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Density control of interacting agent systems
Yongxin Chen

Abstract—We consider the problem of controlling the group behav-
ior of a large number of dynamic systems that are constantly interacting
with each other. These systems are assumed to have identical dynamics
(e.g., flocks of birds, UAV swarms) and their group behavior can be
modeled by a distribution. Thus, this problem can be viewed as an
optimal control problem over the space of distributions. We propose
a novel algorithm to compute a feedback control strategy so that, when
adopted by the agents, the distribution of them would be transformed
from an initial one to a target one over a finite time window. Our method
is built on the optimal transport theory but differs significantly from
existing work in this area in that our method models the interactions
among agents explicitly. From an algorithmic point of view, our algorithm
is based on the generalized proximal gradient descent algorithm and
has a convergence guarantee with a sublinear rate. We further extend
our framework to account for the scenarios where the agents are
from multiple species. In the linear quadratic setting, the solution is
characterized by a system of coupled Riccati equations which can be
solved in closed form. Finally, several numerical examples are presented
to illustrate our framework.

I. INTRODUCTION

Consider the swarm control [1], [2] task to establish and regulate
a formation of N drones (“agents”). There are two substantially
different angles from which one may consider this problem. A first
(straightforward) approach is to concatenate the states of all the
drones into one state vector and then formulate a control problem over
this joint state space. Suppose the state dimension of each individual
drone is d, then the dimension of the joint state space becomes Nd,
which scales linearly as the group size N increases. An alternative
approach is to treat the distribution of the drones as the state of a
system, and formulate a corresponding optimal control problem over
the space of distributions. One major difference between the two
approaches is that, in the former, each individual has a label and the
controller aims to jointly optimize the performance of each individual,
while in the latter, the individuals are indistinguishable, and only
the group behavior matters. Thus, when the optimality criteria only
involves the group behavior of individuals, the problem reduces to a
density control problem. In this formulation, the state is a probability
distribution and is independent of the group size N .

The density control problem is an optimal control problem over
distributions where the objective/cost function is fully determined
by the evolution of the distribution. The dynamics of the distribu-
tion of the group follows the Liouville equation if the individuals
have deterministic dynamics, or the Fokker-Planck equation if the
individual dynamics are stochastic, or the McKean-Vlasov equation
if the individuals interact with each other [3], [4]. In addition to
controlling the group behavior of a large number of individuals,
density control can also be used to deal with controlling the state
uncertainty of a single dynamical system. When a dynamical system
either has uncertainty in its initial state or is disturbed by random
process noise, the state remains uncertain and can be captured by
a probability distribution at each time point. Regulating the state
uncertainties of such systems is thus equivalent to controlling their
state distribution. The density control problem provides a more direct
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approach to achieving this goal than standard stochastic control theory
where an indirect cost needs to be properly handcrafted. The density
control framework has found applications in a range of areas [5], [6],
[7], [8], [9].

Two popular tools for density control are the optimal transport
(OT) theory [10] and the Schrödinger bridge theory [11], [12]. The
latter can be viewed as a regularized version of the former. The
minimum effort control between two specified distributions over a
finite time interval can be addressed using the OT theory if the
dynamics is deterministic and the Schrödinger bridge theory if the
dynamics are stochastic. This paradigm is suitable for controlling the
uncertainty of a single dynamical system. An important instance of it
is covariance control [13], [14], [15], [16], [17], [18], [6], [7] where
the distribution at each time point is parametrized by a Gaussian
distribution determined by its mean and covariance. The connections
between covariance control and the Schrödinger bridge have been
extensively studied in [14]. One major limitation of these existing
methods of density control for controlling group behaviors is that the
individuals in the group are assumed to be independent from each
other. Thus, important properties for swarm control such as collision
avoidance are not explicitly modeled in these methods. Indeed, when
these methods are applied for swarm control [19], [20], [21], [22],
[23], [9], the collision avoidance requirement is often ignored.

The goal of this work is to address density control problems
for controlling group behaviors when the individuals in the group
are constantly interacting with each other. We consider the scenario
where the interactions between every two agents are through an
interaction potential that is the same for each pair of agents. When
the number of individuals is large, the distribution of the individuals
solves the McKean-Vlasov equation. We propose to build on recent
work on mean-field Schrödinger bridges [24] which is a general-
ization of the Schrödinger bridge theory when the prior dynamics
are modeled by a McKean-Vlasov equation, and reformulate this
problem into an optimization over the space of path measures. With
proper discretization over space and time the problem becomes a
nonlinear version of the multi-marginal optimal transport (MOT)
[25], [26], [27]. To numerically solve this problem, we adopt the
proximal gradient algorithm [28], [29] to sequentially linearize the
nonlinear MOT and then take advantage of existing algorithms [26],
[27] for MOT for each iteration. We further extend our method to
the setting when multiple species are involved. Finally, in the linear
quadratic setting where the dynamics are linear and the cost function
is quadratic, we characterize the optimal solution via a system of
coupled Riccati equations and obtain the closed form solution.

The density control problem we consider is related to but differs
from three lines of research: mean-field games [4], [30], mean-field
type control [31], and mean-field optimal control [32]. In mean-
field games, each individual aims to minimize her own cost while in
density control the individuals have a common objective to optimize.
Mean-field type control is similar to mean-field optimal control; they
differ from each other in the type of dynamical systems they cover.
The former focuses on stochastic individual dynamics while the latter
focuses on deterministic dynamics. They can both be formulated
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as optimal control problems over the space of distributions, just
like the density control problem we study. The existing work on
mean-field type control and mean-field optimal control focuses on
theoretical questions such as the well-posedness of the problem
and the characterization of the optimal solution. Numerical studies
were only conducted under very strong assumptions such as linear
dynamics, quadratic cost, or first-order moment-based interaction
among the individuals. Also, in mean-field optimal control [32], the
control strategy is parametrized in a specific way so that the problem
becomes finding the optimal parameters. In contrast, the control
strategy we search for can be any function. Another major difference
between the density control problem and the three other problems
mentioned above is the control objective. In the density control
problem, an explicit target distribution constraint is imposed while
in the other three problems, a terminal cost is used to regularize the
collective dynamics. The target distribution constraint adds another
layer of complexity; this constraint is normally associated with an
unknown terminal cost that needs to be recovered in order to compute
the optimal control [14], [33].

The rest of the paper is organized as follows. In Section II we
briefly introduce the several tools that will be used in this work.
The main results on density control for interacting agent system are
presented in Section III. An extension to density control problems
involving multiple species is provided in Section IV. We investigate
the problem in the linear quadratic setting in Section V and obtain
a closed-form solution. Several numerical examples are presented in
Section VI to illustrate the proposed framework. This is followed by
a short concluding remark in VII.

II. BACKGROUND

In this section we introduce several mathematical tools on which
our density control framework is based, including optimal transport
and its generalizations, and the proximal gradient algorithm.

A. Optimal transport

Given two nonnegative measures µ, ν on Rd having equal total
mass (often assumed to be probability distributions), the Monge’s
formulation of optimal transport seeks a transport map T : Rd →
Rd : x 7→ T (x) from µ to ν in the sense T]µ = ν, that incurs
minimum cost of transportation

∫
c(x, T (x))µ(dx). Here, c(x, y)

stands for the transportation cost per unit mass from point x to y. The
dependence of the total transportation cost on T is highly nonlinear,
complicating early analyses to the problem [10]. This problem was
later relaxed by Kantorovich, where, instead of a transport map,
a joint distribution π on the product space Rd × Rd is sought.
Let Π(µ, ν) be the set of joint distributions of µ and ν, then the
Kantorovich formulation of OT reads

inf
π∈Π(µ,ν)

∫
Rd×Rd

c(x, y)π(dxdy). (1)

Both the Monge’s and the Kantorovich’s formulations are
“static” focusing on “what goes where.” It turns out that the OT
problem can also be cast as a dynamical problem with a temporal
dimension. In particular, when c(x, y) = 1

2
‖x − y‖2, OT can be

formulated as a stochastic control problem

inf
v∈V

E
{∫ 1

0

1

2
‖v(t, xv(t))‖2dt

}
, (2a)

ẋv(t) = v(t, xv(t)), (2b)

xv(0) ∼ µ, xv(1) ∼ ν. (2c)

Here V represents the family of admissible state feedback control
laws. Note that this control problem (2) differs from standard ones
in that the terminal constraint xv(1) ∼ ν, meaning xv(1) follows
distribution ν, is unconventional. In (2), the goal is to find an optimal
control policy to drive the system (2b) from an uncertain initial state
xv(0) ∼ µ to an uncertain target state xv(1) ∼ ν. The solution to
(2) specifies how to move mass over time from configuration µ to ν,
providing more resolution to the optimal transport plan.

Assuming xv(t) has a absolutely continuous distribution with
density ρt, ρt satisfies weakly1 the continuity equation

∂tρt +∇ · (vρt) = 0, (3)

and the total transport cost becomes

E
{∫ 1

0

1

2
‖v(t, xv(t))‖2dt

}
=

∫
Rd

∫ 1

0

1

2
‖v(t, x)‖2ρt(x)dtdx.

Thus, (2) is equivalent to [34]

inf
ρ,v

∫
Rd

∫ 1

0

1

2
‖v(t, x)‖2ρt(x)dtdx, (4a)

∂tρt +∇ · (vρt) = 0, (4b)

ρ0 = µ, ρ1 = ν. (4c)

The minimum is taken over all pairs (ρ, v) satisfying (4b)-(4c) and
some technical conditions, see [10, Theorem 8.1], [35, Chapter 8].

Suppose we have a large number of individuals that share the
same dynamics (2b) but are independent from each other. Assume
their initial states follow the same distribution µ, then (4) can be
viewed as an density control problem for this group whose objective
is to find a common control strategy so that it would reach target
distribution/configuration ν at time t = 1. The solution to (4) is
characterized by the coupled partial differential equations (PDEs)

∂tλ+
1

2
∇λT∇λ = 0

∂tρt +∇ · (ρt∇λ) = 0

ρ0 = µ, ρ1 = ν,

and the optimal control is v(t, x) = ∇λ(t, x).

B. Schrödinger bridges

In 1931/32, Schrödinger [36], [37] posed the following prob-
lem: A large number N of independent Brownian particles (whose
randomness is scaled by

√
ε) in Rd is observed to have an empirical

distribution approximately equal to µ at time t = 0, and at some
later time t = 1 an empirical distribution approximately equal to ν.
Suppose that ν differs from what it should be according to the law
of large numbers, namely∫

qε(0, x, 1, y)µ(dx),

where qε(s, x, t, y) = (2π)−d/2[ε(t − s)]−d/2 exp
(
− ‖x−y‖

2

2ε(t−s)

)
de-

notes the scaled Brownian transition probability density. It is apparent
that the particles have been transported in an unlikely way. But of
the many unlikely ways in which this could have happened, which
one is the most likely?

This problem can be understood in the modern language of large
deviation theory as a problem [38] of determining a probability law

1In the sense that
∫
[0,1]×Rd [(∂tf + v · ∇f)ρt]dtdx = 0 for smooth

functions f with compact support.
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P on the path space Ω = C([0, 1],Rd) that minimizes the relative
entropy (a.k.a., Kullback-Leibler divergence)2

KL(P‖Q) :=

∫
Ω

log

(
dP
dQ

)
dP. (5)

Here Q is the probability law induced by the Brownian motion and P
is chosen among probability laws that are absolutely continuous with
respect to Q and have the prescribed marginals. The solution to this
optimization is referred to as the Schrödinger bridge. Existence and
uniqueness of the minimizer have been proven in various degrees of
generality by Fortet [39], Beurling [40], Jamison [41], Föllmer [38].

It has been shown that the above Schrödinger’s problem can be
reformulated as the stochastic control problem [42]

inf
v∈V

E
{∫ 1

0

1

2
‖v(t,Xt)‖2dt

}
, (6a)

dXt = v(t,Xt)dt+
√
εdBt, (6b)

X0 ∼ µ, X1 ∼ ν. (6c)

Here V is the class of finite energy Markov controls. This reformula-
tion relies on the fact that the relative entropy between distributions
induced by the controlled and uncontrolled processes is

KL(P‖Q) = E
{∫ 1

0

1

2ε
‖v(t,Xt)‖2dt

}
.

The proof is based on Girsanov theorem, see [43], [44]. The problem
(6) has the following density control reformulation [45], [46]

inf
ρ,v

∫
Rd

∫ 1

0

1

2
‖v(t, x)‖2ρtdtdx, (7a)

∂tρt +∇ · (vρt)−
ε

2
∆ρt = 0, (7b)

ρ0 = µ, ρ1 = ν, (7c)

where the infimum is over smooth fields v and ρ that solve weakly
of the corresponding Fokker-Planck equation (7b).

Formulation (7) resembles the OT problem (4) except for the
presence of the Laplacian in (7b). It has been shown [47], [48], [49],
[11] that the OT problem is, in a suitable sense, indeed the limit of the
Schrödinger problem when the diffusion coefficient ε of the reference
Brownian motion goes to zero. On the other hand, the Schrödinger
bridge can be viewed as a regularized version of OT. Similar to (4),
the solution to (7) is characterized by the coupled PDEs

∂tλ+
1

2
∇λT∇λ+

ε

2
∆λ = 0 (8a)

∂tρt +∇ · (ρt∇λ)− ε

2
∆ρt = 0 (8b)

ρ0 = µ, ρ1 = ν, (8c)

and the corresponding optimal control policy is v(t, x) = ∇λ(t, x).

C. Multi-marginal optimal transport

Next we introduce discrete OT where the distributions have
discrete supports. In this setting, the marginals µ1 ∈ Rd1+ ,µ2 ∈ Rd2+

are nonnegative vectors with equal sum. The transport cost can be
rewritten in the matrix form C = [C(x1, x2)] ∈ Rd1×d2 where
C(x1, x2) represents the cost of moving a unit mass from x1 to x2.
Similarly, a transport plan is encoded in a joint probability matrix
B = [B(x1, x2)] ∈ Rd1×d2+ of µ1,µ2. The total transport cost is∑
x1,x2

C(x1, x2)B(x1, x2) = Tr(CTB) and the problem becomes

min
B∈Rd1×d2

+

Tr(CTB) subject to B1 = µ1, BT1 = µ2, (9)

2 dP
dQ denotes the Radon-Nikodym derivative between P and Q.

where 1 denotes a vector of ones of proper dimension.

Multi-marginal optimal transport (MOT) extends OT to the
setting involving multiple distributions. In particular, in MOT, one
seeks a transport plan among a set of marginals µ1, . . . ,µJ
with J ≥ 2. In the discrete setting, the transport cost is en-
coded in a tensor C = [C(x1, x2, . . . , xJ)] ∈ Rd1×d2×···×dJ
where C(x1, x2, . . . , xJ) denotes the unit cost associated with
(x1, x2, . . . , xJ), and the transport plan is described by a tensor
B ∈ Rd1×d2×···×dJ+ . For a transport plan B, the total cost is
〈C,B〉 :=

∑
x1,x2,...,xJ

C(x1, . . . , xJ)B(x1, . . . , xJ). Thus, sim-
ilar to (9), MOT has a linear programming formulation

min
B∈Rd1×···×dJ

+

〈C,B〉 subject to Pj(B) = µj , for j ∈ Γ, (10)

where Γ ⊂ {1, . . . , J} is an index set specifying given marginal
distributions, and the projection on the j-th marginal is defined by

Pj(B)=
∑

x1,...,xj−1,xj+1,...,xJ

B(x1, . . . , xj−1, xj , xj+1, . . . , xJ). (11)

A popular method to solve the OT problem is entropy regular-
ization, which adds an entropy term

H(B) = −
∑

x1,...,xJ

B(x1, . . . , xJ) logB(x1, . . . , xJ) (12)

to (10), resulting in the strictly convex optimization problem

min
B∈Rd1×···×dJ

〈C,B〉 − εH(B) subject to Pj(B) = µj , for j ∈ Γ

(13)
with ε > 0 being a regularization parameter. Invoking Lagrangian
duality, one can show that the optimal solution to (13) is

B = K�U, (14)

where � denotes element-wise multiplication,

K = exp(−C/ε), (15)

and U = u1 ⊗ u2 ⊗ · · · ⊗ uJ with the vectors uj ∈ Rdj being
associated with the Lagrange multipliers. The Sinkhorn algorithm
[50], [51], [52] iteratively updates the vectors uj according to

uj ← uj � µj ./Pj(K�U), (16)

for all j ∈ Γ. Here ./ denotes element-wise division. The Sinkhorn
algorithm has a global linear convergence guarantee [53], [54], [55],
[26]. Nevertheless, its complexity still scales exponentially as J
grows. The bottleneck of it lies in the calculation of the projections
Pj(B), j ∈ Γ in (11).

Recently it was discovered that the computation of MOT can
be greatly accelerated if the cost tensor C has a graphical structure
[27], that is, the cost tensor C can be decomposed as

C(x) = C(x1, x2, . . . , xJ) =
∑

(i,j)∈E

Cij(xi, xj), (17)

where E denotes the set of edges of an undirected graph G = (V,E).

The marginal constraints Pj(B) = µj for the graphical OT
problem can be imposed on any variable node j ∈ V . Consider the
entropy regularized MOT problem (13). When the cost C has form
(17), K in (15) equals

K = [K(x)] = [
∏

(i,j)∈E

Kij(xi, xj)]
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with Kij(xi, xj) = exp(−Cij(xi, xj)/ε). It follows that the optimal
solution (14) to the entropy regularized MOT problem (13) has a
graphical representation as

B=K�U=[K(x)U(x)]=

 ∏
(i,j)∈E

Kij(xi, xj)

(∏
j∈V

uj(xj)

) .
This is nothing but a probabilistic graphical model [56], and calcu-
lating the projection Pj(K�U) is exactly a Bayesian inference [56]
problem of inferring the j-th variable node over this graphical model.

When the graphical structure of C is a tree, we arrive at the
Sinkhorn belief propagation [27] algorithm (Algorithm 1), to solve
the MOT problem (13): applying the Sinkhorn algorithm and utilizing
the Belief Propagation algorithm [57] to carry out the computation
of Pj(K�U) with the current multiplier U. Here we have assumed,
without loss of generality, Γ is a subset of the leaf nodes [27]. The
algorithm relies on messages (known as beliefs) mi→j passed from
a node i to its neighbor j ∈ N(i) with N(i) denoting the set of all
the neighbors of i. Let j1, j2, . . . be a sequence taking values in Γ
in cyclic order and suppose the Sinkhorn algorithm is carried out in
this order, then after the k-th iteration, ujk is updated, and the only
projection required in the next iteration is Pjk+1(K�U). It suffices
to update the messages on the path from jk to jk+1 to evaluate
Pjk+1(K � U). Compared with standard Sinkhorn algorithm, the
acceleration of SBP is tremendous for MOT problems with a large
number of marginals; the Belief Propagation algorithm scales well for
large problem while the complexity of the brute force projection using
the definition (11) grows exponentially as the number of marginals
increases. Upon convergence of Algorithm 1, the solution to graphical
OT problem can be obtained through B = K�U with U = u1 ⊗
u2 ⊗ . . . ⊗ uJ , where uj = µj/mi→j , i ∈ N(j) for j ∈ Γ, and
uj = 1 otherwise. For general graphical structures, we convert it
into a tree first using the junction tree algorithm [56] and then apply
Algorithm 1 on the resulting junction tree. The complexity of the
algorithm depends on the node size of the junction tree, which scales
exponentially as the tree-width of the graph. For graphical structure
with small tree width, this algorithm is still efficient.

D. Proximal gradient algorithm

The proximal gradient algorithm [29] is an popular algorithm
for the composite optimization

min
y∈Y

F (y) +G(y), (19)

where Y denotes the feasibility set. The function F is assumed to
be smooth. The function G is usually a regularizer that is possibly
nonsmooth. The algorithm reads

yk+1 = argminy∈Y G(y) +
1

2η
‖y − (yk − η∇F (yk))‖2 (20a)

= argminy∈YG(y)+
1

2η
‖y−yk‖2+〈∇F (yk), y−yk〉(20b)

where η > 0 is the stepsize. One advantage of the proximal gradient
algorithm is that it only evaluates the gradient of F and doesn’t
require G to be differentiable. In many applications, G is a regularizer
of simple form, e.g., 1-norm, and the minimization (20) can be
implemented efficiently.

The proximal gradient algorithm has been generalized to the
non-Euclidean setting. It is built upon the mirror descent method
[28], [29]. Let D(·, ·) be a Bregman divergence, then the generalized
non-Euclidean proximal gradient algorithm reads

yk+1 = argminy∈Y G(y) +
1

η
D(y, yk) + 〈∇F (yk), y− yk〉. (21)

A popular choice of D(·, ·) is the Kullback-Leibler divergence
KL(·‖·), which is suitable for optimization over probability vec-
tors/distributions.

The (generalized) proximal gradient algorithm has nice conver-
gence properties. When both F and G are convex, the algorithm is
guaranteed to converge to the global minimum with rateO(1/k) [28],
[29]. When F is nonconvex, one can only expect for convergence to
local solutions. It turns out that objective function F (y) + G(y) is
monotonically decreasing along the updates, and the updates converge
to some stationary points with sublinear rate O(1/k) with respect to
some suitable criteria [58].

III. DENSITY CONTROL OF INTERACTING AGENT SYSTEMS

Consider a collection of N dynamical systems

dXi
t = − 1

N

N∑
j=1

∇W (Xi
t −Xj

t )dt+uitdt+
√
εdBit, i = 1, . . . , N,

(22)
where Xi

t ∈ Rd, uit ∈ Rd denote the state and control of agent
i respectively. The stochastic disturbance is modeled by a standard
Wiener process Bt and ε ≥ 0 captures the level of stochasticity
in the dynamics. The N agents interact with each other through
an interaction potential W , which is assumed to be continuously
differentiable and symmetric, i.e., W (x) = W (−x), ∀x. Clearly,
∇W (0) = 0. The Hessian of W is assumed to be bounded, from both
above and below [24]. We are interested in controlling the collective
dynamics of the individuals (22). Our goal is to find a common
feedback strategy for the N agents to steer them from an initial
group configuration to a target configuration over a finite time interval
[0, 1]3 with minimum effort. Let ξt(x) be the feedback strategy of
the agents, meaning uit = ξt(X

i
t). The cost function to minimize is

the average quadratic control effort

E

{∫ 1

0

1

2N

∑
i

‖ξt(Xi
t)‖2dt

}
.

In the mean field limit as N →∞, the group behavior can be
captured by a probability distribution

ρt ≈
1

N

N∑
i=1

δXi
t

with δx denoting the Dirac distribution, and this density evolves
according to the McKean-Vlasov equation [3]

∂tρt +∇ · (ρt(−∇W ∗ ρt + ξt))−
ε

2
∆ρt = 0. (23)

The average control effort is approximately∫ 1

0

∫
Rd

1

2
‖ξt(x)‖2ρt(x)dxdt.

The initial and target configurations can both be modeled by probabil-
ity distributions. Thus, in the mean field limit, our density/distribution
problem can be formulated as

inf
ρ,ξ

∫ 1

0

∫
Rd

1

2
‖ξt(x)‖2ρt(x)dxdt (24a)

∂tρt +∇ · (ρt(−∇W ∗ ρt + ξt))−
ε

2
∆ρt = 0 (24b)

ρ0 = µ, ρ1 = ν. (24c)

3We use the unit time interval [0, 1] to simplify the notation. A general
time interval can be transformed into [0, 1] by rescaling.
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Algorithm 1 Sinkhorn Belief Propagation (SBP) Algorithm

Input: Kij(xi, xj) = exp(−Cij(xi, xj)/ε), (i, j) ∈ E, marginals µj for j ∈ Γ. Initialize the messages mi→j(xj) to be 1
Let j1, j2, . . . be a sequence taking values in Γ in cyclic order

Output: uj = µj/mi→j , i ∈ N(j) for j ∈ Γ, and uj = 1 otherwise. Pj(K�U) ∝
∏
k∈N(j) mk→j , j /∈ Γ

while not converged do
Update mjk→i(xi), i ∈ N(jk) using

mj→i(xi) ∝
∑
xj

Kij(xi, xj)
µj(xj)

mi→j(xj)
, ∀xi (18a)

Update the rest of messages on the path from node jk to node jk+1 according to

mi→j(xj) ∝
∑
xi

Kij(xi, xj)
∏

k∈N(i)\j

mk→i(xi), ∀xj (18b)

end while

One can view this as an optimal control problem for a dynamical
system over the space of probability distributions with ρt being
the state. We note that while the control policy ξ is closed-loop in
individual level, it is open-loop for (24) where the distribution is the
state. We also note that one can in principle consider a more general
control strategy of the form

uit = ξt(X
i
t ,

1

N

N∑
i=1

δXi
t
),

implying the control for each individual should not only depend on
its state, but also the population distribution. In the mean field limit,
1/N

∑N
i=1 δXi

t
≈ ρt is determined by (23) and is a function of time

in the end. Thus, this general form of control does not make any
difference in the mean field limit. The dynamics is (24b) with state ρt
and control ξt. The constraints (24c) specify the initial and terminal
states. We seek an optimal strategy with minimum control effort to
steer the agents from an initial distribution µ to a target distribution
ν. A major difference between our density control problem (24) and
the mean-field type control problem [31] or the mean-field optimal
control problem [32] is the nonstandard terminal constraint ρ1 = ν.

Using the Lagrangian duality method, one can derive a charac-
terization of the solutions to (24). In particular, the optimal solution
to (24) can be characterized by the coupled PDEs

∂tλ+
1

2
∇λT∇λ−∇λT∇W ∗ ρt

−
∫
Rd

ρt(y)∇λ(y)T∇W (y − x)dy +
ε

2
∆λ = 0 (25a)

∂tρt +∇ · (ρt(−∇W ∗ ρt +∇λ))− ε

2
∆ρt = 0 (25b)

ρ0 = µ, ρ1 = ν, (25c)

where λ is the Lagrange multiplier associated with the continuity con-
straint (24b). Under the assumptions that W is symmetric, smooth,
and has bounded Hessian, and µ, ν have finite free energy, it is shown
in [24] that (25) admits a solution. The optimal control policy is a
state feedback

ξt(x) = ∇λ(t, x).

There are several potential approaches to compute an optimal
solution to the density control problem (24). For instance, the
optimality condition (25) can be viewed as the Pontryagin’s principle
for (24) when (24) is treated as an optimal control problem with state
ρt [59]. The multiplier λ then becomes the costate in the Pontryagin’s
principle [60], [61]. To get a solution to (25), one can use indirect
method such as shooting method [60], [61] that is widely adopted for
optimal control problems. However, due to the coupling between the

state ρt and the costate λ, the nonstandard terminal constraint ρ1 = ν,
and more importantly the fact that they are of infinite dimension, the
shooting method maybe unstable and is not guaranteed to converge.
Next we present a completely different approach to solve (24) based
on a reformulation.

A. Reformulation and Discretization

For a given feedback policy ξt, in the mean field limit, the dis-
tribution ρt of the individuals follows the McKean-Vlasov equation
(23) and is deterministic. Moreover, the interaction between agents
is of the form − 1

N

∑N
j=1∇W (Xi

t − Xj
t ) ≈ −∇W ∗ ρt, which

only depends on the group behavior. Thus, when N is sufficiently
large, the interactions between an agent with other agents becomes the
interaction between the agent and the deterministic group distribution
ρt. By the theory of propagation of chaos [62], the N agents become
effectively independent to each other and each of them follows the
same stochastic dynamics

dXt = −[∇W ∗ ρt](Xt)dt+ ξt(Xt)dt+
√
εdBt. (26)

Denote by P the distribution induced by (26) over the path
space Ω = C([0, 1],Rd), and by Q(P) be distribution induced by
the process

dXt = −[∇W ∗ ρt](Xt)dt+
√
εdBt, (27)

then by the Girsanov theorem [61], [44], following a similar argument
as in the Schrödinger bridge problem (5)-(7), we obtain

KL(P‖Q(P)) =

∫ 1

0

∫
Rd

1

2ε
‖ξt(x)‖2ρt(x)dxdt.

Note that we used Q(P) to emphasize the fact that Q depends on
the marginal flow of P , denoted by ρt = (Xt)]P = Pt.

Consequently, the density control problem (24) can be reformu-
lated as

min
P

KL(P‖Q(P)) (28a)

(X0)]P = µ, (X1)]P = ν. (28b)

This formulation (28) coincides with the mean field Schrödinger
bridge problem [24]. The equivalence between (24) and (28) is
rigorously justified in [24], extending the large deviation theory to
interacting particle systems. The major difference between (28) and
the standard Schrödinger bridge problem (5) lies in the fact that
the prior distribution Q in the former depends on the solution P ,
rendering a nonconvex optimization, in general, over the space of
path distributions.
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The optimization variable P of (28) is of infinite dimension.
To develop an implementable algorithm for (28), we first discretize
the problem in time ti = i/T, i = 0, 1, . . . , T as well as in space
over a grid. With this discretization, the path distribution P becomes a
(T +1)-dimensional tensor M with M(x0, x1, . . . , xT ) representing
the probability of the process P goes through a grid neighborhood of
(X0 = x0, X1/T = x1, . . . , X1 = xT ). In terms of M, the objective
function KL(P‖Q(P)) becomes

〈C(M),M〉+ ε〈M, logM〉

where

〈M, logM〉=
∑

x0,x1,...,xT

M(x0, x1, . . . , xT ) logM(x0, x1, . . . , xT ),

is the negative entropy −H(M), and C(M)(x0, x1, · · · , xT ) is the
minimum control effort to drive the deterministic version (ε = 0) of
(26) to go through the state x0, x1, · · · , xT . More explicitly, when
the discretization grid is sufficiently fine,

C(M)(x0, x1, · · · , xT )=

T−1∑
i=0

T

2
‖xi+1−xi+

1

T
[∇W∗Pi(M)](xi)‖2,

where Pi(M) denotes the marginal of M over xi and, by abuse of
notation, ∇W ∗ Pi(M) is a discretization of the convolution.

Thus, after discretization, (28) becomes

min
M

〈C(M),M〉+ ε〈M, logM〉 (29a)

P0(M) = µ, PT (M) = ν. (29b)

Here µ and ν denote the discretized version of µ and ν respectively.
This formulation (29) is akin to the MOT problem except that the
unit transport cost tensor C now depends on the optimization variable
M. This difference excludes the possibility of applying the Sinkhorn
type algorithm directly to solve (29). Next we develop an algorithm to
compute the solution to (29) by sequentially linearizing 〈C(M),M〉
and then solving the resulting MOT problems.

B. Proximal Sinkhorn Belief Propagation Algorithm

Denote Π(µ,ν) the set of M that is consistent with the
marginals µ,ν and F (M) = 〈C(M),M〉 then (29) reads

min
M∈Π(µ,ν)

F (M)− εH(M). (30)

This is a composite optimization over the probability simplex. We
can thus apply the generalized proximal gradient descent algorithm
to solve it. Surprisingly, when the Bregman divergence in (21) is
chosen to be the Kullback-Leibler divergence, each iteration of the
algorithm on the problem (30) takes the form

Mk+1 =argminM∈Π(µ,ν)〈∇F (Mk),M〉+ 1

η
KL(M‖Mk)−εH(M)

(31)
where η > 0 is the step size. Expanding the KL divergence term, the
above becomes

Mk+1 =argminM∈Π(µ,ν)〈∇F (Mk)− 1

η
logMk,M〉−(ε+

1

η
)H(M)

(32)
which is a standard entropy regularized multi-marginal optimal trans-
port problem (13) with cost tensor ∇F (Mk)− 1

η
logMk.

Proposition 1. The gradient of F (M) = 〈C(M),M〉 is

∇F (M) = C(M) + E(M) (33)

Algorithm 2 Proximal Sinkhorn Belief Propagation algorithm

Input: cost tensor C, regularization ε, stepsize η, number of
iterations K. Initialize M1 to be a uniform probability vector
1
Output: MK+1

for k = 1, 2, 3, . . . ,K do
Compute C(Mk) + E(Mk)− 1

η
logMk

Solve (35) using the Sinkhorn Belief Propagation algorithm
(Algorithm 1) to obtain Mk+1

end for

where E(M)(x0, x1, . . . , xT ) =
∑T−1
i=0 Ei(xi) with

Ei(y) =
∑

xi,xi+1

∇W (xi − y)T [xi+1 − xi +
1

T
∇W ∗ Pi(M)]

Pi,i+1(M)(xi, xi+1). (34)

Proof. See Appendix A.

Plugging (33) into (32) yields the proximal gradient iteration

Mk+1 = argminM∈Π(µ,ν)〈C(Mk) + E(Mk)− 1

η
logMk,M〉

−(ε+
1

η
)H(M). (35)

Note that both C(Mk) and E(Mk) have a graphical structure
associated with the line graph (Figure 1). Thus, assuming Mk has
the same graphical structure, the solution Mk+1 to (35) also has a
graphical structure corresponding to the line graph. Therefore, with
proper initialization, each iteration (35) can be solved efficiently
using the Sinkhorn Belief Propagation algorithm (Algorithm 1). We
thus establish our Proximal Sinkhorn Belief Propagation algorithm
(Algorithm 2) to solve (29). The Proximal Sinkhorn Belief Propaga-
tion algorithm inherits the convergent properties of proximal gradient
algorithm and converges to a solution with sublinear rate O(1/k).
Note that the problem (29) is in general non-convex and thus the
convergence is to a local solution.

x0 x1 xT−1 xT

Fig. 1: Graph for the graphical OT (35)

Theorem 1. Suppose the cost tensor C in (29) is bounded below.
Assume every iteration is solved by the Sinkhorn Belief Propagation
algorithm exactly. Then, the Proximal Sinkhorn Belief Propagation
algorithm converges to a local solution to (29) with sublinear rate
O(1/k).

Remark 2. Each iteration of our algorithm requires solving a graph-
ical OT problem using the Sinkhorn Belief Propagation algorithm.
Let D be the number of discretized grid points over space, then the
complexity of the Sinkhorn Belief Propagation is O(D2T ).

Remark 3. In the limit case where ε = 0, the stochastic disturbance
in the dynamics vanishes and agents become deterministic. Note that
Algorithm 2 applies to this deterministic setting.
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C. Optimal control strategy

The optimal control policy is ξt(x) = ∇λ(t, x). Once Algo-
rithm 2 converges, the corresponding control policy can be recovered
by solving the linear equation

∂tρt +∇ · (ρt(−∇W ∗ ρt +∇λ(t, ·)))− ε

2
∆ρt = 0.

More specifically,

gt := ∂tρt +∇ · (ρt(−∇W ∗ ρt))−
ε

2
∆ρt

can be estimated using the solution M? to (29). It follows that λ can
be recovered by solving the linear equation

∇ · (ρt∇λ(t, ·)) = −gt,

or more precisely the least square problem

min
λ
‖∇ · (ρt∇λ(t, ·)) + gt‖2.

An alternative approach is based on the fact that the optimal P
is associated with the stochastic process

dXt = −∇W ∗ Ptdt+∇λ(t,Xt)dt+
√
εdBt.

The joint distribution of Xi/T and X(i+1)/T of this process is
approximately

Pi/T (Xi/T )N (X(i+1)/T ;Xi/T

+[−(∇W ∗ Pi/T )(Xi/T ) +∇λ(i/T,Xi/T )]/T, ε/T ),

where N denotes a Gaussian distribution. On the other hand, it is
approximated by Pi,i+1(M?). Combining these two expressions we
can solve λ and thus the optimal control policy.

D. Extension to general dynamics and cost

In the above discussions, to better illustrate our density control
framework for interacting agent systems, we have restricted our
attention to the simple dynamics (22). Now we extend this framework
to more general dynamics4

dXi
t = − 1

N

N∑
j=1

∇W (Xi
t−Xj

t )dt+b(Xt)dt+σ(uitdt+
√
εdBit)

i = 1, . . . , N, (36)

where b(·) ∈ Rd is a continuous drift term and σ ∈ Rd×p is the
input matrix, and more general cost function∫ 1

0

∫
Rd

[
1

2
‖ξt(x)‖2 + V (x)]ρt(x)dxdt.

In the mean field limit, the density control problem can be formulated
as

inf
ρ,ξ

∫ 1

0

∫
Rd

[
1

2
‖ξt(x)‖2 + V (x)]ρt(x)dxdt (37a)

∂tρt+∇·(ρt(−∇W ∗ρt+b+σξt))−
ε

2

∑
i,k

∂2(aikρt)

∂xi∂xk
=0(37b)

ρ0 = µ, ρ1 = ν (37c)

where a = σσT .

The optimal strategy of (37) is

ξt(x) = σT∇λ(t, x)

4The dependence of b, σ over time is suppressed to simplify the notation.

where λ solves the PDEs

∂tλ+
1

2
∇λT a∇λ− V +∇λT b−∇λT∇W ∗ ρ

−
∫
ρ(y)∇λ(y)T∇W (y − x)dy +

ε

2
Tr(a∇2λ) = 0 (38a)

∂tρt+∇·(ρt(−∇W ∗ ρt+b+a∇λ))− ε
2

∑
i,k

∂2(aikρt)

∂xi∂xk
=0(38b)

ρ0 = µ, ρ1 = ν. (38c)

Following similar arguments as before we obtain an alternative
formulation

min
P

εKL(P‖Q(P)) +

∫
V dP (39a)

(X0)]P = µ, (X1)]P = ν, (39b)

where Q(P) is the distribution over the path space associated with
the diffusion process

dXt = −[∇W ∗ Pt](Xt)dt+ b(Xt)dt+
√
εσdBt. (40)

The same as (29), after discretization over space and time, the
problem can be written as

min
M∈Π(µ,ν)

〈C(M),M〉+ ε〈M, logM〉, (41)

but with a slightly different cost tensor

C(M)(x0, x1, · · · , xT ) =
1

T

T−1∑
i=0

V (xi)

+

T−1∑
i=0

T

2
‖xi+1 − xi +

1

T
∇W ∗ Pi(M)− 1

T
b(xi)‖2.(42)

Let F (M) = 〈C(M),M〉, then the above becomes a compos-
ite optimization (30) and can be solved using the proximal gradient
algorithm. The derivation is similar to that of Proposition 1 and is
omitted.

Proposition 2. The gradient of F (M) = 〈C(M),M〉 with C in
(42) is

∇F (M) = C(M) + E(M)

where E(M)(x0, x1, . . . , xT ) =
∑T−1
i=0 Ei(xi) with

Ei(y) =
∑

xi,xi+1

∇W (xi − y)T [xi+1 − xi +
1

T
∇W ∗ Pi(M)

− 1

T
b(xi)]Pi,i+1(M)(xi, xi+1).

The proximal Sinkhorn belief propagation algorithm can be
applied directly to solve (41) with a small modification on the
expression of E(M) as in Proposition 2.

IV. DENSITY CONTROL WITH MULTIPLE SPECIES

In this section, we extend our density control framework to
account for the collective dynamics with multiple species. Consider
a group of individuals comprised of L species and each has N agents.
The dynamics of the i-th agents in the `-th species is

dXi
`,t = − 1

N

L∑
m=1

N∑
j=1

∇W`m(Xi
`,t −Xj

m,t)dt+ b`(X
i
`,t)dt

+σ(ui`,tdt+
√
εdBi`,t), i = 1, . . . , N,
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where Xi
`,t and ui`,t denote the state and control of the i-th agents

in the `-th species respectively. The interaction potential between
species ` and species m is assumed to be continuously differentiable
and symmetric in the sense W`m(x) = W`m(−x) = Wm`(x) =
Wm`(−x). We seek L feedback policies, one for each species, such
that, when they are adopted by the individuals, the group would be
transformed from one configuration to another.

In the mean field region, denoting the initial distribu-
tion/configuration of species ` by µ`, and its target distribution by
ν`, this density control problem can be formulated as

inf
ρ1,...,ρL
ξ1,...,ξL

L∑
`=1

∫ 1

0

∫
Rd

[
1

2
‖ξ`,t(x)‖2 + V`(x)]ρ`,t(x)dxdt (43a)

∂tρ`,t+∇·(ρ`,t(−
∑
m

∇W`m ∗ ρm,t + b` + σξ`,t))

− ε
2

∑
i,k

∂2(aikρ`,t)

∂xi∂xk
= 0, ` = 1, 2, . . . , L (43b)

ρ`,0 = µ`, ρ`,1 = ν`, ` = 1, 2, . . . , L, (43c)

where ρ`,t denotes the distribution of the `-th species. The constraints
(43b) is a generalization of (37b) to the multi-species setting describ-
ing the distribution evolution of each species. The optimal solution
to (43) can be characterized by the PDEs

∂tλ` +
1

2
∇λT` a∇λ`−V` +∇λT` b`−∇λT`

∑
m

∇W`m∗ρm,t(44a)

−
∑
m

∫
ρm,t(y)∇λm(y)T∇Wm`(y − x)dy+

ε

2
Tr(a∇2λ`) = 0

∂tρ`,t +∇ · (ρ`,t(−
∑
m

∇W`m ∗ ρm + b` + a∇λ`))

− ε
2

∑
i,k

∂2(aikρ`,t)

∂xi∂xk
= 0 (44b)

ρ`,0 = µ`, ρ`,1 = ν` (44c)

for all ` = 1, 2, . . . , L. Here λ1, λ2, . . . , λL are Lagrange multipliers
associated with the constraints (43b) for ` = 1, 2, . . . , L. The
corresponding optimal control policy for the `-th species is

u`,t = σT∇λ`(t,X`,t).

To develop an efficient algorithm for (43), we reformulate it as
an optimization over the path measures. More specifically, denote by
P` the distribution on the path space induced by species `, then
following a similar argument as before, we obtain the following
reformulation

min
P1,...,PL

L∑
`=1

{
εKL(P`‖Q`(P1, · · · ,PL)) +

∫
V`dP`

}
(45a)

(X0)]P` = µ`, (X1)]P` = ν`, ` = 1, 2, . . . , L. (45b)

Here the distribution Q` is induced by the diffusion process

dXt = −
∑
m

[∇W`m ∗ Pmt ](Xt)dt+ b`(Xt)dt+
√
εσdBt,

which clearly depends on P1,P2, · · · ,PL.

Discretizing the problem over space and time, the optimization
variables become L tensors M`, ` = 1, 2, . . . , L and the optimization

problem becomes

min
M1,··· ,ML

L∑
`=1

{〈C`(M1, . . . ,ML),M`〉+ ε〈M`, logM`〉} (46a)

P0(M`) = µ`, PT (M`) = ν`, ` = 1, 2, . . . , L, (46b)

where the cost tensor for the `-th species is

C`(M1, . . . ,ML)(x0, x1, · · · , xT ) =

T−1∑
i=0

1

T
V`(xi)

+

T−1∑
i=0

T

2
‖xi+1 − xi +

1

T

∑
m

∇W`m ∗ Pi(Mm)− 1

T
b`(xi)‖2.

A more compact form of the above problem can be obtained
by combining the L optimization variables M1,M2, · · · ,ML into
a single variable M. More precisely, we denote by M the T + 2
dimensional tensor where the index for the first dimension is `.
Similarly, we combine C1,C2, . . . ,CL into C where

C(M)(`, x0, x1, · · · , xT ) =

T−1∑
i=0

1

T
V`(xi) + (47)

T−1∑
i=0

T

2
‖xi+1−xi+

1

T

∑
m

[∇W`m ∗ P−1,i(M)](`, xi)−
1

T
b`(xi)‖2.

In the above, we adopt an unconventional notation P−1,i(M) to
denote the marginal of M over (`, xi). In terms of M,C, the above
optimization (46) can be rewritten as

min
M

〈C(M),M〉+ ε〈M, logM〉 (48a)

P−1,0(M) = µ, P−1,T (M) = ν (48b)

with µ = [µ1, . . . ,µL]T and ν = [ν1, . . . ,νL]T .

Clearly, (48) is akin to (29). We now utilize the proximal
gradient descent to solve it. Denote the set of M satisfying the
constraints (48b) by Π(µ,ν) and F (M) = 〈C(M),M〉, then each
iteration of the proximal gradient descent reads

Mk+1 = argminM∈Π(µ,ν)〈∇F (Mk)− 1

η
logMk,M〉

−(ε+
1

η
)H(M). (49)

Proposition 3. The gradient of F (M) = 〈C(M),M〉 with C in
(47) is

∇F (M) = C(M) + E(M) (50)

where E(M)(`, x0, x1, . . . , xT ) =
∑T−1
i=0 Ei(`, xi) with

Ei(`, y) =
∑

m,xi,xi+1

∇W`m(xi − y)T [xi+1 − xi + (51)

1

T

∑
n

∇W`n ∗ P−1,i(M)− 1

T
b`(xi)]P−1,i,i+1(M)(`, xi, xi+1).

Proof. See Appendix B.

Plugging (50) into (49) yields

Mk+1 = argminM∈Π(µ,ν)〈C(Mk) + E(Mk)− 1

η
logMk,M〉

−(ε+
1

η
)H(M). (52)
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Apparently, both C(M) in (47) and E(M) in (50) have a graphical
structure associated with the graph shown in Figure 2. Assume Mk

shares the same graphical structure, then the solution Mk+1 to (52)
also has this graphical structure. Thus, with proper initialization, the
graphical structure (Figure 2) is preserved through the iteration (52).
Each iteration (52) is a graphical OT problem and can be solved using
a (generalized) SBP algorithm. Thus, the Proximal Sinkhorn Belief
Propagation algorithm (Algorithm 2) is applicable to the density
control problem with multiple species as long as the SBP subroutine
is tailored for the graphical structure in Figure 2.

`

x1x0 xT−1 xT

Fig. 2: Graph for graphical OT (52)

Remark 4. In the multi-species setting, the SBP algorithm is applied
to the graphical OT in Figure 2. The computation complexity for each
outer iteration becomes O(D2LT ).

Remark 5. Even though in (43) the object cost is decoupled into L
separate terms, each corresponds to one species, it is straightforward
to generalize the method to include cost such as

∫ 1

0

∫
V (x)ρtdxdt

that depends on the group behavior of all the individuals.

V. LINEAR QUADRATIC CASES

A special case of particular interest is the linear quadratic
density control problem where the dynamics of the individuals are
linear and the costs are quadratic. That is, in the linear quadratic
setting, b`,Wm`, V` are of the form

b`(x) = A`x, (53a)

Wm`(x) =
1

2
xT Ām`x, with Ām` = ĀTm` = Ā`m, (53b)

and
V`(x) =

1

2
xTQ`x. (53c)

rendering linear dynamics for each individual

dXi
`,t = − 1

N

∑
m

∑
j

Ā`m(Xi
`,t −Xj

m,t)dt+A`X
i
`,tdt

+σ(ui`,tdt+
√
εdBi`,t), i = 1, . . . , N, (54)

and quadratic cost in the mean field limit
L∑
`=1

∫ 1

0

∫
Rd

[
1

2
‖ξ`,t(x)‖2 +

1

2
xTQ`x]ρ`,t(x)dxdt. (55)

When the feedback strategies ξ`,t are linear and the initial
distributions are Gaussian, the distribution ρ`,t, ` = 1, . . . , L of
the populations remain Gaussian all the time. Thus, we assume the
marginal distributions are Gaussian, denoted by

µ` = N (m0
` ,Σ

0
`), ν` = N (m1

` ,Σ
1
`), ` = 1, . . . , L.

When there is no interaction between the individuals, the problem
reduces to the covariance control [14]. The coupling of the agents
introduces extra complexities. Recently, the linear quadratic density
control problem for one species (L = 1) has been addressed in [63].

We next present the solution when multiple species are involved.
To this end, we parametrize the Gaussian distributions ρ` by

ρ`,t = N (m`(t),Σ`(t)). (56)

Just as standard linear quadratic optimal control, the Lagrange
multipliers λ1, λ2, . . . , λL in (44) are quadratic, denoted by

λ`(t, x) = −1

2
xTΠ`(t)x+ n`(t)

Tx+ c`(t). (57)

Plugging (53), (56) and (57) into the optimality condition (44) yields
a coupled equation system (for all ` = 1, 2, . . . , L)

Π̇`−Π`σσ
TΠ`+Q`+(A`−

∑
m

Ā`m)TΠ`

+Π`(A`−
∑
m

Ā`m)=0 (58a)

Σ̇` − (A`−
∑
m

Ā`m − σσTΠ`)Σ`−Σ`(A` −
∑
m

Ā`m − σσTΠ`)
T

−εσσT = 0 (58b)

Σ`(0) = Σ0
` , Σ`(1) = Σ1

` , (58c)

ṅ` + (A` −
∑
m

Ā`m − σσTΠ`)
Tn` +

∑
m

Ā`mnm

−
∑
m

(Π`Ā`m + Ā`mΠm)mm = 0 (58d)

ṁ`−(A`−
∑
m

Ā`m−σσTΠ`)m`−
∑
m

Ā`mmm−σσTn` = 0 (58e)

m`(0) = m0
` , m`(1) = m1

` . (58f)

In the above, (58b) and (58e) are associated with the Fokker-
Planck equation (44b). To see this, note that in the mean field limit
each individual in the `-th species, under control policy σT∇λ`,
follows the dynamics

dXt = (A` −
∑
m

Ā`m − σσTΠ`)Xtdt+
∑
m

Ā`mmmdt

+σσTn`dt+
√
εσdBt.

For this linear dynamics, the Fokker-Planck equation (44b) reduces
to the Lyapunov equation (58b) for the covariance and a differential
equation (58e) for the mean dynamics. The PDE (44a) becomes (58a)
and (58d). In particular, (58a) is a Riccati equation.

It turns out that (58) has a closed-form solution. First we observe
that (58) is that Π`,Σ` can be solved from (58a)-(58c) and are
independent of the value of n`,m`. Moreover, the equations for
Π`,Σ` are independent to each other for different species `. Thus,
each pair Π`,Σ` can be computed separately. Note that the boundary
conditions in (58c) for the coupled differential equations (58a)-(58c)
are not conventional; the boundary values of Σ` are given on both end
while no boundary value for Π` is provided. Nevertheless, closed-
form solutions to (58a)-(58c) can be obtained. Let

H`(t) = εΣ`(t)
−1 −Π`(t),

then (58a)-(58c) become a coupled Riccati equation system

Π̇`−Π`σσ
TΠ`+Q`+(A`−

∑
m

Ā`m)TΠ`+Π`(A`−
∑
m

Ā`m)=0

Ḣ`+H`σσ
TH`−Q`+(A`−

∑
m

Ā`m)TH`+H`(A`−
∑
m

Ā`m)=0

Π`(0) + H`(0) = ε(Σ0
`)
−1, Π`(1) + H`(1) = ε(Σ1

`)
−1.
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This is exactly the characterization of the covariance control problem
[14] for the dynamics

dXt = (A` −
∑
m

Ā`m)Xtdt+ σ(utdt+
√
εdBt). (59)

Assume (59) is controllable, then the above Riccati equation system
allows a unique solution in closed-form. We refer the reader to [14]
for the exact expression for the closed-form solution.

Once Π`,Σ` are computed, we can plug them into (58d)-(58f)
to solve for n`,m`. These are standard linear equations and can be
solved efficiently. Once the solution to (58a)-(58f) is obtained, we
can recover the optimal control as

ξ`,t(x) = −σTΠ`(t)x+ σTn`(t), (60)

which is a linear state feedback.

VI. NUMERICAL EXAMPLES

In this section we provide several numerical examples to
illustrate the proposed framework on density control of interacting
agent systems. In the first example, we demonstrate the solution to
the density control problem in the linear quadratic setting for both
single species and multiple species can steer the agents to target
distributions. In the second example, we illustrate how a general
interacting particle system evolve from an initial configuration to a
target configuration.

A. Linear quadratic density control

We first consider N agents of the same species interacting with
each other through the dynamics (54) with

A1 =

[
0 1
0 0

]
, Ā11 =

[
0 0
0 0.5

]
,

and σ = [0 1]T . Each agent alone has a trivial second order
dynamics. The choice of Ā11 corresponds to an interaction potential
that synchronizes the velocities of the agents. The noise intensity ε is
set to be 1 and Q1 = I . Our goal is to find a global feedback policy
so that the distribution of the agents is transformed from

µ1 = N (

[
1
1

]
,

[
0.25 0

0 0.25

]
)

to

ν1 = N (

[
1.5
0.8

]
,

[
0.5 0
0 0.1

]
).

Figure 3 depicts the 3−σ confidence level of the Gaussian distribution
of the agents. The states of the agents should be inside this envelope
with probability 99.73%. We also plot several typical trajectories of
the agents, which stay inside the envelop as expected.

We next add another species to it. Let

A2 =

[
0 1
0 0

]
, Ā22 =

[
0 0
0 0.5

]
,

and the interaction matrix between the two species be

Ā12 = Ā21 =

[
−0.5 0

0 0

]
.

The choice of Ā12 imposes a repulsive potential between the agents
of the two species in position. Set Q2 = I . The two marginal
distributions of the second species is set to be

µ2 = N (

[
−2
−2

]
,

[
0.25 0

0 0.25

]
)

Fig. 3: Covariance evolution of interacting agents under optimal
control

and

ν2 = N (

[
−1
−0.8

]
,

[
0.25 0

0 0.1

]
).

As before, we show the 3−σ confidence envelope of the distributions
of both species in Figure 4, together with some typical trajectories
of the agents. It is clear from Figure 4 that the behavior of the first
species is affected by the second one with the tendency to stay away
from the second species.

Fig. 4: Covariance evolution of interacting agents from two species
under optimal control

B. Density control for general dynamics

In this example we consider N agents in one dimensional space
whose dynamics are described by (36) with

W (x) =
β

|x|α , b(x) = 0, σ = 1, ε = 0.1.

That is, each agent alone is a first order integrator but they are affected
by each other through the repulsive potential W . Our goal is to steer
the distribution of the agents from a bimodal initial distribution to a
unimodal target distribution. For simplicity, we set V (·) ≡ 0. Thus
the objective function is the total control effort.

The evolution of the agent distribution under optimal control
policy is depicted in Figure 5-8 for different values of α and β.
When there is no interaction (β = 0) among the agents, the solution
(Figure 5) corresponds to a standard Schrödinger bridge problem as
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expected. As we increase the repulsive potential (increase α or β), the
agents spread out more quickly in between due to the repulsive force.
For all choices of parameters, the agents are able to transit from the
bimodal initial distribution to the unimodal target distribution.

Fig. 5: Density evolution under optimal control with β = 0

Fig. 6: Density evolution under optimal control with α = 0.15, β = 2

Fig. 7: Density evolution under optimal control with α = 0.2, β = 1

VII. CONCLUSION

We studied a swarm control problem for a large group of agents
that are constantly interacting with each other. We considered the
problem in the mean field limit and formulate it as a density control

Fig. 8: Density evolution under optimal control with α = 0.2, β = 2

problem. We further reformulated it as a nonlinear multi-marginal
optimal transport problem with proper discretization. Leveraging the
proximal gradient framework, we were able to compute the solution
via iteratively linearizing the problem and solving the linearized prob-
lems with the Sinkhorn belief propagation algorithm. We extended
our framework to account for swarm control with multiple species.
Finally, we provided a closed-form solution to the density control
problem in the linear quadratic setting. One limitation of the proposed
algorithm is that it requires discretizing the state space, making it
impractical for high-dimensional problems. In the future, we plan
to extend our algorithm to particle-based discretization so that it has
better scalability in state dimensions. Another limitation of the present
work is that it assumes no boundary condition in the state space. How
to incorporate explicit boundary conditions to density control is also
an interesting problem to investigate in the future.

APPENDIX

A. Proof of Proposition 1

By Taylor expansion,

F (M + δM)− F (M) = 〈∇F (M), δM〉+H.O.T.,

where H.O.T. includes all the higher order terms. It follows that

〈∇F (M), δM〉 = 〈C(M), δM〉

+

T−1∑
i=0

T 〈 1

T
(∇W ∗ Pi(δM))T (xi+1 − xi+

1

T
∇W ∗ Pi(M)),M〉.

The second term on the right hand side equals

T−1∑
i=0

〈(∇W ∗ Pi(δM))T (xi+1− xi+
1

T
∇W ∗ Pi(M)), Pi,i+1(M)〉

=

T−1∑
i=0

〈δM, Ei(xi)〉

where Ei is as in (34). Hence,

〈∇F (M), δM〉 = 〈C(M), δM〉+ 〈E(M), δM〉,

with E(M)(x0, x1, . . . , xT ) =
∑T−1
i=0 Ei(xi), and therefore

∇F (M) = C(M) + E(M).
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B. Proof of Proposition 3

By definition,

〈∇F (M), δM〉=〈C(M),δM〉+
T−1∑
i=0

T 〈 1

T
(
∑
m

∇W`m∗P−1,i(δM))T

(xi+1 − xi +
1

T

∑
n

∇W`n ∗ P−1,i(M))− 1

T
b`(xi),M〉.

The second term on the right hand side equals
T−1∑
i=0

〈(
∑
m

∇W`m ∗ P−1,i(δM))T (xi+1 − xi

+
1

T

∑
n

∇W`n ∗ P−1,i(M))− 1

T
b`(xi), P−1,i,i+1(M)〉

=

T−1∑
i=0

〈δM, Ei(`, xi)〉

where Ei is as in (51). Hence,

〈∇F (M), δM〉 = 〈C(M), δM〉+ 〈E(M), δM〉,

with E(M)(`, x0, x1, . . . , xT ) =
∑T−1
i=0 Ei(`, xi).
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