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Chronic wounds and amputations are common in chronic kidney disease patients needing hemodialysis (HD). HD
is often complicated by drops in blood pressure (BP) called intra-dialytic hypotension. Whether intra-dialytic
hypotension is associated with detectable changes in foot perfusion, a risk factor for wound formation and
impaired healing remains unknown. Photoacoustic (PA) imaging is ideally suited to study perfusion changes. We
scanned the feet of 20 HD and 11 healthy subjects. HD patients were scanned before and after a dialysis session
whereas healthy subjects were scanned twice at rest and once after a 10 min exercise period while BP was

elevated. Healthy (r = 0.70, p < 0.0001) and HD subjects (r = 0.43, p < 0.01) showed a significant correlation
between PA intensity and systolic BP. Furthermore, HD cohort showed a significantly reduced PA response to
changes in BP compared to the healthy controls (p < 0.0001), showing that PA can monitor hemodynamic

changes due to changes in BP.

1. Introduction

Chronic kidney disease (CKD) affects more than 9% of the global
population [1,2]. An estimated two million of these patients with CKD
progress to end-stage kidney disease (ESKD) and must undergo kidney
replacement therapies such as a kidney transplant or dialysis [1]. Rates
of non-traumatic lower limb amputations are ~4.3/100 person-years for
ESKD patients and reach 13.8/100 person-years for the diabetic sub-
population [3]. Foot ulcers usually precede 84% of amputations with
half occurring in diabetic patients [4]. Worse, diabetic dialysis patients
develop foot ulcers at five-fold higher rate than even diabetic chronic
kidney disease patients [5]. Foot ulceration is a significant risk factor for
limb loss, and thus prevention—along with timely diagnosis and treat-
ment—may translate to a reduced amputation rate. There is an urgent
need to develop novel, non-invasive techniques to diagnose risk factors
for ulceration and prevent limb loss in persons with ESKD.

Clinically, tissue perfusion is often inferred using measurements of
blood pressure (BP) [6], blood oxygen saturation [7], and lactate levels
[8]. Measurements of full body hemodynamic parameters fail to reflect
changes in peripheral microcirculation [9]. Transcutaneous oxygen
monitoring (TcOM) [10], functional magnetic resonance imaging (fMRI)
[11], laser doppler imaging (LDI) [12], and spatial frequency domain
imaging (SFDI) [13] can measure local perfusion and oxygenation in
specialized care settings. TcOM is a non-invasive skin oxygen tension
measurement system used for infants and adults [10]. But TcOM suffers
from long acquisition times (15-20 min) and is susceptible to calibration
errors and poor inter-rater usability [14]. fMRI can non-invasively
image difficult to access areas like the brain and produce perfusion
maps [11]. However, fMRI has poor temporal resolution (5 s) and
reproducibility [15,16]. LDI can provide real-time and continuous
perfusion monitoring but is sensitive to all movements resulting in
erroneous readings, and it can only penetrate a few millimeters into
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tissue [17]. SFDI can provide a large field of view and rapid imaging but
is limited to surface tissues and still needs to be developed further for
clinical use [13].

Photoacoustic (PA) imaging is a hybrid imaging modality that can
solve these major limitations. PA imaging uses pulsed light to generate
sound waves via thermal expansion that can be overlaid with conven-
tional ultrasound (US) data [18]. PA employs the difference in light
absorption between oxygenated and deoxygenated hemoglobin to
measure oxygen saturation, map vasculature and tissue perfusion in real
time [19].

In pre-clinical settings, PA is used to measure disease biomarkers
[20], oxidative stress [21,22], blood oxygen saturation [23], and image
chronic wounds [24,25]. Clinically PA is used for diagnosing and
monitoring breast cancer progression [26,27], vascular dynamics in
human fingers [28], inflammatory bowel disease [29], and many more
diseased states [30-33]. Recently, we demonstrated the ability of PA
imaging to monitor angiogenesis and predict wound healing [34]. The
non-invasive, real-time, and enhanced penetration depth (>4 cm) of PA
imaging make it an ideal tool to map peripheral tissue perfusion as a risk
factor for the development of limb complications.

Here, we aimed to explore the use of PA to measure changes in pe-
ripheral blood perfusion in a cohort of HD patients before and after
dialysis. We hypothesized that the change in PA signal would be
dependent on changes in blood pressure given the intradialytic hypo-
tension that often occurs in patients [35-39]. The loss of pressure is
followed by peripheral vasoconstriction and reduced peripheral perfu-
sion because blood flow is redirected towards the vital organs [40]. This
controlled change in blood pressure in a resting patient without medi-
cation or exercise is unique to HD patients. Hence HD patients make an
exquisite cohort to study the effects of blood pressure on peripheral
photoacoustic signals and tissue perfusion.

2. Methods
2.1. Participants

This study was performed in accordance with the ethical guidelines
for human experimentation stated in the 1975 Declaration of Helsinki.
The study was approved by the University of California San Diego’s
Human Research Protections Program and was given Institutional Re-
view Board approval (IRB# 191998). Written informed consent was
obtained from all subjects before participation. All subjects were > 18
years old and able to provide consent. Exclusion criteria were: (i)
presence of bloodborne pathogens and (ii) presence of implants in the
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imaging region. Dialysis patients (n = 22) were recruited consecutively
for this study at the outpatient hemodialysis Unit at UC San Diego Health
System. Eleven healthy volunteers, with no known vascular disease
history were recruited at UC San Diego.

The dialysis patients were each scanned twice: once at the start of HD
(pre-dialysis), and again at the completion of HD (post-dialysis). Blood
pressure and ultrafiltration volume were recorded by the Fresenius
2008 T dialyzer (Fresenius Medical Care, Waltham, MA, USA). Two of
the 22 dialysis patients were subsequently excluded from the analysis
due to complications during HD (unrelated to imaging) preventing a
post HD scan.

The 11 healthy subjects were each scanned three times: 1) at base-
line; 2) after 3 h of rest and no pressure changes (negative control (test/
re-test), pre-exercise); and 3) after 10 min of exercise to elevate blood
pressure (positive control, post-exercise). We monitored body temper-
ature, heart rate (HR), and blood pressure (BP) at all imaging time
points. Fig. 1 illustrates the study protocol for the two groups. Table 1
describes the HD and healthy group demographics.

2.2. Blood pressure measurements

Blood pressure (BP) for the HD patients was measured automatically
by the dialyzer (Fresenius 2008T, Fresenius North America, Waltham,
MA). We also noted their ultrafiltration volume at the end of the HD
session. Patients were at rest sitting in semi-Fowler’s position at the time
of measurement. BP measurements were made just before and at
completion of the HD session (Fig. 1D). Change in systolic pressure was
defined as the difference between BPypend and BPypstart.

For the healthy group we used an electronic blood pressure monitor
(Omcron Healthcare Inc., Lake Forest, IL, USA, Model no: BP742N). The
cuff was placed on the left upper arm and the subjects were sitting up
straight for all measurements. We recorded BP twice at rest (T = 0 and
T = 3 h) and once after 10 min of exercise (Fig. 1C). The T = 3 hrs time
point was chosen to mimic the length of a typical HD session without
changes in BP, serving as a negative control. Exercise consisted of

Table 1
HD and Healthy group demographics.

Category HD group (n = 22) Healthy group (n = 11)
Age (mean + SD) 59.2 & 14.3 years 26.5 + 4.1 years
Male/Female 7/15 11/0
Diabetic/non-diabetic 14/8 0/11

Average UF removed 2732.3 £1109 ml N.A.

Fig. 1. Photoacoustic monitoring of peripheral
perfusion; study design and timeline. A. The HD
group consisted of patients on hemodialysis
(HD). B. We scanned the plantar and heel area
in a medial-lateral and inferior-superior direc-
tion, respectively. Global PA intensity was
defined as the mean PA intensity of all four
imaging regions. C. Healthy subjects were
scanned at baseline (T =0 hrs), pre-exercise
(T = 3 hrs), and immediately after 10 min of
exercise (post-exercise). D. HD patients were
scanned pre-and-post their HD session. Red
downward triangles represent imaging time
points. Blue line indicated healthy subjects at
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climbing up and down stairs for 10 min to simulate an increase in blood
pressure (positive control). Changes in systolic BP were calculated as
differences between (i) BPpre-exercise 80d BPpaseline; and (ii) BPpost-exercise -

Bppre-exercise'
2.3. Photoacoustic imaging

All the PA imaging was done using the AcousticX from Cyberdyne
Inc. (Tsukuba, Japan). This LED-based PA scanner operates at 850 nm
wavelength with an LED repetition rate of 4 kHz, pulse width of 70 ns,
and operating at 2.6 pJ/cm? per pulse [41]. It employs a 128-element
linear array transducer with a 0.38 x 6 cm field of view, 7 MHz cen-
tral frequency, and a bandwidth of 80.9% [42]. We used a custom hy-
drophobic gel pad from Cyberdyne Inc. along with sterile US coupling
gel (Aquasonic 100, Parker Laboratories Inc. Fairfield NJ, USA) to
couple the transducer with the skin surface. A sterile sleeve (CIV-Flex™
#921191 from AliMed Inc., Dedham, MA, USA) covered the transducer
during imaging. All images were acquired at 30 frames/s in a single
handheld sweep.

We scanned two spots on each foot (except for one patient in whom
only one foot was scanned due to a left lower limb amputation). The
plantar area was scanned in a medial-lateral direction and the heel area
in an inferior-superior direction (Fig. 1B). It must be noted that since all
the scans are done manually, precise control of the scan area was
extremely difficult. But the same general area was scanned for every
patient. HD patients were scanned once before and once after an HD
session (Fig. 1D). Healthy subjects (the control group) were scanned
three times (Fig. 1C). BP measurements and PA imaging were carried out
simultaneously.

2.4. Image processing

All scans were reconstructed and visualized using the proprietary
AcousticX software (Cyberdyne Inc. version 2.00.10); 8-bit PA, B-mode,
and PA+US overlayed coronal cross-sectional images were exported. We
used the proprietary software developed by the PA system’s manufac-
turer for image reconstruction. The system reconstructs PA images using
Fourier transform analysis [41]. All the processing was done manually.
Scans ranged between 45 and 180 frames governed by scan distance and
length. PA signal was quantified using region of interest (ROI) analysis
via ImageJ (with Fiji extension), version 2.1.0/1.53c. We drew a
4-cm-wide and 1-cm-deep rectangular ROI that was kept constant across
all frames. PA signal from the skin was excluded from analysis to
minimize the impact of variable melanin concentration in different skin
tones. Integrated density function was used to quantify the PA signal
within the ROL. Global PA intensity was defined as the mean integrated
PA density of all four imaging regions (Fig. 1B).

2.5. Statistics

We measured changes in PA intensity as a function of changes in
systolic BP. Simple linear regression was used to fit this data and plotted
with 95% confidence intervals. We used a paired, two-tailed t-test to
compare PA intensities pre-and-post exercise and HD for the healthy and
diseased groups, respectively. We also used a student’s t-test to compare
the hemodynamic response to changes in blood pressure for HD vs.
healthy subjects. A p-value < 0.05 was considered significant. We tested
equality of the two population variances (Healthy vs. HD group) using a
one-tailed F-test with an alpha = 0.05. The difference was considered
significant if the F-value was less than the Feyitical value. We also ran two
separate multivariate linear regressions (HD and healthy group) to study
the effect of other confounding variables such as body mass index (BMI
in kg/mz), diabetic status (Y/N), UF removed (ml), age (years), sex (M/
F). A covariance matrix was also calculated to study the effect of the
confounding variables on each other. Future work will evaluate heart
rate and body temperature in this multivariate analysis.
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3. Results

A total of 33 subjects were recruited for this study. All subjects were
pseudonymized with an identification code at the start of the study. The
healthy and the HD group are referred as HC 0XX and CKD/HD 0YY
respectively. Patient demographics and BP data can be found in
Tables S1 (Healthy) and S2 (HD).

3.1. Healthy control group

Eleven subjects (26.5 + 4.1 years old) with no history of cardiovas-
cular or other disease were recruited at UCSD. Subjects were scanned at
baseline (T =0 hrs), pre-exercise at rest (T = 3 h), and immediately
post-exercise (Fig. 2A). Exercising consisted of climbing up and down
stairs for 10 min. We monitored BP, heart rate, and body temperature at
each imaging time point (Table S1). Fig. 2 shows PA data from the
healthy cohort.

The PA signal under the skin surface increased by 47% (p < 0.01),
and the average BP increased by 27.6 + 18.2 mmHg immediately post-
exercise relative to baseline (Fig. 2 B-C). The change in PA intensity was
directly (r = 0.81) and significantly (p < 0.0001) proportional to the
change in systolic BP (Fig. 2D). PA intensity was significantly
(p < 0.0001) higher after exercise when BP was elevated (Fig. 2C). As a
negative control, the subjects were maintained at rest for 3 hrs, simu-
lating the length of a typical HD session. There were no significant
changes in BP and PA intensity (baseline - pre-exercise) during the rest
period (p = 0.18).

3.2. HD group

Twenty-two HD patients were enrolled in this cohort (59.2 + 14.3
years old). Two patients developed hypotension-related complications
preventing a second scan and were not included the analysis due to
incomplete data acquisition (Table S2). The complications were inde-
pendent of the imaging study. Patients were scanned before and after a
routine HD session (Fig. 3B).

On average PA signal and systolic BP reduced by 11% and 16.6
+ 19.8 mm of Hg respectively. PA intensity and hence perfusion was
significantly lower after dialysis (Fig. 3C, p < 0.01). PA intensity in
different imaging regions trended lower after dialysis but the difference
was not statistically significant. PA intensity showed a positive corre-
lation to changes in BP during an HD session (r = 0.43, p < 0.01,
Fig. 3E). PA signal and hence perfusion was higher pre-dialysis when BP
was higher. The UF removed showed a positive correlation with BP but
did not directly correlate with the change in PA intensity (Fig. S4).

3.3. Healthy vs. HD subjects

HD patients showed a significantly different PA response to changes
in BP compared to healthy controls (Fig. 4). The mean PA intensity was
significantly higher for the HD group (Fig. 4A, p < 0.01). More impor-
tantly, the data spread (standard deviation) for the diseased group was
significantly wider (F = 0.045; Fciticat = 0.63). The hemodynamic
response to changes in BP was characterized using the slope of changing
PA as a function of changing systolic pressure (Fig. 4B). The slope for the
HD group (1870 a.u. intensity/mm Hg) was significantly (p = 0.0001)
lower than the healthy group (5116 a.u. intensity/mm Hg).

4. Discussion

This cohort study explored the use of photoacoustic imaging to
compare changes in peripheral perfusion in response to varying BP in
HD patients vs. healthy controls. Our data suggests that HD patients
show a significantly reduced PA response (p = 0.0001) to changes in BP
compared to healthy controls.

The removal of excess fluid via ultrafiltration increases hematocrit
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[35]. Since PA leverages hemoglobin in red blood cells to generate
contrast, the increase in hematocrit should increase PA intensity after
dialysis [43,44]. But we observed the opposite effect: The global PA
intensity significantly decreases after HD (Fig. 3C, p < 0.01). This can be
attributed to the reduction of BP after dialysis. A sudden drop in blood
pressure results in peripheral vasoconstriction as blood is shunted to-
wards the vital organs to preserve their function [45]. Vasoconstriction
results in reduced peripheral perfusion that is observed as lower PA
intensity after HD. Hypertension is present in 68% of HD patients, and
this further reduces peripheral perfusion [46]. The changes in peripheral
perfusion can exacerbate the risk of developing complications such as
ulceration, amputations, and cardiovascular morbidity [47-49].

The management of intradialytic hypotension in HD patients is
challenging and extremely important. A sudden drop in BP can leave
patients lethargic and weak [50]. Some patients show a paradoxical rise
in blood pressure after dialysis due to an increased cardiac output and
hematocrit [51,52]. Three HD patients (13.6%) showed a paradoxical
rise in BP in the HD cohort, which might explain why individual imaging
regions showed no significant difference before and after dialysis
(Fig. 3D). Instead, a paired comparison of the global PA intensity in
Fig. 3C showed a statistically significant difference (p < 0.01).

The main clinical finding of this work is that photoacoustic imaging
can be used to differentiate between a healthy and diseased response to
changes in BP (Fig. 4B). The slopes characterize the change in perfusion
as a function of BP. The healthy control cohort showed a significantly
higher perfusion (p = 0.0001) when BP was elevated compared to the
HD cohort. HD patients had a significantly wider distribution of PA in-
tensities due to higher variability in BP compared to the control group
(HD: 135.4 +29.1 mm of Hg; Healthy: 137.3 +19.4 mm of Hg,
Fig. 4A). Although this cohort study was not age and gender matched,
we have 85% power in our results (Fig. S5). Furthermore, the healthy
group showed a significant positive correlation between global PA in-
tensity and absolute systolic BP (Fig. S6, r = 0.70, p < 0.05) at baseline.
The HD group showed no significant correlation which can be attributed
to varying disease etiologies and progression. Hence, this work suggests
that PA imaging can be used to monitor peripheral tissue perfusion, a
risk factor for wound formation and impaired healing [53,54]. Others
have also shown the use of PA imaging to visualize tissue perfusion but
most studies use high-powered lasers which are expensive, bulky, and
pose an exposure risk above the maximum permissible exposure limit
[28,55,56].

Whether these changes in perfusion pose a significant risk to HD
patients remains to be seen. A future longitudinal study predicting
wound formation and correlating changes in perfusion with wound
healing will help clinicians tailor therapeutic regimes to best serve each
patient. For example, patients with poor perfusion can be provided
advanced therapies such as hyperbaric oxygen therapy (HBOT) that are
known to promote angiogenesis, perfusion, and wound healing [57].

Changes in BP are also dependent on other confounding factors such
as BMI [58], diabetic status [59], age [60] etc. A multivariate linear
regression (Fig. S7) shows a strong positive correlation (R = 0.72) ac-
counting for seven such confounding variables. Furthermore, the
covariance matrix shows that the volume of UF removed has strong and
positive covariance with the change in systolic pressure. Patients who
had high volumes of UF removed, tended to show higher changes in
pressure. In the healthy group (Fig. S8), the main contributing variable
was the change in systolic BP (R = 0.81) whereas all the other con-
founding variables had relatively low covariance with each other. This
means that the contributor to PA change was the change in systolic BP
(p = 0.0019). Melanin, the molecule that gives skin its characteristic
color is also a major absorber and source of PA signal [61]. Our group
recently studied the effect of skin tone on PA oximetry [61]. In this work,
we excluded any signals from the skin surface and since patients serve as
their own controls between scans, and we only evaluated the change
between scans; thus, skin tone should have minimal impacts. Further-
more, this study recruited a diverse set of HD patients and HD subjects
from all possible skin types (Fitzpatrick scores 1-6) to account for skin
tone bias. Other confounding variables could be changes in vascular
physiology (increased resistance, calcification etc.) due to chronic
diseased states in the HD groups [62], but these are extremely difficult to
account for.

4.1. Limitations

The LED-based PA system used in this work is an inexpensive,
portable, and non-invasive imaging system. The LEDs used in this system
operate 1000-fold under the maximum permissible exposure limit of
20 mJ/cm? [63]. But the system is limited in data processing as it con-
denses the number of frames between acquisition and export. Since we
used a handheld scanner for all scans, it is difficult to generate 3D maps
of the imaging area even though the system is capable to do so. The use
of motion compensation and deep-learning algorithms to reduce noise
and align frames could help map perfusion and oxygenation of the tissue
[64,65]. Future work will look to map tissue oxygenation in real time.

Within the HD group, hematocrit readings could help normalize PA
intensity changes for variable fluid loss between patients. But not all
dialyzers were equipped to measure hematocrit in real time limiting our
analysis.

5. Conclusion

The management of BP and peripheral perfusion in dialysis patients
is extremely important and challenging to monitor. Peripheral perfusion
measurements are rare at the point-of-care. In this work, we imaged
peripheral perfusion in 20 HD patients and 11 healthy subjects using PA
imaging. We compared the peripheral tissue perfusion response to
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changes in blood pressure due to dialysis or exercise. The healthy group
showed a positive correlation to changes in BP. The HD group also
showed a positive correlation to BP changes during a dialysis session. In
comparison, the HD group showed a significantly reduced PA response
to changes in blood pressure compared to healthy controls.
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