Qur(0)] <~ Inr +In 3=+ Cio(1 = p). (B17)

Minimizing the rhs of Eq. (B17) [the minimum is at 1 —
p = 1/(Ctp)], we obtain Eq. (B10) where the polynomial
prefactor can be taken as P(Inr) = C(Inr)?.

Comparing Eqgs. (B11) and (20), we see that the tech-
nique here improves a; at all values of A /v, especially
when A /v is large, where «; approaches o exponentially
fastin Eq. (B11), while o — oy o v/A in Eq. (20).

APPENDIX C: FSE BOUNDS

In this appendix, we provide some missing details in
Sec. IV, including a proof of Lemma 2 and a derivation
of the bounds in arbitrary spatial dimension.

1. Proof of Lemma 2

For simplicity, we assume that R = 2R; + 1 is an odd
number (the proof for even R is similar). We have

Rl Py BoORUN pnp
—_— + - -
gr-f(R—r)’? ; rszH—] FE(R— 1)1
[ P(np) | PR —7)]
AR PR
&\ [P@np) | P(nR)
- «| ¥ RY 1 RE ]’
Ry ~
P(InR) P(nR)
=3[+ |-

where in the second line we substitute r by R-—
r in the second sum and in the third line we use
P[ln(R—r]JR —-r)7Y <xP(InR)R™Y for | <r <Ry and
y > 0, since P[In(R/2)] < P[In(R—r)] < P(InR) and
R7 <(R-r)"" < (R/2)”7. Now applying Zf;l rv o=
fil] ¥~ Vdr to the last line of Eq. (C1) and calculating the
integral, we obtain Eq. (32). Note that the P(x) in the rhs
of Eq. (32) may be higher in degree (higher by at most
1) than the P(x) in the lhs, since the summation Zlel rv
introduces an additional In R factor when y = 1.
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FIG. 3. The derivation of the FSE bound in higher spatial
dimension. § is the finite system with radius R, § is its com-
plement, 7, and 7, are, respectively, the positions i and j of the
power-law interaction Vj;, and §; € §'is a subsystem centered at
71 with radius R — ry (so that S} touches S).

2. Derivation of the bounds in higher dimension

In Sec. IV, we derive the FSE bound Eq. (5)in 1D. In the
following, we generalize the derivation to arbitrary spatial
dimension. The configuration is shown in Fig. 3. Without
loss of generality, we can assume that the system has a
spherical shape (the sphere S in Fig. 3), since the error in
other cluster shapes can be upper and lower bounded by
spheres with radii proportional to their linear dimensions.
Equation (30) is still valid, so we have

& P(
pld s T i)
FIES,FEEE rl rrz “rli
P(Inry)
= Z ¥ I[m —rl Joz
rlES,rgESI 1

where in the second line we extend the sum in 7, from 5
to S; (which contains E), in the third and the last lines,
we upper bound the sums by integration [with a constant
coefficient absorbed into P(Inry)] and the integrals can
be calculated analytically due to the spherical geometry.
Applying Lemma 2 to Eq. (C2), we obtain Eq. (5), with a3
summarized in Table 1.

APPENDIX D: BOUNDS FOR CORRELATION
DECAY: PROOF THAT |Ryy(iy)| < |Q2xy(0)]

In this appendix, we prove the claim we make in Sec. V
that |Qxy(iy)| for y € R can always be upper bounded by

the upper bound of |Q2yy(0)| obtained by Eq. (13). We
prove this for the Qxy(ew) in Sec. II C and Appendix B 3,
i.e., power-law systems with o > D, and the proofs for
other cases are similar.

We begin by recalling a simple fact about subharmonic
functions: if p(w) is a real-valued subharmonic func-
tion and g(w) is a real-valued harmonic function such
that p(w) < g(w) on the boundary of a simply connected
domain S, then p(w) < ¢(w) everywhere in S. Now take

p(w) to be the subharmonic function In |Q2xy(w)| and take

g(w) to be the unique harmonic function that agrees with
InQ(r,y) on the boundary of the region S, bounded by
the parametric curve f(pe®),0 € [0,27], as plotted in
Fig. 2, where f(z) is defined in Eq. (B7), p € (0,1), and
later we consider the limit p — 1. By construction, we
have p(w) < g(w) on 3S,; therefore, p(w) < q(w) every-
where in §,. Using the mean-value property of harmonic
functions, in the limit p — 1 we have

1 2n )
lim g(0) = lim — f qlf (pe?)1do
p—1 p—12m Jy

2
In Q[r, |Imf (0e?)|]1d0

= lim —
p—1 2

= In |Q2xy(0)]. (D1)
Therefore, to prove that |Qxy(iy)| < |Qyy(0)], it suffices to
prove that g(iy) is monotonically decreasing in y fory = 0.
In the following, we prove this for any p € (0, 1).

Since g(w) is harmonic, for illustrative purposes we
use the language of electrostatics. From the expression of
Q(r,y) in Eq. (18) it is clear that on the boundary of S,
the potential g(w) is strictly decreasing in the direction
of increasing |y|. In the following, we use proof by con-
tradiction: if g(iy) is not monotonic in y for y = 0, then
there must exist yy,)» satisfying 0 < y1 <y < f(ip)/i
such that g(iy;) = q(iy;). Let I1,l; be the equipotential
lines passing through iy; and iy», respectively. Equipoten-
tial lines cannot terminate in free space, since otherwise
this would imply that there is an electric charge at the end
point. I; and /; cannot intersect anywhere, since, for exam-
ple, if they intersect at a point x + iy with x > 0,y > 0,
then by symmetry they also intersect at —x + iy, which
implies that /; and /; enclose a region in which g(w) is a
constant, which is impossible for a nonconstant harmonic
function. By similar logic (and using the mirror symme-
try with respect to the real axis), neither /; nor /; can
intersect with the real axis, so we can focus our attention
on the upper half plane. Furthermore, at most one of /4
and » can intersect with the boundary of S, since g(w)
is strictly decreasing in the direction of increasing |y| on
the boundary. Without loss of generality, suppose that /4
does not intersect the boundary. Then the only remaining
possibility is that /1 is a closed curve inside S,. But this
implies that g(w) is constant in the interior of /;, which is
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impossible for a nonconstant harmonic function. In con-
clusion, g(iy) must be monotonically decreasing in y for
y > 0. [t is straightforward to rule out the possibility of
q(iy) being monotonically increasing in y: since if that is
the case, there must existx,y with0 <x < f(p),0 <y <
f(ip)/isuch that g(x) = q(iy). Considering the equipoten-
tial curve passing through x, iy, —x, and —iy, we reach a
similar contradiction. ]
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