
´ ´ ´ ´

This C V P R  paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on I E E E  Xplore.

DyLiN: Making Light Field Networks Dynamic

Heng Yu1 Joel Julin1 Zoltan A. Milacski1 Koichiro Niinuma2 Laszlo A. Jeni1

1Robotics Institute, Carnegie Mellon University 2Fujitsu Research of America
{heng yu,  j j u l i n ,  zmi lacsk}@andre w .cmu.edu kni inum a @ fuj i t su . com l a s z l o j e n i @ c m u . e du

Ground Truth
Video

HyperNeRF [28]
Render time: 3 s

TiNeuVox [8]
Render time: 7 s

Ours
Render time: 0.1 s

Figure 1. Our proposed DyLiN for dynamic 3D scene rendering achieves higher quality than its HyperNeRF teacher model and the state-of-
the-art TiNeuVox model, while being an order of magnitude faster. Right: DyLiN is of moderate storage size (shown by dot radii). For each
method, the relative improvement in Peak Signal-to-Noise Ratio over NeRF (∆PSNR) is measured for the best-performing scene.

Abstract

Light Field Networks, the re-formulations of radiance
fields to oriented rays, are magnitudes faster than their co-
ordinate network counterparts, and provide higher fidelity
with respect to representing 3D structures from 2D obser-
vations. They would be well suited for generic scene rep-
resentation and manipulation, but suffer from one problem:
they are limited to holistic and static scenes. In this pa-
per, we propose the Dynamic Light Field Network (DyLiN)
method that can handle non-rigid deformations, including
topological changes. We learn a deformation field from in-
put rays to canonical rays, and lift them into a higher di-
mensional space to handle discontinuities. We further in-
troduce CoDyLiN, which augments DyLiN with controllable
attribute inputs. We train both models via knowledge distil-
lation from pretrained dynamic radiance fields. We eval-
uated DyLiN using both synthetic and real world datasets
that include various non-rigid deformations. DyLiN qual-
itatively outperformed and quantitatively matched state-of-
the-art methods in terms of visual fidelity, while being 25 −
71× computationally faster. We also tested CoDyLiN on at-
tribute annotated data and it surpassed its teacher model.
Project page: h t t p s : / / d y l i n 2 0 2 3 . g i t h u b . i o .

1. Introduction

Machine vision has made tremendous progress with re-
spect to reasoning about 3D structure using 2D observa-

tions. Much of this progress can be attributed to the emer-
gence of coordinate networks [6,21,26], such as Neural Ra-
diance Fields (NeRF) [23] and its variants [2, 20, 22, 39].
They provide an object agnostic representation for 3D
scenes and can be used for high-fidelity synthesis for unseen
views. While NeRFs mainly focus on static scenes, a series
of works [10,27,29,34] extend the idea to dynamic cases via
additional components that map the observed deformations
to a canonical space, supporting moving and shape-evolving
objects. It was further shown that by lifting this canonical
space to higher dimensions the method can handle changes
in scene topology as well [28].

However, the applicability of NeRF models is consid-
erably limited by their computational complexities. From
each pixel, one typically casts a ray from that pixel, and nu-
merically integrates the radiance and color densities com-
puted by a Multi-Layer Perceptron (MLP) across the ray,
approximating the pixel color. Specifically, the numeri-
cal integration involves sampling hundreds of points across
the ray, and evaluating the MLP at all of those locations.
Several works have been proposed for speeding up static
NeRFs. These include employing a compact 3D represen-
tation structure [9, 18, 43], breaking up the MLP into multi-
ple smaller networks [30, 31], leveraging depth information
[7, 24], and using fewer sampling points [17, 24, 42]. Yet,
these methods still rely on integration and suffer from sam-
pling many points, making them prohibitively slow for real-
time applications. Recently, Light Field Networks (LFNs)
[32] proposed replacing integration with a direct ray-to-
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color regressor, trained using the same sparse set of images,
requiring only a single forward pass. R2L  [36] extended
LFNs to use a very deep residual architecture, trained by
distillation from a NeRF teacher model to avoid overfit-
ting. In contrast to static NeRF acceleration, speeding up
dynamic NeRFs is a much less discussed problem in the
literature. This is potentially due to the much increased dif-
ficulty of the task, as one also has to deal with the high
variability of motion. In this direction, [8, 38] greatly re-
duce the training time by using well-designed data struc-
tures, but their solutions still rely on integration. LFNs are
clearly better suited for acceleration, yet, to the best of our
knowledge, no works have attempted extending LFNs to the
dynamic scenario.

In this paper, we propose 2 schemes extending LFNs
to dynamic scene deformations, topological changes and
controllability.     First, we introduce DyLiN, by incorpo-
rating a deformation field and a hyperspace representa-
tion to deal with non-rigid transformations, while distilling
knowledge from a pretrained dynamic NeRF. Afterwards,
we also propose CoDyLiN, via adding controllable input
attributes, trained with synthetic training data generated
by a pretrained Controllable NeRF (CoNeRF) [13] teacher
model. To test the efficiencies of our proposed schemes, we
perform empirical experiments on both synthetic and real
datasets. We show that our DyLiN achieves better image
quality and an order of magnitude faster rendering speed
than its original dynamic NeRF teacher model and the state-
of-the-art TiNeuVox [8] method. Similarly, we also show
that CoDyLiN outperforms its CoNeRF teacher. We further
execute ablation studies to verify the individual effective-
ness of different components of our model. Our methods
can be also understood as accelerated versions of their re-
spective teacher models, and we are not aware of any prior
works that attempt speeding up CoNeRF.
Our contributions can be summarized as follows:

• We propose DyLiN, an extension of LFNs that can
handle dynamic scenes with topological changes.
DyLiN achieves this through non-bending ray defor-
mations, hyperspace lifting for whole rays, and knowl-
edge distillation from dynamic NeRFs.

• We show that DyLiN achieves state-of-the-art results
on both synthetic and real-world scenes, while being
an order of magnitude faster than the competition. We
also include an ablation study to analyze the contribu-
tions of our model components.

• We introduce CoDyLiN, further extending our DyLiN
to handle controllable input attributes.

2. Related Works

Dynamic NeRFs.     NeRFs have demonstrated impressive
performances in novel view synthesis for static scenes.
Extending these results to dynamic (deformable) domains
has sparked considerable research interest [10, 27–29, 34].
Among these works, the ones that most closely resemble
ours are D-NeRF [29] and HyperNeRF [28]. D-NeRF uses
a translational deformation field with temporal positional
encoding. HyperNeRF introduces a hyperspace representa-
tion, allowing topological variations to be effectively cap-
tured. Our work expands upon these works, as we pro-
pose DyLiN, a similar method for LFNs. We use the above
dynamic NeRFs as pretrained teacher models for DyLiN,
achieving better fidelity with orders of magnitude shorter
rendering times.

Accelerated NeRFs.     The high computational complexity
of NeRFs has motivated several follow-up works on speed-
ing up the numerical integration process. The following first
set of works are restricted to static scenarios. NSVF [18]
represents the scene with a set of voxel-bounded MLPs or-
ganized in a sparse voxel octree, allowing voxels without
relevant content to be skipped. KiloNeRF [31] divides the
scene into a grid and trains a tiny MLP network for each cell
within the grid, saving on pointwise evaluations. AutoInt
[17] reduces the number of point samples for each ray us-
ing learned partial integrals. In contrast to the above proce-
dures, speeding up dynamic NeRFs is much less discussed
in the literature, as there are only 2 papers published on
this subject. Wang et al. [38] proposed a method based on
Fourier plenoctrees for real-time dynamic rendering, how-
ever, the technique requires an expensive rigid scene captur-
ing setup. TiNeuVox [8] reduces training time by augment-
ing the MLP with time-aware voxel features and a tiny de-
formation network, while using a multi-distance interpola-
tion method to model temporal variations. Interestingly, all
of the aforementioned methods suffer from sampling hun-
dreds of points during numerical integration, and none of
them support changes in topology, whereas our proposed
DyLiN excels from both perspectives.

Light Field Networks (LFNs).     As opposed to the afore-
mentioned techniques that accelerate numerical integration
within NeRFs, some works have attempted completely re-
placing numerical integration with direct per-ray color MLP
regressors called Light Field Networks (LFNs). Since these
approaches accept rays as inputs, they rely heavily on the
ray representation. Several such representations exist in the
literature. Plenoptic functions [1,3] encode 3D rays with 5D
representations, i.e., a 3D point on a ray and 2 axis-angle ray
directions. Light fields [11,15] use 4D ray codes most com-
monly through two-plane parameterization: given 2 parallel
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planes, rays are encoded by the 2D coordinates of the 2 ray-
plane intersection points. Sadly, these representations are
either discontinuous or cannot represent the full set of rays.
Recently, Sitzmann et al. [32] advocate for the usage of the
6D Plucker coordinate representation, i.e., a 3D point on a
ray coupled with its cross product with a 3D direction. They
argue that this representation covers the whole set of rays
and is continuous. Consequently, they feed it as input to an
LFN, and additionally apply Meta-Learning across scenes
to learn a multi-view consistency prior. However, they have
not considered alternative ray representations, MLP archi-
tectures or training procedures, and only tested their method
on toy datasets. R2L  [36] employs an even more effective
ray encoding by concatenating few points sampled from it,
and proposes a very deep (88 layers) residual MLP net-
work for LFNs. They resolve the proneness to overfitting
by training the MLP with an abundance of synthetic images
generated by a pretrained NeRF having a shallow MLP. In-
terestingly, they find that the student LFN model produces
significantly better rendering quality than its teacher NeRF
model, while being about 30 times faster. Our work extends
LFNs to dynamic deformations, topological changes and
controllability, achieving similar gains over the pretrained
dynamic NeRF teacher models.

Knowledge Distillation.     The process of training a stu-
dent model with synthetic data generated by a teacher
model is called Knowledge Distillation (KD) [4], and it
has been widely used in the vision and language domains
[5, 15, 35, 37] as a form of data augmentation. Like R2L
[36], we also use KD for training, however, our teacher and
student models are both dynamic and more complex than
their R2L  counterparts.

3. Methods

In this section, we present our two solutions for extend-
ing LFNs. First, in Sec. 3.1, we propose DyLiN, supporting
dynamic deformations and hyperspace representations via
two respective MLPs. We use KD to train DyLiN with syn-
thetic data generated by a pretrained dynamic NeRF teacher
model. Second, in Sec. 3.2, we introduce CoDyLiN, which
further augments DyLiN with controllability, via lifting at-
tribute inputs to hyperspace with MLPs, and masking their
hyperspace codes for disentanglement. In this case, we also
train via KD, but the teacher model is a pretrained control-
lable NeRF.

3.1. DyLiN

3.1.1     Network Architecture

Our overall DyLiN architecture Gϕ  is summarized in Fig. 2.
It processes rays instead of the widely adopted 3D point
inputs as follows.

o! x1 x2 x3 . . . Camera ray
MLP d!

Ray origin . . .
Ray direction d Deep Res MLP RGB

Time                                                                                              . . .
MLP

hyper-space

concatenation

Figure 2. Schematic diagram of our proposed DyLiN architecture.
We take a ray r  =  (o, d) and time t as input. We deform r  into
r ′  =  (o ′ , d ′ ), and sample few points x k ,  k =  1, . . . , K along r ′  to
encode it (blue). In parallel, we also lift r  and t to the hyperspace
code w (green), and concatenate it with each x k .  We use the con-
catenation to regress the RGB color of r  at t directly (red).

Specifically, our deformation MLP Tω maps an input ray
r  =  (o, d) to canonical space ray r ′  =  (o′ , d′):

(o′ , d′ ) =  Tω(o, d, t). (1)

Unlike the pointwise deformation MLP proposed in Ner-
fies [27], which bends rays by offsetting their points inde-
pendently, our MLP outputs rays explicitly, hence no ray
bending occurs. Furthermore, after obtaining r ′ , we encode
it by sampling and concatenating K  points along it.

Our hyperspace MLP Hψ  is similar to Tω, except it out-
puts a hyperspace representation w:

w =  Hψ (o, d, t). (2)

In contrast to HyperNeRF [28], which predicts a hyperspace
code w for each 3D point, we use rays and compute a single w
for each ray.

Both MLPs further take the index t as input to encode
temporal deformations.

Once the K  points and w are obtained, we concatenate
them and feed the result into our LFN Rπ ,  which is a deep
residual color MLP regressor. Overall, we can collect the
model parameters as ϕ =  [ω,ψ,π].

Note that without our two MLPs Tω and Hψ , our DyLiN
falls back to the vanilla LFN.

3.1.2     Training Procedure

Our training procedure is composed of 3 phases.
First, we pretrain a dynamic NeRF model Fθ  (e.g., D-

NeRF [29] or HyperNeRF [28]) by randomly sampling time t
and input ray r, and minimizing the Mean Squared Error
(MSE) against the corresponding RGB color of monocular
target video I :

min Et , r = ( o , d )  �Fθ (o, d, t) −  I (o, d, t)�2. (3)

Recall, that Fθ  is slow, as it performs numerical integration
across the ray r  =  (o, d).
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Second, we employ the newly obtained Fθ�      as the
teacher model for our DyLiN student model Gϕ  via KD.
Specifically, we minimize the MSE loss against the respec-
tive pseudo ground truth ray color generated by Fθ� across S
ray samples:

min Et , r = ( o , d )  �Gϕ(o, d, t) −  Fθ� (o, d, t)�2, (4)

yielding G ˜ .  Note how this is considerably different from
R2L [36], which uses a static LFN that is distilled from a
static NeRF.

Finally, we initialize our student model Gϕ  with param-
eters ϕ and fine-tune it using the original real video data:

ϕ
min

ϕ 
E t , r = ( o , d )  �Gϕ(o, d, t) −  I (o, d, t)�2, (5)

obtaining ϕ�.

3.2. CoDyLiN

3.2.1     Network Architecture

We further demonstrate that our DyLiN architecture from
Sec. 3.1.1 can be extended to the controllable scenario using
attribute inputs with hyperspace MLPs and attention masks.
Our proposed CoDyLiN network Qτ  is depicted in Fig. 3.

Time t
MLP

o! x1 x2 x3 . . . Camera ray

. . .

. . .

Ray origin o
MLP w0 M0 Deep Res MLP RGB

Ray direction d                                                   
M1         

. . .

!1 MLP w1 
. . .

. . . . . . . . . Mn

!n MLP wn

wi w! 1 −  ! m i concatenation
MLP                                              w

i                             
w!                        pixel-wise

w0 Mi M0
multiplication

Figure 3. Schematic diagram of our proposed CoDyLiN architec-
ture. We augment our DyLiN (blue, green, red) by introducing
scalar attribute inputs α i  � [−1, 1], i  =  1, . . . , n and lifting them to
their respective hyperspace codes wi (orange, . . . , pink MLPs).
Next, Mi disentangles wi from wj , j  =  i  by masking it into w ′

(orange, . . . , pink boxes and bottom insets). We concatenate the
sampled points xk ,  k =  1, . . . , K with the w ′ , i  =  1, . . . , n and
predict the RGB color corresponding to the inputs (red). Arrows
from (o ′ , d ′ ) and w0 to Mi are omitted from the top figure for sim-
plicity. Compare this with Fig. 2.

Specifically, we start from DyLiN Gϕ  and add scalar in-
puts α i  � [−1, 1], i  =  1, . . . , n next to o, d, t. Intuitively,

these are given strength values for specific local attributes,
which can be interpolated continuously. n is the total num-
ber of attributes.

Each α i  is then processed independently with its own
hyperspace MLP H i ,ψ i  to yield the hyperspace code wi:

wi =  H i ,ψ i  (o, d, t). (6)

Next, we include mask MLP regressors Mi,ρ to generate
scalar attention masks m̂ i  � [0, 1] for each wi (including w0
=  w):

m̂ i  =  Mi,ρ i  (wi, w, o, d),
n

m̂ 0 =  1 − m̂ i , (7)
i = 1

w ′ =  m̂ i  · wi , i  =  0, . . . , n,
This helps the architecture to spatially disentangle (i.e., lo-
calize) the effects of attributes αi , while m̂ 0 can be under-
stood as the space not affected by any attributes.

Finally, we sample K  points on the ray similarly
to Sec. 3.1.1, concatenate those with the w ′     vectors,
and process the result further with LFN Rπ . Again,
we can use a shorthand for the parameters:      τ =
[ω, ψ, ψ1, . . . ,ψn, ρ1, . . . , ρn, π].

Observe that without our MLPs Hi ,ψ  , Mi,ρ  , i  =
1, . . . , n, our CoDyLiN reverts to our simpler DyLiN. Dif-
ferent from CoNeRF [13], we process rays instead of points,
and use the α i  as inputs instead of targets.

3.2.2     Training Procedure

Akin to Sec. 3.1.2, we split training into pretraining and
distillation steps, but omit fine-tuning.

First, we pretrain a CoNeRF model E ν  [13] by randomly
sampling (t, r, i), against 3 ground truths: ray color, at-
tribute values α i  and 2D per-attribute masks m2D ,i . This
yields us E ν � . For brevity, we omit the details of this step,
and kindly forward the reader to Section 3 in [13].

Second, we distill from our teacher CoNeRF model
E ν � into our student CoDyLiN Qτ  by randomly sampling
t, r,α1, . . . ,αn, and minimizing the MSE against 2 pseudo
ground truths, i.e., ray colors and 2D masks m̄ 2D , i :

min Et , r = ( o , d )  �Qτ (o, d, t, α1:n ) − Eν� (o, d, t,α1:n)�2

n  +
λm  ·         �m̂ i(o, d, t, αi ) −  m̄ 2D (o, d, t, α1:n)i�2 ,

i = 0
(8)

where E ν  is identical to E ν  except for taking α1:n     =
[α1, . . . ,αn] as input and outputting the masks m̄ 2D , i ,  i  =
0, . . . , n. We denote the result of the optimization as Qτ� .

We highlight that our teacher and student models are
both controllable in this setup.
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4. Experimental Setup

4.1. Datasets

To test our hypotheses, we performed experiments on
three types of dynamic scenes: synthetic, real and real con-
trollable.
Synthetic Scenes. We utilized the synthetic 360◦ dy-
namic dataset introduced by [29], which contains 8 ani-
mated objects with complicated geometry and realistic non-
Lambertian materials. Each dynamic scene consists of 50
to 200 training images and 20 testing images. We used
400 ×  400 image resolution. We applied D-NeRF [29] as
our teacher model with the publicly available pretrained
weights.
Real Scenes. We collected real dynamic data from 2
sources. First, we utilized 5 topologically varying scenes
provided by [28] (Broom, 3D Printer, Chicken, Americano
and Banana), which were captured by a rig encompassing
a pole with two Google Pixel 3 phones rigidly attached
roughly 16 cm apart. Second, we collected human facial
videos using an iPhone 13 Pro camera. We rendered both
sets at 960 ×  540 image resolution. We pretrained a Hyper-
NeRF [28] teacher model from scratch for each scene.
Real Controllable Scenes. We borrowed 2 real control-
lable scenes from [13] (closing/opening eyes/mouth, and
transformer), which are captured either with a Google Pixel
3a or an Apple iPhone 13 Pro, and contain annotations over
various attributes. We applied image resolution of 480×270
pixels. We pretrained a CoNeRF [13] teacher model from
scratch per scene.

4.2. Settings

Throughout our experiments, we use the settings listed
below, many of which follow [36].

In order to retain efficiency, we define Tω and Hψ  to be
small MLPs, with Tω consisting of 7 layers of 128 units
with r ′  � R6 , and Hψ  having 6 layers of 64 units with w �
R8 . Then, we use K  =  16 sampled points to represent rays,
where sampling is done randomly during training and evenly
spaced during inference.

Contrary to Tω and Hψ , our LFN R π  is a very deep
residual color MLP regressor, containing 88 layers with 256
units per layer, in order to have enough capacity to learn the
video generation process.

We generate rays within Eqs. (3) to (5) and (8) by sam-
pling ray origins o =  (xo, yo, zo) and normalized directions d
=  (xd, yd, zd) randomly from the uniform distribution U as
follows:

xo � U (xo  
i n , xm a x ) ,      xd � U (xm i n , xm a x ) ,          (9)

yo � U (y min , y max ),      yd � U (y min , y max ),        (10)

zo � U (z min , z max ), zd � U (z min , z max ), (11)

where the min, max bounds of the 6 intervals are inferred
from the original training video. In addition to uniform
sampling, we also apply the hard example mining strategy
suggested in [36] to focus on fine-grained details. We used S
=  10,000 training samples during KD in (4).

Subsequently, we also randomly sample time step t uni-
formly from the unit interval: t � U (0, 1).

Optionally, for our CoDyLiN experiments, we define
each Hi ,ψ      to be a small MLP having 5 layers of 128 units
with wi � R8 . During training, we uniformly sample at-
tributes within [−1, 1]: α i  � U (−1, 1), and let λm  =  0.1.

During training, we used Adam [14] with learning rate
5 ×  10−4 and batch size 4,096.

We performed all experiments on single NVIDIA A100
GPUs.

4.3. Baseline Models

For testing our methods, we compared quality and speed
against several baseline models, including NeRF [23], NV
[19], NSFF [16], Nerfies [27], HyperNeRF [28], two vari-
ants of TiNeuVox [8], DirectVoxGo [33], Plenoxels [9], T-
NeRF and D-NeRF [29], as well as CoNeRF [13].

Ray origin o x1 x2 x3 . . . Camera ray

Ray direction d
. . . . . .

Deep Res MLP RGB
. . .

concatenation     Time

(a)
Ray origin o x1 x2 x3 . . . Camera ray

Ray direction d
. . .

MLP
! x

1

        

!

. . . Time t                                       . . . !      +

. . .

concatenation RGB Deep Res MLP

(b)

Figure 4. Our two ablated baseline models, omiting components
of our DyLiN. (a) Without our two proposed MLPs. (b) Pointwise
deformation MLP only, predicting offsets jointly.

In addition, we performed an ablation study by compar-
ing against 2 simplified versions of our DyLiN architecture.
First, we omitted both of our deformation and hyperspace
MLPs and simply concatenated the time step t to the sam-
pled ray points (essentially resulting in a dynamic R2L).
This method is illustrated in Fig. 4a. Second, we employed a
pointwise deformation MLP (5 layers of 256 units) in-
spired by [29], which deforms points along a ray by predict-
ing their offsets jointly, i.e., it can bend rays. This is con-
trast to our DyLiN, which deforms rays explicitly without
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bending and also applies a hyperspace MLP. This scheme
is depicted in Fig. 4b. In both baselines, the deep residual
color MLP regressors were kept intact. Next, we also tested
the effects of our fine-tuning procedure from (5) by train-
ing all of our models both with and without it. Lastly, we
assessed the dependences on the number of sampled points
along rays K  and on the number of training samples S  dur-
ing KD in (4).

4.4. Evaluation Metrics

For quantitatively evaluating the quality of generated
images, we calculated the Peak Signal-to-Noise Ratio
(PSNR) [12] in decibels (dB), the Structural Similarity In-
dex (SSIM) [25,40], the Multi-Scale SSIM (MS-SSIM) [41]
and the Learned Perceptual Image Patch Similarity (LPIPS)
[44] metrics. Intuitively, PSNR is a pixelwise score, while
SSIM and MS-SSIM also take pixel correlations and mul-
tiple scales into account, respectively, yet all of these tend
to favor blurred images. LPIPS compares deep neural rep-
resentations of images and is much closer to human percep-
tion, promoting semantically better and sharper images.

Furthermore, for testing space and time complexity, we
computed the storage size of parameters in megabytes (MB)
and measured the wall-clock time in milliseconds (ms)
while rendering the synthetic Lego scene with each model.

5. Results

5.1. Quantitative Results

Tab. 1 and Tab. 2 contain our quantitative results for re-
construction quality on synthetic and real dynamic scenes,
accordingly. We found that among prior works, TiNeuVox-B
performed the best on synthetic scenes with respect to each
metric. On real scenes, however, NSFF took the lead.

Despite having strong metrics, NSFF is qualita-
tively poor and slow. Surprisingly, during ablation, even
our most basic model (DyLiN without the two MLPs from
Fig. 4a) could generate perceptually better looking im-
ages than TiNeuVox-B, thanks to the increased training
dataset size via KD. Incorporating the MLPs Tω and Hψ

into the model each improved results slightly.     Interest-
ingly, fine-tuning on real data as in (5) gave a substantial
boost. In addition, our relative PSNR improvement over
the teacher model (Tab. 1=+1.93 dB, up to +3.16 dB per
scene; Tab. 2=+2.7 dB, up to +13.14 dB) is better than that
of R2L  [36] (+1.4 dB, up to +2.8 dB).

Tab. 3 shows quantitative results for space and time com-
plexity on the synthetic Lego scene. We found that there is a
trade-off between the two metrics, as prior works are typ-
ically optimized for just one of those. In contrast, all of
our proposed DyLiN variants settle at the golden mean be-
tween the two extremes. When compared to the strongest
baseline TiNeuVox-B, our method requires 3 times as much

Table 1. Quantitative results on synthetic dynamic scenes. No-
tations: Multi-Layer Perceptron (MLP), PD (pointwise deforma-
tion), FT  (fine-tuning). We utilized D-NeRF as the teacher model
for our DyLiNs. The winning numbers are highlighted in bold.

Method PSNR↑      SSIM↑      LPIPS↓

NeRF [23] 19.00 0.8700 0.1825
DirectVoxGo [33] 18.61 0.8538 0.1688
Plenoxels [9] 20.24 0.8688 0.1600
T-NeRF [29] 29.51 0.9513 0.0788
D-NeRF [29] 30.50 0.9525 0.0663
TiNeuVox-S [8] 30.75 0.9550 0.0663
TiNeuVox-B [8] 32.67 0.9725 0.0425

DyLiN, w/o two MLPs, w/o F T  (ours) 31.16 0.9931 0.0281
DyLiN, w/o two MLPs (ours) 32.07 0.9937 0.0196
DyLiN, PD MLP only, w/o F T  (ours) 31.26 0.9932 0.0279
DyLiN, PD MLP only (ours) 31.24 0.9940 0.0189
DyLiN, w/o F T  (ours) 31.37 0.9933 0.0275
DyLiN (ours) 32.43 0.9943 0.0184

Table 2. Quantitative results on real dynamic scenes. Notations:
Multi-Layer Perceptron (MLP), PD (pointwise deformation), FT
(fine-tuning). We utilized HyperNeRF as the teacher model for
our DyLiNs. The winning numbers are highlighted in bold.

Method PSNR↑ MS-SSIM↑

NeRF [23] 20.1 0.745
NV [19] 16.9 0.571
NSFF [16] 26.3 0.916
Nerfies [27] 22.2 0.803
HyperNeRF [28] 22.4 0.814
TiNeuVox-S [8] 23.4 0.813
TiNeuVox-B [8] 24.3 0.837

DyLiN, w/o two MLPs, w/o FT (ours) 23.8 0.882
DyLiN, w/o two MLPs (ours) 24.2 0.894
DyLiN, PD MLP only, w/o FT (ours) 23.9 0.885
DyLiN, PD MLP only (ours) 24.6 0.903
DyLiN, w/o FT (ours) 24.0 0.886
DyLiN (ours) 25.1 0.910

storage but is nearly 2 orders of magnitude faster. Plenox-
els and NV, the only methods that require less computation
than ours, perform much worse in quality.

Fig. 5 reports quantitative ablation results for dependen-
cies on the number of sampled points per ray K  and on the
number of training samples during KD S , performed on the
synthetic Standup scene. For dependence on K  (Fig. 5a),
we found that there were no significant differences between
test set PNSR scores for K  � {4, 8, 16, 32}, while we en-
countered overfitting for K  � {64, 128}. This justified our
choice of K  =  16 for the rest of our experiments. Regard-
ing the effect of S  (Fig. 5b), overfitting occured for smaller
sample sizes including S  � {100; 500; 1,000; 5,000 }. The
test and training set PSNR scores were much closer for
S  =  10,000, validating our general setting.
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Table 3. Quantitative results for space and time complexity on the
synthetic Lego scene. Notations: Multi-Layer Perceptron (MLP),
PD (pointwise deformation), FT  (fine-tuning).

Table 4. Quantitative results on real controllable scenes. We uti-
lized CoNeRF as the teacher model for our CoDyLiN. The win-
ning numbers are highlighted in bold.

Storage
Method (MB)

Wall-clock
time (ms)

Eyes/Mouth

Wall-clock
Method PSNR↑      MS-SSIM↑       time (ms)       PSNR↑

Transformer

Wall-clock
MS-SSIM↑       time (ms)

NeRF [23] 5.00
DirectVoxGo [33]                                          205.00
Plenoxels [9]                                                   717.00
NV [19]                                                           439.00
D-NeRF [29] 4.00
NSFF [16]                                                         14.17
HyperNeRF [28]                                              15.36
TiNeuVox-S [8]                                                23.70
TiNeuVox-B [8]                                               23.70

DyLiN, w/o two MLPs, w/o FT  (ours) 68.04
DyLiN, w/o two MLPs (ours) 68.04
DyLiN, PD MLP only, w/o FT  (ours) 72.60
DyLiN, PD MLP only (ours) 72.60
DyLiN, w/o FT  (ours) 70.11
DyLiN (ours) 70.11

2,950.0
1,090.0

50.0
74.9

8,150.0
5,450.0
2,900.0
3,280.0
6,920.0

115.4
115.4
115.7
115.7
116.0
116.0

CoNeRF [13]           21.4658          0.7458             6230.0         23.0319          0.8878             4360.0
CoDyLiN (ours)      21.4655          0.9510                116.3         23.5882          0.9779                116.0

5.2. Qualitative Results

Fig. 6 and Fig. 7 depict qualitative results for reconstruc-
tion quality on synthetic and real dynamic scenes, respec-
tively. Both show that our full DyLiN model generated the
sharpest, most detailed images, as it was able to capture
cloth wrinkles (Fig. 6j) and the eye of the chicken (Fig. 7e).
The competing methods tended to oversmooth these fea-
tures. We also ablated the effect of omitting fine-tuning
(Fig. 6i, Fig. 7d), and results declined considerably.

For the sake of completeness, Fig. 8 illustrates qualita-
tive ablation results for our model components on real dy-
namic scenes. We found that sequentially adding our two
proposed MLPs Tω and Hψ  improves the reconstruction,
e.g., the gum between the teeth (Fig. 8e) and the fingers
(Fig. 8j) become more and more apparent. Without the
MLPs, these parts were heavily blurred (Fig. 8c, Fig. 8h).

We kindly ask readers to refer to the supplementary ma-
terial for CoDyLiN’s qualitative results.

(a)

(b)

Figure 5. Quantitative results for ablation on the synthetic Standup
scene. (a) Dependence on the number of sampled points K  across
ray r ′ . (b) Dependence on the number of training samples S  dur-
ing Knowledge Distillation (KD).

Our controllable numerical results are collected in Tab. 4.
In short, our CoDyLiN was able to considerably outperform
CoNeRF with respect to MS-SSIM and speed.

6. Conclusion

We proposed two architectures for extending LFNs to
dynamic scenes. Specifically, we introduced DyLiN, which
models ray deformations without bending and lifts whole
rays into a hyperspace, and CoDyLiN, which allows for
controllable attribute inputs. We trained both techniques via
knowledge distillation from various dynamic NeRF teacher
models. We found that DyLiN produces state-of-the-art
quality even without ray bending and CoDyLiN outper-
forms its teacher model, while both are nearly 2 orders of
magnitude faster than their strongest baselines.

Our methods do not come without limitations, however.
Most importantly, they focus on speeding up inference, as
they require pretrained teacher models, which can be ex-
pensive to obtain. In some experiments, our solutions were
outperformed in terms of the PSNR score. Using the win-
ners as teacher models could improve performance. Addi-
tionally, distillation from multiple teacher models or joint
training of the teacher and student models are also yet to be
explored. Moreover, we currently represent rays implicitly
by sampling K  points along them, but increasing this num-
ber can lead to overfitting. An explicit ray representation
may be more effective. Finally, voxelizing and quantizing
our models could improve efficiency.
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Hook

Jumping Jacks

(a) Ground Truth

(f) Ground Truth

(b) D-NeRF [29]

(g) D-NeRF [29]

(c) TiNeuVox [8]

(h) TiNeuVox [8]

(d) Ours-1

(i) Ours-1

(e) Ours-2

(j) Ours-2

Figure 6. Qualitative results on synthetic dynamic scenes. We compare our DyLiN (Ours-1, Ours-2) with the ground truth, the D-NeRF
teacher model and TiNeuVox. Ours-1 and Ours-2 were trained without and with fine-tuning on the original data, respectively.

Chicken (a) Ground Truth (b) HyperNeRF [28] (c) TiNeuVox [8] (d) Ours-1 (e) Ours-2

Figure 7. Qualitative results on a real dynamic scene. We compare our DyLiN (Ours-1, Ours-2) with the ground truth, the HyperNeRF
teacher model and TiNeuVox. Ours-1 and Ours-2 were trained without and with fine-tuning on the original data, respectively.

Expression

Peel Banana

(a) Ground Truth

(f) Ground Truth

(b) HyperNeRF [28]

(g) HyperNeRF [28]

(c) Ours-1

(h) Ours-1

(d) Ours-2

(i) Ours-2

(e) Ours-3

(j) Ours-3

Figure 8. Qualitative results for ablation on real dynamic scenes. We compare our DyLiN (Ours-1, Ours-2, Ours-3) with the ground truth and
the HyperNeRF teacher model. Ours-1 was trained without our two MLPs. Ours-2 was trained with pointwise deformation MLP only. Ours-3
is our full model with both of our proposed two MLPs.

Our results are encouraging steps towards achieving real-
time volumetric rendering and animation, and we hope that
our work will contribute to the progress in these areas.
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