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Many-body chemical reactions in a quantum 
degenerate gas

Zhendong Zhang    , Shu Nagata, Kai-Xuan Yao     & Cheng Chin     

Chemical reactions in the quantum degenerate regime are described by the 
mixing of matter-wave fields. In many-body reactions involving bosonic 
reactants and products, such as coupled atomic and molecular Bose–
Einstein condensates, quantum coherence and bosonic enhancement are 
key features of the reaction dynamics. However, the observation of these 
many-body phenomena, also known as ‘superchemistry’, has been elusive 
so far. Here we report the observation of coherent and collective reactive 
coupling between Bose-condensed atoms and molecules near a Feshbach 
resonance. Starting from an atomic condensate, the reaction begins with the 
rapid formation of molecules, followed by oscillations of their populations 
during the equilibration process. We observe faster oscillations in samples 
with higher densities, indicating bosonic enhancement. We present a 
quantum field model that captures the dynamics well and allows us to 
identify three-body recombination as the dominant reaction process. Our 
findings deepen our understanding of quantum many-body chemistry and 
offer insights into the control of chemical reactions at quantum degeneracy.

Ultracold atoms and molecules form an ideal platform towards con-
trolling chemical reactions at the level of single internal and external 
quantum states. Ultracold molecules can be prepared in an individual 
internal state by, for example, the magnetoassociation1 and photoas-
sociation2 of ultracold atoms and direct laser cooling3. The external 
motion of molecules can be constrained by loading them into optical 
lattices4 or tweezers5. These experiments lead to the realization of 
state-to-state ultracold chemistry6–8.

A number of experiments on cold molecules have reached the 
regime of quantum degeneracy, which promise new forms of molecu-
lar quantum matter and reaction dynamics. For instance, molecular 
Bose–Einstein condensates (BECs) formed in atomic Fermi gases have 
stimulated tremendous interest in the BEC-to-Bardeen–Cooper–Schri-
effer crossover9,10. Degenerate fermionic molecules are created by the 
magnetoassociation of bosonic and fermionic atoms and optical tran-
sitions to the lowest rovibrational state11. Here quantum degeneracy 
suppresses chemical reactions due to the fermion antibunching effect11.

Recently, molecular BECs have been realized based on atomic BECs 
near a Feshbach resonance12. The reactive coupling between condensed 
atoms and molecules promises a new regime of quantum chemistry, 
dubbed ‘quantum superchemistry’, which highlights the coherent 

coupling of macroscopic matter waves and Bose stimulation of the 
reaction process13,14. A key feature of this coherence is the collective 
oscillations between the reactant and product populations. Because 
of Bose statistics, the collective enhancement of reaction dynamics is 
anticipated near a Feshbach resonance15.

At quantum degeneracy, the reaction dynamics fundamentally 
arise from the mixing of the matter-wave fields of the reactants and 
products. For instance, consider Feshbach coupling that converts two 
atoms into one molecule and vice versa, described by the chemical 
equation: A + A ↔ A2. In a quantum gas, the reaction is described by the 
many-body Hamiltonian with the reaction order α = 3:

̂H = εmψ̂†
mψ̂m + g2ψ̂†

mψ̂2a + g2ψ̂†2
a ψ̂m, (1)

where ψ̂a (ψ̂m) is the atomic (molecular) field operator, g2 is the Feshbach 
coupling strength and εm is the energy of one bare molecule relative 
to two bare atoms. Here we define the reaction order α as the maximum 
number of field operators in reaction terms.

Another prominent example that couples ultracold atoms 
and molecules is three-body recombination, where three colliding 
atoms are converted into a diatomic molecule and another atom, 
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Cs2 molecules near an atomic Feshbach resonance. The reaction is 
initiated by tuning the magnetic field near a narrow g-wave Feshbach 
resonance, which couples scattering atoms and diatomic Feshbach 
molecules in a single high-lying rovibrational state bounded by 
van der Waals potential (Methods). Near the resonance, atomic and 
molecular populations quickly relax towards a dynamical equilibrium, 
followed by coherent oscillations between atoms and molecules in 
the equilibration process. We show that the oscillation frequency 
strongly depends on the particle number. From the dependence, we 
conclude that three-body recombination is the dominant reaction 
process that couples the atomic and molecular fields near the Feshbach  
resonance.

Our experiment starts with an ultracold Bose gas of 6 × 103 to 5 × 105 
caesium atoms in an optical trap. The atoms can form a pure BEC either 
in a three-dimensional harmonic potential or a two-dimensional (2D) 
square well potential18. We induce the reaction by switching the mag-
netic field near the g-wave Feshbach resonance, which can convert an 
atomic BEC into a molecular BEC12. We determine the resonance posi-
tion B0 = 19.849(2) G, resonance width ΔB = 8.3(5) mG and relative mag-
netic moment δμ = h × 0.76(3) MHz G–1, where h is the Planck constant, 
from the measurements of molecular binding energy εm ≈ δμ(B − B0) 
and the scattering length (Methods). After the reaction, we decouple 

and vice versa. This process is described by the chemical equation 
A + A + A ↔ A2 + A. At quantum degeneracy, the recombination process 
can resonantly couple atomic and molecular fields as

̂h3 = g3ψ̂†
mψ̂

†
aψ̂3a + g3ψ̂†3

a ψ̂aψ̂m, (2)

where g3 is the recombination coupling strength. Here the reaction 
order is α = 5.

To understand the dynamics of the coupled quantum fields, we 
present the following picture. We show that the molecular population 
̂Nm = ψ̂†

mψ̂m follows the form of an ‘energy conservation’ law as

ℏ2
2

̇ ̂N
2
m + V( ̂Nm) = const., (3)

where ℏ2 ̇ ̂N
2
m/2  resembles the kinetic energy and we introduce the 

many-body reaction potential ̂V = [ ̂Nm, ̂H] 2/2 + const. (Supplementary 
Information), which connects the reactants and products. In this pic-
ture, the system tends towards a lower potential. Quantum fluctuations 
of the nonlinear field coupling, however, can effectively damp the 
dynamics of the populations16,17. In experiments, damping can also 
come from inelastic scattering and coupling to a thermal field. Thus, 
one expects that the system first relaxes towards the potential mini-
mum, and then equilibrates near the minimum with small-amplitude 
coherent oscillations (Fig. 1). In the thermodynamic limit with total 
particle number N ≫ 1, the reaction potential and oscillation frequency 
near the minimum scale with the particle number as V ∝ Nα and 
ω0 ∝ N(α/2)−1. The dependence on the particle number signals the bosonic 
enhancement of the reaction dynamics13,16.

In this paper, we report the observation of coherent and 
Bose-stimulated reactions between Bose-condensed Cs atoms and 
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Fig. 2 | Comparison of molecule formation rate in classical and quantum 
degenerate regimes. a, Dynamics of molecule formation in an atomic gas after 
quenching the magnetic field 3(2) mG above the Feshbach resonance at 
B0 = 19.849(2) G. The solid lines are fits to the data in the initial growth stage for the 
extraction of molecule formation rate Ṅm. b, Extracted molecule formation rate 
coefficient β above and below the critical temperature Tc. The red line is a fit to the 
data based on the classical kinetic theory prediction β = bClΓCl, from which we 
obtain the classical branching ratio bCl = 7(1)% (see the main text). The blue line fits 
the data in the quantum regime with β = bQΓQ, which gives the quantum branching 
ratio bQ = 3.9(3)% (see the main text). The inset shows the rate coefficient 
normalized to the classical gas expectation ΓCl. In a, the error bars represent one 
standard deviation of the mean, estimated from 4–8 measurements. In b, the error 
bars represent 95% confidence intervals of the mean.
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the atoms and molecules by quickly tuning the magnetic field far off 
the resonance and image each independently12.

To show that chemical reactions follow different rules in a degener-
ate quantum gas versus a normal gas, we compare the molecule produc-
tion rate for samples prepared above and below the BEC critical 
temperature Tc. To describe the molecular formation dynamics in the 
transition from the classical to quantum degenerate regime, we present 
the molecule production rate in terms of β = Ṅm/N0n0 right after the 
magnetic-field quench, where N0 and n0 are the initial total atom num-
ber and mean atomic density, respectively (Fig. 2).

The measured molecule formation rate shows a distinct behav-
iour in the two regimes. In a thermal gas with temperature T > Tc, the 
molecule formation rate is β = bClΓCl, where ΓCl is the classical atomic 
collision rate coefficient and bCl is the classical branching ratio that 
represents the probability of molecule formation from each collision 
event. Near the resonance, the collision rate coefficient is unitarity 
limited as ΓCl = 8h2(π3m3kBT)–1/2 (ref. 19), where m is the atomic mass and 
kB is the Boltzmann constant. Our measurement in the thermal regime 
is consistent with T−1/2 scaling. From the fit, we extract the branching 
ratio bCl = 7(1)% (Fig. 2b).

Entering the quantum degenerate regime T < Tc, we observe a steep 
drop in the rate coefficient (Fig. 2b). At low temperatures, we model 
the rate coefficient as β = bQΓQ, where bQ and ΓQ = 4√3(h/m)(6π5n)

−1/3
 

are the branching ratio and rate coefficient predicted by the universal 

theory in the quantum regime, respectively20,21. The model fits the 
measurement well, and we extract the branching ratio to be bQ = 3.9(3)%. 
The sharp transition of the molecule formation rate around critical 
temperature Tc indicates different laws in the classical and quantum 
degenerate regimes. The suppression of the reaction rate in atomic 
BECs can be attributed to the suppression of correlations in the con-
densed phase22, as well as strong interactions between atoms and 
molecules across the Feshbach resonance.

A close examination of the molecule formation dynamics in atomic 
BECs reveals additional interesting features of quantum many-body 
reactions. To understand the underlying reaction processes, we study 
the atom loss rate γa = −Ṅa/N0 right after switching the magnetic field, 
where Na is the atom number (Fig. 3c). Far from the resonance 
∣B − B0∣ ≫ ΔB, atoms decay slowly and the loss rate follows a symmetric 
Lorentzian profile centred at the resonance γa ∝ (B – B0)–2. We attribute 
the symmetric Lorentzian lineshape to the Feshbach coupling that 
off-resonantly couples two atoms to a molecule, and the molecule is 
lost when it collides with a third atom inelastically19.

Near the resonance, the loss rate greatly exceeds the expectation 
from the Lorentzian profile. This rapid atom loss only lasts for a few 
hundreds of microseconds and is accompanied with fast molecule 
production and heating of both atoms and molecules. We identify this 
fast process as the relaxation dynamics (Fig. 1b). To characterize the 
enhanced reaction rate, we fit the loss rate near the resonance as 
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Fig. 3 | Coherent reaction dynamics in quantum gases of atoms and molecules 
across a Feshbach resonance. a, Evolution of atomic and molecular populations 
in an atomic BEC after quenching the magnetic field 2(1) mG below the 
resonance. The solid lines are fits to capture the dynamics in relaxation and 
equilibration processes. b, Effective temperatures determined from time-of-
flight measurements of the atoms and molecules at the same field. The solid lines 
are guides to the eye. The insets in a and b show the sample images of atoms and 
molecules after the time of flight (Methods). c, Loss rate of atoms immediately 
after the quench. The solid (empty) circles represent samples prepared below 
(above) the resonance. The green line is a Lorentzian fit with the centre at B0 and 
width ΔB. The magenta solid (dashed) line is a fit near and below (above) the 
resonance based on γa = γ0/[1+ |(B− B0)/δB|ϵ±] (see the main text), from which 

we obtain the exponent ϵ− = 6(2) (ϵ+ = 2.9(4)) below (above) the resonance. The 
inset shows a zoomed-in view near the resonance. d, Oscillation frequency of 
molecular populations from atomic samples at mean BEC density of 
2.9 × 1013 cm−3 and BEC fraction of 80% (red) and 60% (purple). The solid lines are 

empirical fits based on ℏω = √δμ2(B− Bm)
2 + ℏ2ω20 , where Bm and ω0 are fitting 

parameters. The values of Bm from the fits are consistent with the resonance 
position B0 within our measurement uncertainty. The dashed lines are the 
asymptotes ℏω = ∣δμ(B − Bm)∣. Data in a and b are averages of 3–4 measurements, 
and the error bars represent one standard deviation of the mean. Data in c and d 
are obtained from the fits (Methods), and the error bars represent 95% 
confidence intervals.
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γa ∝ [1 + |(B − B0)/δB|ϵ± ]
−1  from which we extract the exponents 

ϵ+ = 2.9(4) above the resonance and ϵ− = 6(2) below the resonance. The 
exponents ϵ± larger than 2 are consistent with the enhanced atom loss 
near the resonance beyond the Lorentzian profile.

The relaxation dynamics stem from three-body recombination, 
evidenced by the fast heating of both species in the relaxation phase 
(Fig. 3b)23. In addition, the measured exponent ϵ+ = 2.9(4) from the 
enhanced atom loss is consistent with the predicted value of 3.5 for 
three-body recombination near a narrow Feshbach resonance24,25. We 
attribute the even larger exponent ϵ− = 6(2) below the resonance to the 
bosonic enhancement of the three-body process.

Following the relaxation, both atomic and molecular populations 
oscillate for several milliseconds before they slowly decay over a much 
longer timescale (Fig. 3a,b and Methods). The oscillation indicates a 
coherent coupling between the atomic and molecular fields, consistent 
with the equilibration dynamics near the reaction potential minimum 
(Fig. 1b). The frequency ω of oscillation depends on the magnetic field 

and is well fit to ω = √ε2m/ℏ2 + ω20  (Fig. 3d). Far from the resonance, 

the frequency approaches the molecular binding energy ∣εm∣. On reso-
nance with εm = 0, the frequency ω = ω0 is given by the collective reactive 
coupling between the atomic and molecular fields.

To demonstrate the many-body nature of the reactive coupling, 
we probe the atom–molecule oscillations right on the Feshbach reso-
nance with different initial atom numbers N0 and mean densities n0. 
After quenching the magnetic field, we observe that samples with 
higher populations and densities display faster oscillations (Fig. 4a). 
Fitting the data, we obtain the scaling ω0 ∝ N0.7(2)

0  and ω0 ∝ n1.7(4)0   
(Fig. 4b). Note that the two scalings are linked by n0 ∝ N2/50  for BECs in 
a harmonic trap26–28. The particle number dependence of the reactive 

coupling supports the bosonic enhancement of the reaction 
process.

The scaling with respect to the particle number also reveals the 
underlying reaction mechanism. For the three-body recombination 
process described in equation (2), we derive the effective potential 
V3 = −g23N

5fm(1 − fm)
4 +O(N4), where fm = 2Nm/N is the molecule frac-

tion, from which the resonant oscillation frequency is calculated to be 
ω0 ∝ N3/5 in a harmonic trap (Supplementary Information). For the 
two-body recombination process described in equation (1), the effec-
tive potential is V2 = −g22N

3fm(1 − fm)
2 +O(N2), which yields the scaling 

ω0 ∝ N1/5. Our measurement agrees well with the three-body  
model (Fig. 4b).

Moreover, we find that the molecule fraction oscillates at around 
20(1)% in the equilibration phase, which is consistent with the minimum 
position of the reaction potential V3 at fm = 1/5 (Fig. 4c,d). The two-body 
Feshbach process, on the other hand, predicts a different minimum of 
V2 at fm = 1/3. We note that the total population decays over a timescale 
longer than 5 ms, and thus, our theory model can describe the coherent 
atom–molecule coupling that occurs at a few kilohertz. The overall 
population loss due to inelastic collisions can contribute to damping 
of the coherent oscillations.

To conclude, we observe collective many-body chemical reactions 
in an atomic BEC near a Feshbach resonance. The dynamics are well 
described by a quantum field model derived from three-body recombi-
nations. In particular, the coherent oscillations of atomic and molecular 
fields in the equilibration phase support quantum coherence and Bose 
enhancement of the reaction process. The observation of coherent 
and collective chemical reactions in the quantum degenerate regime 
paves the way to explore the interplay between many-body physics 
and ultracold chemistry.
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Methods
Experimental procedure
Our experiment starts with an ultracold Bose gas of 6,000 to 
470,000 atoms of 133Cs at a temperature of 2–232 nK in a three- 
dimensional harmonic trap. We tune the temperature and atom number 
by changing the trap depth at the end of the evaporation process29. 
The harmonic trap frequencies range from (ωx, ωy, ωz) = 2π × (24, 13, 
74) to 2π × (36, 15, 91) Hz. The atoms are polarized into the hyperfine 
ground state |F = 3, mF = 3〉, where F and mF are the quantum numbers 
for the total spin and its projection along the magnetic-field direc-
tion, respectively. The narrow g-wave Feshbach resonance couples Cs  
atoms into Cs2 molecules at |f = 3, mf = 4; l = 4, ml = 2 〉, where f and l rep-
resent the quantum numbers for the sum of the spins of two individual 
atoms and the orbital angular momentum of a molecule, respectively, 
and mf and ml are the projections of f and l along the magnetic-field 
direction, respectively30.

To induce the molecule formation dynamics, we quench the mag-
netic field close to the resonance position B0 from 19.5 G where the 
samples are prepared. After holding for variable times, we switch 
the field back to either 19.50 G or 17.17 G to decouple atoms and mol-
ecules. We can image the remaining atoms at this field by absorption 
imaging. We can also wait for the remaining atoms to fly away after 
a resonant light pulse and image the molecules by jumping the field 
up to 20.4 G to dissociate them into atoms and then image the atoms 
from the dissociation12. For the atom loss measurements shown in  
Fig. 3c, BECs with ~40,000 atoms are transferred from the harmonic 
trap to a 2D flat-bottomed optical potential before we quench the field 
to different values near the resonance18. For the rest of the data shown 
in Figs. 2–4, we start from atomic samples in the three-dimensional 
harmonic dipole trap.

To measure the temperature of atoms or molecules (for example, 
Fig. 3b), we release them into a horizontally isotropic harmonic trap 
for a quarter of the trap period, which converts the particle distribution 
from real space to momentum space31. We extract the temperature T 
by fitting the momentum distribution with the condensate around 
zero momentum excluded using the Gaussian function 
n(kr) = n(0) exp[−ℏ2k2r /(2mkBT)], where kr is the radial wavenumber and 
kB is the Boltzmann constant.

Determination of Feshbach resonance position and width
To determine the position of the narrow g-wave Feshbach resonance in 
our system, we perform measurements of molecular binding energy 
at different offset magnetic fields using magnetic-field modulation 
spectroscopy32,33 and find the field value where the binding energy 
reaches zero.

We start with atomic BECs at 23 nK prepared at 19.5 G. Then, we 
quench the field to an offset value Bd.c. near the resonance and simulta-
neously modulate the field sinusoidally with an amplitude Ba.c. = 5 mG 
for 5 ms. We scan the modulation frequency and measure the spectrum 
of the remaining atom number. From the atom loss peak of the spec-
trum due to the conversion from atoms into molecules, we extract the 
resonant frequency that corresponds to molecular energy at an offset 
magnetic field Bd.c. near the g-wave Feshbach resonance31,32 (Extended 
Data Fig. 1). We have confirmed that the resulting peak position of atom 
loss is not sensitive to the modulation amplitude and modulation time. 
A linear fit to the data in Extended Data Fig. 1 gives the resonance posi-
tion B0 = 19.849(1) G where the molecular energy goes to zero. The slope 
of the linear fit gives the magnetic-moment difference between two 
bare atoms and one bare molecule as δμ = h × 0.76(3) MHz G–1, which 
is consistent with another work30. We emphasize that for the narrow 
resonance we are using, the molecular energy quadratically approaches 
zero only within a small fraction of the resonance width. Our linear fit 
to the molecular energy data underestimates the resonance position 
by ~0.3 mG based on our calculation using the resonance width from 
the following scattering length measurements19. The systematic error 

of our calibration of the absolute magnetic field is less than 20 mG. 
Throughout this work, we perform the magnetic-field calibration 
based on the same procedure to ensure a constant systematic error.

Next, we measure the s-wave scattering length near resonance to 
obtain the resonance width. Here the scattering length is inferred from 
the expansion of a quasi-2D BEC prepared with trap frequencies (ωx, ωy, 
ωz) = 2π × (11, 13, 895) Hz. During the expansion, the mean-field interac-
tion energy is converted into kinetic energy. We first prepare the BEC 
at an initial magnetic field Bi = 20.481 or 19.498 G where the scattering 
is ai. The column density distribution of atoms in the Thomas–Fermi 
regime is34

n(x, y) = [μ − 1
2mω2xx2 −

1
2mω2yy2] /g2D, (4)

where g2D = (ℏ2/m)√8πai/lz  is the coupling strength, lz = √ℏ/mωz  is the 
harmonic oscillator length in the tightly confined z direction and 
μ = √g2DNmωxωy/π  is the chemical potential determined by g2D, the 
total atom number N and the initial trap frequencies ωx and ωy in the 
horizontal plane. Then, we quench the magnetic field to a different 
value Bf where the scattering length is af and simultaneously switch off 
the harmonic trap in the horizontal plane. According to another work35, 
the dynamics of a BEC after release follow a simple dilation with scaling 
parameters λx(t) and λy(t), which determine the density distribution at 
time t as

n(x, y, t) =
μ − 1

2
mω2xx2/λ2x(t) −

1
2
mω2yy2/λ2y(t)

g2Dλx(t)λy(t)
, (5)

where the scaling parameters evolve according to

λ̈x(t) =
af
ai

ω2x
λ2x(t)λy(t)

λ̈y(t) =
af
ai

ω2y
λ2y (t)λx(t)

.
(6)

We scan the magnetic field and measure the Thomas–Fermi radii 
Rj = √2μλ

2
j (t)/mω2j  where j = x, y after 20 ms expansion. Eventually, we 

extract af based on its one-to-one correspondence to the Thomas–
Fermi radii according to equation (6). The results are summarized in 
Extended Data Fig. 2 and we fit the scattering length data using the 
formula19

a(B) = abg[1 + η(B − B0)] (1 −
ΔB

B − B0
) , (7)

where we obtain the resonance width ΔB = 8.3(5) mG, the resonance 
position B0 = 19.861(1) G, the background scattering length on reso-
nance abg = 163(1)a0 and the slope of the background scattering length 
η = 0.31(2) G–1. The background scattering length abg and slope η are 
consistent with ref. 36 and the resonance width ΔB is consistent with 
ref. 37, where a different method is used. The fitted resonance position 
deviates from that in the binding energy measurement by ~10 mG, 
which we attribute to the heating of atoms near the resonance. The 
binding energy measurement, however, suffers less from the heat-
ing issue32. Throughout this paper, we adopt the resonance position 
B0 = 19.849(1) G from the binding energy measurement.

Extraction of molecule oscillation frequency, atom loss rate 
and molecule formation rate
We use the following function to fit the data in the equilibration 
phase at 1 < t < 3 ms (Fig. 3) for the extraction of molecule oscillation 
frequencies38:

Nm(t) = Nm(0) − γ1t + ΔNme−γ2t sin(ωt + ϕ), (8)
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where the fitting parameters are the molecule number Nm(0) extrapo-
lated to time t = 0, decay rates γ1 and γ2, oscillation amplitude ΔNm, 
oscillation frequency ω and phase ϕ. Here the two decay rates γ1 and γ2 
characterize the decay of molecule number and damping of molecule 
oscillation amplitude, which are generally different.

For the data shown in Fig. 4, we fit the data at 0.3 < t < 3.0 ms using 
the function

Nm(t) = e−γt[Nm(0) + ΔNm sin(ωt + ϕ)], (9)

where we find that the single decay rate γ is enough to describe the data 
very well. For each fit, we subtract a delay time of 0.15 ms from time t 
due to the finite speed of our magnetic-field switch.

To prevent the fits from getting stuck in a local optimum, we vary 
the initial guess of frequency ω for the fits and use the result that has 
the minimum root mean square error.

For the atom loss rate measurement shown in Fig. 3c, we pre-
sent example time traces of the averaged atomic density in the 2D 
flat-bottomed trap (Extended Data Fig. 3). Far from the resonance 
(Extended Data Fig. 3a,b), the atomic density decays slowly and we fit 
the data using

na(t) = na(0)e−γat, (10)

where na(0) is the initial atomic density and γa is the atom loss rate. The 
fit is applied to the data above half of the initial density.

Below and near the resonance (Extended Data Fig. 3c), we find that 
the density first decays rapidly and then settles around some equilib-
rium value before a slow decay kicks in at a timescale longer than 3 ms. 
In this case, we use the following fit function:

na(t) = na(0) {θ(t0 − t) + [(1 − s)e−γa(t−t0) + s]θ(t − t0)} , (11)

where t0 is the time when the decay begins and s represents the frac-
tional density that the system settles to after the initial fast decay. On 
the other hand, above and near the resonance (Extended Data Fig. 3d),  
the data are fit well by a single exponential decay (equation (10)).

Here we also provide the molecule formation rate measured near 
the resonance, complementary to the atom loss rate measurements 
shown in Fig. 3c (Extended Data Fig. 4).

Data availability
 Source data are provided with this paper. All other data that support 
the plots within this paper are available from the corresponding author 
upon reasonable request.

Code availability
The codes for the analysis of data shown in this paper are available from 
the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Bound state energy diagram for cesium atoms in the 
hyperfine ground state |F = 3,mF = 3⟩ and molecular energy measurement 
near the g-wave Feshbach resonance around 20 G using modulation 
spectroscopy. a, Energy diagram for Cs2 molecular states close to the atomic 

scattering continuum adapted from Fig. 22 in Ref. 19. b, Molecular energy εm 
obtained from modulation spectroscopy at different offset magnetic fields. The 
solid line is a linear fit which reaches 0 at B0 = 19.849(1) G.
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Extended Data Fig. 2 | Scattering length measurement near the narrow 
g-wave Feshbach resonance by time-of-flight. a, Atomic density distributions 
after 20 ms time-of-flight at different magnetic fields near the Feshbach 
resonance. The images with B < 19.865 G (B > 19.865 G) come from initial 
BECs prepared below (above) the Feshbach resonance. b, Scattering length 
extracted from the Thomas-Fermi radii in the time-of-flight images, see text. 

The circular (diamond) data points come from initial BECs prepared below 
(above) the resonance. The solid line is a fit to the data excluding the points at 
19.858G < B < 19.909G based on Eq. (7), from which we obtain the resonance width 
ΔB = 8.3(5) mG. The points at 19.855G < B < 19.909G are excluded because of the 
heating effect near the resonance. c, Total atom number extracted from the time-
of-flight images.
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Extended Data Fig. 3 | Examples of atomic density evolution in a 2D flat-
bottomed optical potential for the data presented in Fig. 3c. For data 
below the resonance, BECs are initially prepared at 19.5 G and magnetic field is 
quenched to values between 0.05 and 1 G (panel a) and between 5 and 50 mG 
(panel c) below the resonance. Relaxation and equilibration phases are marked 

with different background colors in panel c. For data above the resonance, BECs 
are initially prepared at 20.4 G and magnetic field is quenched to values between 
0.1 and 1 G (panel b) and between 10 and 50 mG (panel d) above the resonance. 
Solid lines are fits for extracting the atom loss rates, see text.
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Extended Data Fig. 4 | Molecule formation rate near the resonance complementary to the atom loss rate measurements in Fig. 3c. Solid (empty) circles 
represent samples prepared below (above) the resonance.
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